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Fig. 2. Chaotic orbit of the periodically forced pendulum system is driven to
zero equilibrium by the impulsive control.

for i = i0; i0 + 1; i0 + 2; � � �, wherei0 is a sufficiently large integer,
then the conclusions of Theorem 1 hold.

Proof: For (4) and for the given constantq, chose a con-
stant � such that1 < � < q exp[2b�=3 + b2]. Then, de-
fine �
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i��=�i) converges. This shows that the
conditions of Theorem 1 are satisfied, so that the conclusions of The-
orem 1 hold.

Remark 2: It is clear that, for the controlled system (3), if the control
gainsfgkg satisfy the conditions of Theorem 1 or Corollary 1, then the
chaotic state of the pendulum system can be driven to its zero equilib-
rium. Moreover, the controlled system (3) is eventually exponentially
asymptotically stable.

Example 1: For (3), if we take the controlu(t) with gk = (1 �
(1=2k))h, namely

u(t) =
�

2

1

k=1

1�
1

2k
h�(t� k�)

then we haveai = (�=2)(h � gi) = (�h=2i+1). Obviously,
j(ai+1=ai)j = 1=2 < 1. It then follows from Corollary 1 that the
chaotic state of the pendulum system is driven to its zero equilibrium,
and the controlled system (3) is eventually exponentially asymptoti-
cally stable. This control process is visualized by Fig. 2.

V. CONCLUSIONS

In this paper, we have developed a new impulsive control method
for chaos suppression of a periodically forced pendulum system. Some
simple and easily verified sufficient conditions for driving the chaotic
state to the zero equilibrium have been presented, and some criteria
for eventually exponentially asymptotical stability of the controlled
system have been established. This work provides a rigorous theoretical
analysis to support some early experimental observations on impulsive
chaos control of the periodically forced pendulum system.

It would be interesting to compare the effects of this impulsive con-
trol with continuous feedback, which is a topic under further investiga-
tion. Besides, how to take advantage of certain special features of im-
pulsive control for chaos synchronization and chaotification (making

an originally nonchaotic system chaotic [8]) for some nonconventional
applications is an even more interesting subject for future research.
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Output Feedback Stabilization of a Class of Wiener Systems

D. Něsić

Abstract—A globally stabilizing output feedback controller is designed
for a class of continuous-time Wiener systems. The Wiener systems we con-
sider consist of a linear dynamical block and an output polynomial nonlin-
earity connected in series. The (hybrid) controller consists of three modes
of operation which are periodically applied to the system. The controller
achieves a dead-beat response of the closed-loop system.

Index Terms—Dead-beat, hybrid, output feedback, stabilization, Wiener
systems.

I. INTRODUCTION

This work is motivated by the need to further understand stabiliza-
tion using partial state information, which is an issue that is at the core
of current control theory research. While this question is well-under-
stood for linear systems, it is very difficult to deal with in a general
nonlinear situation. For instance, in contrast to linear systems, for gen-
eral nonlinear systems it is in general not true that controllability and
observability suffice for the existence of a (dynamic) output stabilizer.
In [16], necessary and sufficient (but, except for certain special cases,
cf. [17], hard to check) conditions for dynamic output regulation were
obtained. Some recent references on the problem of stabilization using
partial state feedback are [1]–[3], [9], and [18]. Since the problem is
too difficult to deal with in general, it appears to be reasonable to try
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to understand it in particular situations of practical importance, such as
the class of Wiener models considered here.

Wiener models consist of a linear dynamical block connected in se-
ries with a static (output) nonlinearity. The general continuous-time
(SISO) Wiener model has the following form:

_x =Ax + bu (1)

z = f(y) = f(cx) (2)
wherex 2 n; u; y; z 2 are, respectively, state of the system, con-
trol input, output of the linear subsystem, and output of the nonlinear
system andf(y) is a static nonlinearity. A discrete-time version of the
model (1), (2) is also often used in the literature.

Wiener models have a long and rich history in the control systems
literature and we review briefly some of the related results. Wiener
models often arise from the so called “black-box identification” of non-
linear systems, which has been described in detail in the survey papers
[4] and [5]. Observability of Wiener models with the output nonlinear-
ities f(y) = sign(y) andf(y) = sat(y) was addressed, respectively,
in [6] and [7]. Our work is most closely related to the results of [8] and
[10]. In [8] a stabilizer was designed for Wiener models with output sat-
urating nonlinearity, that isf(y) = sat(y). Reference [10] deals with
design of an input-to-state stabilizer for Wiener models with positive
outputs and measurement disturbancesd [in other words model (1), (2)
is considered wherez = jy+dj]. Finally, some related work on analysis
of controllability and observability of several classes of Wiener–Ham-
merstein models can be found in [11]–[14].

