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family of minimum-time dead-beat controllers is obtained. One can
change to a certain degree the transient response while keeping time-
optimality by choosing one controller from the family. Finally, we
present a nonminimum-time output dead-beat controller for a class of
simple Hammerstein systems that are not necessarily state dead-beat
controllable.

Dead-Beat Control of Simple Hammerstein Models
D. N&Sic and I. M. Y. Mareels

Il. NOTATION AND DEFINITIONS

Abstract—Dead-beat controllers for simple Hammerstein systems are IR, IN, and C are, respectively, the sets of real, nonnegative integer
investigated. Several designs for nonminimum-time state dead-beat con- T ' ' ! ’

trollers are given for certain classes of simple Hammerstein systems. A and complex numbers. Far e I, We ertg IR':SF = [6, +oc[ and

general minimum-time state dead-beat controller is presented for a class IRy =] — oo, 6]. The class of nonlinear discrete-time systems that

of simple Hammerstein systems. A design for a family of minimum-time we consider can be written in the form

control laws is provided. This enables, to a certain extent, shaping of

transient response via choosing an appropriate control law. Finally, the x(k+1) =Ax(k)+bf(u(k))
y(k) = cx(k) + df (u(k))

authors design an output dead-beat controller for a class of Hammerstein
systems that are not necessarily state dead-beat controllable.

@)

where 2(k) € IR"™ and u(k) € IR are, respectively, the state
and the input of the system at timé € IN. The control
sequence{«(0), u(1), ---} is denoted ad{, and its truncation
{u(0), -+, w(N — 1)} of length N is Un. Let z(N, z(0), Un)

) ) denote the state at tim& which results from the initial state(0)
Dead-beat controllers for linear systems have long been inves{iky the control sequendéy .

gated, and successful applications have been reported in the ”teraturﬁssumption 1: With reference to (1), if:(0) = 0 then there exists
[5]; some results on dead-beat controllability for classes of nonline&{()) € IR such thate(1, «(0), {«(0)}) = 0. In other words < 0
systems can be found in [1], [3], [6], [8], and references therein. |p im(f) = R}, or 6 > 0 if /7,’m(f) = R;. -
this paper, we investigate dead-beat control for a class of nonlineagygfinition 1: Systen;(l) is dead-beat controllablevig(0) € R”

systems which are sometimes referred to as simple Hammersigjgye exists a control sequence which transigf¥ to the origin in
systems. Identification techniques for block-oriented models oftgfite time i.e. 3N € IN and/x such thate(N, 2(0), Un) = 0.

yield systems of this form [4]. The block diagram of these systems peinition 2: System (1) is completely controllable i z(0)
is given in Fig. 1. The system consists of a linear dynamical block: € IR" there exist an integef’ = F(x(
W and a static nonlinearity (u). control sequencé/r such that the system is transferred from the

If the image of the nonlinearity is such thatm(f) =]-oc. +o0,  giates(0) to the stater* under the action of the sequeriae, that
the design of a dead-beat (or any other) controller can be complet@){v(F 2(0), Up) = ="

based on the design of such a controller _for'the linear subsylitem A minimum-time dead-beat controllek) = g(=(k)) is such that
[8]. If, on the other hand, we have that the image( f) =] —oc. 6] or it yransfers any initial state(0) to the origin in minimum time. If a
[6, +oc[, itis no longer possible to complete the design of dead-begfrolleru (i) = g(x(k)) transfers any initial state to the origin but
controllers for the simple Hammerstein systems using the controlleys; necessarily in minimum time it is calletbad-beat
designed for the linear subsysteii. . » We use the following notation for a cone’ {z: 2

We propose a design method for nonminimum and minimun-~r . o Ri}. i € R™, Vi 1. .- 7. A convex
time dead-beat controllers for the above simple Hammerstein SVSteﬁﬁﬁlhedral cone c[;an/be also defined mmequélitiésl;m >0, 1 €

=] =00, 0] or [0, +oc[. We emphasize that our resultszixn v; — 1 9 ... , [7]. i 2

Index Terms—Controllability, dead-beat control, discrete-time, Ham-
merstein systems, time-optimal control.

|. INTRODUCTION

»

