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Department of Electrical and Electronic Engineering,

The University of Melbourne,
Parkville, 3052, Victoria, Australia

ph + 61 + 3 + 9344 5357, fax + 61 + 3 + 9344 6678
d.nesic@ee.mu.oz.au

Keywords: complete controllability, discrete-time, null controllability, nonlinear, polynomial systems.

Abstract

Null controllability for a class of parallelly connected discrete-time polynomial systems is consid-
ered. We prove for this class of systems that a necessary and sufficient condition for null controllability
of the parallel connection is that all its subsystems are null controllable. Consequently, the control-
lability test splits into a number of easy-to-check tests for the subsystems. The test for complete
controllability is also presented and it is subtly different from the null controllability test. A similar
statement is then given for complete controllability of a class of parallelly connected continuous-time
polynomial systems. The result is somewhat unexpected when compared to the classical linear sys-
tems result. We identify the phenomenon which shows the difference between the linear and nonlinear
cases.

1 Introduction

Controllability represents one of the most fundamental notions in control theory since it characterizes
basic limitations to the performance of a plant. The importance of controllability stems from its inti-
mate relation to the important concept of a minimal realization and the stabilizability problem. Hence,
characterization of controllability properties of a controlled system should be an important part of any
thorough control analysis or synthesis.

An important class of nonlinear models are polynomial models, which can be used to model a wide
variety of plants and processes. Polynomial discrete-time models are used in an approach to black box
identification of nonlinear systems [HaKe, HaUn]. In this paper, we consider a class of parallelly connected
polynomial models, which are called URYSON models [HaKe, HaUn]. An important subclass of this class
of models are generalized Hammerstein models, which consist of parallelly connected linear and nonlinear
systems [HaKe, HaUn]. Despite their very simple structure, these models often turn out to be appropriate
to model some practically important plants. For example, the models of a cement mill [Ke] and a cooling
water circulation of a thermal power plant [BaIs] were identified in generalized Hammerstein form.

Controllability for classes of polynomial discrete-time systems has been addressed in [EvMu1, EvMu3,
EvMu2, NMBM1, NMBM2, NeMa1, Ne1, NeMa2, NMBM3]. Papers [EvMu1] and [EvMu3] provide
necessary and sufficient conditions for complete controllability of two classes of bilinear systems. In
[EvMu2], conditions for complete controllability for linear systems with positive controls were presented.
Notice that linear systems with positive controls can be regarded as a class of polynomial systems with
square input nonlinearity. In [NMBM1] we addressed state null controllability of scalar polynomial
systems of the form xk+1 = f(xk, uk), x, u ∈ R and a generic controllability result was proved. A
generalization was presented in [NMBM2, NMBM3] where we obtained necessary and sufficient conditions
for output dead-beat controllability of a class of planar odd polynomial systems given by the I/O equation
yk+1 = f(yk, uk−1, uk), where y ∈ R and u ∈ R are respectively the output and input of the system.
Symbolic computation approaches for null controllability problem of general polynomial systems were
investigated in [NeMa1, NeMa2] and a solution based on the QEPCAD software package was obtained
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for general polynomial systems with rational coefficients. The results of [NeMa1, NeMa2] are applicable
to the class of polynomial systems considered in this paper. However, large computational requirements
decrease the efficiency of these methods and certain structural assumptions are needed to increase their
applicability. In [Ne1] we considered a class of generalized Hammerstein systems, where we obtained an
easy-to-check analytic null controllability test. We proved that the overall system is null (completely)
controllable if and only if its subsystems are null (completely) controllable. This is a surprising result since
it is known for parallel connections of linear systems that controllability of subsystems does not always
guarantee controllability of the overall system [Ka] (the poles of the subsystems must not coincide).

In this paper we generalize results from [Ne1] to multiple parallel connections with arbitrary monomial
input nonlinearities. We also prove a complete controllability result and an equivalent result for continuous
time systems. The phenomena which show differences between the linear and nonlinear cases are identified
and analyzed. An interesting interpretation of our results is that by “non-linearizing” an uncontrollable
linear system we may recover controllability (more precise statements are given below). Related results for
controllability and observability for series connections of linear blocks and static monomial nonlinearities
(simple Wiener-Hammerstein systems) can be respectively found in [Ne2] and [Ne3].

The outline of the paper is as follows. After presenting preliminaries, in Section 3 we present back-
ground results which we need in the sequel and provide motivation for the problem we consider. In Section
4 we present a proof for null and complete controllability of a single parallel connection. This result is
used in Section 5 as a building block to prove more general results on null and complete controllability of
URYSON models (multiple parallel connections). Complete controllability of continuous-time parallelly
connected systems is treated in Section 6 and we summarize our results in the last section.

2 Preliminaries

Sets of real, natural, rational and complex numbers are respectively denoted as R, N, Q and C. Consider
polynomial discrete-time systems of the following form:

S1 : x1(k + 1) = F1x1(k) + g1u
q1(k)

S2 : x2(k + 1) = F2x2(k) + g2u
q2(k)

S3 : x3(k + 1) = F3x3(k) + g3u
q3(k)

. . . . . .

Sm : xm(k + 1) = Fmxm(k) + gmuqm(k) (1)

where xi ∈ Rni ,
∑

i ni = n, u ∈ R, Fi ∈ Rni×ni , gi ∈ Rni×1, qi > 0, qi ∈ N, ∀i and qi 6= qj , ∀i 6= j.
We denote a sequence of controls {u(0), u(1), . . .} as U where u(i) ∈ R and its truncation of length

N , that is {u(0), . . . , u(N − 1)}, as UN . The state of the system (1) at a time step N , which is obtained
when a sequence UN is applied to the system and which emanates from the initial state x(0), is denoted
as x(N, x(0), UN ). We give below the definitions that are used in the sequel:

Definition 1 The system (1) is null controllable if for any initial state x(0) ∈ Rn there exists a positive
integer N = N(x(0)) and a control sequence UN such that x(N, x(0), UN ) = 0.

Definition 2 If in Definition 1 there exists a fixed integer N̄ ∈ N such that ∀x(0) it holds that N(x(0)) <
N̄ , then we say that there exists a uniform bound on the dead-beat time.

Definition 3 The system (1) is completely controllable if ∀x(0), xf ∈ Rn there exists a positive integer
N = N(x(0), xf ) and UN such that x(N, x(0), UN ) = xf .

The characteristic polynomial of a matrix Fi is denoted as pFi(λ) = det(λI−Fi). Given a polynomial:

p(λ) = λt + at−1λ
t−1 + . . . + a1λ + a0

we denote the degree of p as deg(p(λ)) = t. We introduce a new polynomial p[q](λ) which is obtained
from p(λ) when all the coefficients ai are taken with a power q > 0, q ∈ Q, that is we write:

p[q](λ) = λt + aq
t−1λ

t−1 + . . . + aq
1λ + aq

0
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For q = l1
l2

, li ∈ N, li > 0 where l2 is even, we would always make sure that ai ≥ 0, so that if p(λ) has
real coefficients, then p[q](λ) also has real coefficients. If we are given a polynomial H = λs +hs−1λ

s−1 +
. . . + h1λ + h0, we use the notation:

(p ·H)[q](λ) = λt+s + (hs−1 + at−1)qλt+s−1 + . . . + (h1a0 + h0a1)qλ + (a0h0)q

If q ∈ N, we can use repeatedly the binomial formula (a + b)q =
∑q

j=0

(
q
j

)
aq−jbj , where

(
q
j

)
=

q!
j!(q−j)! , to find the coefficients of (p ·H)[q](λ). Hence, the polynomial (p ·H)[q](λ) is obtained when we
first multiply the polynomials p and H and then take qth powers of all the coefficients of the product
polynomial. Notice that the following holds: (p ·H)[q](λ) = (H · p)[q](λ); (p[q1](λ))[q2] = p[q1q2](λ); and
p[1](λ) = p(λ).

Definition 4 [CLO] A greatest common divisor of polynomials p1, p2 is a polynomial h such that: h
divides p1 and p2; if p is another polynomial which divides p1 and p2, then p divides h. When h has these
properties we write h = GCD(p1, p2).

