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Dead-Beat Control of Simple Hammerstein Models

D. Něsić and I. M. Y. Mareels

Abstract—Dead-beat controllers for simple Hammerstein systems are
investigated. Several designs for nonminimum-time state dead-beat con-
trollers are given for certain classes of simple Hammerstein systems. A
general minimum-time state dead-beat controller is presented for a class
of simple Hammerstein systems. A design for a family of minimum-time
control laws is provided. This enables, to a certain extent, shaping of
transient response via choosing an appropriate control law. Finally, the
authors design an output dead-beat controller for a class of Hammerstein
systems that are not necessarily state dead-beat controllable.

Index Terms—Controllability, dead-beat control, discrete-time, Ham-
merstein systems, time-optimal control.

I. INTRODUCTION

Dead-beat controllers for linear systems have long been investi-
gated, and successful applications have been reported in the literature
[5]; some results on dead-beat controllability for classes of nonlinear
systems can be found in [1], [3], [6], [8], and references therein. In
this paper, we investigate dead-beat control for a class of nonlinear
systems which are sometimes referred to as simple Hammerstein
systems. Identification techniques for block-oriented models often
yield systems of this form [4]. The block diagram of these systems
is given in Fig. 1. The system consists of a linear dynamical block
W and a static nonlinearityf(u).

If the image of the nonlinearityf is such thatim(f) =]�1; +1[,
the design of a dead-beat (or any other) controller can be completely
based on the design of such a controller for the linear subsystemW

[8]. If, on the other hand, we have that the imageim(f) =]�1; �] or
[�; +1[, it is no longer possible to complete the design of dead-beat
controllers for the simple Hammerstein systems using the controllers
designed for the linear subsystemW .

We propose a design method for nonminimum and minimum-
time dead-beat controllers for the above simple Hammerstein systems
with im(f) =] �1; 0] or [0; +1[. We emphasize that our results
can be used with minor changes to simple Hammerstein systems
im(f) =]�1; �] or [�; +1[. A family of nonminimum-time and a
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Fig. 1. Block diagram of simple Hammerstein systems.

family of minimum-time dead-beat controllers is obtained. One can
change to a certain degree the transient response while keeping time-
optimality by choosing one controller from the family. Finally, we
present a nonminimum-time output dead-beat controller for a class of
simple Hammerstein systems that are not necessarily state dead-beat
controllable.

II. NOTATION AND DEFINITIONS

IR, IN, andC are, respectively, the sets of real, nonnegative integer,
and complex numbers. For� 2 IR, we write IR+

�
= [�; +1[ and

IR�
�

=] � 1; �]. The class of nonlinear discrete-time systems that
we consider can be written in the form

x(k + 1) =Ax(k) + bf(u(k))

y(k) = cx(k) + df(u(k)) (1)

where x(k) 2 IRn and u(k) 2 IR are, respectively, the state
and the input of the system at timek 2 IN. The control
sequencefu(0); u(1); � � �g is denoted asU ; and its truncation
fu(0); � � � ; u(N � 1)g of length N is UN . Let x(N; x(0); UN)
denote the state at timeN which results from the initial statex(0)
and the control sequenceUN .

Assumption 1:With reference to (1), ifx(0) = 0 then there exists
u(0) 2 IR such thatx(1; x(0); fu(0)g) = 0. In other words,� � 0
if im(f) = IR+

�
; or � � 0 if im(f) = IR�

�
.

Definition 1: System (1) is dead-beat controllable if8x(0) 2 IRn

there exists a control sequence which transfersx(0) to the origin in
finite time, i.e.,9N 2 IN andUN such thatx(N; x(0); UN) = 0.

Definition 2: System (1) is completely controllable if8x(0);
x� 2 IRn there exist an integerF = F (x(0); x�) and a finite
control sequenceUF such that the system is transferred from the
statex(0) to the statex� under the action of the sequenceUF , that
is x(F; x(0); UF ) = x�.

A minimum-time dead-beat controlleru(k) = g(x(k)) is such that
it transfers any initial statex(0) to the origin in minimum time. If a
controlleru(k) = g(x(k)) transfers any initial state to the origin but
not necessarily in minimum time it is calleddead-beat.

We use the following notation for a cone:C = fx: x =
r

i
civi; vi 2 IR+

0 g; ci 2 IRn�1; 8 i = 1; � � � ; r. A convex
polyhedral cone can be also defined byr inequalitieslix � 0; li 2
IR1�n; 8 i = 1; 2; � � � ; r [7].

