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Stabilizability and Dead-Beat Controllers for
Two Classes of Wiener—Hammerstein Models

Dragan Nsi¢ and Georges Bastin

Abstract— Two classes of block oriented models of the Fig. 1. Generalized Hammerstein model.

Wiener—Hammerstein type are considered. We prove that a generic
condition is sufficient for a null controllable discrete-time system of this
form to hgve a s_tabilizing minimum-time dead_—beat contr(_)ll_er. Whgn — W (z) '—N(.) 1 W,(z)
the condition is violated, we show how to design a nonminimum time

stabilizing (dynamic) dead-beat controller. The result is used to obtain . ) .
stabilizability conditions for these systems. Fig. 2. Simple Wiener-Hammerstein model.

Index Terms—Dead-beat, discrete-time, stabilizing, nonlinear, Wiener—
Hammerstein systems. a minimum-time dead-beat controller which is globally stabilizing.

If the condition is violated, we show how it is possible to design

a stabilizing dynamic nonminimum-time dead-beat controller. The

results are, to the best of our knowledge, the first of this kind for
Because of its simplicity, the linear time-optimal controller is a@ class of nonlinear systems. Their importance is reflected in the

easy-to-design option for the control designer [12]. It is well knowfact that we use it in the second part of the correspondence to prove

that a minimum-time dead-beat controller that stabilizes a completelgcessary and sufficient conditions for stabilizability of these systems.

controllable linear discrete-time system can always be designed whgte stabilizability conditions are the same as in the linear case: all

the system is null controllable—just place all the poles of the closedncontrollable modes should be stable.

loop system inside the unit disc, that is, at the origin. However, in the

nonlinear context, all minimum-time dead-beat controllers may render I.

the origin of the closed loop system attractive but not stable, violating .
Sets of real, natural, and complex numbers are, respectively,

in this way the most basic requirement for their implementation. dai N andC. W der SISO lized 1 -
Stability analysis of minimum-time dead-beat controllers for gerﬁj-,enOte aii, IV, and. Yve consider 5 generalized Hammerstein
iscrete-time systems of the form (Fig. 1):

eral discrete-time nonlinear systems leads to computationally ﬁil

. INTRODUCTION

PRELIMINARIES

tractable problems even for “mild” nonlinearities and low order i owi(k41) = Az (k) + bu(k)

systems. The_refore, !t appears to be necessary to consider simpler Soi sk +1) = Fas(k) + glu(k))? 1)
classes of discrete-time nonlinear systems in order to carry out

stability analysis successfully. Such an important class of models, y(k) =ca1 (k) + haa (k)

which are very often _used in black-bo>'< identification of non_line_a(gr SISO simple Wiener—-Hammerstein discrete-time systems (Fig. 2):
systems, are of the Wiener—Hammerstein type [3]. Some applications

of these models can be found in [1] and [4]. The basic building Ti: ai(k+ 1) =Awi (k) + bu(k)

blocks for these systems are parallel and series connections of linear Sor mp(k+1) = Fay(k) + gz (k))? (2)

dynamical blocks and static nonlinearities, which are often of the

form N(-) = ()% ¢ € N. y(k) = haz (k)
The result on controllability of linear systems with positive controlsvherex; € R", i =1, 2, ny + ne =n, u, y € R, ¢ €IN, ¢ > 1,

in [2] was recently used to prove null controllability conditions forand matricesd, F, b, g, ¢, h are of appropriate dimensions.

several classes of Wiener—-Hammerstein systems in [5]-[8]. SomeThe systems (1) and (2) consist, respectively, of a parallel and

related results on output controllability of a class of polynomial syseries connection of two linear dynamical blocks

tems can be found in [10]. The design of minimum-time controllers u( -
H . 7 yl(/‘) an—1 bl(~)
for general polynomial systems was presented in [9] and [11]. In Wi(z) = ") = ezl —A) b= o)
this correspondence, we address for the first time the important issue ya(2) b ‘(7) 3)
of the existence of stabilizing minimum-time dead-beat controllers Wa(z) = Varg) h(zl— F)lg= 22

