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Abstract

State and output dead beat controllability tests for a very large class of polynomial
systems with rational coefficients may be based on the QEPCAD symbolic computation
program. The method is unified for a very large class of systems and can handle one
or two sided control constraints. Families of minimum time state/output dead beat
controllers are obtained. The computational complexity of the test is prohibitive for
general polynomial systems but by constraining the structure of the system, we may
beat the curse of complexity. A computationally less expensive algebraic test for output
dead beat controllability for a class of odd polynomial systems is presented. Necessary
and sufficient conditions are given. They are still very difficult to check. Therefore, a
number of easier-to-check sufficient conditions are also provided. The latter are based
on the Gröbner basis method and QEPCAD. It is shown on a subclass of odd polynomial
systems how it is possible to further reduce the computational complexity by exploiting
the structure of the system.

1 Introduction

In the last 35 years, we have witnessed great advances in dead beat (DB) control theory for

linear systems. Starting with Kalman’s state space approach and his most elegant solution

to the minimum time control of linear discrete time systems, the problem of DB control

has attracted the attention of many researchers [23]. In the linear framework, almost all

aspects of the problem have been addressed, most of them now being solved. Indeed, many

different design approaches, robustness of DB controllers, trade off between the magnitude

of control signals and the DB time, case studies, etc. have been reported in the literature.

On the other hand, nonlinear DB control has not received as much attention. The

computational complexity caused by nonlinearities forces us to tackle special classes of non

linear systems rather than develop a general approach to DB control. Most papers in the

literature address only the existence problem [10, 11, 12, 17, 24, 25] whereas just a few

designs have been reported (see e.g. [24, 25]). Obviously, all systems for which we know

how to design a DB controller have a special structure which reduces the computational

complexity, which is inherent in the general problem, in a substantial way.

In this paper, we restrict our considerations to classes of discrete time non linear systems

which allow both a state space and output representation in a polynomial format. More

precisely, we consider sub classes of the following class of polynomial systems:

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k)) (1)

where x(k), y(k) and u(k) are respectively state, output and input of the system at time k.

f and h are polynomials in all their arguments. Other assumptions on the structure of the
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system are of technical nature and are introduced later. The motivation for the analysis

of polynomial systems comes, for example, from identification techniques of block oriented

models [18] that yield input output identified models of the form:

y(k + 1) = F (y(k), . . . , y(k − s), u(k), . . . , u(k − t))

where y(k) and u(k) are output and input of the system and F is a polynomial function

in all arguments. A comprehensive study of realisation theory for this class of systems is

given in [27].

Several techniques have been used to test certain controllability properties of non linear

discrete time systems. They range from Lie algebraic techniques in [22] to more “linear-like”

techniques in [10, 11, 12, 28]. Also, the controllability properties and classes of systems that

have been investigated in the literature differ considerably and there does not seem to be a

unifying approach which would be applicable to a large class of systems. Some results on

output dead beat control of non linear systems can be found in [1]. However, the authors

took the predictive control approach in [1] and the definition of output dead beat control

is different from ours.

The results of this paper are in the spirit of [10, 11, 12, 28] but are very closely related

to results in [24, 25, 26]. In [24] we considered the simplest class of polynomial systems:

scalar polynomial systems. The results gave us a lot of insight into the properties of scalar

systems but unfortunately could not be generalised to higher order systems. In [25] results

on output dead beat controllability for a class of second order odd polynomial systems were

presented. In the last part of this paper we generalise results in [25] to systems of arbitrary

order. We illustrated how the Gröbner basis method can be used to find invariant sets of a

variety in [26]. In this paper we build on the results of [26] to obtain a most comprehensive

symbolic computation approach to state/output dead beat control for more general classes

of polynomial systems than the ones considered in [24, 25, 26].

We present here several state and output DB controllability tests for a very large class

of systems (1). The method naturally leads to a design method for families of state/output

minimum time DB controllers. The tests exploit the symbolic computation package called

QEPCAD and are applicable to MIMO polynomial systems, allowing also control con-

straints, such as bounded or positive controls. QEPCAD can be used to compute the sets

of states for (1) that can be transferred to the origin in one, two, etc. time steps and this

information is used to test dead beat controllability.

3



The applicability of the method is limited by the computational requirements. Although

the computational complexity may be formidable in general, the complexity curse may not

be an issue when considering systems of specific structure, such as bilinear or generalised

Hammerstein, and solutions to non trivial examples are presented. Moreover, by exploiting

the structure of the considered system we may be able to use other algorithms to further

reduce the computational requirements.

In the second part of the paper we concentrate on the output DB controllability prop-

erties for the so called odd polynomial systems and illustrate how it is possible to use the

Gröbner basis method to test it. The method that we use illustrates how it is possible to

determine invariant sets, which are important to describe output DB controllability prop-

erties. The controllability tests that we propose still suffer from computational inefficiency

although the test is less computationally demanding than the one based on QEPCAD. It is

our opinion that the lack of efficiency of the tests come from the structure of the considered

systems and it can be regarded as an intrinsic property of polynomial systems. A number of

easier-to-check necessary conditions and sufficient conditions for output DB controllability

are then presented.

Finally, a minimum time DB algorithm for a subclass of odd polynomial systems is

presented. The output DB controllability test is more explicit and easier to check in this

case. However, this sub class of odd systems does not appear to be very large. The paper

illustrates the trade offs between the generality of the proposed tests and their feasibility.

We emphasize that the proposed algorithms may be very successfully modified by ex-

ploiting the structure of the considered class of polynomial systems (see Example 1). More-

over, it seems that the design of minimum time DB controllers for (1) would always require

the use of QEPCAD or a similar algorithm. Consequently, any computational improve-

ments in the DB controller design would hinge on the advances in this field of computer

science/mathematics.

The paper is organised as follows. In Section 2 we list some results from algebraic geom-

etry, and give some definitions. Section 3 is dedicated to state and output DB controllability

tests, which are based on the QEPCAD algorithm. We demonstrate how a family of DB

controllers can be designed using the method. Then, in Section 4 we consider a subclass

of systems considered in Section 3, called odd systems, and develop another approach for

output DB controllability. The controllability test is based on the Gröbner basis method
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and QEPCAD but it is in general less computationally demanding than the one based on

QEPCAD in the previous Section. In Section 5 we further specialise the structure of odd

polynomial systems and obtain stronger conclusions on output DB controllability which

eventually lead to a much simpler design of a minimum time output DB controller. Our

results are summarised in the last Section.

2 Preliminaries

We use [9] as a main reference for most of the results from algebraic geometry that are

given below. We use standard definitions of rings and fields. The sets of integers, real and

rational numbers are respectively denoted as Z, < and Q. <n is a set of all n-tuples of

elements of <, where n is a non negative integer. The ring of polynomials in n variables

over the real field < is denoted as <[x1, x2, . . . , xn]. Let f1, f2, . . . , fs be polynomials in

<[x1, x2, . . . , xn]. Then we define

V (f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ <n : fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s}.

We call V (f1, f2, . . . , fs) the real algebraic set or real variety defined by the polynomials

f1, f2, . . . , fs. Since the defining polynomials of a real variety are often clear from the

context, we may denote it simply as V . A subset I ⊂ <[x1, x2, . . . , xn] is an ideal if

it contains the zero polynomial, is closed under addition and multiplication by another

polynomial in <[x1, x2, . . . , xn] [9].

Let f1, f2, . . . , fs be polynomials in <[x1, x2, . . . , xn]. Then the set

〈f1, . . . , fs〉 = {
s∑

i=1

hifi : h1, . . . , hs ∈ <[x1, . . . , xn]}

is called the ideal generated by f1, f2, . . . , fs.

Definition 1 A real variety V ⊂ <n is irreducible if whenever V is written in the form

V = V1 ∪ V2, where V1 and V2 are real varieties then either V1 = V or V2 = V [9]. 2

It is a known fact [9] that any real variety V can be written as a finite union V = V1 ∪
V2 ∪ . . . ∪ Vm, where each Vi is an irreducible variety. Another standard result in algebraic

geometry is that any descending chain of varieties V1 ⊃ V2 ⊃ V3 ⊃ . . . (ascending chain of

ideals I1 ⊂ I2 ⊂ I3 ⊂ . . .) in <n must stabilise. That is, there exist a positive integer N

such that VN = VN+1 = . . . (IN = IN+1 = . . .). For the relationship between ideals and

varieties, or the so called algebra-geometry dictionary, see Chapter 4 of [9].
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Definition 2 Fix a monomial order (see [9]). A finite subset G = {g1, g2, . . . , gt} of an

ideal I is said to be a Gröbner basis or standard basis for I if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉

where LT (gi) is the leading term of gi and 〈LT (I)〉 is the ideal generated by the set of

leading terms LT (fi) of polynomials fi ∈ I. 2

For the properties and applications of Gröbner bases see [9]. Care should be taken when

using Gröbner bases since most results hold only over an algebraically closed field. Given a

set of polynomials f1, . . . , fn, we denote their Gröbner basis as G = Gbasis[f1, . . . , fn].