Definition 5 Given a polynomial p1 with roots {σ1, . . . , σn1} and polynomial p2 with roots {ζ1, . . . , ζn2},
their resultant is denoted as Res(p1, p2) and is defined as

Res(p1, p2) =
∏

i,j

(σi − ζj)

Notice that two polynomials have a common root if and only if their resultant is equal to zero. Resultant
of two polynomials can be obtained as a function of coefficients of the polynomials by using the Sylvester
matrix [CLO].

Given a set of vectors Bi ∈ Rn×1, i = 1, 2, . . . , f , their span is denoted as:

span{B1, . . . , Bf} = {x : x =
f∑

i=1

Biαi, αi ∈ R}

and their positive span is denoted as

span+{B1, . . . , Bf} = {x : x =
f∑

i=1

Biαi, αi ≥ 0}

Theorem 1 [EvMu1, Ev] Suppose that a matrix A has no real strictly positive or zero eigenvalues. Then
there exists a polynomial c(λ) =

∑T
i=0 ciλ

i, ci > 0 such that c(A) = 0.

Theorem 2 [EvMu1] Consider a set of vectors Aib, i = 0, . . . , r. If there exist αi > 0 such that the
following condition is satisfied

r∑

i=0

αiA
ib = 0 (2)

then span+{Arb, . . . , Ab, b} = span{Arb, . . . , Ab, b}.
Comment 1 A special form of Theorem 2 can be interpreted in a geometric way, which is more suitable
for our purposes. In Theorem 2 suppose that r > n and that the first n vectors Aib ∈ Rn, i = 0, 1, . . . , n−1
are linearly independent. The cone generated by these vectors is denoted as C = sp+{An−1b, . . . , b}. Then
obviously a positive linear combination of the r − n remaining vectors Aib, i = n, . . . , r must be in the
interior of the negative cone C− = sp+{−An−1b, . . . ,−b} in order for the condition (2) to hold.

It is not difficult to verify that this holds in general and we can state the following: Consider n linearly
independent vectors Akn−1b, . . . , Ak1b, b ∈ Rn with ki+1 > ki. Denote the cone which is generated by these
vectors as C = sp+{Akn−1b, . . . , Ak1b, b}. The cone C has a non-empty interior in Rn. If there exists

a vector Aknb such that it belongs to the interior of the negative cone
◦

C−, then the positive span of the
vectors sp+{Aknb, Akn−1b, . . . , Ak1b, b} is the whole space Rn. Notice that this implies that there exist
positive numbers αi such that

n∑

i=0

αiA
kib = 0, ki+1 > ki, ki ∈ N (3)
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3 Motivation and background

Testing controllability of general nonlinear systems is known to be a computationally very hard problem
[So]. Hence, it is of utmost importance to identify classes of nonlinear systems which are relevant in control
theory and whose structure can be used to facilitate controllability testing by reducing the complexity of
the controllability test. We show in the sequel that systems (1) offer such a possibility.

The main idea exploited in this article is to view the system (1) as a parallel connection of simple
Hammerstein systems Si, i = 1, 2, . . . , m and to link the controllability properties of the subsystems Si

with the controllability of their parallel connection (1). We note that null and complete controllability
tests for subsystems Si are known from the literature. Indeed, consider a subsystem Si of (1) with the
input monomial nonlinearity uqi . Then we have:

Theorem 3 Si is completely (null) controllable if and only if:

1. [Ka] for qi = 2t + 1, t ∈ N
(a) rank[λI − Fi : gi] = ni, ∀λ ∈ C (∀λ ∈ C− {0})

2. [EvMu1, Ne1] for qi = 2t, t > 0, t ∈ N
(a) rank[λI − Fi : gi] = ni, ∀λ ∈ C (∀λ ∈ C− {0})
(b) Fi has no real strictly positive or zero eigenvalues (no real strictly positive eigenvalues)

Indeed, if qi is and odd integer, we need to use standard linear complete/null controllability tests from
[Ka]. On the other hand, if qi is even, we view the system Si as a linear system with positive controls,
for which complete and null controllability conditions can be found in [EvMu1, Ne1].

It is rather obvious that complete (null) controllability of the subsystems Si of the system (1) is
necessary for complete (null) controllability of the overall system (1). However, it is a well known fact
that for linear control systems this is not sufficient [Ka]. Consider the system (1) and suppose that
m = 2, q1 = q2 = 1, that is we have a parallel connection of two linear systems. Denote the sets of
eigenvalues of the matrices Fi as Pi, and then we can state

Theorem 4 [Ka] A parallel connection of two linear systems S1 and S2 is completely (null) controllable
if and only if

1. both subsystems S1 and S2 are completely (null) controllable, and

2. P1 ∩ P2 = ∅ (6 ∃σ 6= 0, σ ∈ P1 ∩ P2).

We refer to Condition 2 of Theorem 4 hereafter as an interconnection condition. Hence, in the linear
case, besides the obvious necessary controllability Condition 1 of Theorem 4, we also need the extra
interconnection condition. The focus of our article is on characterizing similar interconnection conditions
for complete/null controllability of systems (1), which lead to necessary and sufficient complete/null
controllability conditions for (1). The phenomenon which shows the subtle difference between linear and
nonlinear cases is illustrated by the following example.

Example 1 Consider the following linear system, which is a parallel connection of two scalar null con-
trollable subsystems:

x1(k + 1) = x1(k) + u(k)
x2(k + 1) = x2(k) + u(k) (4)

The system (4) is not null controllable since for λ = 1 we have that rank[λI − A : b] = 1 (the inter-
connection condition is violated since subsystems have a common non-zero pole). Suppose now that we
insert a cubic nonlinearity at the input of the second subsystem, and hence we obtain the new system:

S1 : x1(k + 1) = x1(k) + u(k)
S2 : x2(k + 1) = x2(k) + u3(k) (5)
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Both subsystems S1 and S2 are obviously null controllable, but it is not yet clear whether their parallel
connection is. To investigate this, consider the state of the system (5) at the time k = 2. Since S1 is null
controllable we assume without loss of generality that x1(0) = 0 and we have:

x1(2) = u(0) + u(1)
x2(2) = x2(0) + u3(0) + u3(1) (6)

If we want to render x1(2) = 0 by choice of u(0), u(1), then we have that u(0) = v and u(1) = −v, where
v ∈ R is arbitrary. However, this choice of controls leads to cancellation of v in the second equation in
(6) and hence x2(2) can not be in general rendered zero. Nevertheless, let us consider the state of the
system (5) at time step k = 3 (x1(0) = 0 is assumed as before). We have then that:

x1(3) = u(0) + u(1) + u(2)
x2(3) = x2(0) + u3(0) + u3(1) + u3(2) (7)

There are many choices of u(0), u(1), u(2) which render x1(3) = 0. One such choice is u(0) = 2v, u(1) =
−v, u(2) = −v, where v ∈ R is arbitrary. With this control sequence we obtain that x2(3) = x2(0) + 6v3

and if we chose v = (−x2(0)/6)1/3, we have that x1(3) = 0, x2(3) = 0 for arbitrary initial conditions,
which means that the system (5) is null controllable.

Example can be interpreted as follows: by non-linearizing the input to one subsystem of a linear
parallel connection which is not null controllable, we can recover null controllability. In a sense, the cubic
nonlinearity destroyed the linear interconnection condition (Condition 2, Theorem 4), due to which the
linear parallel connection was not null controllable. We show below that the situation in our example
always happens for nonlinear systems (1).

4 A single parallel connection

In this section, we concentrate on systems (1) for which m = 2. First, main results of the section are
stated and commented on. Relationships and differences between our results and the known linear results
of Theorem 4 are explained and an interpretation of our results stated. In the second part of the section
we prove several technical lemmas and main theorems of this section.

