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On Uniform Asymptotic Stability of Time-Varying
Parameterized Discrete-Time Cascades

Dragan Nešić and Antonio Loría, Member, IEEE

Abstract—Recently, a framework for controller design of sam-
pled-data nonlinear systems via their approximate discrete-time
models has been proposed in the literature. In this paper, we
develop novel tools that can be used within this framework and
that are useful for tracking problems. In particular, results for
stability analysis of parameterized time-varying discrete-time
cascaded systems are given. This class of models arises naturally
when one uses an approximate discrete-time model to design a
stabilizing or tracking controller for a sampled-data plant. While
some of our results parallel their continuous-time counterparts,
the stability properties that are considered, the conditions that
are imposed, and the the proof techniques that are used, are
tailored for approximate discrete-time systems and are technically
different from those in the continuous-time context. A result on
constructing strict Lyapunov functions from nonstrict ones that
is of independent interest, is also presented. We illustrate the
utility of our results in the case study of the tracking control
of a mobile robot. This application is fairly illustrative of the
technical differences and obstacles encountered in the analysis of
discrete-time parameterized systems.

Index Terms—Casacded systems, discrete-time, Lyapunov sta-
bility, nonholonomic systems.

I. INTRODUCTION

THE prevalence of digitally controlled systems and the fact
that the nonlinearities in the plant model can often not be

neglected, strongly motivate the area of nonlinear sampled-data
systems. A typical nonlinear sampled-data system consists of a
nonlinear continuous-time plant and a nonlinear discrete-time
controller that are interconnected via the analog-to-digital
(A-D) and digital-to-analog (D-A) converters.

Despite the importance of this class of systems, few systematic
tools for nonlinear sampled-data controller design are available
in the literature. One way of studying the control and analysis
problems for sampled-data systems is the hybrid systems
approach within which we may cite among others [4], [46],
[21], [8], [9], [40]. Another control method for this class
of systems is to discretize the plant model and use it for
controller design. Most of such references using this approach
assume existence of the exact discrete-time plant model (see,
for instance, [49], [18], and [17]). While this approach is
standard for linear systems, it is typically not straightforward
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for nonlinear systems. Indeed, it is usually not possible to
discretizeanonlinearplantmodelexactlybutonlyapproximately
using numerical methods such as Runge-Kutta and, hence,
controller design has to be based on an approximate discrete-time
model. Early results using this approach can be found in [5]
and [6], and in the more recent works [28], [29], [25], and
[1]. Moreover, it was shown in [34] that a controller may
stabilize an approximate model while destabilizing the exact
model for all sampling periods. For example, if we design a
minimum-time dead-beat controller for the Euler approximate
model of a triple integrator, the controller will stabilize the
Euler mode for any sampling period but destabilize the exact
model for all sampling periods. Recently, a framework for
nonlinear sampled-data controller design via their approximate
discrete-time models was proposed in [34]–[36]. Furthermore,
in [35], it was shown that stability of the exact discrete-time
model under mild conditions guarantees also stability of the
sampled-data system. Hence, the results of [34] and [35] provide
a framework for controller design of sampled-data nonlinear
systems via their approximate discrete-time models. Several
constructive methods for controller design within the above
mentioned framework has been reported in the literature (see
[36], [19], [7], and the references cited therein).

Within the aforementioned framework, we often need to
check appropriate stability properties of an approximate closed
loop system that is described by a parameterized (in the
sampling period) discrete-time model (see [34, Ths. 1 and 2]).
In particular, one needs to check semiglobal practical uniform
asymptotic stability (SP-UAS, cf. Definition 1) of the approx-
imate discrete-time closed loop system in order to conclude
(under additional assumptions) the same property for the exact
discrete-time closed-loop system. The results from [35] allow
to conclude SP-UAS for the sampled-data control system from
SP-UAS of the exact discrete-time system. In words, SP-UAS
for a given system means that its trajectories starting from any
compact set converge to a closed neighborhood of the origin
and, moreover, the set of initial conditions may be enlarged and
the attractive neighborhood diminished as the sampling period
is reduced.