The output feedback controller presented in this paper stabilizes
under appropriate conditions Wiener systems of the form (1), (2) with
polynomial output nonlinearity (f(y) = L

i=1 aiy
i; ai 2 ). Due to

different output nonlinearities, the design in [8] and the one presented
here are notably different. On the other hand, results presented in [10]
(for the case without disturbancesd(t) � 0) are more closely related to
our work. In fact, the stabilizers for the class of systems considered in
[10] can be easily modified to apply to Wiener systems whose output
nonlinearity is of the formf(y) = y2m; m 2 , which is a particular
class of systems considered here. Therefore, the results of the present
paper can be regarded as an alternative approach for stabilization of the
class of systems considered in [10]. More importantly, the stabilizing
controller presented in this paper is applicable to a more general class
of Wiener models with arbitrary polynomial output nonlinearity of
the formf(y) = L

i=1 aiy
i; ai 2 . However, our controller may

not perform well when the output is corrupted with measurement
disturbances (whereas the controller in [10] is designed to deal with
disturbances) and this may be an interesting topic for further research.

The paper is organized as follows. In Section II we present and com-
ment on definitions and assumptions. In Section III we present the main
result with the proof. A summary is given in the last section and several
technical lemmas are stated with proofs in the Appendix.

II. PRELIMINARIES

Consider the system
_x =Ax + bu

z = f(y) = f(cx) (3)
wherex 2 n; u; z; y 2 are, respectively, the state, input, output
of Wiener system, and output of the linear subsystem andf(s) =

L

i=1 ais
i; ai 2 . It is assumed that the polynomialf(s) is non-

trivial, that is there existsi 2 f1; � � � ; Lg such thatai 6= 0. j � j denotes
the absolute value of a number or the norm of a vector.k � k denotes
the norm of a matrix. We denote controllability and observability ma-
trices for the triple(A; b; c), respectively, asC(A; b) andO(A; c).
Denote the trajectory of (3) at timet, starting from the initial statex
and under the action of inputu[0; t] as�(t; x; u[0; t]). When the con-
trol input u[0; t] is clear from the context, we use the shorter notation

�(t; x). If constant inputu(t) � c1; t � 0 is applied to (3), the so-
lution that emanates fromx is denoted as�(t; x; c1). We also use no-
tationz(t; x; c1) andy(t; x; c1), which are, respectively, the output
of the nonlinear system and output of the linear subsystem at timet
that emanate from initial statex and with the control inputu(t) � c1.
Given arbitrary real numbersc1 andc2, we introduce the following set
of statesX [c1 : c2] := fx 2 n: y(t; x; c1) � c2; 8 t � 0g.

Definition 1: A controller stabilizes (3) if the following hold:

1) The origin is an equilibrium of the closed-loop system, that is
�(t; 0) = 0; 8 t � 0.

2) For each initial statex(0), the closed-loop state satisfies
limt!1 j�(t; x(0))j = 0:

3) For each" > 0 there is some� > 0 such that, ifjx(0)j � �, then
the closed-loop state satisfies thatj�(t; x(0))j � "; 8 t � 0:

In order to keep the formalism as simple as possible, we follow the
presentations in [8] and [10] (see also [10, Remark 1]) and we do not de-
fine precisely the general meaning of “controller” and “closed-loop be-
havior.” It will be clear from our constructions how one could represent
our controller as a dynamic time-periodic “sampled-data like” system
which operates on the continuous-time system (3). The following def-
initions are needed in the sequel.

Definition 2: The system (3) is 0-state detectable if for allx such
thatz(t; x; 0) � 0 we have that the following hold:

1) limt!1 j�(t; x; 0)j = 0;
2) for any� > 0 there exists� > 0 such thatjxj � � implies
j�(t; x; 0)j � �; 8 t � 0.

Definition 3: The system (3) is 0-state observable ifz(t; x; 0) =
0; 8 t � 0() x = 0:

We use the following assumptions and lemmas in the sequel.

A1) z is the only measured variable.
A2) (A; b; c) is a minimal triple.

