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Abstract: We propose a novel way for sampled-data implementation (with the zero order hold assumption)
of continuous-time controllers for general nonlinear systems. We assume that a continuous-time controller has
been designed so that the continuous-time closed-loop satisfies all performance requirements. Then, we use
this control law indirectly to compute numerically a sampled-data controller. Our approach exploits a model
predictive control (MPC) strategy that minimizes the mismatch between the solutions of the sampled-data
model and the continuous-time closed-loop model. We propose a control law and present conditions under
which stability and sub-optimality of the closed loop can be proved. We only consider the case of unconstrained
MPC. We show that the recent results in [6] can be directly used for analysis of stability of our closed-loop
system.
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1 Introduction

Nowadays, modern controllers are typically implemented digitally and this fact strongly motivates
investigation of sampled-data systems that consist of a continuous-time plant controlled by a discrete-
time (digital) controller. While tools for analysis and design of linear sampled-data systems are well
developed, similar results for nonlinear systems still need development to be as useful as their linear
counterparts. A possible approach for sampled-data controller design is to first design a continuous-
time controller for the continuous-time plant ignoring sampling and then discretize the obtained con-
troller for digital implementation [12, 14, 16]. The classical discretization methods, such as the Euler,
Tustin or matched pole-zero discretization are attractive for their simplicity but they may not perform
well in practice since the required sampling rate may exceed the hardware limitations even for linear
systems [1, 17]. This has lead to a range of advanced controller discretization techniques based on
optimization ideas that compute ”the best discretization” of the continuous-time controller in some
sense. A nice account of these optimization based approaches for linear systems has been given in the
Bode Lecture by Anderson in [1] and later in the book [12].

We are not aware of a similar optimization based approach for discretization of continuous-time
controllers for nonlinear systems. A possible reason for this may be the inherent computational
complexity of nonlinear optimal control problems that inevitably require solutions to Hamilton-Jacobi
type equations. However, while nonlinear optimal controllers are often impossible to compute in
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practice due to the computational burden associated with solving the Hamilton-Jacobi equations,
different suboptimal solutions are much more tractable. For example, the receding horizon (or model
predictive) control has a manageable computational complexity for relatively large nonlinear problems
[6, 10, 24].

It is the purpose of this paper to introduce a novel receding horizon control scheme that can
be used in implementing digitally continuous-time controllers that have been already designed. The
cost function that we consider penalizes the difference of solutions of the continuous-time closed-loop
system and the sampled-data solutions. In this sense, the control scheme that we consider can be
regarded as a nonlinear and sub-optimal version of linear results presented in [1, 12]. For simplicity,
we only consider digital implementation of static state feedback controllers and we present results only
for unconstrained MPC.

Under appropriate assumptions we prove stability and sub-optimality of our control scheme. We
show that stability of our control scheme follows from recent results in [6]. In the same way as in
[6] and under appropriate assumptions we can conclude either semi-global and practical asymptotic
stability, semi-global asymptotic stability or global exponential stability of the closed loop, where the
parameter that we adjust is the optimization horizon and the semi-global property is with respect to
the feasibility region for the optimization problem. Then, we show that under appropriate conditions
our MPC scheme is inverse optimal (or sub-optimal) in some sense, which is similar to standard MPC
results, see [24].

The paper is organized as follows. In Section 2 we present preliminaries and pose the problem we
consider. Our control scheme is presented and its stability analysed in Section 3. In Section 4 we
consider sub-optimality properties of our MPC scheme. Numerical examples illustrating our approach
are presented in Section 5 and conclusions are presented in the final section.

2 Preliminaries

The set of real numbers is denoted as R. A function γ : R≥0 → R≥0 is called class G if it is continuous,
zero at zero and non-decreasing. It is of class K if it is continuous, zero at zero and strictly increasing.
It is of class K∞ if it is also unbounded. It is of class L if it is strictly positive and it is decreasing
to zero as its argument tends to infinity. A function β : R≥0 × R≥0 → R≥0 is of class KL if for every
fixed t ≥ 0 the function β(·, t) is of class K and for each fixed s > 0 the function β(s, ·) is class L.
Given vectors ξ, x ∈ Rn we often use the notation (ξ, x) := (ξT xT )T .

2.1 Problem formulation

Consider the plant:
ẋ = f(x, u) , (2.1)

where x ∈ Rn and u ∈ U ⊂ Rm are respectively the state and the control input of the system. Standing
assumptions that we will use throughout the paper are as follows:

Standing Assumptions:

(i) A continuous-time controller u = u(x), such that u(x) ∈ U, ∀x ∈ Rn has been designed for the
continuous-time plant (2.1) so that the continuous-time closed-loop system

ẋ(t) = f(x(t), u(x(t))) x(0) = x (2.2)

is (globally) asymptotically stable and satisfies all performance requirements.

(ii) The controller is to be implemented using a sampler and zero order hold. In other words, for a
given fixed sampling period T > 0 the control signal is constant during sampling intervals, i.e.
u(t) = u(tk) = const.,∀t ∈ [tk, tk+1), k ∈ N, where tk := kT . ¤

We will always use x(t, x0) to denote the solution of the system (2.2) at time t emanating from the
initial state x(0) = x0. We assume in what follows that f(x, u(x)) is locally Lipschitz in x and, hence,
for any x(0) = x0 the continuous time closed loop system (2.2) has a unique solution.
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Before we pose the problem we consider, we first define what we mean by solutions of the sampled-
data system. This definition is the same as the definition of S-solution (sampled solution) proposed
in [4]. Given an initial state ξ(t0) = ξ0 and a control signal v(t) = vk, t ∈ [tk, tk+1), k ∈ N, the solution
of the sampled data system on interval [t0, t1] is the solution of the continuous time system:

ξ̇(t) = f(ξ(t), v0), ξ(0) = ξ . (2.3)

Let the solution of this system at time t1 = T be denoted as ξ(t1). Then, solution of the sampled-data
system on the time interval [t1, t2] is the solution of the continuous-time system

ξ̇(t) = f(ξ(t), v1), ξ(t1) ,

and so on. Denote a sequence of controls vk, k ∈ [0,M ] as v[0,M ]. The solution of the sampled data
system at time t, starting at ξ0 and under the sequence v[0,M ] is denoted as ξ(t, ξ0, v[0,M ]) or simply
ξ(t) when ξ0 and v[0,M ] are clear from the context.

The problem that we consider in this paper is as follows:

Find a sampled data controller so that for any given ξ(0) = ξ and x(0) = x, the solution
ξ(t) of the sampled-data system reproduces the solution x(t) of the continuous-time system
”as close as possible”.