0), 2*) and a finite

with im(f)
can be used with minor changes to simple Hammerstein systemspagrem 1 [2]: System (1) withim f(u) =

. . e . RS is completely
im(f) =] — oo, 8] or [6, +oo[. A family of nonminimum-time and a

controllable onIR” if and only if rankb Ab --- A"~ 'p] n (or
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modes, which may be uncontrollable. Since dead-beat controllabilBuch a number exists since the system is completely controllable [2].
is considered, the zero modes die out with:) = 0 and the only Therefore, for anyz* € ' and for any positives there exists a
issue is controllability of the subsystem without zero modes, whigequence of controls(0), - --, u(N — 1) such that
is completely controllable. . - i
Comment 1: When the conditions of Theorem 1 are satisfieds® = A~ 0f(u(0)) + -+ + Abf(u(N = 2)) + bf(u(N = 1)).
there exists a bound on the dead-beat time uniform over the state (3)
space. In other words, there exists an inte@erc IN such that .
Yx(0) € R"™, 3, which yieldsz(k, z(0), Ue)) =0,k <T (T is Assume thatz* € ¢ has been chosen (it is one of the design
fixed for all initial states). parameters). Since” is in the interior of the con€’, zz* is also in
Using the results of [2], it is not difficult to see that:ifn(f) = the interior of the cone for all positive.
RS, & < 0 (in Theorem 1), it is possible to have real eigenvalues of To complete the design of Class 1 controllers we need [7, Corollary
A, A €10, 1]. Apparently, in this case there is no uniform bound oVI-D-1].
the dead-beat time and, in principle, on a subspace of the state spag&oposition 1: Let C be a convex set idfR". Thenz € 8« if
we have the situation that the further the state is from the origin, théd only if for everyy € IR", there exists some > 0 such that

longer the time required to zero that state. +ay € C.
The two types of dead-beat behavior differ considerably. We will sing this result we can say that for ang0) in the complement
concentrate on the class of systems for which there imiform ot the coneC, there exists a positive (= = o ') such that

bound on the dead-beat timén other words we consider simple |, n « °
. . " AN 2(0) + =2 € C.

Hammerstein systems for which the conditions of Theorem 2 are, = other words. there exists a sequence of controls satisfying (3)
satisfied. Ifim(f) = ]R,;'Z 6 < 0 and3N(A4) € ]0, 1], it is possible ) ) T’ o a 9
to modify the design that we present to obtain a minimum-time dea@fhich yields«(N) € C.
beat controller, but the design can only be carried out on a subset oiven anyx(0) andz" € C, let us find the value of which yields
the state space (no uniform bound on dead-beat time). z(N) € C°~ Consider the set of inequalities
Ca(] s KJae(N feeer KJV (N .
Ill. STATE DEAD-BEAT CONTROLLERS Kx(N) > 0; KJ2(N) > 0; P BJTe(N) >0 “)

We present below two families of dead-beat controllers, assuminglf all of the inequalities are simultaneously satisfied, the staté)
full state measurements for (1). In the first family (Class 1) we matkelongs to the interior of the cor@. Therefore, the inequalities
use of both open- and closed-loop paradigms. In general, this leads .. ,; ~ T L o
to nonminimum-time dead-beat behavior. The second family is a KT A7 w(0) 4 =K J'a" > 0, Vi=0,1-m=1 (5
class _of closegl-loc_Jp controllers th_at yield min_imur_n-time dead-bep{yst be satisfied. Any satisfying
behavior. To simplify the presentation we consider in the sequel only N
the caseim(f) = R{, but a generalization tom(f) = R} is 2> max <_ KA ”7(0))‘ 550
straightforward. : KJar '

guarantees that(/NV') belongs to the interior of the corg.
A. Class 1 Hence, we can computé using
We point out that there is no loss of generality if we concentrate KJiAN

