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Mohammad Tabbara, Member, IEEE, Dragan Nešić, Senior Member, IEEE, and Andrew R. Teel, Fellow, IEEE

Abstract— This paper provides a general framework for an-
alyzing the stability of general nonlinear networked control
systems (NCS) with disturbances in the setting of Lp stability.
We build on the presentation in [1] to provide sharper results
for both Lp gain and maximum allowable transfer interval
(MATI) and detail the property of uniformly persistently exciting
scheduling protocols. This class of protocols were shown to lead
to Lp stability for high enough transmission rates and were a
natural property to demand, especially in the design of wireless
scheduling protocols. The property is used directly in a novel
proof technique based on the notions of vector comparison
and (quasi)monotone systems. We explore these results through
analytical comparisons to those in the literature as well as
through simulations and numerical comparisons that verify that
the uniform persistence of excitation property of protocols is,
in some sense, the “finest” property that can be extracted from
wireless scheduling protocols.

Index Terms— networked control, stabilization, wireless net-
works, scheduling.

I. INTRODUCTION

CENTRAL to the study of networked control systems
(NCS) is the analysis and design of scheduling protocols.

NCS depart from the use of dedicated point-to-point links for
connectivity amongst sensors, controllers and actuators (NCS
nodes), replacing some or all links with a shared network
channel. As in traditional data networks, the problem of
arbitrating multiple access on the channel becomes an issue,
motivating the discussion of the scheduling of nodes and the
design and analysis of scheduling protocols suitable for NCS
applications. By scheduling, we mean the transmission of
information across a link in the form of a discrete packet or
frame.

Canonical NCS examples include so-called by-wire sys-
tems: drive-by-wire and fly-by-wire with analogues in indus-
trial applications. Here, the network in NCS is thought of as
in the sense of a traditional data network. More abstractly, an
NCS can be thought of as any collection of nodes and a control
law where the exchange of information (sensor and controller
values) is governed by a scheduling protocol. Examples of
“abstract” NCS include:

Example 1.1 (Traditional control systems): The scheduling
protocol is trivial: nodes communicate via dedicated point-to-
point connections and there are no constraints on information
exchange to consider.

Example 1.2 (Embedded digital control systems):
Transmission of controller and sensor values to and from the
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device executing the control law is governed by protocols of
electrical bus e.g., a PCI bus, and, typically, the scheduler
of an operating system. Even if the underlying control
system employs point-to-point connections from nodes to
the controller, communication within the controller and its
constituent components are subject to the communication
constraints of various electrical buses and the operating
system.
Example 1.2 is one of the strongest motivations for studying
NCS. It is perhaps taken for granted that the digital control
systems designed and deployed in industry will continue to
behave like their idealized continuous-time (resp., discrete-
time) counterparts, save for the effects of sampling and quanti-
zation. As control systems increase in size and complexity and
the levels of component integration increase, the flow of data
between elements of the system is subject to constraints similar
to that of a “real” network. Indeed, components of systems
based around the PCI-Express architecture communicate via a
switched serial network. Regardless of how controllers and
sensors are connected, at least internally, every non-trival
digital control system can be thought of as an NCS.

From designs based around traditional wireless and wire-
line networks to the growing internal complexity of ”un-
networked” control systems, an increasing number of practical
NCS implementations and their respective traffic scheduling
protocols now exist. Standards-based component connectivity
offers lower implementation costs, greater interoperability and
a wide range of choices in developing control systems. The
price paid for these advantages is the added complexity in the
initial design and analysis of NCS. As alluded to earlier, part
of this complexity comes in the form of issues of arbitration
of network access amongst links, or scheduling, which is of
fundamental importance, but above and beyond scheduling,
NCS also presents the designer with the limitations of

1) finite bandwidth of communication channels;
2) finite precision of encoding and decoding schemes for

transmitted information;
3) pure (propagation) delays of channels;
4) and data dropouts from unreliable channels.