The optimal solution of the above problem would necessarily involve infinite horizon minimization
(optimization) of some measure of the mismatch between sampled-data and continuous-time solutions
(ξ(·) and x(·)). Since for nonlinear systems infinite horizon optimization typically leads to compu-
tationally intractable problems, we will instead investigate suboptimal receding horizon (or model
predictive) controllers that are known to be much more manageable computationally. In particular,
given a fixed positive integer M , the controllers we consider involve minimization (in v[0,M−1]) of the
cost of the form:

JM (ξ, x, v[0,M−1]) :=
M−1∑

i=0

∫ ti+1

ti

`
(
ξ(t, ξ, v[0,i])− x(t, x), vi

)
dt + F (ξ(tM ), x(tM )) (2.4)

where ` : Rn × U → R≥0 and F : Rn × Rn → R≥0. In particular, at each sampling interval we solve
the following unconstrained optimization problem:

û[0,M−1] = arg inf
v[0,M−1]

JM (ξ, x, v[0,M−1]) (2.5)

vi ∈ U ∀i ∈ {0, . . . , M − 1} ,

where (ξ, x) are measured at sampling times. Moreover, we implement the controller in a receding
horizon fashion where at each sampling interval we apply only the first control

u = uM (ξ, x) := û0(ξ, x) (2.6)

in the optimal sequence û[0,M−1]. At the next sampling interval the new control sequence is obtained
by solving again the optimization problem with new measured states and only the first control in the
sequence is actually applied. Note that the receding horizon control law is a static state feedback
u = uM (ξ, x) that is implemented in a sampled-data fashion so that the overall closed loop system
can be written as follows:

ξ̇(t) = f(ξ(t), uM (ξ(tk), x(tk))) ξ(0) = ξ, t ∈ [tk, tk+1)
ẋ(t) = f(x(t), u(x(t))) x(0) = x . (2.7)

Several remarks are presented below to further clarify the problem we consider and point out its links
with some other approaches in the literature.
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Remark 2.1 One goal of our analysis will be to show that the system (2.7) is asymptotically stable1

since then we have
|(ξ(t), x(t))| ≤ β(|(ξ, x)|, t) ∀t ≥ 0 , (2.8)

for some β ∈ KL, which implies tracking, i.e. limt→∞ |ξ(t)−x(t)| = 0. It is obvious from item (i) of our
Standing Assumptions that any sampled-data controller that yields limt→∞ |ξ(t)| = 0 would also imply
tracking even if we do not pose the problem as the minimization of the cost JM (ξ, x, v[0,M−1]) defined
by (2.4). However, model predictive controllers that we propose are sub-optimal in an appropriate
sense (see, for instance, Theorem 4.3) and, hence, they are not only achieving tracking but also do so
in an appropriate sub-optimal manner.

Remark 2.2 Note that in the system (2.7) the control designer can choose to initialize the bottom
continuous-time subsystem in a particular manner, since this is just a reference model to be used in
computing the controller uM (ξ, x). For instance, we could measure the initial state of the sampled-
data system at the initial time ξ(0) = ξ and then let x(0) = ξ(0) = ξ. This makes sense because we
would like the sampled-data system to recover as close as possible behavior of the continuous-time
system from the same initial condition. Nevertheless, we will present analysis of stability of the system
(2.7) that yields bounds on transients for arbitrary initializations, i.e. we will not necessarily assume
that ξ(0) = x(0).

Remark 2.3 As we already pointed out, one possible way to tackle this problem is to pose an infinite
horizon optimization problem that is aiming at minimizing the difference between the solutions of the
closed-loop continuous-time system and the sampled-data system. For linear systems this approach
has lead to solutions to different H∞ and H2 controller design problems that are tractable [1, 12]. For
nonlinear systems, however, this approach necessarily involves Hamilton-Jacobi type equations that
are too hard to solve in general and this is the only reason why we do not pursue this approach. Instead,
we solve the problem in a receding horizon fashion as described above. This approach is feasible for
very large scale nonlinear systems. We are not aware of any references in the literature on Model
Predictive Control (MPC) or Receding Horizon Control (RHC) that considered this problem.

Remark 2.4 A brute force (emulation) approach to solving the above problem is to simply implement
the following controller:

u(t) = u(x(tk)), ∀t ∈ [tk, tk+1), k ∈ N
and then sample as fast as possible (reduce T ). This approach was shown in [16] to recover the
performance of the continuous-time system in an appropriate semi-global practical sense (T is the
parameter that we need to reduce sufficiently). Indeed, emulated controllers are required to have
appropriate robustness with respect to the sample and zero order hold implementation in order to
preserve stability. This robustness is typically achieved by sufficiently reducing the sampling period.
However, due to hardware limitations on the minimum achievable T this approach is often not feasible.

Our controller, on the other hand, will stabilize the system for arbitrarily long sampling periods T
if all conditions in our main results hold. Hence, results in this paper are not of the ”fast sampling”
type that are common in emulation designs for sampled-data systems. Indeed, our results are more
similar to the MPC schemes that do not require fast sampling in order to work well2.

Remark 2.5 Note that we consider general terminal costs of the form F (ξ(tM ), x(tM )) instead of the
costs of the form F (ξ(tM ) − x(tM )) that may appear to be more natural in this context. However,
if we think of the terminal cost as the approximation of the infinite horizon value function, then it
is obvious that the form of F (·, ·) that we use is more appropriate since the infinite horizon value
function

V∞(ξ, x) := inf
v[0,∞)

∞∑

i=0

∫ ti+1

ti

`
(
ξ(t, ξ, v[0,i])− x(t, x), vi

)
dt

would not in general have the form V∞(ξ − x). Nevertheless, our results also apply to the case when
F = F (ξ − x).

1Sometimes we consider semi-global and practical asymptotic stability or global exponential stability.
2Of course, the system should not lose stabilizability due to sampling.
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Remark 2.6 The problem we consider can be viewed as a special case of a more general problem
where we assume that the reference model which we would like our sampled-data closed-loop to track
is not necessarily of the form (2.2) but perhaps of the more general form

ẋ(t) = g(x(t), x(tk)) t ∈ [tk, tk+1) ,

where we assume that this reference model is stable and satisfies all performance requirements.