The logical operators “AND” and “OR” are respectively denoted as ∧ and ∨. Given two

sets A,B ∈ <n, with B ⊂ A, we denote the complement of B with respect to A as A− B.

We denote the composition of function f in (1) as fu(1)◦fu(0)(x(0)) = f(f(x(0), u(0)), u(1)).

A sequence of controls is denoted as U = {u(0), u(1), . . .} and its truncation to a sequence

of length p + 1 is denoted as Up = {u(0), u(1), . . . , u(p)}. For longer sequences of controls

Up we use the notation fUp(x(0)) = fu(p) ◦ . . . ◦ fu(0)(x(0)). The state of system (1) that is

reached from the initial state x(0) at time step p + 1 under the action of a control sequence

Up is denoted as x(p + 1, x(0),Up). Hence, we can write x(p + 1, x(0),Up) = fUp(x(0)).

Definition 3 The system (1) is state dead beat controllable if for any initial state x(0) ∈ <n

there exists a control sequence U and a positive integer ν such that x(p + 1, x(0),Up) =

0, ∀p ≥ ν, where Up represents the truncation of the sequence U . 2

Definition 4 The system (1) is output dead beat controllable if for any initial state x(0) ∈
<n there exists a control sequence U and a positive integer ν such that h(x(p+1, x(0),Up)) =

0, ∀p ≥ ν, where Up represents the truncation of the sequence U . 2

3 QEPCAD based DB controllability tests

We show here that an algorithmic approach to deciding state/output DB controllability

problem of a large class of systems (1) is possible. A symbolic computation package called

QEPCAD is instrumental in automating this approach.

It is a well known fact that given the equation a2(t)u2 + a1(t)u + a0(t) = 0 in two

parameters u and t, there exists a real solution for the variable u if and only if the dis-

criminant a1(t)2 − 4a2(t)a0(t) ≥ 0. Hence, we have a condition on the parameter t alone,
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which guarantees the existence of a real solution u. The Sturm Theorem [21] establishes

a similar result for any univariate polynomial f(u) to have a real root. Tarski’s Theorem

further generalised this idea [21]:

Theorem 1 Let ϕ be a finite set of polynomial equations, inequations and inequalities of the

form F (t1, . . . , tr, x1, . . . , xn) = 0, G(t1, . . . , tr, x1, . . . , xn) 6= 0,H(t1, . . . , tr, x1, . . . , xn) > 0

where F, G,H ∈ Z[t1, . . . , tr, x1, . . . , xn]. Then we can determine in a finite number of steps

a finite collection of finite sets ψj of polynomial equations, inequations and inequalities of

the same type in the parameters ti alone such that, if R is any real closed field, then the set

ϕ has a solution for the x’s in R for ti = Ci, 1 ≤ i ≤ r, if and only if the Ci satisfy all the

conditions of one of the sets ψj. 2

Although theoretically very important, Tarski’s method is highly impractical for computa-

tion of the conditions ψj in the above Theorem.

It was not until 1973 that a more practical method for computing ψj was found. CAD

(Cylindrical Algebraic Decomposition) [5, 6] was first discovered by Collins in 1973 and since

then a number of improvements have been reported in the literature. QEPCAD1 (Quantifier

Elimination by Partial Cylindrical Algebraic Decomposition) [7] is the name of a software

program which implements CAD. It represents a part of a quantifier elimination procedure

for real closed fields and is based on the SACLIB package which was developed by G.

Collins and a number of other researchers (for a more detailed description of the algorithm

see [5, 6, 7]). QEPCAD is probably the only method for computing ψj in Tarski’s Theorem,

which has a software implementation.

QEPCAD was found to be useful in motion planning [6], bang-bang control [15] and we

show below that it can also be used in deciding state and output DB controllability of a

large class of polynomial systems given by:

x(k + 1) = f(x(k), u(k)),

y(k) = h(x(k)) (2)

where x(k) ∈ <n, y(k) ∈ < and u(k) ∈ < are respectively the state, the output and the

input of the system (2) at time k. The vector f(x, u) = (f1(x, u) . . . fn(x, u))T is such that

fi(x, u) ∈ Q[x, u] = Q[x1, x2, . . . , xn, u] and h ∈ Q[x1, . . . , xn], which means that we assume
1QEPCAD is still not available in a commercial computation package. It is still being perfected.
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fi and h have rational coefficients. We assume for in this sub section that f(0, 0) = 0, but

do not require the same assumption in the remainder of the paper.

The class of systems (2) represents a very large subclass of (1). In fact, in practise

we always deal with (2) since any irrational coefficients are approximated with a desired

accuracy by rational coefficients. We denote the set of states that can be transferred to the

origin in k + 1 time steps as:

Sk = {x : ∃u(0), . . . , u(k) ∈ <, such that fu(k) ◦ . . . fu(0)(x) = 0}

3.1 State dead beat controllability

It is obvious that QEPCAD can be used to decide whether a set of polynomial equations has

a common real root. Moreover, we can obtain conditions on coefficients of these polynomials

which guarantee the existence of a real root. As a result, we can compute the sets S0, S1, . . .

using QEPCAD. First, we find the composition fu(k)◦. . . fu(0)(x). Then, we apply QEPCAD

to obtain Sk, k = 0, 1, 2, . . . by considering the following decision problem

find x ∈ <n such that ∃u(0), . . . , u(k) ∈ <, which yields fu(k) ◦ . . . fu(0)(x) = 0

In other words, QEPCAD is used to project the variety V (fu(k) ◦ . . . fu(0)(x)) ⊂ <n+k+1

onto the space <n where the vector x lives. It is obvious that Sk ⊆ Sk+1, ∀k and we have a

chain S0 ⊆ S1 ⊆ S2 ⊆ . . ..

The following theorem follows easily from the above construction:

Theorem 2 Suppose that there exists an integer N such that SN = SN+1. The system (2)

is state DB controllable if and only if SN = <n. 2

Comment 1 The problem with this approach is that there may be some systems for which

the chain of sets S0 ⊂ S1 ⊂ . . . may not terminate (see [24]). However, even when the chain

does not terminate, obtaining a characterisation of the sets Sk is important in its own right

and may be used in the design of control laws, such as minimum time DB controllers.

Comment 2 The approach is very computationally expensive for general polynomial sys-

tems (2). The bounds on the computation time for the original algorithm can be found in

[5] and the improvements are discussed using some examples in [6]. The computation time

increases rapidly with the increase of the number of variables and total degrees of the input

polynomials. Hence, we need more time to compute the set Sk+1 than the set Sk. However,
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the examples that are presented below show that for moderate total degrees of polynomials

and low order systems this approach may yield satisfactory answers.

Comment 3 It is not difficult to include bounds on controls in the QEPCAD based state

DB controllability test. In other words, controllability with bounded (|u(k)| ≤ C) or positive

(u(k) ≥ 0) controls can be checked in the same way. However, instead of checking the

controllability on <n we may need to work on a bounded subset of the state space B ⊂ <n,

that is we check whether SN ⊇ B. Indeed, even in the case of linear systems with bounded

controls the chain S0 ⊂ S1 ⊂ . . . may not terminate for DB controllable systems [28]. In

other words, there may be no uniform bound on the DB time. This generalises the approach

of Desoer and Wing for minimum time DB control of linear systems with bounded controls

[28] and Evans’ controllability of linear systems with positive controls [12].

Comment 4 It is easy to see that a family of state DB controllers can be designed using

this approach. Indeed, assume that the system under consideration is state DB controllable,

that is SN = <n. The sets Sk, k = 0, 1, . . . , N are defined by:

Sk = {x ∈ <n :
pk∨

i=1

(
rk
i∧

j=1

tki,j(x) mk
i,j 0)}, k = 0, 1, . . . , N

where ti,j ∈ <[x1, . . . , xn] are polynomials and

mk
i,j ∈ {≤,≥, >, <,=, 6=}, j = 1, . . . , rk

i , i = 1, . . . , pk, k = 0, 1, . . . , N.

For example, the defining expression for Sk may have form ((x2
1+x2 = 0)

∧
(x2 ≥ 0))

∨
(x1−

x2 + 1 < 0). From the definition of sets Sk it follows that ∀x ∈ Sk+1, ∀k = 0, . . . , N −
1, ∃u(x) ∈ < such that

∨pk

i=1(
∧rk

i
j=1 tki,j(f(x, u(x))) mk

i,j 0). Hence, once we have obtained

the defining expressions for the sets Sk we can easily find controllers which are such that

they map Sk+1 to Sk, ∀k = 0, 1, . . . , N − 1. Notice that the control u(x), which transfers

the state x from Sk+1 to Sk, may not be unique. In this way we obtain a family of all

minimum time DB controllers, which are by construction discontinuous and nonlinear state

feedback controllers.

From Theorem 2 we have the following state DB controllability test.