for two classes of Wiener—Hammerstein systems. For the considered u2(2) az(%)

systems, we show that if the system is null controllable (this isterconnected via the static monomial nonlineatity’. To simplify
always assumed) and a generic condition is satisfied, then there exisésexposition of the results, we assume without loss of generality

that W;(z), i = 1, 2 are strictly proper rational transfer functions.
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The characteristic polynomial of a matiixis denoted a®r (\) = Theorem 1: There exists a stabilizing minimum-time dead-beat
det(A] — F). Given a polynomialP(\) = \* +a,—1 A" ' +-.-+ controller for the generalized Hammerstein system (1) [the simple
a1 A+ ao, we introduce a new polynomidt@ () which is obtained Wiener—Hammerstein system (2)] if the system is null controllable
from P(\) when all the coefficients; are taken with a power € IN,  and polynomialsb[lq](z) anda(z) are coprime (polynomials[lq](z)
that is, we writeP'D(A\) = X' +a? A" 4. 4 afA+al. Also, if  anday(z) are coprime).

we are given a polynomiall = A\* 4+ fes_1A°* "1 + -+ + ki A + ho, Before proving the main results, we need the following.
we use the notation: Proposition 1: Consider the equation:
(P- H)[Q]()\) =\t 4 (hs—1 + (lrt—l)q)\H—s_l w4 tu? P ty—1u+1t,=0 (5)
+ -+ (hiao + hoar)* X+ (aoho)?. ) . . .
wheret; = t;(x), i = 1, ---, q, with £;(0) = 0, are functions in
Hence, the polynomial P - H)/(\) is obtained when we first » ¢ IR". Suppose that the following holds:E > 0, 36, > 0 such
multiply the polynomials”” and H and then takgth powers of all the that if ||z|| < 6. then|t;| < E, Vi =0, 1, ---, ¢ — 1. Denote the
coefficients of the product polynomial. Notice thia® - H)!7(\) =  set of rootsu; to (5) asA. Then it holds thate, > 0, 36, > 0
(H - P)lI()), such that if||«]| < &, then|u;| < eu, Yu; € A.

Minimum-time dead-beat controllers for polynomial systems can Proposition 1 can be interpreted in the following way: if we can
be designed by using a procedure based on the QEPCAD syake coefficients; = ¢;(x) in (5) arbitrarily small by choosing:

bolic computation package [9], [11]. For a systerik + 1) =  small enough, then all the rooks € A to (5) can be made arbitrarily
f(a(k), u(k)), QEPCAD is used to compute the sets: small. Due to space constraints, we omit the proof of Proposition 1.
So = {u:3u € R, fle.,u) =0} We m_trc_)c_iuce the “small control propert_y” (sge [13)).
Definition 2: A control law « = u(x) is said to have the small
Se={v:3u€R, f(r,u) € St} control property (SCP) i¥ ¢, > 0, 36, > 0 such that if||z|| < 6.

The setSy is a set of states € IR" for which the minimum time then [u(z)] < e.. N _ N
necessary to transfer to the origin is at most + 1. The following The following proposition shows that if the conditions of The-

sets are also important: orem 1 are satisfied, then there exists a minimum-time dead-beat
) . ) controller, respectively, for system (1) or (2), = wu(x), which
So = S0, Sk =Sk = Sk, Vk=1.2,---.N (4 has SCP. The statement and proof are given only for the case

since they represent the sets of states for which the minimum tifieSimple Wiener—Hammerstein systems. The proof for generalized
to transfer them to the origin is equal kot 1. It was shown in [5], Hammers.tgln systemg follows the same arguments. 1,

[6], and [8] that if a system (1) or (2) is null controllable, then there Proposition 2: Consider a null controllable system (_2)'“5‘1 (=)
exists a uniform bound on the dead-beat time. In other words, thé@d@2() are coprime, then there exists a minimum-time dead-beat

exists a numbeR such that the sets (4) satistii.,$; = IR". This controlleru = u(x), which has SCP. .
fact is exploited in the sequel. Proof of Proposition 2: We assume without loss of generality