Theorem 1 [2]: System (1) withimf(u) = IR+

0 is completely
controllable onIRn if and only if rank[bAb � � � An�1b] = n (or
alternatively rank(�I � A : b) = n; 8� 2 C) and the matrixA has
no real positive or zero eigenvalues.

The following theorem is an easy consequence of results in [2].
Theorem 2: System (1) withim(f) = IR+

0 (or IR�0 ) is dead-beat
controllable if and only if rank(�I�A : b) = n; 8� 2 C�f0g and
A has no real strictly positive eigenvalues.

In order to appreciate the concreteness of the above theorem
it suffices to reason as follows. The system can be decomposed
into one without zero modes, which is completely controllable on
an appropriate subspace, and another one which has only zero
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modes, which may be uncontrollable. Since dead-beat controllability
is considered, the zero modes die out withu(k) � 0 and the only
issue is controllability of the subsystem without zero modes, which
is completely controllable.

Comment 1: When the conditions of Theorem 1 are satisfied
there exists a bound on the dead-beat time uniform over the state
space. In other words, there exists an integerT 2 IN such that
8x(0) 2 IRn; 9Uk which yieldsx(k; x(0); Uk)) = 0; k � T (T is
fixed for all initial states).

Using the results of [2], it is not difficult to see that ifim(f) =
IR+

�
; � < 0 (in Theorem 1), it is possible to have real eigenvalues of

A, � 2 ]0; 1]. Apparently, in this case there is no uniform bound on
the dead-beat time and, in principle, on a subspace of the state space
we have the situation that the further the state is from the origin, the
longer the time required to zero that state.

The two types of dead-beat behavior differ considerably. We will
concentrate on the class of systems for which there is auniform
bound on the dead-beat time. In other words we consider simple
Hammerstein systems for which the conditions of Theorem 2 are
satisfied. Ifim(f) = IR+

�
; � < 0 and9�(A) 2 ]0; 1], it is possible

to modify the design that we present to obtain a minimum-time dead-
beat controller, but the design can only be carried out on a subset of
the state space (no uniform bound on dead-beat time).

III. STATE DEAD-BEAT CONTROLLERS

We present below two families of dead-beat controllers, assuming
full state measurements for (1). In the first family (Class 1) we make
use of both open- and closed-loop paradigms. In general, this leads
to nonminimum-time dead-beat behavior. The second family is a
class of closed-loop controllers that yield minimum-time dead-beat
behavior. To simplify the presentation we consider in the sequel only
the caseim(f) = IR+

0 , but a generalization toim(f) = IR+

�
is

straightforward.

A. Class 1

We point out that there is no loss of generality if we concentrate
only on completely controllable simple Hammerstein systems with a
nonsingular matrixA (zero modes die out in finite time by applying
f(u(k)) = 0; 8 k). Moreover, in the sequel we assume that the pair
(A; b) is in controllability canonical form. If we apply the minimum-
time dead-beat control law to the unconstrained linear system (1)
(v(k) = Kx(k); v 2 IR), we obtain that the closed loop matrix is
(A+ bK) = J , whereJ is n� n nilpotent Jordan matrix. Consider
the cone

C = fx: Kx � 0; KJx � 0; � � � ; KJ
n�1

x � 0g: (2)

Notice that if the initial state is in the cone, it can be transferred
to the origin in at mostn time steps by applying the control action
u(k) 2 IR�0 which is equal to (any) real solution to the equation
f(u(k)) = Kx(k). Is straightforward to show that no initial state
in the complement ofC can be transferred to the origin in less than
n+ 1 time steps. Hence, the design of a dead-beat controller can be
formulated into the design of a controller which transfers any state
outside of the cone to the cone in finite time. On the cone the linear
controllerKx(k) with an inversion yields minimum-time behavior.

SinceA is not singular, the coneC has a nonempty interior
�

C in
IRn. Indeed, nonsingularity ofA implies that the matrix whose rows
are the vectorsKJi; i = 0; 1; � � � ; n � 1 has a full rank and the
conclusion follows [7]. Moreover, it is easy to show that the cone
C given by (2) is convex.

Suppose that the integerN represents the time such that any state
x(0) 2 IRn can be transferred to anyx� 2 IRn in at mostN steps.

Such a number exists since the system is completely controllable [2].

Therefore, for anyx� 2
�

C and for any positive" there exists a
sequence of controlsu(0); � � � ; u(N � 1) such that

"x
� = A

N�1
bf(u(0))+ � � �+ Abf(u(N � 2)) + bf(u(N � 1)):

(3)

Assume thatx� 2
�

C has been chosen (it is one of the design
parameters). Sincex� is in the interior of the coneC, "x� is also in
the interior of the cone for all positive".