The SP-UAS property is typically hard to check. The results
that we present in this paper facilitate checking SP-UAS in
the special case when the model has a cascaded structure. In
this case, we can use the approach of “divide and conquer” by
decomposing the higher dimensional problem into several lower
dimensional problems that are easier to solve. A large number
of results and applications of continuous-time cascaded systems
can be found in [3], [20], [22], and [39] and discrete-time
cascaded systems in [12], [23], and the references cited therein.
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We present sufficient and necessary conditions for SP-UAS
of parameterized discrete-time cascaded systems of the form

(1)

(2)

where and is a parameter (usu-
ally the sampling period). These models naturally arise when
an approximate discrete-time model of sampled-data nonlinear
system, such as the Euler model, is used for controller design
(see [34], [36], and the case study in Section IV). We also make
use of the auxiliary system

(3)

Our main results (Theorems 1 and 2) state that if the systems
(2) and (3) are SP-UAS and the solutions of (1) and (2) are uni-
formly bounded, then the system (1) and (2) is SP-UAS. We
emphasize that even in the context of continuous-time systems,
boundedness of solutions of the perturbed system (1) is not ob-
tained from the stability properties of (2) and (3). For instance,
one may have that (3) is globally asymptotically stable and (2)
is globally exponentially stable and the solutions of (1) are un-
bounded; see, for instance, [48]. In [23], we give sufficient con-
ditions for uniform boundedness of the solutions of (1).

Theorems 1 and 2 use slightly different assumptions and def-
initions of stability. In particular, Theorem 1 uses “trajectory
based” conditions whereas Theorem 2 uses “Lyapunov based”
conditions that may be not equivalent in general. Two direct con-
sequences of these results are Corollaries 1 and 2 for nonpa-
rameterized discrete-time systems that generalize the cascades
results of [12]. We also present several sufficient conditions for
our conditions to hold and most notably in Section III-B we con-
struct strict Lyapunov functions from nonstrict ones (for sim-
ilar constructions in continuous-time systems see [26]). Finally,
through a case-study of the unicycle benchmark problem we
illustrate how using our results we can obtain a new control
algorithm for the unicycle that can be regarded as a redesign
of the continuous-time controller in [37]. Moreover, our con-
troller outperforms, in simulations, the continuous-time con-
troller from [37] which is discretized and implemented using
a sampler and zero order hold.

The paper is organized as follows. In Section II, we provide
mathematical preliminaries and some definitions. Our main re-
sults are presented in Section III. In Section IV, we present the
unicycle case study. Most technical proofs are included in the
appendices.

II. PRELIMINARIES

A function is said to be of class ,
if it is continuous, strictly increasing and zero at zero;
if, in addition, it is unbounded. A function

is of class if for all and for all
is decreasing to zero. A function

is said to be of class if is continuous and nondecreasing.
We denote by the Euclidean norm of vectors. We denote by
and the sets of the real and natural numbers respectively. For

an arbitrary we use the notation .
Given strictly positive real numbers and , we use the fol-
lowing notation:

(4)

For the cascade (1), (2) we use the notation to
denote the state of the overall system. Often, we regard in the
system (1) as an exogenous input that is not necessarily gen-
erated by the subsystem (2). In that case, we refer to the sub-
system (1) as the system with input . The solution of the system
(1) with input at time , that starts at initial time instant
from the initial state and under the action of the
input sequence is denoted as

. We also use . Note that
the solution of the system (3) is the same as the solution for (1)
with input when and, hence, for solu-
tions of (3) we use the notation . Similarly we
use the notation and
to denote solutions of (1) and (2) and of its and components
respectively.

To state our main results, we need the following assumption
and definitions. The motivation to consider properties presented
in Definitions 1–4 is to obtain the right type of stability for the
parameterized discrete-time system that can be used within the
framework1 of [34, Th. 1] (to see how these results are used, see
also the case study in Section IV).

Assumption 1: There exist
and such that for all and

) we have and
.

Definition 1 [SP-UAS]: The parameterized time-varying
system

(5)

is semiglobally practically uniformly asymptotically stable,
i.e., SP-UAS, (respectively, uniformly globally asymptoti-
cally stable UGAS) if there exists such that for
any pair of strictly positive real numbers there exists

(respectively, there exists ) such that for all
with (

with ) the following holds:

(6)

(respectively, ) for all
).
Notice that the convergence of solutions in (6) is not uni-

form in the sampling period since the solutions are allowed to
converge slower as decreases. However, (6) bounds the over-
shoots uniformly in .