. . . R CJ AN 2(0)
only on completely controllable simple Hammerstein systems with a £ = max < {—W
nonsingular matrix4 (zero modes die out in finite time by applying L
f(u(k)) = 0, ¥k). Moreover, in the sequel we assume that the pair Using (3) we can compute contralgi), i = 0, ---, N — 1 which
(4, b) is in controllability canonical form. If we apply the minimum- transfera:(0) to the interior of the cone”
time dead-beat control law to the unconstrained linear system (1) Nt .
(v(k) = Ka(k), v € R), we obtain that the closed loop matrix is ¢ =4 bf(u(0)) 4+ Abf (u(N =2))+bf(w(N =1)). (7)
(A4+0bK) = J, whereJ is n x n nilpotent Jordan matrix. Consider
the cone

max
2

},O)—I—C, ¢>0. (6)

The design is summarized below.
Theorem 3: Consider a simple Hammerstein system for which
C={e:Ke>0,KJz>0,---, KJ" 'z > 0}. (2) (A, b) is a controllable pairA is nonsingular, and Assumption 1
holds.
Notice that if the initial state is in the cone, it can be transferred The following controller yields dead-beat behavior:

to the origin in at most: time steps by applying the control action

u(k) € RE which is equal to (any) real solution to the equation if (k) € C apply any real root to f(u) = K(x(k)).

f(u(k)) = Kx(k). Is straightforward to show that no initial state . . .

inktkEe)complerrEerzt ot cangbe transferred to the origin in less tharPNerwise, apply a control sequenog0), ---, u(N — 1) which

n + 1 time steps. Hence, the design of a dead-beat controller canS@é'Sf'es

formulated into the design of a controller which transfers any state,.* — AN’lbf(u(())) 4+ ADf(u(N = 2)) +0f(u(N — 1))

outside of the cone to the cone in finite time. On the cone the linear

controller Kz (k) with an inversion yields minimum-time behavior. whereC is defined by (2)z* € (0* and¢ is computed using (6).
Since A is not singular, the coné’ has a nonempty interio%’ in We present below two sgecial situations in which there exists an

IR™. Indeed, nonsingularity afi implies that the matrix whose rows integer L such thatA“s € (. In the first casel. > 0, and in the

are the vectork.J*, i = 0, 1, ---, » — 1 has a full rank and the secondL = 0. It is interesting that ifL = 0, then a minimum-time

conclusion follows [7]. Moreover, it is easy to show that the condead-beat controller is obtained using this approach. Moreover, the

C given by (2) is convex. obtained controller is closed loop (on the whole state space). This
Suppose that the integé¥ represents the time such that any statsituation corresponds to the case when the characteristic polynomial

z(0) € R"™ can be transferred to any* € IR™ in at mostV steps. of matrix A has all coefficients strictly positive.
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Corollary 1: Consider the Hammerstein system (1) for whichWe split the set of inequalities (9) into three groups according to
(A, b) is a controllable pair and Assumption 1 holds. If there existhe sign of &.7'b. The set ofi for which K.J'b = 0 is relabeled
an integerL such thatKJ*ALb > 0,Vi =0,1,---,n—1then ass, -, sn,. The same is done for the sets of indexesor
we have the control Iaw_, as shown at the bottom of the page, whevhich K.J'b > 0 and K .Jib < 0. They are denoted, respectively, as
S=U;8;, 8 ={o: KA'2 >0, KJA'2 >0, ---, KJ" "A'z > ¢, ..., tn, andpi, ---, pn_. Itis obvious that the sel'J* Ax >
0},i=1,---, L is dead-beat, and it transfers every initial state t0, s = 1, -- -, no is a part of the set of equations that defifig, .

the origin in at most» + L 4 1 time steps. Moreover, we have that there exists a contoWhich transfers
It is important to emphasize thatmay be a constant > 0 or a a stater from C,4, to C,, if and only if the following inequalities
function= = e(x(k), k) > 0, Vx(k), VEk. are satisfied:
Proof: Consider the following equations: KJ? Az KJY Ax
min <—,7> > f(u) > max <—f>,
KA" 2 + K(Abf(w(0)) + A" 'bf(u(1)) pi Kb t KJ5h

v]]i, t]ve i = 17 trry Ny

e bf (L= 1)) 2 0 /
j=1 e naf (@20, (10

KJ" AR 4 K AR F(u(0) + AP f (u(1)) Using these_in_equalities we see that the following inequalities in
must be satisfied:
4+ bf(u(L—1))) > 0. (8) KP4 KJUA .
Since KJ'AYD > 0, Vi = 0.1 --.n — 1, it fo- _<KJbe B KJ”b) 209pis by, i= L me
lows that V2(0) ¢& C Tthe controrl law f(u(0)) = j=1 -, ny
max(max;—o 1 ... n—1 (=KJ' A" 2 /KJ A"p), 0) 4+  const KJPiA .
andz(z(i) =0, Vi= 1,( 2,---, L — 1/transfers?v(0§ toCinL+1 “ w20 Veeisloeenoo (11)
steps. Q.E.D. The defining set of inequalities faf,+; is