Once we have computed the sefs, the design of a minimum that the matricesd, F' are nonsingular (see, for instance, [5]) and

time dead-beat feedback controller follows easily. Indeed, we kndwt: - <) and(F. g, k) are in controllability canonical form. In order
thatVz € Sy there exists (in general nonunique)(z) such that to simplify the considerations, we introduce the nonsingular feedback

F(z,uo(x)) = 0. Moreover,Ya € Sy, k > 1, there existsu,(x) ransformation

such thatf (x, ufc(:r).) € Sk—1. This defines a static state feedback w(k) = Koy (k) + o(k) )
control law which is expressed as follows (see Example 1 and
[9]-{11]): where Kz (k) is the (unique) minimum-time dead-beat controller
wo(z), if x € S for the linear subsysters; in (2). The state equations for the system
become

u(z) = ui(z), ifres
= R z1(k+1) = Jai (k) + bv(k) @
un(x), if x € Sn (k4 1) = Fas(k) + glea (k))°

which we call a “minimum-time dead-beat controller.” Note that

given anyx, € IR™, the minimum-time controller transfers it towhere.J = A+bk has elements equal to 1 on the first superdiagonal

the origin in minimum-time. This controller is called stabilizing ifand O everywhere else.

the origin of the closed-loop system is asymptotically stable in the From the feedback transformation (6) we see that a minimum-time

Lyapunov sense. dead-beat controller has SCP if and onlywit= v(x) has SCP. We
ipvestigate now which values ef(xz) should be applied on the sets
IIl. STABILIZING PROPERTIES OFDEAD-BEAT CONTROLLERS Sk to have SCP. We denote ag(x) or v; control actions that need

. . . to be applied on the séi; [vi(z) or, equivalently,u;, are not the
In this section we present and prove the main results of the ppied. k [on(@) q Yok
- - I same asv(k) in (7)].
correspondence. In Theorem 1 we give a sufficient condition for o } A
A minimum-time dead-beat control lawy on the setS; must

the existence of a stabilizing minimum-time dead-beat controller for .. .
systems (1) and (2). The condition is generic for null controllablseatISfy the equations
system$ (1) and (2). Then, in Theorem 2, we show that if the 0= Ja, + buo
condition is violated, but the system (1) or (2) is null controllable, 0= Fas + glen).
we can still design a dynamic state feedback dead-beat controller
which is stabilizing. With this result we prove necessary and sufficieftis easily seen that necessarily we have= 0 in order to zero
conditions for stabilizability of systems (1) and (2) (Theorem 3). the |ast equation of the first subsystem. Hence, any minimum-time
INull controllability tests for Wiener—Hammerstein systems that we corfi€ad-beat controller has SCP on the Sgt Consider now the set
sider can be found in [6] and [8]. S1. Since the controller should drive any state from the%eto the
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origin in two steps, we have minimum-time dead-beat controller which has S@Ps «(x), and
5 the closed-loop system becomes
0= .] €T + .]b’Ul + b’UU (8)
. x1(k+1) = Az (k bu(x(k
O:le‘z+Fg(CJl’1+CbUl)q+g(Cl‘l)q. w1k +1) o1 (k) + bu(e (k) 9)

. . xo(k+ 1) = Fao(k) + g(cxi (k).
If ny > 2, then necessarily we have that = 0, since the second- ) )
denote in the sequel the state of the closed-loop system (9) at time

to-last equation of the first subsystem should be equal to zero. In Wg - - O
stepk emanating from the initial state(0) € IR™ asx(k, x(0)).

same way, we obtain that_;(z) =0, Vax € 31-,1, i=1,---,n1. . o -
Consider now the control law,,, (x) on the setS,,. We have Notice that the origin of the closed-loop system (9) is globally
the formula ! ! attractive in finite time. Hence, there exis¥ € IN such that

ny Va(0) € R™, x(k, 2(0)) =0, Yk > N. (10)
0=J"" 2 + Z Jbu;
1=0

. This also implies that the origin is a unique equilibrium of the closed-
=0 -

- loop system. Hence, we need to check only stability of the closed-loop
0= F771+1l2 + Z Fig(c;l'rl(i))q system. ) ) ) .