Definition 2: The parameterized time-varying system (5) is
Lyapunov SP-UAS if there exist
and for each pair there exists and for each

1Reference [34, Th. 1] is presented for time-invariant systems but it can be
stated with minor changes for time-varying systems that we consider in this
paper.
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a continuous function such
that for all , all and all we have that

(7)

(8)

(9)

for all and . The system
is Lyapunov UGAS if there exists such that the afore-
mentioned conditions hold for all and with

.
Remark 1: We note that the properties in Definitions 1 and

2 are very related. In particular, it was shown in [34] that the
system is SP-UAS (see Definition 1) if and only (7) and (8)
hold. However, the converse Lyapunov theorem in [34] does not
produce a Lyapunov function satisfying the condition (9) and
we believe that constructing such converse Lyapunov functions
is an open problem in the literature. In particular, it would be
important to provide conditions under which one can construct
Lyapunov functions from Definition 2 for (5) with a discontin-
uous right-hand side. Such converse theorems for nonparame-
terized discrete-time systems can be found in [14] but we are
not aware of similar results for parameterized systems.

Definition 3: The system (5) is uniformly semiglobally
bounded (USB), [respectively, uniformly globally bounded
(UGB)], if there exist and , such that for any
there exists (respectively, there exists ) such
that with and
( and ) implies

(10)

for all .
The following property is similar to continuity of solutions of

differential equations satisfying the local Lipschitz condition if
we think of as “continuous time.” This will be crucial
in establishing a trajectory-based proof of our main result.

Definition 4: The solutions of the system (1) with input are
uniformly semiglobally continuous (USC) [uniformly globally
continuous (UGC)] if for any there exists (there
exists ) such that for any and
there exists such that for all , all with

and all with we have
that

(11)

III. MAIN RESULTS

In this section, we first present two general results on stability
of cascades. In these stability results we make use of all proper-
ties presented in Definitions 1–4. Properties in Definitions 1–4
are hard to check in general and, in subsequent Sections III-B

and C, we give some easier-to-check sufficient conditions for
USC, USB, and Lyapunov SP-UAS.

A. Stability of Parameterized Cascades

Our main results are presented in this subsection. Two results
are presented that deduce stability of the cascade (1) and (2)
from stability of two lower dimensional auxiliary systems (3)
and (2) and the boundedness of trajectories of the overall system
(1) and (2). These results are fundamental in that they are nec-
essary and sufficient for stability of the cascade. Hence, the first
condition of [34, Th. 1] can be checked via three separate con-
ditions that are usually easier to verify. Our two main results are
similar in spirit but they are derived under slightly different con-
ditions.

Theorem 1: Suppose that the solutions of the system (1) with
input are USC (UGC). Then, the overall system (1) and (2) is
SP-UAS (UGAS) if and only if the following conditions hold:

1) system (3) is SP-UAS (UGAS);
2) system (2) is SP-UAS (UGAS);
3) system (1) and (2) satisfies the property USB (UGB).

Theorem 2: Suppose that of the system (1) satisfies As-
sumption 1. Then, the overall system (1) and (2) is SP-UAS
(UGAS) if the following conditions hold:

1) system (3) is Lyapunov SP-UAS (Lyapunov UGAS);
2) system (2) is SP-UAS (UGAS);
3) system (1) and (2) satisfies the property USB (UGB).

For the sake of clarity, we present the proofs of the main re-
sults in Appendix A. We provide only the proofs for the more
general case of SP-UAS since the global versions follow by re-
moving the restriction on the size of the domain of attraction
and restricting the neighborhood of the origin to the origin itself
(i.e., considering ).

Remark 2: The proof of Theorem 1 is inspired by the trajec-
tory-based proof in [43, Th. 1] that does not appeal to converse
Lyapunov theorems (see Appendix A). On the other hand, The-
orem 2 uses Assumption 1 instead of the USC assumption and
it is inspired by the proof of [39, Lemma 2] (see Appendix A).
We stress that in Theorem 2 we use a different assumption from
USC which is typically weaker than the latter. Moreover, we use
Lyapunov SP-UAS which is typically stronger than SP-UAS. In
particular, in Theorem 2 we may have that the right hand side
of (3) is discontinuous, which is in general excluded from The-
orem 1 because of the USC condition. Note also that since ap-
propriate converse Lyapunov theorem does not exist for parame-
terized systems (see Remark 1), we only state sufficiency results
in Theorem 2.