To complete the design of Class 1 controllers we need [7, Corollary
VI-D-1].

Proposition 1: Let C be a convex set inIRn. Then z 2
�

C if
and only if for everyy 2 IRn, there exists some� > 0 such that

z + �y 2
�

C.
Using this result we can say that for anyx(0) in the complement

of the coneC, there exists a positive" (" = ��1) such that

ANx(0) + "x� 2
�

C.
In other words, there exists a sequence of controls satisfying (3)

which yieldsx(N) 2
�

C.

Given anyx(0) andx� 2
�

C, let us find the value of̂" which yields

x(N) 2
�

C. Consider the set of inequalities

Kx(N) > 0; KJx(N) > 0; � � � ; KJ
n�1

x(N) > 0: (4)

If all of the inequalities are simultaneously satisfied, the statex(N)
belongs to the interior of the coneC. Therefore, the inequalities

KJ
i
A
N
x(0) + "KJ

i
x
�
> 0; 8 i = 0; 1; � � � ; n� 1 (5)

must be satisfied. Anŷ" satisfying

"̂ > max
i

�
KJiANx(0)

KJix�
; "̂ > 0

guarantees thatx(N) belongs to the interior of the coneC.
Hence, we can computê" using

"̂ = max max
i

�
KJiANx(0)

KJix�
; 0 + �; � > 0: (6)

Using (3) we can compute controlsu(i); i = 0; � � � ; N �1 which
transferx(0) to the interior of the coneC

"̂x
� = A

N�1
bf(u(0))+ � � �+Abf(u(N�2))+bf(u(N�1)): (7)

The design is summarized below.
Theorem 3: Consider a simple Hammerstein system for which

(A; b) is a controllable pair,A is nonsingular, and Assumption 1
holds.

The following controller yields dead-beat behavior:

if x(k) 2 C apply any real rootu to f(u) = K(x(k)):

Otherwise, apply a control sequenceu(0); � � � ; u(N � 1) which
satisfies

"̂x
� = A

N�1
bf(u(0))+ � � �+Abf(u(N � 2)) + bf(u(N � 1))

whereC is defined by (2),x� 2
�

C; and "̂ is computed using (6).
We present below two special situations in which there exists an

integerL such thatALb 2
�

C. In the first caseL > 0, and in the
secondL = 0. It is interesting that ifL = 0, then a minimum-time
dead-beat controller is obtained using this approach. Moreover, the
obtained controller is closed loop (on the whole state space). This
situation corresponds to the case when the characteristic polynomial
of matrix A has all coefficients strictly positive.
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Corollary 1: Consider the Hammerstein system (1) for which
(A; b) is a controllable pair and Assumption 1 holds. If there exists
an integerL such thatKJiALb > 0; 8 i = 0; 1; � � � ; n � 1 then
we have the control law, as shown at the bottom of the page, where
S = [iSi; Si = fx: KAix � 0; KJAix � 0; � � � ; KJn�1Aix �
0g; i = 1; � � � ; L is dead-beat, and it transfers every initial state to
the origin in at mostn + L + 1 time steps.

It is important to emphasize that" may be a constant" � 0 or a
function " = "(x(k); k) � 0; 8x(k); 8k.

Proof: Consider the following equations:

KAL+1x +K(ALbf(u(0)) +AL�1bf(u(1))

+ � � �+ bf(u(L� 1))) � 0

� � �

KJn�1AL+1x +KJn�1(ALbf(u(0))+AL�1bf(u(1))

+ � � �+ bf(u(L� 1))) � 0: (8)

Since KJiALb > 0, 8 i = 0; 1; � � � ; n � 1, it fol-
lows that 8x(0) 62 C the control law f(u(0)) =
max(maxi=0;1;���;n�1 (�KJiAL+1x=KJiALb); 0) + const
andu(i) = 0; 8 i = 1; 2; � � � ; L � 1 transfersx(0) to C in L + 1
steps. Q.E.D.

We denote the characteristic polynomial of the matrixA as�(A) =
pn + i=n�1

i=0
aip

i.
Corollary 2: If the matrixA has a characteristic polynomial with

all coefficients strictly positive, that isai > 0; 8 i = 0; 1; � � � ; n�1;
then the controller

apply any real solutionu to
f(u)=Kx; if x2C

f(u)=max max
i=0;1;���;n�1

�KJiAx

ai
; 0 +"; " � 0; if x 62C

is dead-beat and it transfers every initial state to the origin in at most
n + 1 time steps.