Consider a parallel connection of two simple Hammerstein systems with the input nonlinearities of
the form uqi :

S1 : x1(k + 1) = F1x1(k) + g1u
q1(k)

S2 : x2(k + 1) = F2x2(k) + g2u
q2(k) (8)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u ∈ R, qi ∈ N, qi > 0, q1 6= q2 and the matrices Fi, gi have the appropriate
dimensions.

The main results of this section are stated below:

Theorem 5 The system (8) is null controllable if and only if its both subsystems S1 and S2 are null
controllable.

Hence, if we consider the system (8), there is no interconnection condition which could lead to loss
of null controllability if the subsystems are null controllable. This is the main difference between the
parallel connection of purely linear systems (see Theorem 4) and the nonlinear system (8). As a result,
the null controllability test for the system (8) is very simple and it splits into two tests for the subsystems,
which are stated in Theorem 3. Hence, the phenomenon illustrated in Example 1 always happens and
we can state that: if a parallel connection of two linear null controllable systems is not null controllable,
by inserting an odd monomial nonlinearity in front of one subsystem we recover null controllability of the
parallel connection. Note that if we wanted to insert an even nonlinearity in front of a subsystem with
the same purpose, the corresponding subsystem should not have any real strictly positive eigenvalues (see
Theorem 3).

In order to state the complete controllability result, we introduce the following notation: the sets of
eigenvalues of matrices Fi are denoted as Pi, i = 1, 2.

Theorem 6 The system (8) is completely controllable if and only if
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1. the subsystems S1 and S2 are completely controllable, and

2. 0 6∈ P1 ∩ P2.

Therefore, for complete controllability we have an interconnection condition but notice the subtle
difference with linear case (Condition 2 in Theorem 4). Obviously, the interconnection condition for the
nonlinear system (8) is less restrictive than the corresponding linear one. Complete controllability test
for (8) is again rather simple (use Theorems 3 and 6) and only linear algebra is needed to test it. The
statement of Theorem 6 can be further simplified if at least one of the matrices Fi, i = 1, 2 is non-singular,
in which case Condition 2 of the theorem always holds:

Corollary 1 Suppose that at least one of the matrices Fi, i = 1, 2 is non-singular . The system (8) is
completely controllable if and only if both subsystems S1 and S2 are completely controllable.

We emphasize that in Theorem 6 the interconnection condition (Condition 2) is implied by Condition
1 as soon as at least one of qi is an even integer. Indeed, from Theorem 3 it follows that if qi is even,
the corresponding matrix Fi should be non-singular for the subsystem Si to be completely controllable.
Therefore, we have:

Corollary 2 Suppose that at least one of qi, i = 1, 2 is an even integer. The system (8) is completely
controllable if and only if both subsystems S1 and S2 are completely controllable.

Hence, Condition 2 of Theorem 6 is not implied by Condition 1 only when both q1, q2 are odd integers.
Consequently, the interconnection condition from Theorem 6 is always satisfied for the class of systems
considered in [Ne1], where we had q1 = 1, q2 = 2. In this sense, in Theorem 6 we identified a genuinely
new phenomenon, which can occur only when both qi, i = 1, 2 are odd.

Finally, the difference in statements of Theorems 5 and 6 can be illustrated by the following trivial
system

x1(k + 1) = u(k)
x2(k + 1) = u3(k) (9)

whose both scalar subsystems are completely controllable (and hence null controllable). The system (9)
is obviously null controllable but it is not completely controllable since the final states xf that are not in
the set {x : −x3

1 + x2 = 0} can not be reached from any initial state x(0) ∈ R2.
In the rest of this section we prove the needed technical lemmas and Theorems 5 and 6. Results of

Lemmas are used to construct special control sequences which are used in proofs of Theorems 5 and 6,
and which are very similar to the one used in Example 1.

Lemma 1 Suppose that a pair of matrices A ∈ Rn×n and b ∈ Rn×1 is controllable and A is non-singular.
Then, given any positive integer T ∈ N, there exist a set of positive integers of the form:

k0 = 0
ki+1 ≥ ki + T, i = 0, 1, . . . , n− 1 (10)

such that
span[Akn−1b : Akn−2b : . . . : Ak1b : b] = Rn (11)

In other words, there exist integers of the form (10) such that rank[Akn−1b : Akn−2b : . . . : Ak1b : b] = n.
Proof of Lemma 1: Because of controllability of A, b and non-singularity of A we can write:

rankAk[An−1b : . . . : b] = n, ∀k ∈ N (12)

Pick an integer s1 ≥ T . If As1b and b are linearly independent, let k1 = s1. Suppose that the vectors
As1b and b are linearly dependent. Hence, there exists e1 ∈ R such that As1b = e1b. Consider now the
vector As1+1b and b and suppose that they are linearly dependent. That implies that As1b and As1+1b
are also linearly dependent, which contradicts (12). Hence, we can let k1 = s1 + 1. The construction
of the remaining ki is carried out in the same manner by considering the linearly independent vectors
Aki−1b, . . . , b and a new vector Asib with si ≥ ki−1 + T , which proves Lemma 1. Q.E.D.
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Lemma 2 Consider polynomials

p1(λ) = λn1 + bn1−1λ
n1−1 + . . . + b1λ + b0, bi ∈ R, b0 6= 0

p2(λ) = λn2 + an2−1λ
n2−1 + . . . + a1λ + a0, ai ∈ R, a0 6= 0 (13)

There exists a polynomial H(λ) with real coefficients of the degree at most n2 such that the polynomials
p1(λ) and (p2 ·H)[

q2
q1

](λ), qi ∈ N, qi > 0 have no common roots if and only if q1 6= q2.

Note: if q1 is even, then both p2 and H are assumed to have non-negative real coefficients.

Proof of Lemma 2: Necessity: Suppose that q1 = q2. Obviously, p
[

q2
q1

]

2 (λ) = p2(λ). Then, if
GCD(p1, p2) 6= 1 we have for any polynomial H that GCD(p1,Hp2) 6= 1, which proves necessity.

Sufficiency: Sufficiency is proved by construction of polynomial H satisfying conditions of the lemma.
Suppose that q1 6= q2. Denote the set of roots of the polynomial p1(λ) as Σ = {σ1, σ2, . . . , σn1}.

Notice that the resultant of p1(λ) and (H · p2)
[

q2
q1

](λ) can be written as:

Res(p1(λ), (H · p2)
[

q2
q1

](λ)) =
n1∏

i=1

(H · p2)
[

q2
q1

](σi) (14)

We introduce the following polynomial
H(λ) = λn2 + h (15)

and compute the polynomial (p2 ·H)[
q2
q1

](λ):

(p2 ·H)[
q2
q1

](λ) = λ2n2 + a
q2
q1
n2−1λ

2n2−1 + . . . + (a0 + h)
q2
q1 λn2 + . . . + (ha1)

q2
q1 λ + (a0h)

q2
q1 (16)

The only way for the polynomial (15) to fail in proving Lemma 2 is that there exists a root σj ∈ Σ
of p1(λ) for which the polynomial (p2 · H)[

q2
q1

](σj) ≡ 0 (see the expression (14)). In other words, the
polynomial (16) evaluated at λ = σj is trivial when viewed as a polynomial in h.

Suppose that there exists σj ∈ Σ for which (p2 · H)[
q2
q1

](σj) ≡ 0. If we introduce the new variable
t = h

1
q1 , we can write:

σ2n2
j + . . . + a

q2
q1
1 σn2+1

j︸ ︷︷ ︸
C1

+(a0 + tq1)
q2
q1 σn2

j + (a
q2
q1
n2−1σ

n2−1
j + . . . + a

q2
q1
0 )︸ ︷︷ ︸

C2

tq2 = 0, ∀t ∈ R (17)

In other words, we have that (since b0 6= 0 then σj 6= 0) the following must hold:

(a0 + tq1)q2 ≡ (−C1 − C2t
q2)q1σ−n2·q1

j (18)

Consider first the situation q2 > q1. Since a0 6= 0, the polynomial on the L.H.S. of (18) is always
a weighted sum of monomials of the form tjq1 , j = 0, 1, . . . , q2. Hence, the polynomial on the L.H.S.
consists of q2 + 1 monomials. On the other hand, for any C1, C2, σj the polynomial on the R.H.S. of (18)
is a weighted sum of at most q1 + 1 monomials of the form tiq2 , i = 0, 1, 2, . . . , q1. However, since q2 > q1

the polynomial on the L.H.S. contains always more monomials than the polynomial on the R.H.S. and
hence we have a contradiction.