2.2 Stability properties of discrete-time MPC schemes

Our stability results will be heavily based on recently proved stability results of discrete-time MPC
schemes in [6]. A unique feature of these results is that the terminal and stage costs do not have be
positive definite functions of the state, which is the case for our MPC scheme. Moreover, the terminal
cost does not have to be a local control Lyapunov function for the system to show stability3. In this
section, we summarize results from [6] and in the next section we show how they can be used to
analyze stability of the closed loop system (2.7). To this end, we introduce an auxiliary discrete-time
problem since [6] deal only with discrete-time systems. Note that given any fixed sampling period
T > 0 the (exact) discrete-time model of the uncontrolled sampled-data system (2.3), (2.2), when it
is well defined, has the form:

ξ+ = G(ξ, u) ξ(0) = ξ

x+ = H(x) x(0) = x , (2.9)

where G(ξ, u) := ξ(T, ξ, u) and H(x) := x(T, x). We denote the solutions of the discrete-time model
(2.9) as ξ(k, ξ, v[0,k−1]) and x(k, x) or simply by ξk and xk when the initial states and the control
sequence are clear from the context. Moreover, by introducing the following:

Q(ξ, x, u) :=
∫ T

0
`(ξ(s, ξ, u)− x(s, x), u)ds (2.10)

we can rewrite the cost (2.4) as follows:

JM (ξ, x, u) =
M−1∑

i=0

Q(ξi, xi, ui) + F (ξM , xM ) (2.11)

where Q is defined in (2.10) and ξi, xi are solutions of the discrete-time system (2.9). Finally, opti-
mization problem (2.5) can be rewritten as follows:

û[0,M−1] = arg inf
v[0,M−1]

M−1∑

i=0

Q(ξi, xi, vi) + F (ξM , xM ) (2.12)

vi ∈ U ∀i ∈ {0, 1, . . . , M − 1}

and the discrete-time model of the closed-loop sampled-data system (2.7) can be written as follows:

ξ+ = G(ξ, uM (ξ, x)) (2.13)
x+ = H(x) , (2.14)

where uM (·, ·) comes from (2.6).

Remark 2.7 It is a standard result in the literature to show (under weak assumptions) that stability
of the discrete-time model (2.13), (2.14) implies stability of the sampled-data system (2.7) (see, for
instance [26]).

3We present a stronger version of results in [6] that is sufficient for our purposes, e.g. we only consider stability of
the origin as opposed to stability of arbitrary sets that was considered in [6].
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Remark 2.8 Our stability analysis will be based on showing that all conditions of [6] hold for the
cost (2.11), and the discrete-time closed-loop (2.13), (2.14) under appropriate conditions on (2.4) and
under our standing assumptions. However, in reality the (exact) discrete-time model of the system is
not available for controller design and we think of the discrete-time model as an auxiliary (unknown)
model via which stability analysis of the system (2.2) can be carried out. Indeed, typically only an
approximate discrete-time model can be in general obtained and the controller design based on it. A
rigorous framework for controller design based on approximate discrete-time models can be found in
[27, 25]. We do not investigate these implementation issues of our algorithm.

We next adapt appropriate definitions and results from [6] to be applicable for stability analysis
of (2.13), (2.14). Some of these definitions can be further relaxed (see [6]) but the version we present
suffices for our purposes.

Definition 2.9 Consider the system (2.9) and a function Q = Q(ξ, x, u). The system (2.9) is said to
be detectable from Q with respect to (αW , αW , γW ) if αW , γW ∈ K∞ and αW ∈ G and there exists a
continuous function W : R2n → R≥0 such that for all (ξ, x) ∈ R2n and all u ∈ U:

W (ξ, x) ≤ αW (|(ξ, x)|) (2.15)
W (G(ξ, u),H(x))−W (ξ, x) ≤ −αW (|(ξ, x)|) + γW (Q(ξ, x, u)) (2.16)

Definition 2.10 We will say that the terminal cost F is a control Lyapunov function for the system
if it can be decomposed as F (ξ, x) = FN (ξ, x) = Γ(N) · F (ξ, x), where the function Γ : Z≥1 → R≥1 is
nondecreasing and unbounded and, moreover, there exist functions αF , αQ ∈ K∞ such that

αF (|(ξ, x)|) ≤ F (ξ, x)

and for every (ξ, x) ∈ R2n there exists u ∈ U such that

F (G(ξ, u),H(x))− F (ξ, x) ≤ 0
Q(ξ, x, u) ≤ αQ(|(ξ, x)|) .

The following results were proved in [6]:

Theorem 2.11 Suppose that the following conditions hold:

(i) Q and F are continuous;

(ii) U is bounded;

(iii) The system (2.9) is detectable from Q(ξ, x, u) for some functions (αW , γW , αW );

(iv) The value function is such that for some α ∈ K∞ we have that Vi(ξ, x) ≤ α(|(ξ, x)|) for all i ≥ 0
and all (ξ, x) ∈ R2n.

Then, for each M ≥ 2 there exist αY , αY , αY ∈ K∞, βY ∈ KL and a continuous function YM : R2n →
R≥0 such that for all (ξ, x) ∈ R2n we have:

αY (|(ξ, x)|) ≤ YM (ξ, x) ≤ αY (|(ξ, x)|) (2.17)
YM (G(ξ, uM (ξ, x)),H(x))− YM (ξ, x) ≤ −αY (|(ξ, x)|) + βY (|(ξ, x)|,M) . (2.18)

Moreover, if the following condition also holds:

(v) The terminal cost F is a control Lyapunov function for the system (2.9),
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then there exists a continuous function YM and β̂Y ∈ KL such that for all (ξ, x) ∈ R2n (2.17) holds
and

YM (G(ξ, uM (ξ, x)),H(x))− YM (ξ, x) ≤ −αY (|(ξ, x)|) + β̂Y (|(ξ, x)|, Γ(M))

¤

Remark 2.12 More details on the conditions used in Theorem 2.11 can be found in [6]. In particular,
explicit formulas for computing all bounding functions in Theorem 2.11 are given in [6].

Several direct consequences of Theorem 2.11 are stated next:

Proposition 2.13 Suppose that items (i), (ii), (iii) and (iv) of Theorem 2.11 hold. Then for each
pair of strictly positive real numbers (∆, δ) there exists M∗

1 ∈ Z≥1 such that for all (ξ, x) ∈ B∆ the
solutions of the system (2.13), (2.14) satisfy:

|(ξk, xk)| ≤ max{β(|(ξ, x)|, k), δ} ∀k ≥ 0 . (2.19)

Suppose, moreover, that condition (v) of Theorem 2.11 holds. Then, for each pair of strictly positive
real numbers (∆, δ) there exists M∗

2 ∈ Z≥1 such that for all (ξ, x) ∈ B∆ the solutions of the system
(2.13), (2.14) satisfy (2.19). ¤

Remark 2.14 Significance of the condition (v) in the above theorem is that the prediction horizon
M∗

2 is different (typically smaller) than M∗
1 for the same given (∆, δ). Condition (v) plays a similar

role in all the results that follow.