Remark 3: While the proof of Theorem 1 does not require the
existence of a Lyapunov function, Theorem 2 is important since
the existence of a Lyapunov function is often helpful for con-
troller design. Indeed, a Lyapunov function may allow us to im-
prove the transients of the sampled-data system by redesigning
a continuous-time controller in an appropriate way and using
our results (see Section IV).

Two interesting corollaries for nonparameterized systems
follow directly from our results and they generalize some
results in [12]. These results are interesting in cases when the
exact discrete-time model of the plant can be computed and we
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do not have to appeal to [34, Th. 1]. The appropriate definitions
and assumptions for nonparameterized systems

(12)

(13)

are obtained easily from global definitions for parameterized
systems by setting and they are not repeated for space
reasons. Similarly, the auxiliary system is

(14)

Corollary 1: Suppose that the solutions of the system (12)
with input are UGC. Then, the overall system (12) and (13) is
UGAS if and only if

1) system (14) is UGAS;
2) system (13) is UGAS; and
3) system (12), (13) is UGB.

Corollary 2: Suppose that Assumption 1 holds for in (12).
Then, the overall system (12) and (13) is UGAS if

1) system (14) is Lyapunov UGAS;
2) system (13) is UGAS; and
3) system (12), (13) is UGB.

Remark 4: Notice that continuity of is not required
in Corollary 2 whereas we implicitly require continuity in
Corollary 1 since this is needed to guarantee UGC (see also
Proposition 2).

B. Sufficient Conditions for Lyapunov SP-UAS and for USC

First, we establish conditions for Lyapunov SP-UAS that are
sometimes easier to check that the conditions given in Definition
2. This is illustrated through the case study in next section.

It is often the case that instead of a Lyapunov function that
shows that the system is Lyapunov SP-UAS we can find an aux-
iliary function such that one or more conditions among (7)–(9)
does not hold. For instance, for time-varying systems it is often
the case that we can find a function that satisfies (7) and (9),
but instead of (8), it holds that

(15)

where is a nonnegative time-varying function that may
become zero for some . For example, in the case study
treated in next section, we have such a situation. It is obvious
that under this condition the system is not Lyapunov SP-UAS in
general (take, for example, ).

In certain cases, it is possible to use results on changes of
supply rates and the notion of input-to-state stability, such as
[19] and references cited therein. Here, we present another con-
struction that is useful for time-varying systems: we show that
if the function is persistently exciting in an appropriate
sense and there exists a Lyapunov function that satisfies (7),
(9), and (15), then we can construct a new Lyapunov function

to show Lyapunov SP-UAS (that is, (7)–(9) hold for ).

Our result is similar in spirit to the continuous-time result [26]
but our construction is more related to the construction [24, eq.
(19)] and [33].

We introduce next a modified definition of persistency of ex-
citation that is tailored for discrete-time parameterized systems
to be used within the framework of [34].

Definition 5 (PE): Let be a function pro-
duced by sampling a function at rate . The
function is said to be persistently exciting (PE) if there
exist positive numbers and such that for all
and all

(16)

We present the following result only for the case of Lyapunov
UGAS since the Lyapunov SP-UAS case follows with minor
modifications. The proof is provided in Appendix C.

Proposition 1: Given positive numbers ,
a persistently exciting function , positive–definite, radi-
ally unbounded, and continuous functions and

, suppose that the following conditions
hold for all and all :

(17)

(18)

(19)

Then, there exists and for each there exist
positive numbers such that the function

(20)

with , satisfies
for all and

(21)

(22)

We note that the aforementioned construction is slightly less
general than the one in [26] since all bounds in Proposition 1 use
the same function . However, this may be relaxed if we use
a more general construction (see [26]) of the form

where . We have not pur-
sued this direction for space reasons and since Proposition 1
suffices for our case study. Moreover, it is obvious how one can
state a corollary of Proposition 1 that applies to non parameter-
ized discrete-time systems. Furthermore, note that the result on
exponential stability is obtained from Proposition 1 by taking

. These results are omitted for space reasons.
We present next, checkable conditions for USC inspired by

the literature on numerical methods (cf., [47]).
Proposition 2: Suppose that the system (3) is USB (UGB)

and for any pair of strictly positive there exist strictly
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positive such that: For all
and we have

(23)

(24)

Then, (1) with input is USC (UGC).
The proof of this proposition is provided in Appendix B.