A30) The system (3) is 0-state detectable.
A300) The system (3) is 0-state observable.
A3) Either A is nonsingular or 0 is the unique real root of

f(�)= 0.

Lemma 1 (A2 and A30 =) A300): If (A; c) is observable and the
system (3) is 0-state detectable then (3) is 0-state observable.

Proof: Since the solutions of (3) are continuous and the polyno-
mial f(s) is a continuous function that has isolated real roots`i 2
; i 2 f1; 2; � � � ; Ng; N � L, we have thatz(t; x; 0) � 0 ()

x 2 N

i=1 X [0: `i]. Since A30 holds, we can state a stronger claim.
If A3 0 holds thenz(t; x; 0) � 0 () x 2 X [0 : 0]:
((=) is trivial and we concentrate only on (=)). We use contradic-

tion to prove this claim. Suppose that there exists` 6= 0 andx 2 n

such thatz(t; x; 0) � 0 ) x 2 X [0 : `] and the system is 0-state
detectable. Then the following implications hold:

z(t; x; 0) � 0 =) c�(t; x; 0) = `; 8 t � 0

=)j�(t; x; 0)j �
j`j

jcj
> 0; 8 t � 0:

Hence,limt!1 j�(t; x; 0)j � j`=cj > 0, but this contradicts as-
sumption A30 and proves the claim. Using the claim we can write

z(t; x; 0) = 0; 8 t � 0() y(t; x; 0) = 0; 8 t � 0: (4)

We again use contradiction to prove that the systems is 0-state observ-
able. Suppose that the system is not 0-state observable and A2 holds.
Then, there existsx� 6= 0 such thatz(t; x�; 0) = 0; 8 t � 0. This
implies [using (4)] thaty(t; x�; 0) = ceAtx� = 0; 8 t � 0. However,
this contradicts observability of(c; A) sincex� 6= 0. Q.E.D.

Lemma 2 (if A2, then A300 , A3): Suppose that(A; c) is observ-
able. Then, the system (3) is 0-state observable if and only if either 0
is the unique real root off(�) = 0 orA is nonsingular.
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Proof: If 0 is the unique real root off(�) = 0 it is obvious that
observability of(A; c) is equivalent to 0-state observability of (3). Sup-
pose now thatf(�) = 0 has at least one real rootz� other than zero.
We need to show that nonsingularity ofA is equivalent to 0-state ob-
servability of (3).

Necessity: SupposeA is nonsingular but (3) is not 0-state observ-
able. This implies that there existsx� such thatcx(t) = ceAtx� �
z� 6= 0. Differentiate both sides with respect tot and we obtain
ceAtAx� � 0; t � 0, which from observability impliesAx� = 0 and
sinceA is nonsingular we havex� = 0, which is a contradiction.

Sufficiency: SupposeA is singular andcx(t) = ceAtx� � z� 6= 0.
Then there existsv� 6= 0 such thatcv� = z� andAv� = 0, which
contradicts 0-state observability sincex(0) = v� yields cx(t) � 0.
We prove existence ofv� by contradiction. Suppose that there does not
existsv� 6= 0 such thatcv� = z� andAv� = 0. Then the subspace
fv: Av = 0g must be confined to a planeH1 parallel to the plane
fv: cv = z�g. Since0 2 fv: Av = 0g, we have0 2 H1 and hence
H1 = fv: cv = 0g. However, iffv: Av = 0g � H1, then the
eigenvectors corresponding to 0 eigenvalues are in the null space ofc

contradicting observability of(A; c). Q.E.D.
Remark 1: In the sequel we design a controller that stabilizes (3)

under Assumptions A1, A2, and A30 and we briefly comment on each
of the assumptions. Assumption A1 indicates that we deal with stabi-
lization of the system (3) using only the output measurementz. As-
sumption A2 could be relaxed and our controller modified to require
only that(A; b) is stabilizable and(c; A) detectable, which are ob-
viously necessary conditions for the stabilization of (3) using output
feedback (this can be seen by consideringf(s) = s and using the cor-
responding linear results). We use Assumption A2 only to simplify the
exposition. Assumption A30 is a necessary condition for stabilization
using output feedback, as it was shown in [16]. Therefore, the stabilizer
that we design is universal in a sense since it can be modified to sta-
bilize any Wiener system (3) that is possible to stabilize using output
feedback.