TEST 1: 0. Input: f(x,u)

1. Let k = 0. Find the set S0 using QEPCAD by considering ∃u(0) ∈ <, f(x, u(0)) = 0.
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2. k = k + 1

3. Find the composition fu(k) ◦ . . . fu(0)(x). Compute the set Sk using QEPCAD by

considering

∃u(i) ∈ <, i = 0, 1, . . . , k, fu(k) ◦ . . . fu(0)(x) = 0.

Compare whether Sk = Sk−1 (using QEPCAD in general). If not, go to 2. If yes, go

to 4.

4. If Sk = <n, the system is state DB controllable. If Sk 6= <n, the systems is not state

DB controllable.

It is important to notice that an infinite loop may occur in the above algorithm if

Sk+1 6= Sk, ∀k.

3.2 Output dead beat controllability

A very similar procedure can be used to deal with output DB controllability and control of

(2). The only difference between the two approaches is that in the case of state DB control

the target set T , to which we want to control the state of the system, is the origin whereas

here we need to compute it. As a result, the output DB controllability test can be split into

two parts. Each part of the algorithm is based on the use of QEPCAD and the obtained

controllability test is in general more expensive than TEST 1.

PART 1: The computation of the target set T is done below. It is obvious that any

state in the variety T0 = {x : h(x) = 0} potentially belongs to the target set. However, we

are interested in the subset of T0 for which there exists a control u which keeps the state in

T0. In other words, we compute

T1 = {x : ∃u(0) ∈ < such that h ◦ fu(0)(x) = 0} ∩ T0

The set T2 is defined as follows:

T2 = {x : ∃u(0), u(1) ∈ < such that h ◦ fu(1) ◦ fu(0)(x) = 0} ∩ T1

We continue the same procedure and if we obtain TL = TL+1, we define the set TL = T as

the target set. Notice that we have Tk+1 ⊂ Tk, ∀k and in general the chain T0 ⊃ T1 ⊃ . . .

may not terminate. On the target set T we have that the output is zero and moreover for
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any initial state in T we can find a sequence of controls which keeps the state in T for all

future time steps (see Definition 4). The target set is given by

T = {x :
P∨

i=1

(
Ri∧

j=1

ti,j(x) mi,j 0)}

where mi,j ∈ {≤,≥, <, >,=, 6=}.
PART 2: If an initial state is in T , the output is zero and it can be kept at zero for all

future times. So we can denote this set as SO
0 = T . The set of states that are not in T but

that can be transferred in one step to T is denoted:

SO
1 = {x : ∃u(0) ∈ < such that

P∨

i=1

(
Ri∧

j=1

ti,j ◦ fu(0)(x) mi,j 0)}.

and it can be obtained using QEPCAD. Similarly, by using QEPCAD we find the set

SO
2 = {x : ∃u(0), u(1) ∈ < such that

P∨

i=1

(
Ri∧

j=1

ti,j ◦ fu(1) ◦ fu(0)(x) mi,j 0)}, etc.

Then we can state the following

Theorem 3 Suppose that the target set T has been computed and that there exists L such

that SO
L = SO

L+1. The polynomial system is output DB controllable if and only if SO
L = <n.

2

The proof of the Theorem is obvious.

Comment 5 Notice that the procedure used for computing the target set T may not

terminate in finitely many steps. In other words, we may have that T0 ⊃ T1 ⊃ T2 ⊃ . . ..

However, we can easily compute the following subset of the target set:

T ∗ = {x : h(x) = 0 and ∃u ∈ < x = f(x, u)}

and investigate sets of states that are controllable to T ∗ in one, two, etc. time steps.

Notice also that if we assume that f(0, 0) = 0, the origin is always contained in T ∗ and

therefore state DB controllability implies output DB controllability whereas the opposite is

not true. In general we do not use the assumption f(0, 0) = 0 when considering output DB

controllability.

The following output DB controllability test is obtained from the above given procedures.

TEST 2

11



1. (a) Let k = 0 and T0 = V (h).

(b) k = k + 1

(c) Find composition h ◦ fu(k) ◦ . . . ◦ fu(0)(x) and find the set Tk using QEPCAD:

Tk = {x ∈ <n : ∃u(i) ∈ <, i = 0, 1, . . . , k such that h◦fu(k)◦. . .◦fu(0)(x) = 0}∩Tk−1

If Tk = Tk−1, we define T = Tk and go to 2. If Tk 6= Tk−1, go to 1.(b).

2. We have that T = {x :
∨P

i=1(
∧Ri

j=1 ti,j(x) mi,j 0)}.

(a) Let k = 0 and compute SO
0 ⊂ <n using QEPCAD:

SO
0 = {x ∈ <n : ∃u(0) ∈ < such that

P∨

i=1

(
Ri∧

j=1

ti,j ◦ fu(0) mi,j 0)}

(b) k = k + 1

(c) Compute the set SO
k using QEPCAD:

SO
k = {x ∈ <n : ∃u(s) ∈ <, s = 0, 1, . . . , k, such that

P∨

i=1

(
Ri∧

j=1

ti,j◦fu(k)◦. . .◦fu(0)(x) mi,j 0)}

If SO
k = SO

k−1 go to 2.(d). If SO
k 6= SO

k−1, go to 2.(b).

(d) If SO
k = <n, the system is output DB controllable and vice versa.

From the above given test and comments we can see that deciding output DB control-

lability is usually more difficult than deciding state DB controllability. We emphasize that

two infinite loops may occur in the above algorithm. One may occur when computing the

target set T , that is Tk 6= Tk+1, ∀k and another when computing the set SO
k when it happens

that SO
k 6= SO

k+1,∀k.

The outlined QEPCAD based approach can be regarded as a straight forward and

unified approach to state/output DB controllability and control of polynomial systems (2).

However, the main hindrance to its implementation is the obvious computational complexity

of the problem. It is possible to reduce the complexity of the problem by either requiring

less information about Sk (not a complete description) or constraining the structure of the

system (2). Although it is plausible in certain situations to require less information about

sets Sk, the nature of the time optimal problem does not allow us to exploit it. The inherent

complexity of the class of systems that we consider, as well as the question that we want to

answer, forces us to select a class of simpler systems which can be tackled more efficiently in
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order to obtain more explicit conditions and easier to check controllability tests. Sections 4

and 5 show how constraining the structure of (2) may reduce the computational complexity

of the controllability test or even be used to obtain finitely computable conditions for

controllability.

We present below several nontrivial examples, solved using QEPCAD.

Example 1 Consider the scalar polynomial system:

x(k + 1) = x(k)u6(k) + (x(k) + 1)u3(k)− 2u2(k) + 3x(k)u(k) + 2x(k) (3)

The set S0 can be computed by using QEPCAD. We actually compute for which states

x ∈ < there exists u ∈ < such that xu6 + (x + 1)u3 − 2u2 + 3xu + 2x = 0. QEPCAD

computed the set S0 in 1.2 sec2:

S0 = {x : 4123953x7 + 13719780x6 + 7007148x5 − 2009664x4 + 382968x3 +

901620x2 − 130208x− 1728 ≤ 0 ∨ x ≥ 0}

The input formula for the set S1 is the composition fu(1) ◦ fu(0). When the control u(0) is

eliminated a polynomial of degree 42 in u(1) and of degree 7 in x(0) is obtained. The same

polynomial is obtained when we take the composition of polynomials that define S0 with f .

QEPCAD could compute that the set S1 consists of all of < except possibly for 14 algebraic

numbers, which are the real roots of some univariate polynomials that were computed. 8

of them have degree 56, 3 have degree 7, 2 have degree 8 and one is rational. In order to

obtain this result QEPCAD took 68 minutes of processor time. However, QEPCAD could

not complete the computation of the set S1 after more than 9 hours.

Notice that using results of [24] we could decide on DB controllability after computing

the set S0 only, which took 1.2 seconds to compute. This shows that instead of using

straight forward computation of all Sk’s, that is proposed, we sometimes may require less

information to conclude on DB controllability. It is our opinion that by combining the

structural properties of some classes of systems with QEPCAD we can reduce computations

drastically and hence feasible controllability tests can be obtained.

It is important to emphasize that QEPCAD is an interactive program and solving non

trivial problems requires a detailed knowledge of its operation. For instance, in this case it
2Examples 1, 2 and 3 are computed using a DECstation 5000/240 with a 40 MHz R3400 risc-processor,

by G. Collins and C. Brown.

13



is not too difficult to see that the interval ]−∞,−3] ⊂ S0 and let us compute which states

can be transferred to this interval in one step by using xu6+(x+1)u3−2u2+3xu+2x < −3.