Consider now the situation q2 < q1 and suppose that (18) holds. The polynomial on the L.H.S. always
has q2 + 1 ≥ 2 monomials since a0 6= 0. If C1 = 0 and/or C2 = 0, then the polynomial on the R.H.S. has
one monomial only, a contradiction. If, on the other hand, C1 6= 0, C2 6= 0 then the polynomial on the
R.H.S. has q1 + 1 monomials and since q1 > q2 we have again a contradiction.

Therefore, (18) can never hold if q1 6= q2, which proves the lemma. Q.E.D.

Comment 2 We remark that the condition a0 6= 0 and b0 6= 0 is crucial for Lemma 2 to work. Indeed,

suppose that p1 and p
[

q2
q1

]

2 have a common root equal to zero. Then for any H with real coefficients we have
that (H · p2)

[
q2
q1

](0) = 0 and hence Res(p1, (H · p2)
[

q2
q1

]) = 0 for any polynomial H with real coefficients.
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Comment 3 We need the following observation in the sequel. Suppose that for an arbitrary r ∈ N, r > 1
we introduce a polynomial p2 = p2(λr), deg(p2) = n2 · r. If we want to apply Lemma 2 to an arbitrary
polynomial p1 and the polynomial p2 in the given form, we can use straightforwardly the method from
Lemma 2. The polynomial H = λn2·r + h constructed using Lemma 2 is also a polynomial in λr. Hence,
the product p2 ·H = (p2 ·H)(λr) is a polynomial in λr. This shows that for an arbitrary polynomial p2

in λr, we can find a polynomial H so that p2 ·H satisfies conditions of Lemma 2 and is a polynomial in
λr.

Comment 4 Lemma 2 is instrumental in the proof of the main result and we present its special case
which better illustrates the nonlinear mechanism which will be shown later to destroy the linear intercon-
nection condition (see Example 1).

Let us consider system (8) with q1 = 1 and q2 = q and Fi are non-singular. Denote p1(λ) = pF2(λ)
and p2(λ) = pF1(λ). Assume that p

[q]
F1

(σj) = 0 for some σj, an eigenvalue of F2. Introduce again the
polynomial H = λn1 + h and consider

(pF1 ·H)[q](λ) = λ2n1 + aq
n1−1λ

2n1−1 + . . . + aq
1λ

n1+1 + (a0 + h)qλn1 + hq(aq
n1−1λ

n1−1 + . . . + aq
0) (19)

From equation (14), we see that the polynomial H fails in proving the result of Lemma 2 if and only if
for some root of pF2(λ), denoted as σj, we have that (pF1 ·H)[q](σj) is a trivial polynomial in h.

Consider now the eigenvalues σi of F2 for which p
[q]
F1

(σi) 6= 0 we obtain

(pF1 ·H)[q](σi) = p
[q]
F1

(σi)hq + . . .

which is a non-trivial polynomial in h. If, on the other hand, we consider the eigenvalue σj of F2 for
which p

[q]
F1

(σj) = 0, we obtain:

(pF1 ·H)[q](σj) = (
q−1∑

i=1

(
q
i

)
aq−i
0 hi)σn1

j (20)

Since F1, F2 are assumed to be non-singular, both a0 and σj are not zero. It follows that the polynomial
(20) is a non-trivial polynomial in h only if q > 1. Indeed, the sum on the R.H.S. of (20) is defined only
if q − 1 > 0. Formula (20) is crucial and we will show later that in the case q2 > 1 we can use this
property to recover null controllability, whereas for q2 = 1 (purely linear case) it is impossible to do so.
We postpone further details until the proof of the main result.

Lemma 3 Consider arbitrary polynomials p1(λ) =
∑n1

i=0 αiλ
i and p2(λ) =

∑n2
i=0 βiλ

i. Given any r >
n2, r ∈ N, we have that:

(p1(λr) · p2(λ))[q] = p
[q]
1 (λr)p[q]

2 (λ).

Proof of Lemma 3: By straightforward calculations we have that:

p1(λr) · p2(λ) = (
n1∑

i=0

αiλ
ri)(

n2∑

i=0

βiλ
i) =

n1∑

i=0

n2∑

j=0

αiβjλ
ri+j (21)

and therefore we have that

(p1(λr) · p2(λ))[q] =
n1∑

i=0

n2∑

j=0

(αiβj)qλri+j =
n1∑

i=0

n2∑

j=0

αq
i β

q
j λri+j = (

n1∑

i=0

αq
i λ

ri)(
n2∑

j=0

βq
j λj)

= p
[q]
1 (λr)p[q]

2 (λ) Q.E.D. (22)

Lemma 4 Consider a matrix F , which has no real positive or zero eigenvalues. Given any integer T ∈ N,
there exists another integer T1 ≥ T such that FT1 has no real positive or zero eigenvalues.

Proof of Lemma 4: The eigenvalues of F k are λk
i , where λi are eigenvalues of F . We can write λi

as
λi = ri(cos(φi) + j sin(φi)), j =

√−1 (23)
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It is obvious then that:
λk

i = rk
i (cos(kφi) + j sin(kφi)) (24)

Consider now the values of I = {k∗ : k∗ ∈ N, k∗ > 0, for which F k∗ has positive or zero eigenvalues }.
It is easy to see that since F has no zero eigenvalues then F k has no zero eigenvalues ∀k ∈ N. If F
has real negative eigenvalues, the integers of the form k∗ = 2t, t ∈ N, t > 0 belong to the critical set
I. If F has pure imaginary eigenvalues, then the integers of the form k∗ = 4t, t ∈ N, t > 0 belong to
I. Finally, if there are any complex eigenvalues λi, it is easy to see that only eigenvalues λi for which
φi has the form lπ, l ∈ Q are such that ∃k∗ so that λk∗

i ∈ R, λk∗
i > 0. We can write for any such

eigenvalue that φi = ± di

mi
π, mi, di ∈ N, di < mi and GCD(mi, di) = 1. Then the integers of the form

k∗ = tmi, t ∈ N, t > 0 if di is even and k∗ = 2tmi if di is odd also belong to the critical set I. Since F
has finitely many eigenvalues, the set of critical integers I has finitely many generating numbers, that is
for any k∗ ∈ I, we can write k∗ = 2t or tmi or 2tmi for t ∈ N, t > 0. Since F has no positive eigenvalues,
finitely many prime numbers are contained in the set I. Consequently, given any T ∈ N, any prime
number P not in the set I which is larger than T satisfies the conditions of Lemma 4 and we can let
T1 = P . Q.E.D.

Comment 5 In the proof of Theorem 5 we assume without loss of generality that the matrices F1 and
F2 are non-singular. Zero modes can be ignored when investigating null controllability. To see this,
suppose that there are some zero eigenvalues of F1 and F2. By using a non-singular linear coordinate
transformation we can write the system in new coordinates:

(
ξ1
1(k + 1)

ξ2
1(k + 1)

)
=

(
F11 0
0 J1

)(
ξ1
1(k)

ξ2
1(k)

)
+

(
g1
1

g2
1

)
uq1(k)

(
ξ1
2(k + 1)

ξ2
2(k + 1)

)
=

(
F22 0
0 J2

)(
ξ1
2(k)

ξ2
2(k)

)
+

(
g1
2

g2
2

)
uq2(k) (25)

where F11, F22 are non-singular and J1, J2 are nilpotent matrices. Suppose that for any ξ1
1(0), ξ1

2(0) we
can find a control sequence UN which yields ξ1

1(N, ξ1
1(0), UN ) = 0 and ξ1

2(N, ξ1
2(0), UN ) = 0. Then, by

concatenating this control sequence with a sequence of u(k) = 0, k = N, N + 1, . . ., there exists time T
such that ξ(T ) = 0, because J1, J2 are nilpotent. Hence, we can concentrate on zeroing only the states
corresponding to non-zero modes when proving null controllability. Consequently (see Theorem 3), both
subsystems S1 and S2 can be assumed completely controllable when proving null controllability.