Lemma 1 is used to simplify the presentation since it shows that there
is no loss of generality if instead of Assumption A30 we use Assump-
tion A300. Moreover, Lemma 2 shows the equivalence of Assumptions
A300 and A3. Hence, we assume in the sequel that Assumptions A1,
A2, and A3 hold.

III. M AIN RESULT

The controller we design is a periodically time-varying “sam-
pled-data like” scheme, which produces a dead-beat response of the
closed-loop system. In this sense it is similar to controllers designed in
[8] and [10]. The controller acts by cycling through three basic steps
or “modes,” each of the same durationnT . T is a strictly positive real
number which can be thought of as a sampling period andn is the
order of the plant. We first describe the purpose and role of each of the
modes and then present the details. For simplicity, we describe only
the first cycle on the time interval[0; 3nT ] (Mode 1–Mode 2–Mode
3) but the actual controller is periodic since after Mode 3 we switch
back to Mode 1 on the time interval[3nT; 4nT ], then to Mode 2 on
the interval[4nT; 5nT ], and so on. We note that the periodicity of the
controller is not necessary to prove stability since we can apply another
scheme which applies Modes 1–3 only once over the interval[0; 3nT ]
and thenu � 0; t � 3nT . However, we use the periodic controller
since it rejects any disturbance that acts over a finite time interval
(nonpersistent disturbance) whereas the other scheme does not. An
interesting open problem is to redesign the presented controller to
achieve good performance under a larger class of disturbances, such
as input-to-state stability of the closed loop for bounded (and perhaps
persistent) measurement disturbances (see [10]).

1) In Mode 1, one applies a zero control and measures the output
z(t) := z(t; x(0); 0); t 2 [0; nT ]. The measured output is
used to:

a) detect if the initial statex(0) = 0;
b) to compute a finite set, denoted asX , of n dimensional

vectors such that ifx(0) 6= 0, thenx(0) 2 X .
2) In Mode 2, we apply a piecewise constant control inputu(kT +

t) = u(k) = const:; k = n; � � � ; 2n� 1; t 2 [0; T ) which is
computed usingz(t); t 2 [0; nT ] and the model of the system.
The control input is such that:

a) if x(0) = 0 thenu(k) = 0; k = n; � � � ; 2n� 1;
b) if x(0) 6= 0 then we can use the measured outputs

z(kT ); k = n; � � � ; 2n � 1 in a test designed to select
one vector� from the setX such thatx(0) = �.

3) Mode 3 of the controller acts as a linear dead-beat controller
that steers the state of the system from the (initial) state at time
2nT to the origin in over the time interval[2nT; 3nT ], that is
x(3nT ) = 0.

Remark 2: Modes 1 and 2 act as a dead-beat observer that computes
the initial statex(0) of the system from the measurements in finite time
(in 2nT s). Note that this is not a pure sampled-data controller since
we usez(t); t 2 [0; nT ] and not onlyz(kT ); k = 0; � � � ; n � 1 to
reconstruct the initial state.

A. Controller Description

We now present the details. The outputz(t); t � 0 is measured
and used to compute the control signal which is a piecewise constant
function of timeu(t) = u(kT ) =: u(k) = const:; t 2 [kT; (k +
1)T ). The discrete-time model of the plant that describes the systems
at sampling instantskT is

x(k + 1) =Fx(k) + gu(k)

z(k) = f(cx(k)) (5)
whereF := eAT ; g :=

T

0
eAsb ds. We use notationx(k) :=

x(kT ); y(k) := y(kT ); z(k) := z(kT ). Since assumption A2 holds,
without loss of generality we can assume thatT is such that(F; g; c)
is a minimal triple andcg 6= 0. To simplify exposition we describe only
the first cycle of the periodic controller.

Mode 1 (t 2 [0; nT ]): Apply u(k) = 0; k = 0; 1; � � � ; n � 1
and measurez(t) = z(t; x(0); 0); t 2 [0; nT ]. The measured output
z(t) is used to compute a variable�0 (that has value either 0 or 1) and
a finite set ofn dimensional vectorsX in the following manner:

Computation of�0

�0 :=

0; if
nT

0

jz(s)jds = 0;

1; if
nT

0

jz(s)jds 6= 0.