We consider a controller which has SCP. The SCP implies that
‘ o . . Ve > 0,38 >0,k =0,1,2 -, N such that|lz(k)|| <
whereca (i) = eJ'x1 4+ 3. ¢J'bv;. The first set of equations is g, , (k) € Sy implies that||z(k + 1,z(k)|| < e, VE =

=0

identically equal to zero because = 0, Vi = 1,...,n1 =1l and ¢, 1,2, ---, N. Take arbitraryey > 0 and lete,_; = 6, k =
J" = 0. Notice thateJ'b are coefficients of the polynomiak(z) 1,.... N. We obtain thatVey > 0, 36, > 0 such that if
and the second set of equations can be rewritten as follows: l2(0)|| < &, then||a(k,2(0)]| < ex, Yk = 0, -+, N. Finally,

using (10) and lettingy = €, 6o = 6, we have that'e > 0,36 > 0
such that if||z(0)|| < 6, then||z(k, 2(0))|| < e, VE=0,1, 2, -,
which proves stability of (9) by definition. Q.E.D.

A similar proof can be carried out for generalized Hammerstein
systems and is not given here. In Example 1 we show that violation of
the coprimeness condition of Theorem 1 may result in all minimum-
time dead-beat controllers being destabilizing. A natural question that

0=F" oy +bl%(F)gol + lower order terms of,, .

If bg‘d(z) andas(z), which is the characteristic polynomial f, are
coprime, we have that the matrb&q](F) is nonsingular and hence
b[f’](F)g is full column rank. As a result, we have that, should
satisfy (at least) one equation of the form

a1l arises is whether it is possible to recover stability if a nonminimum-
vl + Z tivn,, =0 time dead-beat controller is used. The following theorem says that
=0 indeed it is always possible to do so.
and coefficients; = #;(x, vo, -+, va,—1) are easily seen from the ~Theorem 2: There exists a (nonminimum-time) dynamic stabiliz-
construction to be polynomialsin, i = 0, 1, -- -, 1 —1 andz, with N9 dead-_beat controller for a system (1) [re_spectively, system (2)] if
#:(0,0, -+, 0) = 0. SCP ofv,., on5,,, follows from Proposition 1. @nd only if the the system (1) [system (2)] is null controllable.
The proof follows by induction. We have checked by direct In order to prove Theorem 2, we cite a technical lemma, first
computations thaty (), k = 0, 1, -- -, ny have SCP. Suppose thatProved in [6].

vi(x),i=0,1,---,k—1, k—1 > n, have SCP on set§; and I;emma 1: Consider polynomials’ (X)) = 3-"% b; A", P2(A) =
conditions of Theorem 1 hold. For contral(z), k > ny +1 onthe 2uizo @iA" Whereai, by € R, a1 = b1 = 1, bo # 0, a0 # 0.

set S, we obtain the equations Suppose thaf (A) and P;7()), ¢ € N, 1 < ¢ are not coprime.
) There exists a polynomiall (1) with real coefficients of the degree
0=bl(PF Ty o PR sy at mostn, such that the polynomial®; () and (P, - H)“(\) are
x [of i, - vi]" + other terms coprime if and only ifg > 1.
Proof of Theorem 2:Consider a null controllable simple
where “other terms” are polynomials in lower powersof i = Wiener—Hammerstein model (2).4f(=) andas( =) are not coprime,
n1, -+ -, k and some powers of entries .ef We have that SCP holds from Lemma 1 it follows that we can find a transfer block of the

for all v;(x), j =0, 1, - --, k—1. Also, sinceb! (F) is nonsingular form W*(z) = H(z)/H(2) such that(b, - H)!*(z) and as(z)
(sincebEQ](z) andas(z) are coprime),F’ is nonsingular andF, g) are coprime and there are no pole-zero cancellations in the transfer