Proof: Notice thatKJib = ai; 8 i = 0; 1; � � � ; n � 1. Since
ai > 0; 8 i = 0; 1; � � � ; n � 1, it follows that there exists a control
value u(0) which transfers everyx(0) 2 CC to C in one step.
All such control laws are given in Corollary 2, since obviously
KJix(1) > 0; 8 i = 0; 1; � � � ; n� 1. Q.E.D.

B. Class 2

We show now how it is possible to design a minimum-time dead-
beat controller for general simple Hammerstein systems. We denote
the coneC asCn = fx: Kx � 0; � � � ; KJn�1x � 0g. On this cone
we can apply the closed-loop control scheme for Class 1 controllers,
which yields minimum-time behavior. To complete the design of a
minimum-time dead-beat controller we show how it is possible to
construct the set of states that can be transferred to the cone in one,
two, etc., time steps which we denote asCn+1; � � � ; CN . Once such
sets are found, it is easy to find a controller which is such that it
mapsCj+1 to Cj ; j = 1; � � � ; N � 1.

Let us first compute the setCn+1 which is mapped to the cone
Cn in one step. Find the compositions

KJiAx +KJibf(u) � 0; i = 0; 1; � � � ; n� 1: (9)

We split the set of inequalities (9) into three groups according to
the sign ofKJib. The set ofi for which KJib = 0 is relabeled
as s1; � � � ; sn . The same is done for the sets of indexesi for
which KJib > 0 andKJib < 0. They are denoted, respectively, as
t1; � � � ; tn andp1; � � � ; pn . It is obvious that the setKJs Ax �

0; i = 1; � � � ; n0 is a part of the set of equations that defineCn+1.
Moreover, we have that there exists a controlu which transfers

a statex from Cn+1 to Cn if and only if the following inequalities
are satisfied:

min
p

�
KJp Ax

KJp b
� f(u) � max

t
�
KJt Ax

KJt b
;

8 pi; tj ; i = 1; � � � ; n
�

;

j = 1; � � � ; n+f (u) � 0: (10)

Using these inequalities we see that the following inequalities inx

must be satisfied:

�
KJp A

KJp b
�

KJt A

KJt b
� 08 pi; tj ; i = 1; � � � ; n

�

;

j = 1; � � � ; n+

�
KJp A

KJp b
x � 0; 8 pi; i = 1; � � � ; n

�

: (11)

The defining set of inequalities forCn+1 is

KJs Ax � 0; i = 1; � � � ; n0

�
KJp A

KJp b
�

KJt A

KJt b
x � 0; 8 pi; tj ; i = 1; � � � ; n

�

;

j = 1; � � � ; n+

�
KJp A

KJp b
x � 0; 8 pi; i = 1; � � � ; n

�

: (12)

If we denote the set of inequalities (12) asln+1i x � 0; i =

1; 2; � � � ; nn+1, we can write thatCn+1 = fx: ln+1i x � 0; i =

1; 2; � � � ; nn+1g. The setCn+2 is computed in a similar way where
we start the same procedure from the following set of inequalities:

ln+1i Ax + ln+1i bf(u) � 0; i = 1; 2; � � � ; nn+1:

It is important to notice that there exists a uniform bound on the
minimum number of steps necessary to transfer any initial state to
the origin. This can be seen from the proof given in [2]. Consequently,
there exists an integerL which is such that[i=L+n+1i=1 Ci = IRn. It
only remains to compute the controls that transfer any state inCi+1

to Ci; 8 i = 1; 2; � � � ; L + n + 1.
It is obvious that the control lawu = Kx maps Ci+1 to

Ci; 8 i = 1; 2; � � � ; n � 1. We use the notationCi = fx: lijx �

0; j = 1; 2; � � � ; nig; i = 1; � � � ; n; n+1; � � � ; L+n+1. We also
use the indexessim; p

i
s; and tij to denote the indexesf for which

lifb is, respectively, equal, less than and greater than zero. Then the
control law f(u) = vi(x), if x 2 Ci+1; i = n; � � � ; L � 1 and
f(u) � 0 wherevi(x) can take values from the following interval:

vi(x) 2 max 0; max
t

�
lk
t
Ax

lk
t
b

;

min
p

�
lk
p
Ax

lk
p
b

; x 2 Ci+1

which transfers any state inCi+1 to Ci in one step.

apply any real solutionu to
f(u) = Kx; if x 2 C
f(u) = 0; if x 2 S

f(u) = max max
i=0;1;���;n�1

�KJiAL+1x

KJiALb
; 0 + "; " � 0; if x 62 (C [ S)
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Fig. 2. Controller 2 (top) and Controller 1 (bottom) for initial state(0; 2; �4).