(6)

Computation ofX : For eachz(k); k 2 f0; 1; � � � ; n�1g we form
the following set of real numbers

f�
i

k 2 : f(�
i

k ) = z(k); ik = 1; � � � ; lkg

(note thatlk � L). Form the column vectors�j := (�i
0

�
i
1
� � �

�
i

n�1
)T , for all possible combinations ofik 2 f1; 2; � � � ; lkg; k =

0; � � � ; n � 1 and note that there is at mostL̂ � Ln such vectors
(L is the degree of the polynomial andn is the order of the system).
Compute the vectors

x̂j := O�1(F; c)�j; j = 1; 2; � � � ; L̂

whereO(F; c) is the (nonsingular) observability matrix for the pair
(F; c). Finally, we introduce the set

X := fx̂j : x̂j 6= 0; j = 1; 2; � � � ; L̂g: (7)
Remark 3: The system is assumed 0-state observable (Assumption

A3) and we have that�0 = 0 if and only if x(0) = 0. Hence, the
variable�0 acts as a “0-state detector.” Also, ifx(0) 6= 0, thenx(0) 2
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X and henceX is a nonempty set. Note that the zero vector is never
included in the setX . Consequently,X may be an empty set when
L̂ = 1 andx̂1 = x(0) = 0! Note also that�0 = 0 if X = ;.

Mode 2 (t 2 [nT; 2nT ]): In Mode 2 we apply the sequence of
controlsu(k) = �kv; k = n; n + 1; � � � ; 2n � 1 and measure the
sequence of outputsz(k); k = n + 1; � � � ; 2n which is used in a test
to single out a vector̂x�j in the setX such thatx(0) = x̂�j . The choice
of �k andv, as well as the test are discussed below.

Choice of�k : �k are chosen so that

z(k) = f(cF kx(0) + v); 8 k 2 fn+ 1; � � � ; 2ng: (8)

Lemma 3 in the Appendix guarantees that8 v 2 there exist�k 2
; k = n; � � � ; 2n � 1 that satisfy (8).
Choice ofv: To choose appropriatev we first introduce

�1 :=
min
� 2X

j�j j; if �0 = 1

1; if �0 = 0.
SupposeX is nonempty and form the set

V := fv 2 : f(cFk�i + v) = f(cFk�j + v);

cF k�j 6= cF k�i; �j ; �i 2 X ;

i; j 2 f1; � � � ; L̂g; k 2 fn+ 1; � � � ; 2ngg:

The setV is finite (this follows from Lemma 4 in the Appendix and the
definition of the set). We introduce the variable

�2 :=
min

v2V; v 6=0
jvj; if �0 = 1

1; if �0 = 0.
From Lemma 5 in the Appendix it follows that ifx(0) 6= 0 then for
anyv 62 V we have that there exists a uniquex̂�j 2 X such thatz(k) =
f(cFkx̂�j + v); 8 k = n + 1; � � � ; 2n, and moreoverx(0) = x̂�j . It
is also proved in Lemma 5 that an appropriate choice ofv is

v = 0:5 minf�0; �1; �2g: (9)

The sequence of controls that we apply in Mode 2 is

u(k) = 0:5�k minf�0; �1; �2g; k = n; � � � ; 2n� 1: (10)

Test: If �0 = 0, thenx(0) = 0. If �0 = 1, then for everŷxj 2 X
compute

�j(k) := f(cFkx̂j +0:5 minf1; �1; �2g); k = n+1; � � � ; 2n

and pickx̂�j 2 X such that the measured outputsz(k) and computed
�j(k) satisfy the test

z(k) = �j(k); 8 k = n+ 1; � � � ; 2n: (11)

Lemma 5 in the Appendix and our choice ofv guarantee that there is
only onex̂�j 2 X satisfying (11) and we letx(0) = x̂�j .

Remark 4: From Lemma 5 in the Appendix, we can see that any
sequence of controlsu(k) = �kv such thatv 62 V can be used in the
test above to pick the correct initial statex(0) from the setX . However,
in order to prove stability of the origin of the closed loop system we
needed to introduce also�0 and�1 in our definition ofv. The properties
of v defined by (9) that are needed in the stability proof are as follows.
If x(0) = 0 then�0 = 0 and this impliesv = 0. As a result, we
haveu(k) = 0; k = n; � � � ; 2n � 1. Moreover, since for arbitrary
x(0) 6= 0 we havev � 0:5�1 � 0:5jx(0)j then there existsK0 > 0
such that for anyx(0) 2 n we have thatju(k)j � K0jx(0)j; 8 k =
0; 1; � � � ; 2n� 1.