It was obtained that this is true for any x ∈ <. Hence, S1 = <. The answer was obtained in

0.333 seconds. Hence, by reformulating the problem of computing S1 (it is the set of states

that can be transferred to the set ]−∞,−3], which is a subset of S0) the answer could be

obtained using QEPCAD. Although this case-by-case approach is not plausible to use in

general, we believe that for certain classes of systems it may be successfully imbedded in

the controllability test. 2

Example 2 Consider the generalised Hammerstein system:



x1(k + 1)
x2(k + 1)
x3(k + 1)


 =




1 0 0
0 0 1
0 −1 −2







x1(k)
x2(k)
x3(k)


 +




1
0
0


 u(k) +




0
0
1


 u2(k) (4)

By using the procedure outlined in TEST 1 we obtain:

S0 = {x : x2 − x2
1 = 0 ∧ x3 = 0}

S1 = {x : 2x3 + x2 ≥ 0 ∧ 2x2x3 + x2
3 − 6x2

1x3 + x2
2 − 2x2x

2
1 + x4

1 = 0}

S2 = <3

The computation time for sets S0, S1 and S3 is respectively 0.34 sec, 0.517 sec and 133 sec.

A minimum time state DB (feedback) controller is given below:

u(x) = any real root u to





(x1 + u = 0) ∧ (−x2 − 2x3 + u2 = 0) ,if x ∈ S0

(x3 − (x1 + u)2) = 0) ∧ (−x2 − 2x3 + u2 = 0) ,if x ∈ S1 − S0

(2(−x2 − 2x3 + u2) + x3 ≥ 0)∧ ,if x ∈ <3 − S1

(2x3(−x2 − 2x3 + u2) + (−x2 − 2x3 + u2)2

−6(x1 + u)2(−x2 − 2x3 + u2) + x2
3−

2x3(x1 + u)2 + (x1 + u)4 = 0)
(5)

Obviously, the control u is obtained as a real solution to different sets of polynomial equa-

tions for x ∈ S1. On the other hand, a polynomial equation and an inequality should be

solved for x ∈ <3 − S1. We can first solve the equation and then check which solutions

satisfy the inequality. Since we may have non unique solutions, the above given minimum

time controller actually represents a family of minimum time dead beat control laws. By

specifying the rule according to which we choose a solution, we obtain different minimum

time state dead beat controllers.

Notice that the given controller globally stabilises the system in this case. It is not

difficult to see that as ||x|| → 0 then the required control in (5) |u| → 0. As a result, ∀ε > 0
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we can find much smaller δ > 0 such that if ||x(0)|| < δ then ||x(1)|| < ε and ||x(2)|| < ε

which implies ||x(k)|| < ε,∀k since x(k) = 0, k ≥ 2. 2

Example 3 Consider the third order bilinear systems:

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = x1(k) + x3(k)− (x1(k) + x2(k)− x3(k))u(k) (6)

The computed sets Sk are given below:

S0 = {x : x2 = 0 ∧ x3 = 0}

S1 = {x : x3 = 0 ∧ x3 − x2 − x1 = 0}

S2 = {x : x3 − x2 − x1 6= 0 ∧ x3 + x2 6= 0}

S3 = {x : (x2 − x1 6= 0 ∧ 2x3 + x1 6= 0) ∨ x3 − x2 − x1 6= 0}

S4 = <3 (7)

And hence the system is state DB controllable. Notice that we could conclude on DB

controllability using the results in [10, 17] but for the first time we could obtain explicit

description of the sets Sk. All of the sets Sk were computed in just a few seconds.

An interesting phenomenon occurs in this example. Namely, the set S2 consists of the

whole state space modulo two planes. The union of the two planes is an algebraic variety

defined by the polynomial (x3 − x2 − x1)(x3 + x2). Obviously, the variety consists of all

critical states that may not be controllable to the origin. We may use the computationally

less complex test presented in the next section to check state DB controllability of this class

of systems.

Example 4 Check whether the system:

x1(k + 1) = x2(k) + u(k)

x2(k + 1) = −x1(k) + u2(k)

y(k) = x2(k) (8)

is output DB controllable.

PART 1: The first step is to find the target set T . We denote T0 = V (h) = {x : x2 = 0}.
Then we compute the set T1, T1 ⊆ T0 of states that can be mapped back to T0 in one step.
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We can easily find T1 = {x : x2 = 0 ∧ x1 ≥ 0} and hence T0 ⊂ T1, which means that we

need to compute T2. We have that T2 = {x : x2 = 0 ∧ x1 ≥ 0} and hence T2 = T1 = T .

PART 2: Let us find the set of states in <2 that can be transferred to T in one step:

SO
1 = {x : ∃u ∈ < such that x2 + u ≥ 0, −x1 + u2 = 0} = {x : x2

2 ≥ x1}

Similarly, we have that

SO
1 = {x : ∃u ∈ < such that (−x1 + u2)2 ≥ x2 + u} = <2

and therefore the system is output DB controllable. 2

4 Invariant sets and output dead beat controllability: the
Gröbner basis method

The methodology in the previous section can be applied to a large class of polynomial

systems but the computational requirements may be formidable. If the structure of the

polynomial system is appropriately constrained, we may obtain computationally less ex-

pensive controllability tests. The purpose of this and the following sections is to show two

situations when this is possible. We illustrate the tradeoff between the generality of the

proposed methods and the computational requirements.

The systems that we consider in this section are given by (2) and the following two

assumptions.

Assumption 1 Consider the composition

h ◦ fu(x) = h(f(x, u)) = am(x)um + . . . + a0(x) (9)

m in the equation (9) is an odd integer. 2

Assumption 2 ∀x ∈ V (h), ∃u ∈ < such that h ◦ fu(x) = 0. 2

Systems (2) with Assumptions 1 and 2 are referred to hereafter as odd systems. By

using Assumption 1 we restrict our consideration to systems whose output y(k+1) is affected

by u(k) (one time delay from input to output is present). However, generalisation of our

results to systems of arbitrary time delay is straightforward . Assumption 2 is technical and

there are systems of interest that do not satisfy it. However, it simplifies the consideration

of output DB controllability. It implies that the target set T (see the previous Section) is

16



defined as T = V (h). Assumption 2 may be very restrictive for some classes of polynomial

systems, such as bilinear homogeneous systems. However, it is very often satisfied for odd

polynomial systems found in applications [3, 20, 18, 4].

Definition 5 The target set T = V (h) is denoted here as VO and is called the zero output

variety. VC = V (am) is referred to as the critical variety. 2

Definition 6 An invariant set VIj ⊆ VC is such that ∀x ∈ VIj , ∀u ∈ <, f(x, u) ∈ VIj . The

union of all invariant sets is called the maximal invariant set VI = ∪jVIj . 2

We show below how it is possible to determine invariant sets of VC using the Gröbner basis

method and how this information can be used to decide on output DB controllability of

odd polynomial systems. The set of states from which it may not be possible to zero the

output is contained in the critical variety VC (see equation (9)). The fact that VC is a lower

dimensional subset of the state space, simplifies the analysis of odd systems considerably.

It is not difficult to show that the critical variety may contain invariant subsets, that

is for some states in VC there may not exist a control sequence u(0), u(1), . . . which can

transfer them to the complement of VC . The following theorem shows how VI ⊆ VC may

be computed. Before we state the theorem notice that the following compositions can be

regarded as polynomials in u(0), . . . , u(k) whose coefficients are polynomials in x:

am ◦ fu(0) =
m1∑

i=0

bi(x)u(0)i

am ◦ fu(1) ◦ fu(0) =
m2,p2∑

i1=0,i2=0

b2
i1,i2(x)u(0)i1u(1)i2

. . . . . .

am ◦ fu(k) ◦ . . . ◦ fu(0) =
mk+1,pk+1,...,lk+1∑

i1=0,...,ik+1=0

bk+1
i1,...,ik+1

(x)u(0)i1 . . . u(k)ik+1 (10)

Theorem 4 The maximal invariant set VI ⊆ VC may be computed by the following algo-

rithm:

0. Input: am(x), f(x, u)

1. Initialise:

Input: am(x), f(x, u); G0 = 〈am〉; k = 0

2. Iterate: k = k + 1

3. Compute am ◦ fu(k−1) ◦ . . . ◦ fu(0)(x).
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4. Compute the Gröbner basis Gk:

Gk = Gbasis[am, b1
0, . . . , b

1
m1

, b2
00, . . . , b

2
m2,p2

, . . . , bk+1
mk+1,pk+1,...,lk+1

]

where the polynomials bs+1
i1,...,is+1

∈ Q[x], s = 1, . . . , k are defined in (10).

5. If Gk = Gk−1 stop. Gk defines the maximal invariant set VI . If Gk 6= Gk−1 go to 2.

The algorithm stops after a finite number of iterations.