These limitations are not mutually exclusive, however, as
transmission rates increase and with frame and packet sizes
well in excess of machine (CPU) precision, effects of quan-
tization and pure delay play an increasingly diminishing role
in the analysis of most NCS and we forego their treatment in
this paper.

A survey of scheduling and scheduling protocols is provided
in [2] and stability and performance results of wireline NCS
have been examined in [3], [2], [4], [5], [6] and [7]. Although
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round-robin (RR) scheduling is used almost exclusively in
practice, the aforementioned works present various alternative
protocols that demonstrate a performance gain over RR in
simulations and, in special cases, demonstrate the superiority
of the alternative protocols analytically. The NCS design
approach adopted in [6], [8] and [4], [7], [3], [1], and this
paper consists of the following steps:

1) design of a stabilizing controller ignoring the network;
2) and analysis of robustness of stability with respect to

effects that scheduling within a network introduce.
The principal advantage of this approach is its simplicity
– the designer of the NCS can exploit familiar tools for
controller design and select an appropriate scheduling protocol
and transmission rate such that the desired properties of the
network-free system are preserved.

Let ŷ(t) denote the most recently transmitted vector of
output measurements and û(t) the most recently transmitted
vector of control values. For a (multiple-input multiple output)
MIMO NCS, the transmission of an output measurement from
node i will result in ŷi(t+) = yi(t) and the remaining
components of ŷ will be “stale”, that is, ŷj(t+) = ŷj(t) for
all j 6= i. The transmission of a control value to actuator i is
analogous. We can now define the error term e = (ŷ−y, û−u).

The first analytic proof of stability (uniform global exponen-
tial stability) for linear NCS designed with this approach was
provided in [6] that also introduced the try-once-discard (TOD)
scheduling protocol. The idea behind TOD is to associate the
error term ei with each link i. At each transmission instant,
the scheduler will select the node with the largest magnitude
of error for transmission.

Implicit in this setup is that ŷ and û are generally kept fixed
between transmission instants and no estimation or decoding
and encoding of transmissions take place. The NCS model we
introduce does not preclude the use of such schemes, however,
we only analyze their effects in terms of scheduling and their
influence on the scheduling protocol.

Denoting the combined plant and controller state as x, [6],
[8] and [4] model the dynamics of x and e between network
transmission instants with:

ẋ(t) = f(t, x, e) (1)
ė(t) = g(t, x, e) (2)

and describe the node scheduling protocol at transmission
instants via its effects on a particular component of e. The
performance bounds and stability results in [6], [8] and [4]
treat e as a perturbation to the nominal system ẋ(t) =
f(t, x, 0) which is assumed to be a priori stable.

The notion of a scheduling protocol was made precise in
[7] and [3] which present a jump-continuous (hybrid system)
model of general nonlinear NCS with disturbances of the form:

ẋ(t) = f(t, x, e, w) ∀t ∈ [ti−1, ti] (3)
ė(t) = g(t, x, e, w) ∀t ∈ [ti−1, ti] (4)

e(t+i ) = h(i, e(ti)), (5)

where {tn}n∈N is a sequence of transmission instants and h
is the effect of the scheduling protocol on the error e at the
ith transmission instant. Ignoring the dynamics introduced by

(4), we can regard (5) as discrete-time system that captures the
behavior of the scheduling protocol. This notion of describing
the protocol in this fashion allows one to speak of uniformly
globally asymptotically and exponentially stable (UGAS and
UGES) scheduling protocols whenever the associated discrete-
time system is UGAS or UGES. Beyond taxonomy, the notion
of UGES and UGAS protocols and the construction of smooth
Lyapunov functions for the associated UGAS and UGES
discrete-time systems is central to the stability analysis ap-
proach developed in [7] and [3]. Inferring stability of the NCS
employing arbitrary UGES or UGAS scheduling protocols is
tantamount to constructing an appropriate Lyapunov function,
which may be difficult in general. Compared to [6], [3]
provides better MATI bounds for both TOD and RR; requires
less conservative conditions on the NCS to conclude stability
results (linear-gain IOS) using a novel small-gain technique
and the use of appropriate Lyapunov function constructions
for auxiliary UGES and UGAS systems.