Proof of Theorem 5: Necessity part of the proof is obvious and we concentrate only on sufficiency.
We assume without loss of generality that matrices F1 and F2 are non-singular (see Comment 5) and
subsystems S1 and S2 are completely controllable.

Given an arbitrary polynomial p(λ) = λT + αT−1λ
T−1 + . . . + α0, we introduce the following control

sequence, which is denoted as U [p(λ)]:

u(0) = v(n2)

u(1) = α
1

q1
T−1v(n2)

u(2) = α
1

q1
T−2v(n2)

. . . . . .

u(T ) = α
1

q1
0 v(n2)

u(n1 + j0) = 0, 0 < j0 < k1 − T, k1 > T, j0 ∈ N
u(k1) = v(n2 − 1)

u(k1 + 1) = α
1

q1
T−1v(n2 − 1)

u(k1 + 2) = α
1

q1
T−2v(n2 − 1)

. . . . . .

u(k1 + T ) = α
1

q1
0 v(n2 − 1)

u(k1 + T + j1) = 0, 0 < j1 < k2 − k1 − T, k2 > k1 + T, j1 ∈ N
u(k2) = v(n2 − 2)

9



. . . . . .

u(kn2−1) = v(1)

u(kn2−1 + 1) = α
1

q1
T−1v(1)

. . . . . .

u(kn2−1 + T ) = α
1

q1
0 v(1) (26)

where αi are the coefficients of the polynomial p(λ) and ki+1 > ki + T , where T = deg(p(λ)), is a set of
integers which we show how to chose below.

Theorem 5 is proved by construction and we distinguish several cases:
First case: Both q1 and q2 in (8) are odd integers. Since the subsystem S1 is completely controllable,

we assume without loss of generality that x1(0) = 0 (for any ξ0 ∈ Rn1 we can find a control sequence
UN which yields x1(N, ξ0, UN ) = 0 and let formally x1(0) = x1(N, ξ0, UN ) = 0 and x2(0) arbitrary - see
Example 1).

Since F1 and F2 are assumed non-singular, their characteristic polynomials pF1(λ) and pF2(λ) sat-
isfy conditions of Lemma 2 and it follows that we can find a polynomial H(λ) such that Res((pF1 ·
H)[

q2
q1

](λ), pF2(λ)) 6= 0. Notice that this implies that the matrix (pF1 ·H)[
q2
q1

](F2) is non-singular. With
any such polynomial H, we apply the control sequence U [pF1(λ) ·H(λ)] given in (26) to the system (8).
Notice that the degree of the polynomial pF1(λ) ·H(λ) is 2n1 and at time step kn2−1 + 2n1 + 1 we have:

x1(kn2−1 + 2n1 + 1) = F
kn2−1+2n1+1
2 x1(0)︸ ︷︷ ︸

=0

+ pF1(F1)︸ ︷︷ ︸
=0

H(F1)[F
kn2−1

1 g1 : . . . : F k1
1 g1 : g1][vq1(n2) . . . vq1(1)]T

= 0
x2(kn2−1 + 2n1 + 1) = F

kn2−1+2n1+1
2 x2(0) + (pF1 ·H)[

q2
q1

](F2)︸ ︷︷ ︸
non−singular

[F kn2−1

2 g2 : . . . : F k1
2 g2 : g2][vq2(n2) . . . vq2(1)]T

= F
kn2−1+2n1+1
2 x2(0) + L[vq2(n2) . . . vq2(1)]T (27)

The control sequence is chosen in such a way that it annihilates in the first state equation irrespective of
the values v(i) and integers ki. Since we also assumed x1(0) = 0, we have that x1(kn2−1 + 2n1 + 1) = 0
irrespective of the values of v(i), ki.

Next we show we can choose v(i) and ki in order to render the state x2(kn2−1 + 2n1 + 1) = 0. F2

is non-singular and (F2, g2) controllable by our assumption and from Lemma 1 it follows that we can
always choose ki, i = 0, 1, . . . , n2− 1 so that the vectors F ki

2 g2 are linearly independent. Suppose that we
choose ki in such a way, then since (pF1 ·H)[

q2
q1

](F2) is non-singular, the matrix L in (27) is non-singular.
Finally, since q2 is odd, we can always render x2(kn2−1 +2n1 +1) = 0 and the system is null controllable.
Moreover, notice that since the image of the map L[vq2(n2) . . . vq2(1)]T , v(i) ∈ R is Rn2 , we can assign
actually arbitrary x2(kn2−1 + 2n1 + 1) ∈ Rn2 .

Second case: One of qi is odd and another is even. Assume without loss of generality that q2

is even with q1 odd. In order to specify the control sequence that we use, we need to define several
polynomials. As before from Lemma 2 it follows that there exists a polynomial H1(λ) such that Res((pF1 ·
H1)

[
q2
q1

](λ), pF2(λ)) 6= 0 and consequently (pF1 · H1)
[

q2
q1

](F2) is non-singular (note that the degree of
(pF1 ·H1)

[
q2
q1

](λ) is 2n1).
Since the subsystem S1 is completely controllable, we still assume that x1(0) = 0. Apply the control

sequence U [pF1 ·H1(λ)] where H1 is chosen (using Lemma 2) so that (pF1 ·H1)
[

q2
q1

](F2) is a non-singular
matrix and the numbers ki are chosen (using Lemma 1) so that F ki

2 g2 are linearly independent. We need
to concatenate this control sequence with another control sequence in order to complete the proof.

Since the subsystem S2 is controllable, (F2, g2) is a controllable pair and F2 has no strictly positive or
zero eigenvalues and this implies that there exists a polynomial with positive coefficients c(λ) =

∑T1
i=0 ciλ

i

such that c(F2) = 0 (See Theorem 1). From Theorem 2 it follows that given any x∗ ∈ Rn2 , there exist
c̄i ≥ 0 such that

∑T1
i=0 c̄iF

i
2g2 = x∗. Introduce the polynomial

χ(λ) = (p
F

T1+1
1

·H2)
[ 1

q1
](λT1+1)c̄[ 1

q2
](λ), T1 = deg(c̄(λ)) (28)

where the polynomial c̄(λ) =
∑T1

i=0 c̄iλ
i, c̄i ≥ 0 is to be chosen below; p

F
T1+1
1

(λ) = det(λI − FT1+1
1 );

deg(p
F

T1+1
1

(λT1+1)) = n1(T1 + 1); H2 = λn1(T1+1) + h2 is chosen (using Lemma 2) so that (p
F

T1+1
1

·
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H2)
[

q2
q1

](FT1+1
2 ) is non-singular. By using the notation χ(λ) =

∑R
i=0 βiλ

i, we apply the following control
sequence to the system (8): the control sequence U [pF1 ·H1(λ)] (see (26)) is concatenated by the control
sequence u(kn2−1 + 2n1 + 1 + i) = βR−iv(0), i = 0, 1, . . . , R. Under this control sequence, the state of the
system at time step r = kn2 + 2n1 + R + 2 is:

x1(r) = F r
1 x1(0)︸ ︷︷ ︸

=0

+FR+1
1 (pF1 ·H1)(F1)︸ ︷︷ ︸

=0

[F kn2−1

1 g1 : . . . : g1][vq1(n2) . . . vq1(1)]T + χ[q1](F1)g1v
q1(0)

x2(r) = F r
2 x2(0) + FR+1

2 (pF1 ·H1)
[

q2
q1

](F2)︸ ︷︷ ︸
non−singular

[F kn2−1

2 g2 : . . . : g2][vq2(n2) . . . vq2(1)]T + χ[q2](F2)g2v
q2(0)

= F r
2 x2(0) + [B̂n2 : . . . : B̂1][vq2(n2) . . . vq2(1)]T + B̂0v

q2(0) (29)

From Lemma 3 it follows that ∀k ∈ N we have

χ[k](λ) = ((p
F

T1+1
1

·H2)
[ 1

q1
](λT1+1)c̄[ 1

q2
](λ))[k] = (p

F
T1+1
1

·H2)
[ k

q1
](λT1+1)c̄[ k

q2
](λ)

and hence we have that

χ[q1](F1) = (p
F

T1+1
1

·H2)
[

q1
q1

](FT1+1
1 )

︸ ︷︷ ︸
=0

c̄[
q1
q2

](F1) = 0

χ[q2](F2) = (p
F

T1+1
1

·H2)
[

q2
q1

](FT1+1
2 )

︸ ︷︷ ︸
non−singular

c̄[
q2
q2

](F2) (30)

From (29) and (30) we obtain that x1(r) = 0 irrespective of v(i), i = 0, 1, . . . , n2, c̄(λ) and ki. We use
these degrees of freedom to show that by choosing v(i), ki and c̄(λ) we can render also x2(r) = 0.