Proof: Notice that VI ⊆ VC . The set of all critical states is defined by the ideal

I1 = 〈am〉. Consider now initial states that are in VC and which are mapped to VC in

one step irrespective of the applied control u(0). These states are characterised by am ◦
fu(0)(x) = 0,∀u(0) ∈ <. Notice that the composition of two polynomials is a polynomial and

therefore we have am ◦ fu(0)(x) = b1
m1

(x)u(0)m1 + . . . + b1
1(x)u(0) + b1

0(x). This polynomial

is identically equal to zero for all u(0) if and only if the polynomials b1
i (x) = 0, ∀i =

0, 1, . . . , m1. Therefore, the points that are mapped to VC in the first step, regardless of the

control action taken, are defined by the ideal I2 = 〈am, b1
m1

, . . . , b1
0〉. Notice that I1 ⊆ I2. If

I1 = I2, the critical variety is equal to the maximal invariant set, that is VC = VI and the

ideal I1 defines VI . Suppose that I1 ⊂ I2.

Consider now the set of initial states that are mapped in the first and second steps

to VC irrespective of controls u(0) and u(1). The composition am ◦ fu(1) ◦ fu(0)(x) =

b2
m2p2

(x)u(0)m2u(1)p2 + . . . + b2
00(x) is a polynomial in all its arguments and is identically

equal to zero ∀u(0), u(1) ∈ < if and only if b2
ij(x) = 0, ∀i = 0, . . . , m2, j = 0, . . . , p2. There-

fore, we have the ideal I3 = 〈an, b1
m1

, . . . , b1
0, b

2
00, . . . , b

2
m2p2

〉, which defines the set of states

that stay after two steps inside VC irrespective of the applied sequence u(0), u(1). Observe

that I2 ⊆ I3. If I2 = I3, the maximal invariant set is defined by I2. If we suppose that

I2 ⊂ I3, we have that I1 ⊂ I2 ⊂ I3. Continuing the same construction of ideals I1, I2, I3, . . .

we obtain an ascending chain of ideals which has to stabilise after a finite number of steps.

Therefore, we have IN = IN+1 = . . . and IN defines the maximal invariant set VI . Two sets

of polynomials define the same ideal if and only if their reduced Gröbner basis is the same

[9]. In step i we need to compute the Gröbner basis of Ii and compare it to the reduced

Gröbner basis in the previous step. The chain of ideals necessarily has got finite length, say

N . Since points 4 and 5 of the algorithm compute the Gröbner basis of a set of polynomials,

we conclude from [9, pg. 89] that the algorithm stated in Theorem 4 terminates after a

finite number of iterations. Q.E.D.
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Comment 6 We emphasize that the algorithm given in Theorem 4 can be used to find

an invariant set of any variety defined by V (f1, . . . , fc), fi ∈ Q[x1, . . . , xn]. Notice that

the dimension of the variety V (f1, . . . , fc) may be arbitrary, that is dimV (f1, . . . , fc) ∈
{0, 1, . . . , n}. For instance, if f1 ≡ 0 trivial calculations show that V (f1) = V (0) = <n is

invariant. However, in this section we are interested only in the invariant sets of VC since

they can be used to characterise output DB controllability of odd systems.

We need the following definition:

Definition 7 The trivial invariant set VT ⊆ VI is such that for any initial state x(0) ∈ VT

there exists a sequence of controls u(0), u(1), . . . which transfers the initial state x(0) to the

zero output variety VO in finite time. 2

Comment 7 The trivial invariant set can be computed using the QEPCAD algorithm.

Suppose that the maximal invariant set is not empty and that VI = V (f1, f2, . . . , fs).

Notice that the states that belong to the variety VI ∩ VO = V (h, f1, f2, . . . , fs) are already

in VT and we denote this set as ST
0 . We can compute (using QEPCAD) the subset of VI

from which we can reach the zero output variety in one step:

ST
1 = {x ∈ <n : ∃u(0) ∈ <, f1 = 0, . . . , fs = 0, f1 ◦ fu(0)(x) = 0, . . . , fs ◦ fu(0)(x) = 0}

We can continue computing the sets ST
k , k = 1, 2, . . . and if we have that ST

k = ST
k+1 for

some k then the trivial invariant set is VT = ST
k . Notice, that we have ST

k ⊆ ST
k+1 and that

the chain of sets ST
0 ⊂ ST

1 ⊂ . . . may not terminate, in which case we can not compute VT .

The trivial invariant set VT and the maximal invariant set VI determine output DB

controllability of odd systems for which Assumption 2 holds. It is obvious that the following

is true:

Theorem 5 An odd polynomial system is output DB controllable if and only if VI = VT .

2

From Theorems 4 and 5 it is easy to deduce the following output DB controllability test

for odd polynomial systems.

TEST 3:
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1. Check whether Assumptions 1 and 2 are satisfied. Assumption 2 is checked using

QEPCAD by first computing the set

h∗ = {x ∈ <n : ∃u(0) ∈ <, h = 0, h ◦ fu(0)(x) = 0}

and then comparing whether h = h∗.

2. Compute defining equations for VI using the procedure from Theorem 4 given below:

(a) Compute h ◦ fu(x) and let k = 0, G0 = 〈am〉.

(b) k=k+1

(c) Compute am ◦ fu(k) ◦ . . . ◦ fu(0)(x).

(d) Find the Gröbner basis Gk = Gbasis[am, b1
0, . . . , b

1
m1

, ldots, bk+1
mk+1,pk+1,...,lk+1

. where

polynomials bs+1
i1,i2,...,is

, s = 1, 2, . . . , k are defined in (10).

(e) If Gk = Gk−1 go to step 3. If not, go to (b).

3. Find (using QEPCAD) the set of common real solutions for the set of defining poly-

nomials for Gk. This set of solutions defines VI . If VI = ∅ the system is output dead

beat controllable. If not, go to step 4.

4. Find the trivial invariant set VT using QEPCAD (see Comment 7). If VT = VI , the

system is output dead beat controllable. If VT 6= VI the system is not output dead

beat controllable.

Comment 8 Step 4 of the above given test is very difficult to check in general, since the

set VT is difficult to compute (we may have a non terminating procedure due to the infinite

length of the the chain of ST
k ’s). We need to use QEPCAD and all the deficiencies of this

method were discussed in the previous section. We remark that each of the sets ST
k is

finitely computable [5, 6] but in general the trivial invariant set is not finitely computable.

Notice that in the steps 1 and 3 we also need to use QEPCAD, but in this case the

computations are performed only once, which leads to a procedure which always stops

after finitely many steps. Moreover, it can be expected for step 1 (checking Assumption 2)

that the computation requirements are less hindering since few compositions of functions

are required and the total degrees of the input polynomials are small. Furthermore, the

number of variables in the input polynomials for step 1 is n+1 and for step 3 is n, whereas

in step 4 it increases and may be much larger than the order of the system n.
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We emphasize that the class of odd systems is inherently simpler than the systems with

rational coefficients (2) considered in the previous section since QEPCAD only needs to

be used for a much smaller subset of the state space. Indeed, notice that VI ⊆ VC and

dimVC ≤ n− 1.

Comment 9 We can use the above given procedure to check output DB controllability to

any fixed output y = y∗, y∗ 6= 0. The modifications to the controllability test are obvious.

For instance, the target set (“zero output variety”) is in this case defined as VO = V (h−y∗).

The following two corollaries are easy consequences of Theorem 5 and they may help us

to decide on output DB controllability without resorting to QEPCAD.

Corollary 1 Assume VI 6= ∅. Then, the odd system is output DB controllable only if

VO ∩ VI 6= ∅. 2

Notice that using the above given Corollary we may only conclude that the system is not

output DB controllable.

Corollary 2 The odd system is output DB controllable if VI = ∅. 2

We now present a practical example of an odd system and illustrate our test for output

DB controllability.

Example 5 Modelling and identification of a column type grain dryer is studied respec-

tively in [19] and [20]. The mathematical model of the sub system, which relates the upper-

most measured temperature y1 = y and the productivity of the exhaust grain mechanism

u1 = u, was identified in [20] and is given by:

y(k + 1) = 1.6389y(k)− 0.4397y(k − 1)− 0.1803y(k − 2)

−0.0082u(k)y(k)− 0.0042u(k − 1)y(k − 1)− 0.0074u(k − 2)y(k − 2)

+0.0019u(k)− 0.0041u(k − 1) + 0.0021u(k − 2) (11)

which is a so called BARMA (bilinear ARMA) model. We can check output DB controlla-

bility of this sub system using the methodology developed in this Section. For this purpose

we introduce state variables:

x1(k) = y(k)
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x2(k) = −0.4397y(k − 1)− 0.1803y(k − 2)− 0.0042u(k − 1)y(k − 1)

−0.0074u(k − 2)y(k − 2)− 0.0041u(k − 1) + 0.0021u(k − 2)

x3(k) = −0.1803y(k − 1)− 0.0074u(k − 1)y(k − 1) + 0.0021u(k − 1)

and we obtain a non homogeneous bilinear system:

x(k + 1) =




1.6389 1 0
−0.4397 0 1
−0.1803 0 0


 x(k) + u(k)



−0.0082 0 0
−0.0042 0 0
−0.0074 0 0


 x(k)

+




0.0019
−0.0041
0.0021


 u(k)

y(k) =
(

1 0 0
)

x(k) (12)

Now we use the output DB controllability test of this Section:

STEP 1: We first check Assumptions 1 and 2. Consider the expression

y(k + 1) = 1.6389x1(k) + x2(k) + (0.0019− 0.0082x1(k))u(k).