We denote the characteristic polynomial of the mattiasy (A4) = KJ% Ar >0 i=1. .o
, JPAx >0, =1,

Pr A T i et
Corollary 2: If the matrix A has a characteristic polynomial with  — <u - u
all coefficients strictly positive, thatis; > 0, Vi =0, 1, ---, n—1, K.Jvib KJ5h

then the controller j=1,-,ny

)x >0, Vpi,tj,i=1,---,n_,

K% A o
apply any real solution to “ w20 Veei=Lloeno. (12)
flu)=Ku, L ifred If we denote the set of inequalities (12) g2 > 0, i =
f(u)=max | max R A Al’” 0)"‘6, >0, if egC 152+ nny1, We can write thatCh 4y = {a: e > 0,0 =
2=0,1,m—1 @ 1,2, ++, nnt1}. The setC, 4o is computed in a similar way where
is dead-beat and it transfers every initial state to the origin in at md¥g Start the same procedure from the following set of inequalities:
n + 1 time steps. " Ar + l?Jrlbf(u) >0, i=1,2, -, nnt1.

Proof. Notice thatk'J's = a;, Vi = 0, I, -+, n — 1. Since important to notice that there exists a uniform bound on the

a; >0,¥Vi=0,1,---,n—1, it follows that there exists a control . ", o
. C . minimum number of steps necessary to transfer any initial state to
value »(0) which transfers every:(0) € C“ to C in one step. L . N
’ the origin. This can be seen from the proof given in [2]. Consequently,

All such control laws are given in Corollary 2, since obviousl : . Co —
g y %here exists an integelt which is such that!=- "1 C; = R". It

KEJa(1)>0,¥i=0,1,-,n-1 QED only remains to compute the controls that transfer any stafé in
toC,,Vi=1,2,---, L+ n+1.

B. Class 2 It is obvious that the control lawe = K2 maps Ciyi to
We show now how it is possible to design a minimum-time dead>;, v; = 1, 2, ---, n — 1. We use the notatiol; = {2 ];T >
beat controller for general simple Hammerstein systems. We dengtej = 1,2, .-, n;},i=1,---, n, n+1, ---, L+n+1. We also
the coneC’ asC', = {x: K >0, -+, KJ"~'x > 0}. On this cone yse the indexes.,. p.. and+ to denote the indexeg for which

we can apply the closed-loop control scheme for Class 1 controllersy, is, respectively, equal, less than and greater than zero. Then the
which yields minimum-time behavior. To complete the design of gontrol law f(u) = vi(z), if 2 € Ciyr, i = n,---, L — 1 and

minimum-time dead-beat controller we show how it is possible tp(,) > ( wherev;(x) can take values from the following interval:
construct the set of states that can be transferred to the cone in one,

two, etc., time steps which we denote@sy1, ---, Cx. Once such ]ij Az
sets are found, it is easy to find a controller which is such that it vi(z) € max | 0, n?k“ B 1% b
mapsC;+1 t0Cj, y =1,---, N — 1. ’ g

Let us first compute the sét,. ;. which is mapped to the cone . l;"; Aw
C, in one step. Find the compositions T l.,'fkb » o € Cipa

KJ' Az + KJ'bf(u) > 0, i=0,1,---,n—1. (9) which transfers any state ifi;4, to C; in one step.

apply any real solutiom to
flu)=Kr, ifxeC
fuw) =0, ifzesS
—KJ AL+,

f(u) = max <,::0,I11,1»§-},§n—1 KAl ()) 42,220, if g (CUS)
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Fig. 2. Controller 2 (top) and Controller 1 (bottom) for initial state, 2, —4).