Proposition 2.15 Suppose that conditions (i), (ii), (iii) and (iv) of Theorem 2.11 hold. Moreover,
given ∆l > 0 suppose that for s ∈ [0, ∆l] the functions αW , αW , γW , α from conditions (iii) and (iv)
satisfy αW (s) ≥ aW · s2 , αW (s) ≤ aW · s2, γW (s) ≤ s2 , α(s) ≤ a · s2, where aW , a ∈ R>0, aW ∈ R≥0.
Then, there exists β ∈ KL such that for each ∆ > 0, there exists M∗

1 ∈ Z≥1 such that for all M ≥ M∗
1

and all (ξ, x) ∈ B∆ the solutions of the system (2.13), (2.14) satisfy:

|(ξk, xk)| ≤ β(|(ξ, x)|, k) ∀k ≥ 0 . (2.20)

Suppose, moreover, that condition (v) of Theorem 2.11 holds with αF (s) ≥ aF s2, αQ(s) ≤ aQs2 for
all s ∈ [0, ∆l], where aF , aQ ∈ R>0. Then, there exists β ∈ KL such that for each ∆ > 0 there exists
M∗

2 ∈ Z≥1 such that for all (ξ, x) ∈ B∆ the solutions of the system (2.13), (2.14) satisfy (2.20). ¤

Proposition 2.16 Suppose that all conditions of Corollary 2.15 hold globally and all functions are
globally quadratic (i.e. ∆l = ∞). Suppose either

• M > a(a+aW )
a2

W
+ 1; or

• F is a control Lyapunov function for the system (2.9) with αF (s) = aF s2, αQ(s) = aQs2 for
aF , aQ ∈ R>0 and M is such that Γ(M) >

aQa
aF aW

.

Then, there exist K ≥ 1, λ > 0 such that solutions of the system (2.13), (2.14) satisfy:

|(ξk, xk)| ≤ Ke−λk|(ξ, x)| ∀k ≥ 0 .

¤

Remark 2.17 We stated only the global version of results but with minor changes one can state
regional stability results instead.
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3 Stability

The purpose of this section is to show that under reasonable assumptions, we can conclude stability
of the sampled-data system (2.7). The main results of this section are stated and proved next.

Theorem 3.1 Suppose that the following conditions hold:

(i) ` and F are continuous;

(ii) U is bounded;

(iii-a) The continuous-time system (2.2) is globally asymptotically stable;

(iii-b) There exists r0 > 0 and γ ∈ K∞ with4

`(y, u) ≥ max
{

max
|x|≤2|y|

|f(x, u)|, γ(|y|)
}

∀|y| ≥ r0;

(iii-c) f(·, ·) and u(·) are locally Lipschitz in their arguments;

(iv) The value function is such that for some α ∈ K∞ we have that Vi(ξ, x) ≤ α(|(ξ, x)|) for all i ≥ 0
and all (ξ, x) ∈ R2n.

Then, there exists β ∈ KL such that for each pair of strictly positive real numbers (∆, δ) there exists
M∗

1 ∈ Z≥1 such that for all (ξ, x) ∈ B∆ and M ≥ M∗
1 the solutions of the system (2.7) satisfy:

|(ξ(t), x(t))| ≤ max{β(|(ξ, x)|, t), δ} ∀t ≥ 0 . (3.1)

Suppose, moreover, that:

(v) F is a control Lyapunov function for the system (2.9);

Then, there exists β ∈ KL such that for each pair of strictly positive real numbers (∆, δ) there exists
M∗

2 ∈ Z≥1 such that for all (ξ, x) ∈ B∆ and M ≥ M∗
2 the solutions of the system (2.7) satisfy (3.1). ¤

Proof of Theorem 3.1: The proof consists of showing that conditions of Theorem 3.1 imply that
all conditions of Proposition 2.13 hold for the underlying discrete-time system. This implies that the
discrete-time system (2.13), (2.14) is semiglobally-practically stable in the horizon M . Using results
from [26] we conclude that the sampled-data system is semiglobally-practically stable in the horizon
M .

Since we assumed that ` is continuous, this immediately implies that Q defined in (2.10) is also
continuous and item (i) of Proposition 2.13 hold. Moreover, note that items (ii), (iv) and (v) of
Theorem 3.1 coincide with corresponding items of Proposition 2.13. Hence, the only thing left to
prove is that items (iii-a), (iii-b) and (iii-c) of Theorem 3.1 imply that the item (iii) of Proposition
2.13 holds. The item (iii-a) implies that the discrete-time system (2.14) is globally asymptotically
stable. Using the discrete-time Lyapunov converse theorem from (see [18]), we conclude that there
exists a Lyapunov function U(x) and α1, α2, α3 ∈ K∞ such that for all x ∈ Rn we have:

α1(|x|) ≤ U(x) ≤ α2(|x|) (3.2)
U(H(x))− U(x) ≤ −α3(|x|). (3.3)

Note that Proposition 6.1 (see the Appendix) states that conditions (iii-a), (iii-b) and (iii-c) imply
that there exists αQ ∈ K∞ such that

|x|+ Q(ξ, x, u) ≥ αQ(|(ξ, x)|) ∀ξ, x, u . (3.4)

4A similar condition was first used in [11].
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Let γW ∈ K∞ be arbitrary. Then if we define W (ξ, x) := U(x), we can show that the system (2.9) is
detectable from Q with respect to (αW , γW , αW ), where

αW (s) := α2(s); αW (s) := α̃ ◦ 1
2
αQ(s) , (3.5)

and α̃(s) := min{α3(s), γW (s)}. Indeed, we have:

W (ξ, x) = U(x) ≤ α2(|x|) ≤ α2(|(ξ, x)|) =: αW (|(ξ, x)|) ∀(ξ, x) ∈ R2n , (3.6)

and, hence, (2.15) holds with αW (s) := α2(s). Using the definition of α̃, the triangle inequality for
class K functions5 and (3.4), we can write:

W (G(ξ, u),H(x))−W (ξ, x) = U(H(x))− U(x)
≤ −α3(|x|)
= −α3(|x|)− γW (Q(ξ, x, u)) + γW (Q(ξ, x, u))
≤ −α̃(|x|)− α̃(Q(ξ, x, u)) + γW (Q(ξ, x, u))

≤ −α̃

(
1
2
(|x|+ Q(ξ, x, u))

)
+ γW (Q(ξ, x, u))

≤ −α̃ ◦ 1
2
αQ(|(ξ, x)|) + γW (Q(ξ, x, u)) ,

which completes the proof. ¤

Theorem 3.2 Suppose that the following conditions hold:

(i) ` and F are continuous;

(ii) U is bounded;

(iii-a) The continuous-time system (2.2) is locally exponentially stable and globally asymptotically
stable;

(iii-b) The item (iii-b) of Theorem 3.1 holds and, moreover, there exists a` > 0 and ∆` > 0 such that

`(y, u) ≥ a`(|y|2 + |u|2) ∀|y| ≤ ∆`, u ∈ U;

(iii-c) f(·, ·) and u(·) are locally Lipschitz in their arguments;

(iv) The value function is such that for some locally quadratic α ∈ K∞ we have that Vi(ξ, x) ≤
α(|(ξ, x)|) for all i ≥ 0 and all (ξ, x) ∈ R2n.