Mode 3 (t 2 [2nT; 3nT ]): Using the initial statex(0) that we
obtained in Mode 2 and the known sequence of controlsu(k); k =
0; 1; � � � ; 2n� 1 we computex(2n). The sequence of controls that is
applied in Mode 3 (u(k); k = 2n; � � � ; 3n � 1) is computed as fol-
lows:

(u(2n) � � �u(3n� 1))T = �C�1(F; g)Fnx(2n)

whereC(F; g) is the nonsingular controllability matrix for the pair
(F; g). Note thatF is also nonsingular. This control sequence transfers
the statex(2n) to the origin innT seconds, that isx(3n) = 0.

Theorem 1: If Assumptions A1, A2, and A3 hold then the periodic
controller consisting of Modes 1, 2, and 3 stabilizes (3).

Proof: First, we show that the origin is an equilibrium for the
closed-loop system. Ifx(0) = 0, then�(t; 0) = 0; 8 t 2 [0; nT ].
Moreover, we have that�0 = 0 and the sequence (10) is a zero se-
quence, which implies�(t; 0) = 0; t 2 [nT; 2nT ]. This implies that
u(k) = 0; k = 2n; � � � ; 3n � 1 and�(t; 0) = 0; t 2 [2nT; 3nT ].
By induction we obtain that�(t; 0) = 0; 8 t � 0, and the first condi-
tion of Definition 1 holds.

Since for any initial statex(0) we havex(3n) = 0, one can con-
clude (using an argument similar to the one above) that the origin of
the closed loop system is globally attractive in finite time, that is

�(t; x(0)) = 0; 8 t � 3nT; 8x(0) 2 n: (12)
Hence, the second condition of Definition 1 holds.

Sinceu(k) � K0jx(0)j; 8 k = 0; 1; � � � ; 2n�1 (from Remark 4),
there exists a positive constantK1 such thatjx(2n)j � K1jx(0)j.
Moreover, since(F; g) is controllable andF nonsingular there exists
a positive constantK2 such that we have

ju(k)j � C
�1(F; g) kFnkjx(2n)j

� C
�1(F; g) kFnkK1jx(0)j =: K2jx(0)j (13)

for k = 2n; � � � ; 3n � 1. Using the inequality above and Re-
mark 4, we conclude that there exists a positive numberK1 such
that ju(k)j � K1jx(0)j; 8 k = 0; 1; � � � ; 3n � 1 (just define
K1 := maxfK0; K2g). This further implies that there is a positive
real numberK2 such that

j�(t; x(0))j � K2jx(0)j; 8 t 2 [0; 3nT ]: (14)
By combining (12) and (14) we have thatj�(t; x(0))j �
K2jx(0)j; 8 t � 0. Finally, the third condition of Defini-
tion 1 holds since8 � > 0 there exists� > 0 such thatjx(0)j < �
implies j�(t; x(0))j < �; 8 t � 0 (just take� = �=K2). Hence, the
controller is stabilizing for (3). Q.E.D.

IV. SUMMARY

A globally stabilizing output feedback controller is designed for a
class of Wiener systems that satisfy the following conditions: the linear
subsystem is controllable and observable; and the Wiener model is
0-state detectable. The controller is periodically time-varying “sam-
pled-data like” scheme which achieves a dead-beat response of the
closed loop-system.

APPENDIX

Lemma 3: Suppose thatu(k) = 0; 8 k = 0; 1; � � � ; n� 1. Given
any v 2 there exist�k 2 ; k = n; � � � ; 2n � 1 such that the
sequence of controlsu(k) = �kv; k = n; � � � ; 2n� 1 yields

z(k) = f(cFkx(0) + v); 8 k 2 fn+ 1; � � � ; 2ng:

Proof: In order to have the desired sequence of controls notice
that the following matrix equation has to be solvable in�i:

cg 0 0 � � � 0

cFg cg 0 � � � 0
...

...
...

cFn�1g cFn�2g cFn�3g � � � cg

�n
�n+1

...
�2n�1

=

1

1
...
1

and this is satisfied since the Hankel matrix is invertible (because the
sampling periodT is chosen so thatcg 6= 0). Q.E.D.

Lemma 4: Consider an arbitrary nontrivial polynomial
f(s) = L

i=1
ais

i. Let c1; c2 2 be fixed. Then we have
thatf(c1 + u) = f(c2 + u); 8u 2 if and only if c1 = c2.