Note that B̂i, i = 1, 2, . . . , n2 can be made linearly independent vectors (Lemma 1) so that the cone
generated by them has a nonempty interior. As we already indicated, for arbitrary x∗ ∈ Rn2 there exists
c̄(λ) so that c̄(F2)g2 = x∗. Since (p

F
T1+1
1

· H2)
[

q2
q1

](FT1+1
2 ) is non-singular we can find the polynomial

c̄(λ) so that B̂0 = (p
F

T1+1
1

· H2)
[

q2
q1

](FT1+1
2 )c̄[

q2
q2

](F2)g2 belongs to the interior of sp+{−B̂1, . . . ,−B̂n2}.
With such a choice of c̄(λ) it follows that, sp+{B̂0, B̂1, . . . , B̂n2} = sp{B̂0, B̂1, . . . , B̂n2} = Rn2 since
B̂i, i = 1, 2, . . . , n2 are linearly independent (see Theorem 2 and Comment 1), which completes the proof.

Case 3: Both q1 and q2 are even. We can use a very similar proof as in the previous case. The control
sequence which we use in the proof is U [cF1 ·H1(λ)] concatenated by the control sequence (see proof of
Case 2) defined using the polynomial χ(λ) = (cF R

1
·H2)

[ 1
q1

](λR)c̄[ 1
q2

](λ), where: cF1(λ), cF R
1

(λ) and c̄(λ) are
polynomials with positive and non-negative coefficients respectively such that cF1(F1) = 0, cF R

1
(FR

1 ) = 0
and c̄(λ) is chosen in the same way as in the proof of Case 2; H1 and H2 are polynomials with non-
negative coefficients, which are chosen so that (cF1 ·H1)

[
q2
q1

](F2) and (cF R
1
·H2)

[
q2
q1

](FR
2 ) are non-singular

(using Lemma 2); R is an integer R > T , where T is the degree of cF1(λ), chosen so that FR
1 has no real

strictly positive or zero eigenvalues (see Lemma 4). The proof then follows word by word as in Case 2.
Q.E.D.

Comment 6 Special control sequences that we used in the proof of Theorem 5 can not be used in the
cases when q1 = q2, which includes the linear case. Lemma 2 (see also Comment 4) states that it is
always possible to construct the satisfactory control sequences used in the proof of our main result if and
only if q1 6= q2. It is easy to show that if q1 = q2, the parallel connection is null controllable if and only
if the subsystems are null controllable and they also do not have common non-zero poles. Hence, for
complete/null controllability in the case q1 = q2 we need an interconnection condition and moreover the
interconnection condition is completely equivalent to the one in the purely linear case q1 = q2 = 1, given
in Theorem 4.

Proof of Theorem 6:
Necessity: Necessity of the first condition is obvious. To show that the second condition is necessary,
suppose the subsystems S1, S2 are completely controllable and that the system (8) is completely control-
lable but that 0 ∈ P1 ∩ P2. Notice that both q1, q2 should be odd in this case since if they are even,
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the existence of zero eigenvalues destroys complete controllability of subsystems. Hence, there exists a
non-singular coordinate transformation so that the system (8) is in new coordinates given by (25). Since
both subsystems are assumed controllable, we can assume that the pairs (J1, g

2
1) and (J2, g

2
2) in (25) are

both in controllability canonical form. If we denote the last entries of vectors ξ2
1(k) and ξ2

2(k) as η1(k)
and η2(k) respectively, we see from (25) that for any k = 0, 1, 2, . . . it holds that:

η1(k + 1) = uq1(k)
η2(k + 1) = uq2(k) (31)

and hence if a final state ξf ∈ Rn, which we want to reach, does not belong to the set SC = {x :
(η1)q2 − (η2)q1 = 0} ⊂ Rn, we can not reach it for any sequence of controls from any initial state
x(0) ∈ Rn (see also the system (9)). This contradicts our assumption that the overall system is completely
controllable.

Sufficiency: Suppose first that both subsystems S1 and S2 (8) are completely controllable and F1

and F2 are both non-singular. We can therefore assume that x1(0) can be arbitrarily preassigned using a
pre-sequence of controls and we can think of x1(0) as a vector function of the control pre-sequence whose
image is Rn1 . From proof of Theorem 5, we know that for any of the cases we presented there exists an
integer r and control sequence Ur such that

x1(r) = F r
1 x1(0)

x2(r) = F r
2 x2(0) + L[vq2(n2) . . . vq2(1) vq2(0)]T (32)

Hence, there exists a sequence of controls Ur, which is a function of v(i), that has no effect on the
first subsystem whereas the image of the map L[vq2(n2) . . . vq2(1) vq2(0)]T is Rn2 . Bearing in mind
that F1 is non-singular and x1(0) can be preassigned arbitrarily, we see that given any x1,f ∈ Rn1 and
x2,f ∈ Rn2 , there exist v(0), . . . , v(n2) and x1(0) (that is a pre-sequence of controls) so that x1(r) = x1,f

and x2(r) = x2,f .
Suppose now that both S1 and S2 are completely controllable but one of the matrices Fi, say F1, is

singular (in this case q1 is necessarily odd). There exists a non-singular coordinate transformation such
that the system (8) in new coordinates is:

ξ1(k + 1) = F11ξ1(k) + g1
1uq1(k)

ξ2(k + 1) = J1ξ2(k) + g2
1uq1(k)

x2(k + 1) = F2x2(k) + g2u
q2(k) (33)

where (F11, g
1
1), (J1, g

1
2), (F2, g2) are in controllability canonical form, F11, F2 are non-singular and

J1 ∈ Rr×r is nilpotent. In the same way as before, we think of ξ1(0) as a “control”. We consider the
non-zero modes of both subsystems (ξ1, x2) and apply the control sequence UR which would have no effect
on the ξ1 subsystem, whereas arbitrary x2,f can be achieved with it and then concatenate this sequence
with r controls u(R− 1 + i), i = 1, . . . , r to obtain:

ξ1(R + r) = FR+r
11 ξ1(0) +

r−1∑

i=0

F r−1−i
11 g1

1uq1(R + i)

ξ2(R + r) =
r−1∑

i=0

Jr−1−i
1 g2

1uq1(R + i)

x2(R + r) = FR+r
2 x2(0) + F r

2 L[vq2(n2) . . . vq2(1) vq2(0)]T +
r−1∑

i=0

F r−1−i
2 g2u

q2(R + i) (34)

First, since (J1, g
2
1) is controllable, given any ξ2,f ∈ Rr we can choose u(R + i), i = 0, 1, . . . , r− 1 so that

ξ2(R+r) = ξ2,f . Second, since F11 is non-singular, given any ξ1,f ∈ Rn1−r we can pre-assign ξ1(0) so that
ξ1(R + r) = ξ1,f . Finally, given any x2,f ∈ Rn2 , we can choose v(0), . . . , v(n2) so that x2(R + r) = x2,f ,
which completes the proof. Q.E.D.