Hence, we designed a family of minimum-time dead-beat cosystem (1) is output dead-beat controllable Hifis a stable matrix
trollers. By specifying the law according to which we chasér), (with all eigenvalues inside the closed unit disk), the system is output
we can shape to a certain degree the response of the system. dead-beat controllable with stable zero dynamics.

Proof: Because of Condition 1 in Theorem 4, it is not difficult
to see that the con€ is positively invariant. In other words, if an

) ) ] Jinitial state is in the cone, it stays inside the cone when the control
If instead of zeroing the state of system (1) we wish to zero itg,) = —q='cz is applied to the system.

output in finite time, we need an output dead-beat controller. Nec-consider the following inequalities:
essary and sufficient conditions for output dead-beat controllability .
of simple Hammerstein systems are not known. It is obvious though d " (cA™ " 2(0) + cAYNbF(u(0)) + cAN b f(u(1))
[see (1)] that output dead-beat controllability is an easy consequence +oodebf(u(N =1)) <0
of state dead-beat controllability. —1/ .q7 AN+1_, T AN £/, g AN—17 ¢/

We present below sufficient conditions under which output dead- 4 (cHAT a(0) + (f{A bF((0) + cHATbf(u(1)
beat control can be achieved and design an output dead-beat con- ~ + - T cHbf(w(N = 1))) <0
troller. Assumption 1 is still used.

Theorem 4: Consider system (1) under Assumption 1. Assuming =1 (="' AN+ 0(0) 4+ cH ' ANbf (u(0)) + - - -
thatd # 0, let H = A — bed ™', Define 1

+cH" ' bf(u(N —-1))) <0.

IV. AN OuTpPUT DEAD-BEAT CONTROLLER

p— e 71 2 i/ . 7 — .« , — A
Co={wd cH'w<0,i=01 -, L-1} If Condition 2 of Theorem 4 is satisfied, we can transfer any state

outside the con€’o to the coneCo by applying in the first step
—cH' AN 2(0) )

If the following conditions are satisfied:
1) the matrixH satisfies a polynomial equation

F(u(0)) = max <max

L T CH AN
H' - > ¢H'=0, wherec; >0,Vi=0,---,L—1; andf(u(k))=0,Vk=1,2,---, N—1. We have thax(N) € Co
i=0 and then we can applj(u(k)) = —d *ca(k). Q.E.D.

Notice that under the conditions of Theorem 4 system (1) does
not have to be state dead-beat controllable. Observe(tt@tCo
is always satisfied and that 0} = Co, (1) must necessarily

2) there exists a numbe¥ such thatd 1cH'AYb < 0, Vi =
0,1, -+, [ —1;

any real root: to

flu) = —d tew, if © € Co
flu)y=0, ifres
i AN+
f(u) = max <max%, 0) + 4, ifz€eR"—(CoUS),6>0
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Fig. 3. Simulation results for the output dead-beat controller.

be state dead-beat controllable in order to have output dead-bgat S. T. Glad, “Dead beat control for nonlinear system&yialysis and

controllability.

From the proof of Theorem 4 it follows that the output dead-beat
control law is as shown in the equation at the bottom of the previou&]
page, where

1I=N—-1

S = U {a: A7 eA'w <0, -+, d 'cH " 'A'z < 0}. [5]
=1 [6]
Example 1: The system is given by
0o 1 o0 0
ek+1) = 0 0 1 |a(b)+ |0 |e’(k). (7
-1 0.5 0.5 1
9 B} [8]

Due to space limitations we do not present analytic expressions for
Controllers 1 and 2. The simulations of the two controllers for the
initial conditions(0, 4, —2) are given in Fig. 2. It is clearly possible
to change the transient response while maintaining minimum-time
dead-beat behavior.

Example 2: Consider the system

01 0 0
sk+1)=[0 0 1 Je(k)+ [0 |u’(k)
0 0 0.2 1

y(k) =(=0.10 — 0.5)x(k) + u” (k).

It is straightforward to check that the conditions of Theorem 4 are
satisfied, withL = 3 and N = 0. Simulation of the output dead-
beat controller is given in Fig. 3. Notice that the system is not state
dead-beat controllable.
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