Then, there exists β ∈ KL such that for each ∆ > 0 there exists M∗
1 ∈ Z≥1 such that for all (ξ, x) ∈ B∆

and M ≥ M∗
1 the solutions of the system (2.7) satisfy:

|(ξ(t), x(t))| ≤ β(|(ξ, x)|, t) ∀t ≥ 0 . (3.7)

Suppose, moreover, that:

(v) F is a control Lyapunov function for the system (2.9) with locally quadratic αQ and αF ;

Then, there exists β ∈ KL such that for each ∆ > 0 there exists M∗
2 ∈ Z≥1 such that for all (ξ, x) ∈ B∆

and M ≥ M∗
2 the solutions of the system (2.7) satisfy (3.7). ¤

5α
(

1
2
(s1 + s2)

) ≤ α(s1) + α(s2) for all s1, s2 ≥ 0.
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Proof of Theorem 3.2: This proof follows the same steps as the proof of Theorem 3.1 with the
following changes. Since the system (2.2) is locally exponentially stable and globally asymptotically
stable (item (iii-a)), one can find a function U(·) so that (3.2) and (3.3) hold with locally quadratic
functions α1, α2, α3 (we need to prove this for discrete-time systems using the construction that Isidori
gives in his second book for continuous-time systems). Moreover, items (iii-b) and (iii-c) imply via
Proposition 6.2 that αQ in (3.4) is also locally quadratic. Then, we can pick arbitrary γW that is
locally quadratic to conclude that αW , αW defined in (3.5) are locally quadratic. Hence, all conditions
of Proposition 2.15 hold for the system (2.13), (2.14). The rest of the proof is follows the same steps
as the proof of Theorem 3.1. ¤

Theorem 3.3 Suppose that the following conditions hold:

(i) ` and F are continuous;

(ii) U is bounded;

(iii-a) The system (2.2) is globally exponentially stable;

(iii-b) There exists a` > 0 such that

`(y, u) ≥ a`(|y|2 + |u|2) ∀y, u ;

(iii-c) f(·, ·) and u(·) are globally Lipschitz;

(iv) The value function is such that for some α(s) := a · s2, a > 0 we have that Vi(ξ, x) ≤ α(|(ξ, x)|)
for all i ≥ 0 and all (ξ, x) ∈ R2n.

Then, there exist K ≥ 1, λ > 0 and M∗
1 ∈ Z≥1 such that for all (ξ, x) ∈ R2n and M ≥ M∗

1 the
solutions of the system (2.7) satisfy:

|(ξ(t), x(t))| ≤ Ke−λt|(ξ, x)| ∀t ≥ 0 . (3.8)

Suppose, moreover, that

(v) F is a control Lyapunov function for the system (2.9) with globally quadratic αQ and αF ;

Then, there exist K ≥ 1, λ > 0 and M∗
2 ∈ Z≥1 such that for all (ξ, x) ∈ R2n and M ≥ M∗

2 solutions
of the system (2.7) satisfy (3.8). ¤

Proof of Theorem 3.3: This proof follows the same steps as the proof of Theorem 3.2 with the
following changes. Since the system (2.2) is globally exponentially stable (item (iii-a)), one can find
a function U(·) so that (3.2) and (3.3) hold with globally quadratic functions α1, α2, α3 (cite some
standard text). Moreover, items (iii-b) and (iii-c) imply via Proposition 6.2 that αQ in (3.4) is also
globally quadratic. Then, we can pick an arbitrary globally quadratic γW to conclude that αW , αW

defined in (3.5) are also globally quadratic. Hence, all conditions of Proposition 2.16 hold for the
system (2.13), (2.14). The rest of the proof follows the same steps as the proof of Theorem 3.1. ¤

Remark 3.4 Note that although we are considering an unconstrained optimization problem, the
conditions in Theorem 3.3 may not be satisfied for all (ξ, x) ∈ R2n and u ∈ U.

First, controllability of the sampled-data (and, hence, discrete-time) system may be lost due to
sampling and as a result some of our conditions will be impossible to satisfy. For example, it was
shown in [6] that asymptotic controllability of the system would be sufficient for the condition (iv)
in Theorem 3.3 to hold. Hence, if the discrete-time system is not asymptotically controllable6 due to
sampling then the condition (iv) may not be possible to satisfy. Moreover, due to possible finite escape
times, the solutions of the sampled-data system may not be defined for all initial states and inputs.
Hence, our conditions (if satisfied) implicitly guarantee that the system is asymptotically controllable
and the solutions of the sampled-data system exist for the given sampling period.

6For appropriate definitions of asymptotic controllability see [6].
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It is standard to show that both of these issues disappear if we sample fast enough (this is not
necessary though!). In particular, one can show that if the continuous-time system is asymptotically
controllable then given arbitrarily large compact set N there exists T ∗ > 0 such that for all sampling
periods T ∈ (0, T ∗) the solutions exist for all (ξ, x) ∈ N u ∈ U and the system is controllable on the
set. Hence, given an arbitrary compact set N , we can first adjust the sampling period T to ensure
existence of solutions and asymptotic controllability on N and then adjust the horizon length to ensure
that N is a subset of the domain of attraction of (2.7).

For simplicity, we will not consider these issues and we will assume that the sampled-data and
discrete-time models are well defined everywhere and controllable.

Remark 3.5 We note that [6] provides explicit bounds for the horizon length to guarantee appropriate
stability properties of the underlying discrete-time system (see, for instance, Proposition 2.16). We
did not present such bounds because some of our proofs are not constructive. In particular, given
conditions (iii-a), (iii-b) and (iii-c), we do not provide in general an explicit construction of αW that
we use to show that the system (2.9) is detectable from Q.

Remark 3.6 From the proof of Theorem 3.1 we can see that we can pick arbitrary γW when proving
the detectability property of the system. In particular, we can always choose γW (s) ≤ s,∀s ≥ 0. If
we make this choice, then results of [6] state that the Lyapunov function for the closed-loop discrete
time system (2.13), (2.14) can be chosen in the following manner:

V (ξ, x) := VM (ξ, x) + U(x) ,

where U comes from (3.2), (3.3).

Remark 3.7 Note that our problem can be interpreted as a tracking problem where we want tra-
jectories of the sampled-data system to track the trajectories of the continuous-time model. This
set up is standard in the output tracking literature where the continuous-time model is termed an
exogenous model (e.g. see [9]). We note, however, that it is typically assumed in the output tracking
literature that the exogenous system is Poisson stable, which does not hold in our case. Consequently,
our controller, which is a static state feedback controller, does not have the well known internal
model structure that is known to be necessary for tracking when the exogenous system is Poisson
stable.