C. Sufficient Conditions for USB

We stress that UGB is in general difficult to check. In [23] we
present several sufficient conditions for this property to hold and
which are inspired from [3], [39]. For the sake of completeness,
we close this section with a result which is representative of the
type of conditions given in those references and which we will
use later on in the case study. The proof follows along the proofs
of [23, Lemmas 1 and 2] and is therefore omitted.

Proposition 3: Consider the system (1) with input . Sup-
pose that there exist

and for each there exists
such that for all and we
have that

(25)

(26)

(27)

If, furthermore, the solutions of (2) satisfy the summability con-
dition

(28)

with some and then, the
system (1), (2) is UGB.

This proposition establishes some interesting links with con-
ditions used in the literature in the context of continuous-time
systems to prove UGB. Roughly speaking, (26) can be regarded
as the combination of a growth rate restriction on and
the interconnection terms (those which depend on ) present in

. Such conditions are of standard use in the context
of continuous time cascades (see, for instance [41] and [10]).

In the particular case when and , one can
prove that there exist functions such that the systems
trajectories satisfy

(29)

which is closely related to the integral input to state stability
property [44], [2].

Condition (27) restricts the growth of . In particular, it holds
when ; this situation was considered, for instance, in

[39] with . Earlier results using similar conditions are
found in [27] and as a sufficient condition for forward complete-
ness already in [42].

The summability condition (28), which imposes a minimal
convergence rate for the system (2), is tight. However, we are not
aware of any proof of necessity. This condition is in general hard
to check since it is trajectory-dependent. A similar condition
was used in the context of continuous-time cascades in [3] and
[38]. Related results for parameterized discrete-time systems are
also given in [23] along the lines of the results presented in these
references.

IV. CASE STUDY: TRACKING CONTROL OF THE UNICYCLE

In this section, we revisit the problem of tracking control of a
mobile robot of the unicycle type. This problem has been thor-
oughly studied in the continuous-time context via many dif-
ferent approaches (see [16] for a survey; for a more recent text
with an updated list of references, see [20]). To illustrate the
utility of our results we will revisit the cascades approach used
in [37] for a three degrees-of-freedom cart. The results may be
extended to higher dimension systems, following for instance
[20]. According to [13] the context of the problem can be set
as follows. We have a mobile robot with two directional wheels
and two “fixed” wheels and whose motion is described by

(30)

where are the Cartesian coordinates of the center of the axis
joining the directional wheels and is the orientation angle of
the directional wheels. The robot is required to follow a tra-
jectory generated by an exosystem, i.e., a fictitious “reference
robot” with kinematics

(31)

where and are reference velocities. Then, the
tracking errors satisfy the set of equations (see [13, Lemma 1])

(32)

where . The system is velocity-controlled,
i.e., the control problem reduces to finding control inputs and

(which also correspond to the actual angular and linear veloc-
ities of the cart) such that the origin of (32) is UGAS.

There are numerous solutions to this problem in the context of
continuous-time (e.g., [11], [30], and [20] for a recent literature
review). Here, we will revisit the cascaded approach proposed
in [37] whose main feature is that the control laws are linear.
Moreover, we use the Euler-discretization of the error dynamics
to design a tracking controller

(33)
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Thus, our control problem consists in designing and such
that (33) is UGAS. Suppose that controller has the following
structure:

(34)

where and come from the continuous-time
control law proposed in [37] and is an extra control input
which depends on and and that we design with the
aim of improving the system’s performance. Note that the
closed-loop approximate Euler model (33) and (34) has a
cascaded structure

(35)

(36)

where and . To compact the notation,
in the sequel we will use . Now, we can state the
following.

Proposition 4: Consider the system (33) in closed loop with
(34). Assume the following

1) There exists such that for all and

(37)

2) The function is PE.

Then, there exists such that for all and
with , the system is UGAS.

The proof of this proposition is given in Appendix D. Using
this result, we can summarize the steps in designing the con-
troller.

Step 1) Following a similar approach to that of [37] where
it was shown, using results for continuous-time cas-
caded systems, that the system (32) in closed loop
with and is
UGAS for appropriately chosen and .

Step 2) Assume that the sampled-data controller has the
structure given in (34).

Step 3) Using Proposition 4 (which is proved using The-
orem 2 and Proposition 1), we see that under appro-
priate conditions the closed-loop Euler model with
the controller (34) and with zero input, i.e., ,
is SP-UAS for all satisfying

with . Moreover, from the proof of
Proposition 4, we obtain a particular Lyapunov func-
tion for the subsystem .