Hence, we designed a family of minimum-time dead-beat con-
trollers. By specifying the law according to which we chosevi(x),
we can shape to a certain degree the response of the system.

IV. A N OUTPUT DEAD-BEAT CONTROLLER

If instead of zeroing the state of system (1) we wish to zero its
output in finite time, we need an output dead-beat controller. Nec-
essary and sufficient conditions for output dead-beat controllability
of simple Hammerstein systems are not known. It is obvious though
[see (1)] that output dead-beat controllability is an easy consequence
of state dead-beat controllability.

We present below sufficient conditions under which output dead-
beat control can be achieved and design an output dead-beat con-
troller. Assumption 1 is still used.

Theorem 4: Consider system (1) under Assumption 1. Assuming
that d 6= 0, let H = A � bcd�1. Define

CO = fx: d�1cHi
x � 0; i = 0; 1; � � � ; L� 1g:

If the following conditions are satisfied:

1) the matrixH satisfies a polynomial equation

H
L �

i=L�1

i=0

ciH
i = 0; whereci � 0; 8 i = 0; � � � ; L� 1;

2) there exists a numberN such thatd�1cHiANb < 0; 8 i =
0; 1; � � � ; L � 1;

system (1) is output dead-beat controllable. IfH is a stable matrix
(with all eigenvalues inside the closed unit disk), the system is output
dead-beat controllable with stable zero dynamics.

Proof: Because of Condition 1 in Theorem 4, it is not difficult
to see that the coneCO is positively invariant. In other words, if an
initial state is in the cone, it stays inside the cone when the control
f(u) = �d�1cx is applied to the system.

Consider the following inequalities:

d
�1(cAN+1x(0) + cA

N
bf(u(0))+ cA

N�1
bf(u(1))

+ � � �+ cbf(u(N � 1))) � 0

d
�1(cHA

N+1
x(0) + cHA

N
bf(u(0))+ cHA

N�1
bf(u(1))

+ � � �+ cHbf(u(N � 1))) � 0

� � �

d
�1(cHL�1

A
N+1

x(0) + cH
L�1

A
N
bf(u(0))+ � � �

+ cH
L�1

bf(u(N � 1))) � 0:

If Condition 2 of Theorem 4 is satisfied, we can transfer any state
outside the coneCO to the coneCO by applying in the first step

f(u(0)) = max max
i

�cHiAN+1x(0)

cHiANb
; 0

andf(u(k)) = 0; 8 k = 1; 2; � � � ; N�1. We have thatx(N) 2 CO
and then we can applyf(u(k)) = �d�1cx(k). Q.E.D.

Notice that under the conditions of Theorem 4 system (1) does
not have to be state dead-beat controllable. Observe that0 2 CO
is always satisfied and that iff0g = CO, (1) must necessarily

any real rootu to

f(u) = �d�1cx; if x 2 CO

f(u) = 0; if x 2 S

f(u) = max max
i

�cHiAN+1x

cHiANb
; 0 + �; if x 2 IRn � (CO [ S); � � 0
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Fig. 3. Simulation results for the output dead-beat controller.

be state dead-beat controllable in order to have output dead-beat
controllability.

From the proof of Theorem 4 it follows that the output dead-beat
control law is as shown in the equation at the bottom of the previous
page, where

S =

i=N�1

i=1

fx: d�1cAix � 0; � � � ; d�1cHL�1
A
i
x � 0g:

Example 1: The system is given by

x(k + 1) =
0 1 0
0 0 1

�1 0:5 0:5
x(k) +

0
0
1

u
2(k):

Due to space limitations we do not present analytic expressions for
Controllers 1 and 2. The simulations of the two controllers for the
initial conditions(0; 4; �2) are given in Fig. 2. It is clearly possible
to change the transient response while maintaining minimum-time
dead-beat behavior.

Example 2: Consider the system

x(k + 1) =
0 1 0
0 0 1
0 0 0:2

x(k) +
0
0
1

u
2(k)

y(k) = (�0:10 � 0:5)x(k) + u
2(k):

It is straightforward to check that the conditions of Theorem 4 are
satisfied, withL = 3 andN = 0. Simulation of the output dead-
beat controller is given in Fig. 3. Notice that the system is not state
dead-beat controllable.
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