Example 3.8 (This example was taken from [15].) We illustrate the performance of our algorithm
by a third order Galerkin approximation of the Moore–Greitzer model

φ̇ = −ψ − 3
2
φ2 − 1

2
φ3 − 3Rφ− 3R

ψ̇ = −u

Ṙ = −σR(R + 2φ + φ2)

A stabilizing continuous time feedback has been obtained in [20] and is given by

u = − (c1 − 3φ)
(
−ψ − 3

2
φ2 − 1

2
φ3 − 3φR− 3R

)
+ c2

(
ψ − c1φ +

3
2
φ2 + 3R

)
− φ

−3σR
(
R + 2φ + φ2

)

Using the parameters (c1, c2, σ) = (1, 2, 2), initial value (φ, ψ, R) = (6, 25, 1) and sampling rate T =
0.05, Figure 3.1 shows that using emulation of u according to Remark 2.4 stabilizes the system. One
can also see that the computed control sequence using the model predictive control algorithm improves
on the emulation design since the trajectories of the system stay close to solutions of the system with
continuous feedback. In this case the length of the horizon was chosen to be 10T and the solution
can be improved by enlarging the horizon. Note that we achieved the results from Figure 3.1 without
using a Lyapunov function for the terminal cost.

Using parameters (c1, c2, σ) = (1, 50, 2) and again T = 0.05, for the same initial value it can be
seen from Figure 3.2 that emulation of u does not stabilize the system. However, also in this case the
implemented MPC scheme is able to generate a control sequence that stabilizes the system and keeps
the sampled–data solution close to the continuous time one.
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Figure 3.1: Improvement of MPC on stable emulated controller

4 Optimality

It is also interesting to note that under extra assumptions, our control law is inverse optimal in some
sense. In other words, there exists another infinite horizon cost with respect to which our controller is
optimal. This infinite horizon cost involves the difference between trajectories of the continuous time
system and the sampled-data system. This is similar to standard results in model predictive control
literature (see [24]). The extra assumption that we use in this section is as follows:

Assumption 4.1 Suppose that F is such that there exists a closed set Xf ⊂ R2n and a control law
u = uf (ξ, x) such that the following conditions hold:

(i) uf (ξ, x) ∈ U, for all (ξ, x) ∈ Xf

(ii) if (ξ, x) ∈ Xf , then we have that (G(ξ, uf (ξ, x)),H(x)) ∈ Xf ;

(iii) for all (ξ, x) ∈ Xf we have that

F (G(ξ, uf (ξ, x)),H(x))− F (ξ, x) ≤ −Q(ξ, x, uf (ξ, x)) .

Remark 4.2 We note that it is not necessary for F to be a local control Lyapunov function in order
to satisfy Assumption 4.1. Indeed, note that if `(y, u) ≥ γ(|y|) for some γ ∈ K, then ξ 6= x implies
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Figure 3.2: Improvement of MPC on unstable emulated controller

that Q(ξ, x, u) > 0 (see the proof of Proposition 6.1 in the appendix). This, in turn implies

ξ, x ∈ Xf , ξ 6= x =⇒ F (ξ, x) > 0 . (4.1)

Indeed, suppose Assumption 4.1 holds and that there exists ξ∗, x∗ ∈ Xf , ξ∗ 6= x∗ such that F (ξ∗, x∗) =
0. Then, we have that

F (G(ξ∗, x∗),H(x∗)) ≤ −Q(ξ∗, x∗, uf (ξ∗, x∗)) < 0 ,

which is a contradiction since F (·, ·) is positive semi-definite. Hence, we can see that item (iii) of
Assumption 4.1 implies that

(i) F (0, 0) = 0;

(ii) ξ, x ∈ Xf , and ξ 6= x imply F (ξ, x) > 0;

(iii) ξ, x ∈ Xf and ξ 6= x imply F (G(ξ, x),H(x))− F (ξ, x) < 0.

Hence, in general F is not a local control Lyapunov function for the system. However, it is straight-
forward to show that the function U(x) + F (ξ, x) is a local control Lyapunov function for the system
(2.13), (2.14) for any function U(x) satisfying (3.2), (3.3). Moreover, we show next that if F is a local
control Lyapunov function for (2.13), (2.14) then under weak assumptions one can always find ` so
that Assumption 4.1 holds.
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Theorem 4.3 Consider the discrete-time plant model (2.9). Suppose that Assumption 4.1 holds.
Then, there exists a set XM ⊂ R2n and a function Q : Rn × Rn × U → R, with Q(ξ, x, uM ) ≥
Q(ξ, x, uM ), ∀(ξ, x) ∈ XM , u ∈ U such that for all (ξ, x) ∈ XM we have that the controller (2.6)
minimizes the following cost:

J (ξ, x, u[0,∞)) :=
∞∑

i=0

Q(ξi, xi, ui) . (4.2)

Proof of Theorem 4.3: From the principle of optimality we have that

VM (ξ, x) = Q(ξ, x, uM (ξ, x)) + VM−1(G(ξ, uM (ξ, x)),H(x))
= VM (G(ξ, uM (ξ, x)),H(x)) + Q(ξ, x, uM (ξ, x))

+[VM−1(G(ξ, uM (ξ, x)),H(x))− VM (G(ξ, uM (ξ, x)),H(x))]
= VM (G(ξ, uM (ξ, x)),H(x)) +Q(ξ, x, uM (ξ, x)) ,

where we denoted Q(ξ, x, u) := Q(ξ, x, u)+ [VM−1(G(ξ, u),H(x))−VM (G(ξ, u),H(x))]. Hence, we see
that the controller uM (ξ, x) is indeed optimal for the newly defined cost. The last thing to prove is
that

VM−1(G(ξ, uM (ξ, x)),H(x))− VM (G(ξ, uM (ξ, x)),H(x)) ≥ 0 . (4.3)

Let the set XM be such that if (ξ, x) ∈ XM , then (ξ(tM ), x(tM )) ∈ Xf . Consider arbitrary (ξ, x) ∈ XM .
Suppose that the optimal sequence û[0,M−1] = û[0,M−1](ξ, x) that minimizes the cost JM (ξ, x, v[0,M−1])
has been obtained. Let ξ(t, ξ, û[0,M−1]) denote the optimal trajectory of the sampled data system.
The controller u = û0(ξ, x) steers the initial state ξ to its successor state ξ+ = ξ(T, ξ, û0(ξ, x)) =:
G(ξ, û0(ξ, x)). Denote also x+ = x(T, x) =: H(x), xf := x(tM , x) and ξf := xs(tM , ξ, û[0,M−1]). Since
û[0,M−1] = {û0, . . . , ûM−1} is an optimal sequence, (ξf , xf ) ∈ Xf and also the sequence {û1, . . . , ûM−1}
steers ξ+ to ξf , we can add another element to this sequence to obtain another suboptimal control se-
quence ũ := {û1, . . . , ûM−1, uf (ξ, x)} for the state (ξ+, x+), where uf (·, ·) comes from Assumption 4.1.
Note that this control sequence because of Assumption 4.1 implies that (G(ξf , uf (ξf , xf )),H(xf )) ∈
Xf . Then, we can write:

JM (ξ+, x+, ũ) = VM−1(G(ξ, û0),H(x)) + Q(ξf , xf , uf (ξf ))
−F (ξf , xf ) + F (G(ξf , uf (ξf )),H(xf ))

≥ VM (G(ξ, û0),H(x)) ,

for all (ξ, x) ∈ XM , where the inequality follows from the item (iii) of Assumption 4.1. Since
uM (ξ, x) := û0(ξ, x), this completes the proof. ¤

The following proposition shows that Assumption 4.1 holds under relatively weak assumptions.