Step 4) Use the Lyapunov function as the con-
trol Lyapunov function (where is the new control

input) for the Euler approximate model of the sub-
system with the controller (34) and design

so that the decrease of along solutions of the
subsystem is enhanced when compared to the situa-
tion . One such choice is

(38)

with .
Step 5) Using [31, Th. 1] (see also [34, Th. 1]), we conclude

that the exact closed-loop discrete-time system is
stable for sufficiently small with designed in
Step 4).

Remark 5: Although the unicycle system is simple at first
sight, the use of Proposition 1 is fundamental to the analysis
above since, in contrast to the continuous-time setting, the
system is not passive from an external additive input. More
precisely, notice that (26) does not hold with a simple quadratic
function as is the case for the continuous-time model. Hence,
even the property of UGB is not simple to verify in general.

We emphasize that the aforementioned steps can be inter-
preted as a redesign of the continuous-time controller obtained
in [37]. Moreover, the redesign is based on the Euler approxi-
mate model of the error dynamics and our rigorous proofs show
that this controller would work well for small sampling periods.
Furthermore, the simulations that we present next show that the
performance is considerably improved as we could expect from
the way that was designed in Step 4). We have simulated the
system above in SIMULINK of MATLAB with

and . We show
the results in Fig. 1. We show only the responses for the states
and as well as since these are the only variables affected by
the additional input . We show simulations for the system’s
response with , and for as defined in (38). The best
apparent performance is for the latter. It is also clear from the
plots, that even though the correction is linear in the state and
actually , this correction is not comparable to
“adding gain” to the control input. Notice that in this case the
resulting control effort is actually smaller than in the case of the
continuous-time based controller (i.e., when ).

V. CONCLUSION

We have established necessary and sufficient conditions
for semiglobal practical asymptotic stability of time-varying
parameterized cascades. Parameterized systems arise naturally
when an approximate discrete-time model of a sampled-data
plant is used for controller design. Our results provide the
controller designer with a range of tools that can be used for
a systematic digital controller design based on approximate
discrete-time models. We also proved an auxiliary result on
constructing strict Lyapunov functions from nonstrict ones and
we believe that this result is of independent interest. The utility
of our results was illustrated with a case study, where we have
obtained a controller that performs better than the emulated
(discretized) continuous-time controller designed in [37] and
implemented using a sampler and zero-order-hold.
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Fig. 1. Tracking errors for x and y and the control input v given by (34), (38).

APPENDIX A
PROOFS OF THE MAIN THEOREMS

All results are only proved for semiglobal-practical stability
properties since global results follow the same steps with minor
changes.

A. Proof of Theorem 1

Lemma 1: Suppose that the solutions of the system (1) with
input are USC (UGC) and the system (3) is SP-UAS (UGAS),
with the function . Then, for any strictly positive

there exists (there exists ) such that for any
and (any ) there exists such that

for any input with with
and we have that the solutions of the

system (1) with input satisfy the inequality

(39)

Proof: Note first that for any there exists
such that for any and any strictly positive real

numbers there exists such that for all inputs
with , all with and

the following holds:

(40)

Hence, from (11) and the bound on , it
follows that (39) holds for all .

Next, we show that (11) holds for all . Let
come from SP-UAS stability of (3). Let be given.

Without loss of generality, assume that and

(41)

Let be such that

(42)

Note that (41) implies that . Let generate
via (40) and assume without loss of generality that . Let

and be given. Let be such that

(43)

Let be such that

(44)

Let and let and generate
via (40). In the rest of the proof, we consider arbitrary fixed

with and .
In order to simplify the notation, for we introduce

Time Interval : From (40)–(42), we can write

(45)
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for all . Moreover, note that

(46)

Using, (44), (46), and our choice of , we can write

(47)

Time Interval : Since , we con-
sider two cases.