Intuition suggests that schemes such as TOD should perform
better than RR, as the node with the greatest error is trans-
mitted at each transmission instant. Indeed, it has been shown
analytically in [3] that TOD yields better performance than
RR, when the scheduler has access to the entire error vector
e at scheduling instants. TOD is certainly implementable
in variants of CAN1 as the error can be encoded into an
arbitration field in a frame but no such arbitration is possible
for wireless channels and, indeed, many wireline channels and,
hence, it is often unreasonable to assume knowledge of the
entire error vector.

Several variants of TOD were introduced in [8] that “es-
timate” the error vector and were shown to outperform RR
in simulations. Stability results are also provided for linear
systems that lead to conservative estimates on performance
bounds. Casting these variants of TOD in the framework of
[3] requires a more general model than (3)-(5). One model of
NCS that accommodates these variants was proposed in [1]

The variants of TOD presented in [8] as well as the RR
scheduling protocol satisfy the following property: there is a
fixed number of transmissions T such that all nodes of the NCS
have transmitted within T transmissions. This T is related to
the notion of a node’s “silent-time” in [8]. This property is
the point of departure of this paper and, for reasons that will
become apparent, we call protocols that satisfy this property
uniformly persistently exciting scheduling protocols, or simply,
PE protocols. Whenever T is known, we say that the protocol
is PET . We prove that all PE protocols lead to Lp stable
NCS for high enough transmission rates when the network-free
system is Lp stable and provide sharper performance bounds
than [3] for NCS employing RR scheduling, the foremost
example of a PE protocol and a protocol that is widely used
in industry.

Our analysis framework analyzes the input-output Lp sta-
bility (IOS) of NCS, the essence of which is that outputs (or
state) of an NCS verify a robustness property with respect
to exogenous disturbances. This notion of stability is the
cornerstone of modern robust and optimal control (see [9],

1Control Area Network.
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for instance) and closely related to the notion of input-to-state
stability (ISS). In fact, if the network-free system is Lp stable,
we show that the NCS remains so with any scheduling protocol
that always visits its links within every T < ∞ consecutive
transmissions, whenever transmissions occur faster than once
every τ∗ secs, where

τ∗ =
ln(z)
|A|T

, (6)

and satisfies

γ exp(−1)Tz1+1/T + z(|A| − γ exp(−1)T )− 2|A| = 0,

with z ∈ [1, 2]. The parameter γ captures robustness properties
of the network-free system and |A| captures the rate at which
the NCS departs from it nominal network-free behavior in the
absence of exogenous disturbances. In particular, when γ =
0, τ∗ = ln(2)/(|A|T ). Under additional technical conditions,
Lp stability specializes to uniform global exponential stability
(UGES) in the absence of exogenous disturbances.

The condition that a scheduling protocol visits all its links
is particularly important in our analysis and, for reasons that
will become apparent, we say that a scheduling protocol is
uniformly persistently exciting in time T , or just PET , if
there is a fixed number T <∞ such that all links of the NCS
have transmitted within every T consecutive transmissions.
The technological limitations of communications channels,
especially wireless channels, leave us with few guarantees
about what information is available to the scheduler for
making its scheduling decisions or it may be the case that
the communication channel is using a collision protocol, in
which case we have very few guarantees at all. Save for RR,
the protocols described and analyzed in the literature (see [3],
[2] and [10], for instance) require more information (NCS
state information) than is typically available, particularly in a
wireless setting. The results presented in [8] partially address
the issue, concluding UGES for linear systems on wireless
networks when using the protocols described therein. The
results in this paper address the issue more precisely and in
greater generality through PE and Lp stability.