Proof: If c1 = c2 = c, then it is obvious thatf(c+ u) = f(c+
u); 8u 2 . Suppose now that there existc1 6= c2 and a nontrivial
polynomialf(s) = L

i=1
ais

i such thatf(c1+u) = f(c2+u); 8u.
Hence, all coefficients of the polynomialsf(c1 + u) andf(c2 + u)
must be identical. Consider the coefficients that multiplyuL�1 in both
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polynomials. Then we obtain thatLaLc1 + aL�1 = LaLc2 + aL�1,
which impliesc1 = c2, a contradiction. Q.E.D.

Lemma 5: Suppose thatx(0) 6= 0, we apply the control sequence
as in Lemma 3 andv 62 V . Then there exists a uniquêx�j 2 X such
that

f(cF k
x̂
�

j + v) = z(k); 8 k = n+ 1; � � � ; 2n: (15)

In particular, ifv = 0:5 minf�0; �1; �2g, thenv 62 V and there exists
a uniquêx�j 2 X that satisfies (15). Moreover, we have thatx̂�j = x(0).

Proof: Sincex(0) 6= 0, thenX is a nonempty set andx(0) 2
X . Hence, there exists at least onex̂�j 2 X such thatf(cFkx̂�j +
v) = z(k); 8 k = n + 1; � � � ; 2n. Suppose now that there exist
x̂�j ; x̂

�

i 2 X ; x̂�j 6= x̂�i such thatf(cFkx̂�j + v) = f(cFkx̂�i + v) =
z(k); 8 k = n+ 1; � � � ; 2n. From the choice of the control sequence
(10) and Lemma 4 we have that this can happen if and only ifcF kx̂�j =
cF kx̂�i ; 8 k = n; � � � ; 2n � 1. SinceF is nonsingular and(F; c) is
observable, this implies that̂x�j = x̂�i , a contradiction. Ifx(0) 6= 0
thenV is a finite nonempty set and we have�0 = 1 (see Remark
3), �1 > 0 and�2 > 0 (by definition). From definition of�2 and
the setV it follows that (0; �2) \ V = ;. Hence, if we choosev =
0:5 minf�0; �1; �2g thenv 2 (0; 0:5�2] � (0; �2) and hencev 62
V . Now it is obvious that (the unique)̂x�j 2 X that satisfies (15) is such
thatx(0) = x̂�j . Q.E.D.
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Rational Suboptimal Continuous-Time Controller Design

Mark E. Halpern

Abstract—We obtain rational suboptimal continuous-time solutions to
some optimal control problems specified via time domain performance cri-
teria. These include and norms and peak overshoot. The approach
uses linear semi-infinite programming to compute weights for a given finite
set of rational basis functions and makes the best possible use of the basis.
The closed-loop transfer functions obtained satisfy appropriate interpola-
tion constraints for internal stability and the formulation allows additional
linear constraints to be incorporated.

Index Terms—Feedback systems, optimization, interpolation, linear
semi-infinite program.

I. INTRODUCTION

A great deal of recent work on controller design has developed from
the l1 optimal design method, proposed for the optimal rejection of
persistent bounded disturbances [1]–[3]. The continuous-time version
of the problem, that of designing a stabilizing continuous-time con-
troller to minimize theL1 norm of the error impulse response for con-
tinuous-time plants, was posed in [2] and completely solved in [4].
It was found in [4] that for a rational plant, the optimal closed-loop
transfer function is irrational and thus an irrational controller is re-
quired. This is in contrast to the discrete-time case [1], [3] where the
optimal closed-loop transfer function is obtained with a rational con-
troller.

The difficulty of implementing irrational controllers for the contin-
uous-time problem motivated three approaches, [5]–[7] and [9], for ob-
taining rational suboptimal compensators. One [5] involves approxi-
mating the true optimal solution with a finite-dimensional rational so-
lution. The second, [6], [7], is based around Euler Approximating Sys-
tems (EAS) and involves minimizing a computationally tractable upper
bound on the actualL1 norm of the corresponding continuous-time
transfer function. The same kind of upper bound has subsequently been
minimized to obtainl1-suboptimal pole placement [8]. The third ap-
proach [9] minimizes a different upper bound on theL1 norm and can
give a smallerL1 norm than [6], [7] with lower order controllers. Mul-
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