Case 1) . In this case, using (40)–(42), we can write

(48)

for all . Moreover, using (47), the fact
that , (44), (46), and our choice of , we can
write

(49)

Case 2) . Using (40) and (43), we can write

(50)

(51)

for all . Also, in a similar manner as
before, it follows that

(52)

(53)

(54)

Time Intervals : Using similar calculations
it can be shown by induction that for all integers

(55)

(56)

The proof follows from (45) and (55) by noting that

(57)

Lemma 2: Suppose that all conditions of Lemma 1 hold and
comes from SP-UAS (UGAS) of (3). Then, there exist

and for any there exists such
that for all with and

, the following holds:

(58)

for all .
Proof: The proof of this fact follows closely the proof of

[15, Lemma 3.3]. Since also all conditions of Lemma 1 hold,
the conclusion of Lemma 1 holds. Let generate
via Lemma 1. Let and for a fixed , let be
the supremum over all applicable ’s. Then,
implies that (39) holds for all and if
then there exists and

. is positive and nonde-
creasing but it is not necessarily continuous. Chose such
that , with . Let and note
that . Let .

Let . Given with
let . Then, we have that (58) holds for all

.
Remark 6: The following fact was proved in [35]: for any

and any there exists such that

This can be further strengthened in the following manner. It was
shown in [44] that given any , there exist

such that . Consequently,
given any and a nondecreasing function , there
exists such that

To show this, let generate as above. Then
proves the claim.

Lemma 3: Let . Suppose that there
exist and such that
for all , there exists such that for all
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and we
have

(59)

where . Then, there exist and such
that for any there exists such that for all
with and we have

In particular, we can take

(60)

where all are generated via and an arbitrary fixed
using Remark 6. Moreover, if all the inequalities hold globally,
then the conclusion holds globally and we can take

(61)

The proof of Lemma 3 is omitted since it is published in [32].
Proof of Theorem 1: Let come from item 1)

of Theorem 1. Let come from item 2) of Theorem
1. Let and come from item 3) of Theorem 1.
Let and come from Lemma 2. Let be
such that and . Let
and be generated using
and via Lemma 3. Let .
Let be continuous nondecreasing
functions with such that for all we have

(62)

(63)

Let . Let and generate via
Remark 6. Finally, we define

Let be given. Let . Let
generate via Lemma 1; let generate
via item 2) of Theorem 1; let generate via Lemma
2; let generate via Lemma 3. Let

and . Let
with . We consider two cases.

Case 1) If , then by a direct application of Lemmas
2 and 3 we have that

(64)

for all .

Case 2) If , then since , we can write
using item 3) of Theorem 1

(65)

for all . Hence, we can write that for all

(66)

Using definitions of and the fact that , we
obtain that

(67)

Moreover, the definitions of we get that for all

(68)

Furthermore, by letting
and

we obtain that

(69)

Hence, using (68), (69), Lemmas 2 and 3, and the construction
of , we have that for all

which proves the result with the defined .

B. Proof of Theorem 2

Lemma 4: Suppose that all conditions of Theorem 2 are sat-
isfied. Let come from item 1) of Theorem 2 and define

(70)
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Then, there exists such that for all there exists
such that for all with and

we have that

(71)

for all .
The proof of Lemma 4 is omitted since it is published in [32].

Proof of Theorem 2: We only show that there exists
and such that for any there exists such

that for all with and
we have that

(72)

for all , where and
is a sequence of ’s on the interval . Then, the

conclusion of the Theorem follows directly from Lemma 3, item
2 of Theorem 2 and Lemma 4.

Let come from item 1) of Theorem 2. Define
and consider the differential

equation

Without loss of generality we can assume that is locally a
Lipschitz function (see [15, p.139]) and from [45, Lemma 2.5],
we have that there exists such that for all
the solution of the differential equation exists, it is unique and
satisfies:

Define and:

(73)

Let be given. Let , where come
from the item 3) of Theorem 2. Let .
Let generate be so that the items 1) and 3)
of Theorem 2 hold. Consider arbitrary fixed
with and . Note that the item 3 of Theorem
2 guarantees that the solutions of (1), (2) exist for all
and satisfy . We can write

(74)

Then, defining , using
(7), (8), the following holds along trajectories:

for all . From this inequality we can see that the
following hold true for any :

(75)

(76)

Define next for
all . Notice that since is
a linear interpolation from to , which are always
nonnegative, we have that

(77)

Moreover, since trajectories of (1) and (2) are defined for all
, the variable is defined for all .

Introduce .
Using definition of , (75)–(77), we can write for all

(78)

where the last inequality follows from the fact that
and hence for all

. Using [15, Corollaries 5.1 and 5.2], we have that

and using
and , (7) and the fact that for arbitrary we have

we can write

(79)

for all .