We close this section with an example which illustrates the method exploited in proofs of main results
of the section.
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Example 2 Consider the system:

S1 : x1(k + 1) = F1x1(k) + g1u
2(k)

S2 : x2(k + 1) = F2x1(k) + g2u
3(k) (35)

where

F1 =
(

0 1
−2 1

)
, F2 =

(
0 1
−1 −1

)
, g1 = g2 =

(
0
1

)

It is easy to verify that the system (35) is null and completely controllable using Theorems 5 and 6.
However, we use the approach exploited in the proofs of main results in order to illustrate our method.
Notice that both subsystems S1 and S2 in (35) are null controllable since the pairs (F1, g1) and (F2, g2)
are controllable (they are in controllability canonical form) and the matrix F1 has no real strictly positive
or zero eigenvalues. Indeed, the eigenvalues of F1 are 0.5± j1.3229. As a result, there exists a polynomial
cF1(λ) with positive coefficients such that cF1(F1) = 0. The polynomial cF1(λ) = λ4 + λ3 + 2λ2 + 2λ + 4
is one such polynomial. To prove null controllability, since the subsystem S1 is completely controllable,
we can assume without loss of generality that x1(0) is a zero vector.

Assume also that the following control sequence is applied to the system:

u(0) = v(1);u(1) = v(1);u(2) =
√

2v(1);u(3) =
√

2v(1); u(4) = 2v(1);

u(5) = v(0);u(6) = v(0);u(7) =
√

2v(0);u(8) =
√

2v(0); u(9) = 2v(0);

Then the systems equations at the time step k = 10 are:

x1(10) = F 10
1 x1(0)︸ ︷︷ ︸

=0

+ c
[ 22 ]

F1
(F1)︸ ︷︷ ︸

=0

[F 5
1 g1 : g1][v2(1) v2(0)]T

x2(10) = F 10
2 x2(0) + c

[ 32 ]

F1
(F2)︸ ︷︷ ︸

non−singular

[F 5
2 g2 : g2]︸ ︷︷ ︸

non−singular

[v3(1) v3(0)]T (36)

and since both matrices c
[ 32 ]

F1
(F2) and [F 5

1 g1 : g1] are non-singular, the image of the mapping

c
[ 32 ]

F1
(F2)[F 5

2 g2 : g2][v3(1) v3(0)]T , v(0), v(1) ∈ R

is R2 and consequently the system is null controllable. Moreover, since the matrices F1 and F2 are both
non-singular, the system is completely controllable. Indeed, suppose we want to transfer any initial state
(xT

1 (0) xT
2 (0))T to the state (xT

1,f xT
2,f )T . Since the first system is completely controllable, we can assume

without loss of generality that the initial state x1(0) was preassigned (using a pre-sequence of controls)
so that F 10

1 x1(0) = x1,f . The argument is then the same as before.

5 Multiple parallel connections

In this section we generalize the result on complete and null controllability to multiple parallel connections.
The main results of the paper are given below:

Theorem 7 Consider a URYSON system (1). The system is null controllable if and only if all of its
subsystems Si are null controllable.

Theorem 8 Consider a URYSON system (1). The system is completely controllable if and only if:

1. all of its subsystems Si are null controllable and

2. ∀i, j ∈ {1, . . . ,m}, i 6= j we have that 0 6∈ Pi ∩ Pj, where Pi denote the sets of eigenvalues of the
matrices Fi.

From Theorems 7 and 8 we obtain very easy complete and null controllability tests for system (1).
We concentrate below on proving only Theorem 7 since the methods from previous section can be used
in a straightforward manner to prove Theorem 8.

An obvious consequence of Theorem 8 is:

13



Corollary 3 Suppose that for system (1) at most one of Fi, i = 1, 2, . . . , m is a singular matrix. Then
the system (1) is completely controllable if and only if all subsystems Si are completely controllable.

The following lemma generalizes the statement of Lemma 2 and is instrumental in proving the con-
trollability result for multiple parallel connections:

Lemma 5 Consider a set of pairs (Fi, qi), i = 1, 2, . . . , j, where Fi ∈ Rn1×n1 are non-singular matrices;
qi ∈ N, qi > 0; qi 6= qj if i 6= j; and if qi is an even integer, the matrix Fi has no real strictly positive
eigenvalues. There exists a polynomial Πj(λ), which has no zero roots, such that

1. Π[qi]
j (Fi) = 0, ∀i = 1, 2, . . . , j − 1, and

2. Res(pFj
(λ),Π[qj ]

j (λ)) 6= 0

Proof of Lemma 5: Lemma is proved by construction of the polynomial Πj(λ). First, we use the
notation pFi

(λ) for a characteristic polynomial of Fi and cFi
(λ) for a polynomial with positive coefficients

for which cFi(Fi) = 0. If qi is even, the conditions of Lemma always guarantee the existence of cFi(λ)
- see Theorem 1. We introduce a set of polynomials ψj , j = 1, 2, . . . , j − 1, which are computed in the
following way:

1. Polynomial ψ1(λ):

(a) if q1 is an odd integer, we let r1 = 1 and ψ1(λr1) = ψ1(λ) = pF1(λ) ·H1(λ), where H1 is chosen

using Lemma 2 so that Res(pFj (λ), (pF1 ·H1)
[

qj
q1

](λ)) 6= 0.

(b) if q1 is an even integer, we let r1 = 1 and ψ1(λr1) = ψ1(λ) = cF1(λ) · H1(λ), where H1 is

chosen using Lemma 2 so that Res(pFj (λ), (cF1 · H1)
[

qj
q1

](λ)) 6= 0. We note that in this case
H1 is assumed to have non-negative coefficients.

2. Polynomial ψi(λ), i = 2, . . . , j − 1:

(a) if qi is an odd integer, we let ri > deg(ψi−1(λri−1)·. . .·ψ1(λr1)) and ψi(λri) = pF
ri
i

(λri)·Hi(λri),

where Hi is chosen using Lemma 2 and Comment 3 so that Res(pFj (λ), (pFi ·Hi)
[

qj
qi

](λri)) 6= 0.

(b) if qi is an even integer, we let ri > deg(ψi−1(λri−1) · . . . · ψ1(λr1)) so that F ri
i has not real

positive eigenvalues (always possible from Lemma 4) and ψi(λri) = cF
ri
i

(λri) ·Hi(λri), where

Hi is chosen using Lemma 2 and Comment 3 so that Res(pFj (λ), (cFi ·Hi)
[

qj
qi

](λri)) 6= 0. We
note that in this case Hi is assumed to have non-negative coefficients.

We show now that the polynomial Πj(λ) of the following form:

Πj(λ) = ψ
[ 1

qj−1
]

j−1 (λrj−1) · . . . · ψ[ 1
q2

]

2 (λr2) · ψ[ 1
q1

]

1 (λ) (37)

satisfies the conditions of Lemma 5. First, notice that the integers ri are chosen in such a way that all
polynomials ψi have real coefficients (Lemma 4 was used to construct ψi for even qi’s). Second, from
Lemma 3 it follows ∀k ∈ N that:

Π[k]
j (λ) = ψ

[ k
qj−1

]

j−1 (λrj−1) · . . . · ψ[ k
q2

]

2 (λr2) · ψ[ 1
q1

]

1 (λ) (38)

and hence we have that since by construction ψ
[

qi
qi

]

i (F ri
i ) = 0, ∀i = 1, 2, . . . , j − 1 that the first condition

of Lemma 5 holds:

Π[qi]
j (Fi) = ψ

[
qi

qj−1
]

j−1 (F rj−1
i ) · . . . · ψ[

qi
q2

]

2 (F r2
i ) · ψ[

qi
q1

]

1 (Fi) = 0, i = 1, 2, . . . , j − 1

Moreover, notice from (38) that Π[qj ]
j (λ) =

∏j−1
i=1 ψ

[
qj
qi

]

i (λri). It follows that Res(pFj (λ),Π[qj ]
j (λ)) 6= 0 if

and only if Res(pFj (λ), ψ
[

qj
qi

]

i (λri)) 6= 0, ∀i = 1, 2, . . . , j−1, which holds by construction of the polynomials
ψi. Hence, the second condition of Lemma 5 is also satisfied. Q.E.D.
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Notice that polynomials ψi and integers ri in the proof of Lemma 5 are chosen in such a way that we
can repeatedly use Lemma 2 for each of the polynomials ψi and pFj

separately. We emphasize that other
constructions are possible and the polynomial Πr(λ) constructed in Lemma 5 is obviously not unique.
Also, the procedure which we presented does not yield the minimum degree of the polynomial.