Assumption 1 is satisfied since the system is odd. If we assume that we want to control the

output of the system to the point y∗, “zero” output variety is defined as VO = V (x1 − y∗).

We have that ∀x(0) ∈ VO there exists control u(0) which yields x(1) ∈ VO if y∗ 6= 19/82.

Therefore, Assumption 2 is also satisfied for all set points y∗ ∈ < − {19/82} and we can

apply the methods from this Section. Thus, it is assumed that we want to control the

temperature y to a set point y∗ 6= 19/82. We have that am(x) = 0.0019− 0.0082x1.

STEP 2: In order to compute the maximal invariant set, we compute the compositions:

am ◦ fu(0)(x(0)) = 0.0019− 0.0134x1(0)− 0.0082x2(0)

+(−1.558 · 10−5 + 6.724 · 10−5x1(0))u(0))

am ◦ fu(1) ◦ fu(0)(x(0)) = 0.0019− 0.0184x1(0)− 0.0134x2(0)− 0.0082x3(0)

+(−1.443 · 10−4x1(0) + 8.16 · 10−6)u(0)

+(−1.558 · 10−5 + 1.102 · 10−4x1(0) + 6.72 · 10−5x2(0))u(1)

+(1.2776 · 10−7 − 5.514 · 10−7x1(0))u(0)u(1)

Notice that we must scale the coefficients (multiply them with 10N , where N is the number

of decimals that we are working with) in order to use the Gröbner basis method. Hence we

have that the ideals that define varieties VC , V1 and V2 are respectively:

G0 = Gbasis[19− 82x1] = 〈19− 82x1〉
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G1 = Gbasis[19− 82x1, 19− 134x1 − 82x2, 1558− 6724x1]

= 〈−19 + 82x1, 247 + 1681x2〉

G2 = Gbasis[19− 82x1, 19− 134x1 − 82x2, 1558− 6724x1, 19− 184x1

−134x2 − 82x3, 14430x1 + 816,−5514x1 + 12776, 1558 + 11020x1

+6720x2] = 〈1〉

It follows that G3 = G2 = 〈1〉 and hence V2 = V (G3) = ∅. As a result, we have VI = ∅ and

we do not have to do last two steps of the test. Indeed, according to Corollary 2 the system

(12) is output DB controllable to any set point y∗ ∈ < − {19/82}. 2

5 Reachable sets and output dead beat controllability

In this Section we further specialise the structure of odd polynomial systems with the aim

of obtaining a simpler and finitely computable output DB controllability test. As a bonus,

a minimum time output DB controller is obtained using the method. The results in this

section generalises [25].

The class of systems that we consider in this Section are given below:

y(k + 1) = F (y(k), u(k − 1), u(k − 2), . . . , u(k − n + 1), u(k)) (13)

where y and u are respectively the output and input of the system and F [y, v1, v2, . . . , vn−1, u] ∈
Q[y, v1, v2, . . . , vn−1, u]. We introduce the state variables x1(k) = y(k), x2(k) = u(k −
1), . . . , xn(k) = u(k − n + 1) and obtain the state and output equations:

x1(k + 1) = F (x1(k), x2(k), . . . , xn(k), u(k))

x2(k + 1) = u(k)

x3(k + 1) = x2(k)

. . . . . .

xn(k + 1) = xn−1(k)

y(k) = x1(k) (14)

We still assume that Assumptions 1 and 2 are satisfied for systems (14). The special forms

of f(x(k), u(k)) and h(x(k)) for systems (14) are obvious.

The notion of strongly invariant sets plays a more important role in deciding output DB

controllability for systems (14) than the invariant sets introduced in the previous Section.
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Definition 8 A set WIj ⊆ VC is strongly invariant if it is invariant and ∀x(0) ∈ WIj there

exists an integer t ≥ 0, t = t(x(0)) and a sequence of controls Ut = {u(0), u(1), . . . , u(t)}
which yields x(t + 1) = fUt+1(x(0)) = x(0). The union of all strongly invariant sets WI =

∪jWIj is called the maximal strongly invariant set. 2

Definition 9 Polynomials of special form are given by:

fs = x1 −
∑

i2i3...in

bi2i3...inxi2
2 xi3

3 . . . xin
n , bi2i3...in ∈ <,∀i2, i3, . . . in

and varieties Vs = V (fs) are called varieties of special form. 2

Notice that there may be only finitely many varieties of special form that are contained in

the critical variety VC = V (am). We denote this number as B. Also, polynomials of special

form and the varieties of special form are irreducible.

Definition 10 The p-step reachable set V p
r (x0) from an initial state x(0) is given by:

V p
r (x(0)) = {ζ : ζ = fu(p−1) ◦ . . . ◦ fu(0)(x(0)), u(i) ∈ <, ∀i = 0, . . . , p− 1} 2 (15)

Consider the polynomial:

fr(x(n− 1), x(0)) = x1(n− 1)− Fxn(n−1) ◦ Fxn−1(n−1) ◦ . . . Fx3(n−1) ◦ Fx2(n−1)(x(0))

= x1(n− 1)−
∑

i1i2...in

Bi2i3...in(x(0))xi2
2 (n− 1)xi3

3 (n− 1) . . . xin
n (n− 1) (16)

This set defines the set of states that can be reached from x(0) in n− 1 time steps, that is

V n−1
r (x(0)) = V (fr(x(n − 1), x(0))). The polynomial fr has special form ∀x(0) ∈ <n and

we can conclude the following [9]:

1. V n−1
r (x(0)) is an irreducible variety, ∀x(0) ∈ <n

2. dimV n−1
r (x(0)) = n− 1, ∀x(0) ∈ VC

3. x1(n− 1)− Fxn(n−1) ◦ Fxn−1(n−1) ◦ . . . Fx3(n−1) ◦ Fx2(n−1)(x(0)) is an irreducible poly-

nomial ∀x(0) ∈ <n

The special structure of the system (14) yields the particular structure of the set

V n−1
r (x(0)) which can be used to simplify the controllability tests. Indeed, we can prove

the following Lemma.
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Lemma 1 The maximal strongly invariant set WI ⊆ VC can be decomposed into a finite

union of the varieties of special form WI = Vs1 ∪ Vs2 ∪ . . . ∪ VsL, L ≤ B 2.

Proof of Lemma 1: The proof is carried out in several steps. First, we prove that at least

one variety Vs of special form belongs to the strongly invariant set. Then we show that if

two points that belong to a variety of special form Vs have distinct n−1-step reachable sets,

then the variety Vs can not be a subset of an invariant set WI . By induction we prove that

the union of varieties of special form is a subset of WI . Finally, it is shown by contradiction

that WI is equal to the union of varieties of special form.

STEP 1 Consider any initial state x(0) ∈ WI . From the invariance of WI it follows that

V n−1
r (x(0)) ⊂ WI . Denote V n−1

r (x(0)) as Vs1.

STEP 2 Vs1 is a subset of the strongly invariant set WI . Notice that if at least one of the

coefficients Bi2i3...in(x(0)) is such that its image is an interval when viewed as a function on

the variety Vs1, then that state x(0) can not belong to an invariant set WI ⊂ VC . Indeed,

this would imply that infinitely many distinct varieties of special form are contained in VC ,

which can not be the case. Hence, because of invariance of WI we have that states in Vs1

are mapped to finitely many varieties of special form which are contained in VC .

Suppose now that if x(0) ∈ Vs1, then either V n−1
r (x(0)) = Vs2 or V n−1

r (x(0)) = Vs3

where Vs2 6= Vs3. From the structure of (16) we see that V n−1
r (x̃(0)) 6= V n−1

r (x̂(0)) if and

only if there exists i∗1i∗2 . . . i∗n such that Bi∗1i∗2...i∗n(x̃(0)) 6= Bi∗1i∗2...i∗n(x̂(0)). Assume that:

∀x(0) ∈ Vs1, Bi∗1i∗2...i∗n(x(0)) = b1 or Bi∗1i∗2...i∗n(x(0)) = b2, b1 6= b2

Consider now the polynomials Bi∗1i∗2...i∗n(ζ) − b1 and Bi∗1i∗2...i∗n(ζ) − b2 where ζ ∈ Vs1. By

construction, these polynomials are not identically equal to zero on Vs1 but their product

is:

(Bi∗1i∗2...i∗n(ζ)− b1)(Bi∗1i∗2...i∗n(ζ)− b2) ≡ 0, ∀ζ ∈ Vs1

This, however, contradicts the irreducibility of Vs1 [9, pg. 216]. By contradiction, we have

that Bi1i2...in(x(0)) = const., ∀i1, i2, . . . , in, ∀x(0) ∈ Vs1. So V n−1
r (x(0)) = Vsk, ∀x(0) ∈ Vs1

where Vsk ⊂ VC and we use the notation Vs1 → Vsk.