APPENDIX B
PROOF OF PROPOSITION 2

The result is only proved for USC since the proof of UGC
follows the same steps. Let come from USB. Let
be given and let be generated using USB. Let

. Let be arbitrary. Let generate
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using conditions of the Proposition. Let
. Consider arbitrary numbers

and define

Consider arbitrary .
USB implies that whenever then

for all .
Notice moreover that without loss of generality we may
assume that . With the goal of showing contradic-
tion suppose that there exists such
that for all and

. Then, we can write

(80)

for all . This contradicts the assumption that
since

Hence, (80) holds for all , which completes the
proof.

APPENDIX C
PROOF OF PROPOSITION 1

First, we show that there exist strictly positive numbers
such that for all and

we have

(81)

(82)

Let come from inequalities (89) and (91). Let
come from the PE condition. Let come from the conditions
of the proposition. Let and be such that

(83)

Let and, finally, define
. Consider arbitrary and

. The first inequality in (81) holds using our choice
of

(84)

The second inequality in (81) follows from the PE condition. In
particular, denote and since , we
can write

(85)

(86)

We show next that (82) holds. Using similar calculations as in
(84), (86), and our choice of and , we have

(87)

where for the last term we used (83) and (86). This com-
pletes the proof of (81) and (82) with and

. Next, combining (18) and (87) we
have that

(88)



886 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 6, JUNE 2004

from which it is easy to see that, defining

and , we obtain that (21), (22)
hold with and ,
which completes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

It is worth recalling to avoid confusion in the notation, that
the state in Proposition 3 corresponds here to
and the input in Proposition 3 corresponds here to . We use
Theorem 2 to prove this result2 . First, we see that Assumption 1
holds trivially in view of item 1) of Proposition 4. To see more
clearly, notice that (37) implies that is continuous and
uniformly bounded in the first argument. Item 1) of Proposition
4 also implies that there exists independent of , such that
for all , we have that

.
Second, it is evident that the origin of (36) is uniformly glob-

ally exponentially stable for any and any where
is such that and therefore the trajectories

are uniformly summable.
It is left to prove that the unperturbed dynamics

in (35) is UGAS and that (35) is UGB. As a
matter of fact we will show that the zero-input system in (35)
is Lyapunov UGES.

Proof of UGES of : We use
Proposition 1. To that end, consider the function

with and . Observe
that this function is positive definite and radially unbounded for
sufficiently small and ; indeed, we have that

(89)

with and
which are clearly independent of . We assume that

and are sufficiently small so that . So, (17) holds with
. Next, we compute

(90)

Under the assumptions of the proposition,
. Define

which
is positive for sufficiently small values of and sufficiently

2We could also use Theorem 1. Notice that to show that the system (1) is UGC
with input � we may appeal to Lemma 2 observing that the systemX(k+1) =
f (k;X(k); � (k)) with f (k;X; � ) := F (k;X) + G (k;X; � )
is linear in the state X = col[x ; y ] and for each � > 0, we have that
f (k;X; � ) is globally Lipschitz in � uniformly for all k � 0 and X such
that jXj � �, with a Lipschitz constant of the form L = L T with L

depending only on �.

large values of . Also, since there exists
such that

(91)

for all and . Hence, (18) holds
with and . Notice
that (19) also holds in view of (37). Finally, is PE since

. We conclude that there exists a function
such that (21) and (22) hold. Exponential convergence

is concluded from the fact that .
Proof of UGB: We invoke Proposition 1. We pro-

ceed to verify the conditions of Proposition 3 with
as defined in

(35) and with . Bounds (25) and (26)
hold in view of (21) and (22). Conditions (26) and (27) hold
with , and .
This is because is bounded from above and below by
quadratic terms and is of linear growth in for
each fixed and and trigonometric functions, which can be
over-bounded by a linear function of . Also, can
be over-bounded by a linear function for each fixed and .
Finally, (28) holds with a linear function since
is in this case a nondecreasing function of linear growth and

decays uniformly exponentially to zero.
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NEŠIĆ AND LORÍA: ON UNIFORM ASYMPTOTIC STABILITY 887

[17] S. Kotsios, “A new factorization of special nonlinear discrete system-
sand their applications,” IEEE Trans. Automat. Contr., vol. 45, pp.
24–33, Jan. 2000.

[18] U. Kotta, Inversion Method in Discrete-Time Nonlinear Control Systems
Synthesis Problems. London, U.K.: Springer-Verlag, 1995.
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