is a controllable pair, the rank of matribglq](F)[F"*"lflg :  function of the augmented first subsystami™(z)W;(z). Hence,
Fk—mi=2g o L. g] is full and, moreoverb[f’](F)Fig + 0, we have that the new augmented system is null controllable and
Vi > 0. Hence, there exists at least one equation of the form it satisfies the conditions of Theorem 1. Therefore, there exists a
a1 minimum-time dead-beat controller for the augmented system which

ol 4 Z fol =0 is stabilizing. Q.E.D.
k — ok Theorem 2 shows that we can make a tradeoff between the
' performance (stability of the closed loop) and the dead-beat time

which v, must satisfy. As before; = ti(z, vo, -+, vk—1), in cases when minimum-time dead-beat controller is not stabilizing.
t:(0,0,---,0) = 0, Vi = 0,1, ---, ¢g. From Proposition 1, it |n [6] it was shown that a polynomial of the ford = \"2 + h,
follows that there exists; () which also has SCP. Q.E.D.h € IR, wheren, is the degree of?:()), can always be found to

Proof of Theorem 1:Suppose that the conditions of Theorensatisfy the conditions of Lemma 1. Hence, we need to augment a
1 are satisfied. Also, without loss of generality we suppose thadll controllable system (1) or (2) with’*(z) whose order does not
the polynomialsa: (=) and a2(z) have no zero rootsWe apply a have to be greater than the degreéf:) in order to obtain a stable
closed loop with finite settling time.

2If the matrixesA or F' are singular, we can design a minimum-time dead- -
beat controller for the nonzero modes only, since the zero modes die out inWe now show that the stabilizing dead-beat controllers can be

finite time when applying zero control. It is not difficult to show that such &'Sed in a constructive proof of stabilizability for systems (1) and (2).
controller would be minimum-time dead-beat for the overall system. Hence, the result on stabilizing properties of dead-beat controllers is
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used to close the gap between controllability and stabilizability favhere the sets are computed to Bg = {x: —x2 + 27 = 0};
the Wiener—-Hammerstein systems we consider. Sy = {x: a1 # 0} = So; 52 = R? — Sy — S1. The functionA ()
Introduce the notatiorD for the open unit disc. We say that theshould satisfyA(z) # 0, + # 0 and A(0) = 0. Hence, we can
systems (1) or (2) arasymptotically controllabléf: when ¢ is odd choose the function so that it satisfies SCP. However, on thé:set
ranqAI — A:b] = n1, VA € C— D, and rank\I — F:g] = n», we have for anyr, # 0 andz; — 0 that|u(z)| — oc. We prove
V,A € C— D; wheng is even ranfAl — A:b] =n,, VA € C— D, instability of the closed-loop system. Fix amy > 0. Consider any
ranAl — F:g] = nz, VA € €C— D, and F has no real positive § > 0. By choosingr2(0) = §/2 and lettingz1 (0) — 0, we have that
eigenvalues\;(F') € R, \;(F) > 1. Note that the above conditionsu(z) = §/4x1(0) and hence for small enough (0) we have have
can be interpreted as “all the uncontrollable modes are stable” foundz(0) such that|=(0)|| < & implies||z(1, z(0))|| > €*. Hence,
systems (1) or (2) (for controllability conditions see [5]-[8]). the origin of the closed-loop system is unstable in the Lyapunov sense
Theorem 3: The system (1) or (2) is stabilizable (by dynamidy definition.
feedback) if and only if it is asymptotically controllable.
Proof of Theorem 3: We decompose the system into its un-
stable (controllable) nonzero modes, zero modes, and uncontrollable IV. CONCLUSION

modes. We can find a coordinate transformation so that in the newryo pasic models arising in black-box identification of nonlinear
coordinates the system becomes systems were considered. We presented conditions for existence
G (k+1)= A& (k) + bru(k) of minimum-time dead-beat controllers that are stabilizing. If the
conditions are violated, we showed how it is possible to design
gg(k —|— 1) = r’lggz(k) —|— bzu(k) . . . P .
a dynamic dead-beat controller, which is stabilizing but not time-
ik +1) = Fini(k) + gi(2€(k))* optimal. The results are then used to state necessary and sufficient
n2(k+ 1) = Fana(k) + g2(2E(K))7. conditions for stabilizability of these models.
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