Proof of Theorem 7: Necessity of the proof is obvious and we concentrate only on sufficiency. First,
we can assume that all subsystems Si of the system (1) are completely controllable and the matrices Fi

are non-singular. Also, q3 is assumed to be odd for simplicity.
Since system S1 is null controllable we can assume that x1(0) = 0. Then, using the control sequences

from the proof of Theorem 5, it follows that we can zero x2 while x1 is also kept at zero. Hence, we
assume that x1(0) = 0 and x2(0) = 0. If we consider the polynomial Π3(λ), which is constructed in
Lemma 5 for pairs (F1, q1), (F2, q2), (F3, q3), we have that Π[q1]

3 (F1) = 0 and Π[q2]
3 (F2) = 0. Apply now

the control sequence U [Π(λ)] defined in (26) with q1 = 1, which yields:

x1(P ) = FP
1 x1(0)︸ ︷︷ ︸

=0

+ Π[q1]
3 (F1)︸ ︷︷ ︸

=0

[F kn3−1

1 g1 : . . . : g1][v(n3 − 1) . . . v(0)]T = 0

x2(P ) = FP
2 x2(0)︸ ︷︷ ︸

=0

+ Π[q2]
3 (F2)︸ ︷︷ ︸

=0

[F kn3−1

2 g2 : . . . : g2][v2(n3 − 1) . . . v2(0)]T = 0

x3(P ) = FP
3 x3(0) + Π[q3]

3 (F3)[F
kn3−1

3 g3 : . . . : g3][v3(n3 − 1) . . . v3(0)]T (39)

From Lemma 1, it follows that we can find a sequence of integers ki, i = 0, . . . , n3 − 1 such that F ki
3 g3

span Rn3 . Since the matrix Π[q3]
3 (F3) is non-singular by construction of Π3 in Lemma 5, then for any

x3(0) we can find v(i) such that x3(P ) = 0. Situations with more subsystems and/or q3 even are tackled
in a similar way using Lemmas 1 - 5 and proof of Theorem 5 to construct the desired control sequences.
They are omitted for space reasons. Q.E.D.

Comment 7 Although in the proof of our main results we did not work with the shortest control sequences
which achieve dead-beat behavior, we have established that the null controllability property is with the
uniform bound on the dead-beat time. In other words, if the system (1) is null controllable, then there is
a fixed integer N̄ such that any initial state can be transfered to the origin in at most N̄ time steps.

6 Continuous-time case

In this section we show that the results on complete controllability of discrete-time systems can be used
to prove an equivalent result for polynomial continuous-time systems. This is done by showing that
a continuous-time system of the same structure as (1), whose subsystems are completely controllable,
can be transformed into a discrete-time systems whose subsystems are completely controllable by using
piecewise constant controls (sampler and zero order hold).

Before we state the main result of this section we need to state some preliminaries. We denote the
control function restricted to the time interval [t0, tf ] as u[t0,tf ]. The state of the system (40) at time T ,
which emanates from the initial state x(0) under the control u[0,T ] is denoted as x(T, x(0), u[0,T ]).

Definition 6 A continuous-time system Σ is completely controllable if given any states x(0), xf , there
exists T ∈ R and control u[0,T ] such that xf = x(T, x(0), u[0,T ]).

In this section we consider systems of the following form:

S1 : ẋ1(t) = A1x1(t) + b1u
q1(t)

S2 : ẋ2(t) = A2x2(t) + b2u
q2(t)

. . . . . .

Sm : ẋm(t) = Amxm(t) + bmuqm(t) (40)

where xi ∈ Rni , i = 1, 2, . . . ,m, u(t) ∈ R and matrices Ai, bi have the appropriate dimensions.
We remark that conditions for complete controllability of subsystems Si of the continuous-time system

(40) are known from the literature:

Theorem 9 A subsystem Si of (40) is completely controllable if and only if:
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1. [Ka] for qi = 2t + 1, t ∈ N
(a) rank[λI −Ai : bi] = ni, ∀λ ∈ C

2. [Sa] for qi = 2t, t > 0, t ∈ N
(a) rank[λI −Ai : bi] = ni, ∀λ ∈ C
(b) Ai has no real eigenvalues

The main result of this section is given below:

Theorem 10 The system (40) is completely controllable if and only if all of its subsystems Si, i =
1, 2, . . . ,m are completely controllable.

From Theorems 9 and 10 we can see that the test for complete controllability of the system (40) is
again very easy-to-check and consists of m controllability tests for its subsystems Si.

Proof of Theorem 10: Necessity of the proof is trivial and we concentrate only on the sufficiency.
Assume that the control signal is piecewise constant, that is:

u(t) = u(k) = const., ∀t ∈ [kh, (k + 1)h[, h > 0, k ∈ N

In other words, we assume that a zero order hold and sampler are used. The particular structure of the
system (40) allows us to obtain a discrete-time model of the system in the same manner as for the linear
systems. Indeed, the discrete-time model of the system (40) with the assumption of zero order hold, is
given by (1), where

Fi = eAih, gi =
∫ h

0

eAisbids (41)

If we can find a sampling period h such that for all controllable subsystems Si of (40), we obtain that all
the subsystems of the system (1) with (41) are controllable, the proof of Theorem 10 follows immediately
from Theorem 7.

All subsystems Si in (40) are controllable. Consider the subsystem Si for which qi is odd. Denote
the eigenvalues of the matrix Ai as σt = ρt + jωt. From [Ka][pg. 174-175] it follows that since the pair
(Ai, bi) is controllable, the pair (Fi, gi), which is computed using (41), will be controllable if and only if
whenever

ρi − ρl = 0 then h 6= 2kπ

ωi − ωl
, i, l ∈ {1, 2, . . . , ni}, k ∈ N (42)

Hence only countably many values of h are critical. That is, the discrete-time subsystem Si may not be
controllable only for the values of h defined in (42).

On the other hand, if we consider a subsystem Si for which qi is even, we need besides the control-
lability condition of the pair (Fi, gi) also that Fi has no positive real eigenvalues. Notice that if the
matrix Ai had any real eigenvalues (the continuous-time subsystem Si is not controllable), then for any
sampling period h > 0, the matrix Fi defined by (41) would have a real positive eigenvalue, and hence
the discretized subsystem is also not controllable. Since the matrix Ai has only complex eigenvalues
σt = ρt + jωt, ωt 6= 0,∀t, if the sampling period is chosen so that:

h 6= 2kπ

ωt
, ∀t ∈ {1, 2, . . . , ni}, k ∈ N (43)

then Fi has no positive real eigenvalues. In summary, the critical values of h are given by conditions
(42) and (43) and therefore it is always possible to choose h > 0 so that all subsystems of the discretized
system (1) with (41) are controllable. Notice also that Fi obtained using (41) are all non-singular. The
proof of Theorem 10 follows from Corollary 3. Q.E.D.
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7 Summary

We have presented natural and easy-to-check necessary and sufficient conditions for null and complete
controllability for a class of discrete-time polynomial systems. Interesting relationships and differences
between the present class of systems, purely linear systems and generalized Hammerstein systems con-
sidered in [Ne1] were commented on. Our results allow for an interesting interpretation which says
that by “non-linearizing” an uncontrollable linear system we may recover controllability. The result for
discrete-time systems was used to prove a continuous-time controllability result.

Acknowledgments: The author wishes to thank anonymous reviewers for pointing out an error in
the original proof of Lemma 2 and giving lots of constructive comments which improved the presentation
of the paper. This work was supported by the Australian Research Council under the ARC Large Grant
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