Proposition 4.4 Let uf (ξ, x) and F (ξ, x) be such that items (i) and (ii) of Assumption 4.1 hold and,
suppose that there exists αu ∈ K∞ such that

|uf (ξ, x)| ≤ αu(|(ξ, x)|) ∀(ξ, x) ∈ Xf . (4.4)

Moreover, suppose that for all (ξ, x) ∈ Xf we have

α1(|(ξ, x)|) ≤ F (ξ, x) ≤ α2(|(ξ, x)|) (4.5)
∆F := F (G(ξ, uf (ξ, x)),H(x))− F (ξ, x) ≤ −α3(|(ξ, x)|) (4.6)

for some α1, α2, α3 ∈ K∞. Let L > 0 be the Lipschitz constant for (f(ξ, u), f(x, u(x))) on the set
Xf × U. Then the item (iii) of Assumption 4.1 holds for any ` : R2n × U→ R≥0 such that:

`(y, u) ≤ 1
T

α3 ◦ α

(
exp(−LT )|y|

2
+
|u|
2

)
. (4.7)

where α(s) := 1/2min{s/2, α−1
u (s/2)}. ¤
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Proof of Proposition 4.4: We use in this proof 1-norms, i.e. |(ξ, x)| = |ξ| + |x|. Let L > 0 be
the Lipschitz constant for (f(ξ, u), f(x, u(x))) on the set Xf ×U. Then, from invariance of Xf we can
write for all (ξ, x) ∈ Xf that

|ξ(t)|+ |x(t)| ≤ exp(LT )(|ξ|+ |x|) + (exp(LT )− 1)|uf (ξ, x)|
≤ exp(LT )(|ξ|+ |x|+ |uf (ξ, x)|) ∀t ∈ [0, T ] . (4.8)

Then we get directly from (4.6) and (4.4) and using the triangle inequality for K functions:

∆F ≤ −α3(|ξ|+ |x|)
≤ −α3

( |ξ|+ |x|
2

+
1
2
α−1

u (|uf (ξ, x)|)
)

≤ −α3 ◦ α(|ξ|+ |x|+ |uf (ξ, x)|) .

Finally, we can use (4.8) to write

∆F ≤ − 1
T

∫ T

0
α3 ◦ α(|ξ|+ |x|+ |uf (ξ, x)|)dt

≤ − 1
T

∫ T

0
α3 ◦ α

(
exp(−LT )

|ξ(t)|+ |x(t)|
2

+
|uf (ξ, x)|

2

)
dt

≤ − 1
T

∫ T

0
α3 ◦ α

(
exp(−LT )

|ξ(t)− x(t)|
2

+
|uf (ξ, x)|

2

)
dt

≤ −
∫ T

0
`(ξ(t)− x(t), uf (ξ, x))dt

=: −Q(ξ, x, uf (ξ, x)) ,

which completes the proof. ¤
A simpler way to find appropriate F and ` satisfying Assumption 4.1 is given below.

Corollary 4.5 Let T > 0 be such that the ξ subsystem in (2.9) is stabilizable. Then, given any uf (ξ)
such that

ξ+ = G(ξ, uf (ξ)) (4.9)

is asymptotically stable and (4.4) holds, there exists F so that Assumption 4.1 holds for any ` satisfying
(4.7). ¤

Sketch of proof of Corollary 4.5: Since (4.9) is stable, via converse Lyapunov theorems we can
find a Lyapunov function V1(ξ) for this system. Moreover, since (2.14) is by assumption asymptotically
stable, there exists a Lyapunov function V2(x) for this subsystem. Then, it is obvious that

F (ξ, x) := V1(ξ) + V2(x)

is a Lyapunov function for the overall system and the conclusion follows from Proposition 4.4. ¤

5 Conclusions

We have considered implementation of continuous time control laws using a sampled feedback with
a zero order hold assumption. The implementation aims at minimizing the distance between the
trajectories of the sampled-data system and the continuous-time system in a receding horizon fashion.
We have considered unconstrained model predictive control and under different conditions proved their
stability, inverse optimality and feasibility properties.
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[25] D. Nešić and A.R. Teel, ”A framework for stabilization of nonliear sampled-data systems based
on their approximate discrete-time models”, to appear in IEEE Trans. Automat. Contr., 2002.
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6 Appendix

Proposition 6.1 Assume that items (iii-a), (iii-b) and (iii-c) of Theorem 3.1 hold. Then, there exists
αQ ∈ K∞ such that:

|x|+ Q(ξ, x, u) ≥ αQ(|(ξ, x)|) ∀(ξ, x) ∈ R2n, u ∈ U .

¤

To prove the above proposition, we first prove the following:
Fact: Assume that items (iii-a), (iii-b) and (iii-c) of Theorem 3.1 hold. Then for any sequence of
initial values (ξj , xj), j ∈ N, with |xj | bounded and |ξj | → ∞ we have

Q(ξj , xj , u) →∞ ∀u ∈ U .

Moreover, the convergence is independent of u ∈ U. ¤
Proof of the Fact: Consider a sequence (ξj , xj) meeting the assumptions. Since the continuous

time closed loop system is asymptotically stable we find a constant R > 0 such that |x(t, xj)| ≤ R
holds for all j ∈ N, t ≥ 0; without loss of generality we can assume R ≥ r0 for r0 from the item (iii-b).

Now consider j > 0 large enough such that |ξj | ≥ 9R holds, which implies |ξj − xj | ≥ 8R. Let
u ∈ U be arbitrary and consider the solutions ξ(t, ξj , u) of the sampled data system on the interval
[0, T ]. Now we consider two different cases:

Case 1: |x(t, xj)− ξ(t, ξj , u)| ≥ |xj − ξj |/2 for all t ∈ [0, T ].
In this case from the inequality `(y, u) ≥ γ(|y|) we immediately obtain

Q(ξj , xj , u) ≥ Tγ(|xj − ξj |/2).