STEP 3 Because of invariance of WI , all initial states in Vs1 are mapped to a variety of

special form which is a subset of VC . Note that VC can contain only finitely many varieties

of special form Vsi, i = 1, 2, . . . , B. Thus, there exists i = 1, 2, . . . , B such that Vs1 is mapped

to Vsi. If i = 1, then Vs1 is a strongly invariant set. If not, assume that i = 2. Because of
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invariance, there exists i = 1, 2, . . . , B such that Vs2 is mapped to Vsi. If i = 1 or 2 we have

constructed a strongly invariant set Vs1 ∪Vs2. If not, assume i = 3, etc. Therefore, we have

Vs1 ∪ . . . VsL ⊂ WI , L ≤ B.

STEP 4 Suppose that the strongly invariant set can be decomposed as WI = Vs1 ∪
. . . VsL∪S, where S 6⊂ ∪iVsi. Any point in S is mapped to one of Vsi, i = 1, 2, . . . , L because

of invariance of WI but the points of S can not be reached from Vsi. If the set S were not

empty, WI would not be strongly invariant. Q.E.D.

Using arguments very similar to the proof of Lemma 1, we can prove the following

Lemmas.

Lemma 2 Every invariant set must contain a strongly invariant set. 2

Proof: Suppose that VI ⊆ VC is an invariant set and that it does not contain any

strongly invariant subsets. If x(0) ∈ VI then because of invariance of VI we have that

V n−1
r (x(0)) ⊂ VI and we can denote it as Vs1. Notice that there may be at most B varieties

of special form contained in VI . Using the property proved in Step 2 of previous Lemma, we

have that Vs1 → Vsi, i = 1, 2, . . . , B. However, since we assumed that there are no strongly

invariant sets in VI , we must have that i 6= 1. Therefore, Vs1 → Vsi, i = 2, . . . , B, and we

can assume i = 2. Using the same argument we have that Vs2 → Vsi, i = 3, . . . , B and we

can assume that i = 3, etc. After B − 1 steps we obtain that VsB → Vsi, i = 1, 2, . . . , B

because of invariance of VI but this contradicts the assumption that there are no strongly

invariant sets contained in VI . The contradiction completes the proof. Q.E.D.

We can prove the following two Lemmas using very similar arguments.

Lemma 3 Every state in VC − VI can be transferred to <n − VC in finite time. 2

Lemma 4 Every state in VI − WI is transferred to a strongly invariant set WI in finite

time. 2

We can combine these Lemmas 1, 2, 3 and 4, to obtain the following result:

Theorem 6 The odd polynomial system (14) is output DB controllable if and only if either

WI = ∅ or every variety of special form contained in the maximal strongly invariant set WI

intersects the zero output variety VO. 2
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Proof of Theorem 6:

Necessity: Suppose that there exists a variety of special form Vs contained i the maximal

strongly invariant set which is such that its intersection with VO is empty. If the variety Vs

is a strongly invariant set itself then there is not control sequence which transfers any initial

state in Vs to VO. If Vs is a subset of a larger strongly invariant set W ∗
I and Vs ∩ VO = ∅

then W ∗
I ∩ VO = ∅ because of Assumption 1 and the same argument applies.

Sufficiency: We partition the whole state space <n = (VC − VI) ∪ (VI − WI) ∪ WI ∪
(<n − VC) and consider what happens on each of the subsets. If x(0) ∈ <n − VC we can

zero the output in one step. If x(0) ∈ VC − VI , according to Lemma 3, it follows that the

initial state can be transferred to <n − VC in finite time and consequently to VO. Consider

x(0) ∈ VI − WI . From Lemma 4 it follows that x(0) is transferred to WI in finite time.

Since all irreducible components of WI intersect VO and because of Assumption 2 it follows

that any state in VI can be transferred to VO in finite time. Because of Assumption 2 we

conclude that the system is output DB controllable. Q.E.D.

We have considered what happens geometrically, whereas an algebraic test is needed to

check the conditions of Theorem 6. From Lemma 1 and definition of strongly invariant sets,

we can deduce the following method to check output DB controllability of systems (14).

TEST 4:

1. Check Assumptions 1 and 2. Assumption 2 is checked using QEPCAD.

2. Decompose the polynomial am ∈ Q[x1, . . . , xn] into irreducible polynomials (using eg.

the command “factor” in Maple) and identify all polynomials that have special form.

Denote this set as Σ1 = {fs1, fs2, . . . , fsB}.

3. (a) Check whether any of the varieties V (fsi), i = 1, 2, . . . , B is invariant using the

Gröbner basis method in the Previous section. Denote the set of all polynomials

fsi that yield invariant varieties as ΣI
1. Obviously ΣI

1 ⊆ Σ1, and find the set

Σ2 = Σ1 − ΣI
1.

(b) If Σ2 6= ∅, find all products fsj ·fsk, fsj , fsk ∈ Σ2, and check the invariance of all

varieties V (fsj · fsk) using the Gröbner basis method. The set of all polynomials

for which varieties V (fsj ·fsk) are invariant is denoted as ΣI
2. Obviously, ΣI

2 ⊆ Σ2.

Define a new set Σ3 = Σ2 − ΣI
2, etc.
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(c) If ΣB 6= ∅ find the product fs1 · . . . · fsB and check the invariance of the variety

V (fs1 · . . . · fsB) using the Gröbner basis method. If the variety is invariant then

ΣI
B = Σ1. Otherwise, ΣI

B = ∅. Find the set ΣI = ∪B
i=1Σ

I
i . The maximal strongly

invariant set is then

WI = V (
∏

fsi∈ΣI

fsi)

4. Check whether VO ∩ V (fsi) 6= ∅, ∀fsi ∈ ΣI using QEPCAD. If this is true system is

output DB controllable and vice versa.

Comment 10 It is very important to notice that the above given output DB controllability

test stops after a finite number of operations. This was not the case with the systems

considered in the previous two Sections since the chain S0 ⊂ S1 ⊂ . . . may not terminate. In

general, we can not say a priori when the chain terminates and hence we can not say whether

the controllability test stops after a finite number of operations or not. The structure of

the class of systems (14), however, guarantees that the above given test stops in finite time.

The following Corollaries may help us to reduce computations even more.

Corollary 3 If dimVC = dimV (am) < n− 1 the system is output DB controllable. 2

Proof: Since dimV n−1
r (x(0)) = n − 1, ∀x(0)ı<n, it follows that V n−1

r (x(0)) 6⊂ VC ,∀x(0) ∈
VC . Thus, we need at most n steps to map any initial state to VO. Q.E.D.

It is possible to use the method based on the affine Hilbert polynomial (see the last

chapter of [9]) in order to check the dimension of the variety VC .

Corollary 4 If VC does not contain varieties of special form, that is am does not contain

irreducible polynomials of special form, the system (14) is output DB controllable. 2

Proof: From properties 1-2 it follows that V n−1
r (x(0)) can not be a subset of VC ,∀x(0) ∈

VC . Q.E.D.

Corollary 5 Suppose that there are B varieties of special form V (fsi) contained in VC .

The system (14) is output DB controllable if VO ∩ V (fsi) 6= ∅, ∀i = 1, 2, . . . , B. 2

An important property of the approach that we have taken is that it leads to the design

of a minimum time output DB controller. The controller is presented in Figure 1. It is

obvious that different control algorithms are performed for states that belong to different

sets of the following partition <n = (<n − VC) ∪ (VC − VI) ∪ (VI −WI) ∪WI .
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control u(k)

No

Yes

Yes

NoNo

Yes

belongs to V I Ibelongs to W

solve w.r.t.  u(k)

absolute value

that has the smallest 

apply the root  u(k)

p+2 step ahead control , p  <  N  =
find U={u(k),...,u(k+p+2)}

such that

apply the root  u(k)

that has the smallest 

absolute value

measurement

x(k)
f(x(k),u(k))

x(k)x(k)

x(k)

h(f(x(k),u(k)))=0

h(f(f(f....f(x(k),u(k)),...u(k+p+2)))=0

m
a   (x(k))=0

such that

apply the root  u(k)

that has the smallest 

absolute value

u=0

n-1 step ahead control

h(f(f(f....f(x(k),u(k)),...u(k+n-1)))=0

find U={u(k),...,u(k+n-1)}

Figure 1: Output DB algorithm for a class of odd polynomial systems

Example 6 Consider the system:

y(k + 1) = (y2(k)− 2y(k)u2(k − 1)u2(k − 2)− 3y(k) + u4(k − 1)u4(k − 2)

+3u2(k − 1)u2(k − 2) + 2)u(k)3 + u(k)2u(k − 1)2 − y(k)

+u(k − 1)2u(k − 2)2 + 3 (17)

Introduce the state variables x1(k) = y(k), x2(k) = u(k−1) and x3(k) = u(k−2) we obtain

the state space model:

x1(k + 1) = (x2
1(k)− 2x1(k)x2

2(k)x2
3(k)− 3x1(k) + x4

2(k)x4
3(k) + 3x2

2(k)x2
3(k) + 2)u(k)3

+u(k)2x2
2(k)− x1(k) + x2

2(k)x2
3(k) + 3

x2(k + 1) = u(k)

x3(k + 1) = x2(k)

y(k) = x1(k)

Step 1: It is easy to see that Assumptions 1 and 2 are satisfied.

Step 2: Using the command “factor” in Maple for the polynomial x2
1− 2x1x

2
2x

2
3− 3x1 +

x4
2x

4
3+3x2

2x
2
3+2 we find that the only two polynomials of special form are fs1 = x1−x2

2x
2
3−1

and fs2 = x1 − x2
2x

2
3 − 2. In other words, Vs1 = V (fs1) ⊂ VC and Vs2 = V (fs2) ⊂ VC .
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Step 3: We check whether the variety Vs1 is invariant:

fs1 = x1 − x2
2x

2
3 − 1

fs1 ◦ fu(x) = (x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)u3 − x1 + x2

2x
2
3 + 2

G0 = 〈x1 − x2
2x

2
3 − 1〉

G1 = Gbasis[x1 − x2
2x

2
3 − 1, (x1 − x2

2x
2
3 − 1)(x1 − x2

2x
2
3 − 2),−x1 + x2

2x
2
3 + 2]

= 〈1〉

and since G2 = 〈1〉 it follows that Vs1 is not invariant. Similarly, we have for variety Vs2:

fs2 = x1 − x2
2x

2
3 − 2

fs2 ◦ fu(x) = (x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)u3 − x1 + x2

2x
2
3 + 1

G0 = 〈x1 − x2
2x

2
3 − 2〉

G1 = Gbasis[x1 − x2
2x

2
3 − 2, (x1 − x2

2x
2
3 − 1)(x1 − x2

2x
2
3 − 2),−x1 + x2

2x
2
3 + 1]

= 〈1〉

Therefore, Vs2 is not invariant. Consider now the variety V (fs1 · fs2). We obtain:

fs1 · fs2 = (x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)

(fs1 · fs2) ◦ fu(x) = [(x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)u3 − x1 + x2

2x
2
3 + 2]

[(x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)u3 − x1 + x2

2x
2
3 + 1]

G0 = 〈(x1 − x2
2x

2
3 − 1)(x1 − x2

2x
2
3 − 2)〉

G1 = Gbasis[(x1 − x2
2x

2
3 − 1)2(x1 − x2

2x
2
3 − 2)2, (x1 − x2

2x
2
3 − 1)

(x1 − x2
2x

2
3 − 2)2, (x1 − x2

2x
2
3 − 1)2(x1 − x2

2x
2
3 − 2), (x1 − x2

2x
2
3 − 1)

(x1 − x2
2x

2
3 − 2)] = 〈(x1 − x2

2x
2
3 − 1)(x1 − x2

2x
2
3 − 2)〉

Since G0 = G1, we conclude that the variety V (fs1 · fs2) is invariant. It is not difficult to

see that we actually have that Vs1 → Vs2 → Vs1 → . . ..

Step 4: We do not need to used QEPCAD in this case. Indeed, since x2
2x

2
3 = −K, K =

1, 2 have no real solutions in x2, x3, we conclude that Vs1 ∩ VO = ∅ and Vs2 ∩ VO = ∅ and

the systems is not output DB controllable. 2

6 Conclusion

It has been shown how some symbolic computation methods can be used to check state/output

DB controllability of polynomial systems with rational coefficients. The QEPCAD algo-
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rithm provides a computational tool to DB control problems for a very large class of poly-

nomial systems with rational coefficients with possible constraints on controls. The same

method can easily be applied to MIMO polynomial systems. However, the computational

complexity of the problem is in general prohibitive. As a result, the method is not feasible

to use in general. Nevertheless, non trivial examples can be tackled for special sub classes

of polynomial systems, such as bilinear or generalised Hammerstein systems. It was shown

that for the so called odd polynomial systems the Gröbner basis method can be used to-

gether with QEPCAD to decide on output DB controllability. The computations are usually

less expensive but even this case may still be infeasible. Finally, by further constraining the

structure of odd systems, we derived finitely computable necessary and sufficient conditions

for output DB controllability. We note here that a number of issues, such as stability of zero

constrained dynamics and robustness of the obtained control laws, remain to be explored.

Acknowledgements: The authors wish to thank professor G.E.Collins and his student

C. Brown for solving Examples 1, 2 and 3 in this manuscript using QEPCAD and for drawing

to our attention several important references. Also, we would like to thank the anonymous

reviewers for their constructive comments.

References

[1] G. Bastin, F. Jarachi and I. M. Y. Mareels, “Dead beat control of recursive nonlinear

systems”, in Proc. 32nd Conf. Decis. Contr., San Antonio, 1993, pp. 2965-2971.

[2] R. Benedetti and J. J. Risler, Real algebraic and semi-algebraic sets, Hermann, 1990.

[3] S. A. Billings and M. B. Fadzil, “The practical identification of systems with nonlin-

earities,” in Proc. 7th IFAC/IFORS Symp. on Ident. Sys. Par. Estimation, York, UK,

1985, pp. 155-160.

[4] S. A. Billings, M. B. Fadzil, J. L. Sulley and P. M. Johnson, “Identification of a non-

linear difference model of aa industrial diesel generator”, Mech. Syst. Sign. Processing,

vol. 2, pp. 59-76, 1988.

[5] G. E. Collins, “Quantifier elimination for real closed fields by cylindrical algebraic

decomposition”, Lect. Notes Comp. Sci., vol. 33, pp. 134-183, 1975.

31



[6] G. E. Collins, “Quantifier elimination by cylindrical algebraic decomposition - twenty

years of progress,” to appear in Quantifier elimination and cylindrical algebraic decom-

position, Springer-Verlag: Berlin, 1996.

[7] G. E. Collins and Hoon Hong, “Partial cylindrical algebraic decomposition for quanti-

fier elimination,” J. Symbolic Comp., vol. 12, pp. 299-138, 1991.

[8] G. E. Collins, Personal correspondence, 1995-96.

[9] D. Cox, J. Little and D. O’Shea, Ideals, varieties and Algorithms, Springer-Verlag,

1992.

[10] M. E. Evans and D. N. P. Murthy, “Controllability of a class of discrete time bilinear

systems”, IEEE Trans. Automat. Contr., vol. AC-22, pp. 78-83, 1977.

[11] M. E. Evans and D. N. P. Murthy, “Controllability of discrete time inhomogeneous

bilinear systems”, Automatica, vol. 14, pp. 147-151, 1978.

[12] M. E. Evans and D. N. P. Murthy, “Controllability of discrete time systems with

positive controls”, IEEE Trans. Automat. Contr., vol. AC-22, pp. 942-945, 1977.

[13] S. T. Glad, “Output dead-beat control for nonlinear systems with one zero at infinity”,

Syst. Contr. Lett., vol. 9, pp. 249-255, 1987.

[14] S. T. Glad, “Dead beat control for nonlinear systems”, in Analysis and control of

nonlinear systems,C.I.Byrnes, C.F.Martin and R.E.Saeks, eds., North-Holland, 1988.

[15] S. T. Glad, “An algebraic approach to bang-bang control”, in Proc. 3rd Europ. Control

Conf., Rome, Italy, 1995, pp. 2892-2895.

[16] T. Goka, T. J. Tarn and J. Zaborszky, “On the controllability of a class of discrete

bilinear systems”, Automatica, vol. 9, pp. 615-622, 1973.

[17] O. M. Grasselli, A. Isidori and F. Nicolo, “Dead-beat control of discrete-time bilinear

systems”, Int. J. Contr., vol. 32, pp. 31-39, 1980.

[18] R. Haber and H. Unbehauen, “Structure identification of nonlinear dynamic systems-a

survey of input/output approaches”, Automatica, vol. 26, pp. 651-677, 1990.

32



[19] U. J. Jaaksoo, E. M. Talvis and J. M. Ummer, “Microprocessor-based grain dryer

control,” in Prepr. 3rd IFAC/IFIP Symp. on Software for Computer Control, Madrid,

Spain, 1982, pp. 469-473.

[20] U. Kotta and U. Nurges, “Identification of input-output bilinear systems,” in Proc. 9th

IFAC Triennial World Congress, Budapest, Hungary, 1984, pp. 723-727.

[21] N. Jacobson, Basic Algebra I, W.H.Freeman and Company, 1974.

[22] B. Jakubczyk and E. D. Sontag, “Controllability of nonlinear discrete-time systems: a

Lie algebraic approach”, SIAM J. Contr. Optim., vol. 28, pp. 1-33, 1990.

[23] J. O’Reilly, “The discrete linear time invariant time-optimal control problem-an

overview”, Automatica, vol. 17, pp. 363-370, 1981.
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