Case 2: |x(t, xj)− ξ(t, ξj , u)| < |xj − ξj |/2 for some t ∈ [0, T ].
In this case let τ ∈ [0, T ] be the minimal time for which this inequality holds. Then, since |xj −
x(t, xj)| ≤ 2R and 2R ≤ |xj − ξj |/4, this yields

|ξ(τ, ξj , u)− ξj | ≥ |ξj − x(τ, xj)| − |x(τ, xj)− ξ(τ, ξj , u)|
≥ |ξj − x(τ, xj)| − |xj − ξj |/2
≥ |ξj − xj | − 2R− |xj − ξj |/2
≥ |ξj − xj | − |xj − ξj |/4− |xj − ξj |/2 = |xj − ξj |/4

This implies ∫ τ

0
|f(ξ(t, ξj , u), u)|dt ≥ |xj − ξj |/4.
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Now the minimality of τ implies that for t ∈ [0, τ ] we have

|ξ(t, ξj , u)− x(t, xj)| ≥ |xj − ξj |/2 ≥ R,

hence
|ξ(t, ξj , u)| ≤ |ξ(t, ξj , u)− x(t, xj)|+ R ≤ 2|ξ(t, ξj , u)− x(t, xj)|

and thus the first inequality in the item (iii-b) implies

`(|ξ(t, ξj , u)− x(t, xj)|, u) ≥ |f(ξ(t, ξj , u), u)|.

This yields

Q(ξj , xj , u) ≥
∫ τ

0
`(x(t, xj)− ξ(t, ξj , u), u0)dt

≥
∫ τ

0
|f(ξ(t, ξj , u), u)|dt

≥ |xj − ξj |/4

Now, in both cases we have found a lower bound for Q(ξj , xj , u) which is independent of u and
tends to ∞ as j →∞. This shows the fact.

Proof of Proposition 6.1: First note that Q(ξ, x, u) > 0 whenever ξ 6= x. Indeed, whenever
ξ 6= x, there exists τ = τ(ξ, x) > 0 such that |ξ(s, ξ, u) − x(s, x)| > 0, ∀s ∈ [0, τ ] and hence we can
write:

Q(ξ, x, u) =
∫ T

0
`(ξ(s, ξ, u)− x(s, x), u)ds ≥

∫ τ

0
γ(|ξ(s, ξ, u)− x(s, x)|)ds > 0 .

Moreover, it is obvious that Q(0, 0, u) ≥ 0, ∀u ∈ U. Note that this implies that |x|+ Q(ξ, x, u) can be
lower bounded by a positive definite function of (ξ, x). Moreover, consider a sequence of initial values
(ξj , xj), j ∈ N, with |(ξj , xj)| → ∞ as j →∞. Then if |xj | → ∞ we have

|xj |+ Q(ξj , xj , u) →∞ . (6.1)

On the other hand, if xj is bounded then we have that |ξj | → ∞ and using the above Fact we have
Q(ξj , xj , u) →∞ which again implies that (6.1) holds. Since |x|+ Q(ξ, x, u) is a continuous function
of its arguments and it is radially unbounded in (ξ, x), it follows from [19, Lemma 4.3] that there
exists αQ ∈ K∞ such that

|x|+ Q(ξ, x, u) ≥ αQ(|(ξ, x)|) ∀(ξ, x) ∈ R2n, u ∈ U ,

which completes the proof.

Proposition 6.2 Suppose that the items (iii-a), (iii-b) and (iii-c) of Theorem 3.2 hold. Then, there
exists D > 0 and a > 0 such that:

|x|2 + Q(ξ, x, u) ≥ a|(ξ, x)|2 ∀|(ξ, x)| ≤ D, u ∈ U. (6.2)

Moreover, if all the assumptions hold globally (i.e. the items (iii-a), (iii-b) and (iii-c) of Theorem 3.3
hold), then (6.2) holds for all (ξ, x) ∈ R2n and u ∈ U. ¤

Proof of Proposition 6.2: In this proof we use the 2-norm (Euclidean norm) for all vectors. Let
D > 0 and t1 > 0 be such that for all |(ξ, x)| ≤ D and u ∈ U we have that max{|ξ(t)|, |x(t)|} ≤ ∆`

2
for all t ∈ [0, t1]. Note that this implies that |ξ(t)− x(t)| ≤ ∆`, ∀t ∈ [0, t1]. Since f and u are locally
Lipschitz, it is always possible to find such D and t1. Let L > 0 be such that

|f(x, u)| ≤ L(|x|+ |u|) ∀|x| ≤ ∆`, u ∈ U

and
|f(x, u(x))| ≤ L|x| ∀|x| ≤ ∆` .
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It is a standard exercise to show that

|x(t, x)| ≤ eLt|x|, ∀t ∈ [0, t1], x ∈ BD . (6.3)

Moreover, we also have for all (ξ, x) ∈ BD, u ∈ U and t ∈ [0, t1] that:
∣∣∣∣
d

dt
ξT (t)ξ(t)

∣∣∣∣ =
∣∣2ξT (t)f(ξ(t), u)

∣∣

≤ 2L(|ξ(t)|2 + |ξ(t)| · |u|)
≤ 2L(3|ξ(t)|2 + 2|u|2)
≤ 6L(|ξ(t)|2 + |u|2) ,

which implies that
d

dt
ξT (t)ξ(t) ≥ −6L(|ξ(t)|2 + |u|2) .

Using standard comparison theorems and the fact that |ξ(t)| ≥ 0, ∀t, one can show that this implies
that

|ξ(t)|2 ≥ max{exp(−6Lt)|ξ|2 + (exp(−6Lt)− 1)|u|2, 0} =: b(t, ξ, u) . (6.4)

Suppose that t2 is such that

a` · t2 · exp(2L · t2) ≤ 1
2

.

Note that

(max{a− b, 0})2 + b2 ≥ a2

4
∀a, b ≥ 0 . (6.5)

Using (6.5) and the definition of b(t, ξ, u) we can write:

b(t2, ξ, u) + |u|2 = max{exp(−6Lt2)|ξ|2 + (exp(−6Lt2)− 1)|u|2, 0}+ |u|2
≥ exp(−6Lt2)|ξ|2 + exp(−6Lt2)|u|2
≥ exp(−6Lt2)|ξ|2 . (6.6)

Finally, using (6.4) and (6.5), we can write:

|x|2 + Q(ξ, x, u) = |x|2 +
∫ T

0
`(ξ(t)− x(t), u)dt

≥ |x|2 + a`

∫ T

0
(|ξ(t)− x(t)|2 + |u|2)dt

≥ |x|2 + a`

∫ t2

0

(
(max{|ξ(t)| − |x(t)|, 0})2 + u2

)
dt

≥ |x|2 + a` · t2
(
(max{

√
b(t2, ξ, u)− exp(Lt2)|x|, 0})2 + |u|2

)

≥ 1
2
|x|2 + a` · t2 ·

(
exp(2Lt2)|x|2 + (max{

√
b(t2, ξ, u)− exp(Lt2)|x|, 0})2 + |u|2

)

≥ 1
2
|x|2 + a` · t2 ·

(
b(t2, ξ, u)

4
+ |u|2

)

≥ 1
2
|x|2 +

a` · t2 · exp(−6Lt2)
4

|ξ|2

≥ a|(ξ, x)|2 ,

where

a := min
{

1
2
,
a` · t2 · exp(−6Lt2)

4

}
.

Obviously, if all conditions hold globally then the result is global.