PE in the sense we have described is verified by many
network technologies. Ethernet and 802.11 are examples of
CSMA/CD protocols where it is known (see [11], for instance)
that for a finite number of users (links), the expected waiting
time for a link is finite. Although our results are cast in
a deterministic setting, we mention collision protocols to
motivate how natural the notion of PE is in the context
of real networks and to suggest that similar results maybe
pursued in a stochastic setting. and many protocols described
in the aforementioned NCS literature. Building on the informal
definition of PE, the primary contributions of this paper are:

1) that we characterize the fundamental notion of PE
scheduling protocols and demonstrate the importance of
PE in stability analysis;

2) we generalize the NCS model presented in [3] to handle
a wider class of scheduling protocols with a focus on PE
and protocols implementable on wireless channels – in
particular, RR, every protocol presented in [8] and the

hybrid-TOD protocol that we introduce are all PE and
can be analyzed with our framework;

3) under general conditions we show that every PE schedul-
ing protocol leads to the Lp stability of general nonlinear
NCS with disturbances whenever the network-free sys-
tem is Lp stable with sharper Lp gain and MATI bounds
than [1];

4) and we compare our results to those presented in [3]
and [8] and show that we achieve MATI bounds that
are analytically asymptotically larger for linear systems
for many protocols, including RR. To that end, two
case studies are presented and our results are also
compared to simulation-based MATI bounds that place
our theoretically-obtained MATI bound within an order
of a magnitude of upperbounds for the “true” MATI.

A. Paper Outline

The paper is divided into eight additional sections: Section
II presents preliminary definitions and results. Section III
presents our model for NCS and outlines the limitations inher-
ent in the design of scheduling protocols. The notion of PE is
described in detail and characterized in Section IV, along with
examples of NCS scheduling protocols. Section V contains
our main results on the Lp stability of the error dynamics
and Lp stability of the NCS as a whole together with several
remarks on their use. Simulations, analytic comparisons and
case studies are explored in Section VI and the proofs of the
main results are gathered in Section VII. Concluding remarks
are provided in Section VIII and several technical lemmas and
results are developed in the Appendix.

II. PRELIMINARIES

A. Notation

R, R≥0 and N denote, respectively, the sets of real, non-
negative real and natural numbers with the convention that
N = {0, 1, . . . } and N+ = {1, 2, . . . }. Let K denote the
class of continuous functions f : R≥0 → R≥0 that satisfy
f(0) = 0 and f(t1) < f(t2) for any 0 ≤ t1 < t2. We say
that f ∈ K is of class K∞ if it is unbounded. A function
β : R≥0 × R≥0 → R≥0 is said to be of class KL if for
each s ≥ 0 the function β(s, ·) is decreasing to zero in the
second argument and for each fixed t ≥ 0, the function β(·, t)
is of class K. A function g : R → R is said to be of
order φ if there exists a constant K such |g(t)| < Kφ(t)
for t ≥ 0 and we write g = O(φ). Given t ∈ R and a
piecewise continuous function f : R → Rn, we use the
notation f(t+) = lims→t,s>t f(s). All vector (Euclidean)
norms are denoted by | · |, as is the induced matrix 2-norm.
Let f : R → Rn be a (Lebesgue) measurable function and
define

‖f‖p =
(∫

R
|f(s)|pds

)1/p

for 1 ≤ p <∞ and define

‖f‖∞ = inf
vol(S)=0

sup
t∈R\S

|f(t)|.
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We say that f ∈ Lp for p ∈ [1,∞] whenever ‖f‖p <∞. Let
f : R→ Rn and let [a, b] ⊂ R. We use the notation

‖f [a, b]‖p :=

(∫
[a,b]

|f(s)|pds

)1/p

to denote the Lp norm of f when restricted to the interval
[a, b]. Let 0 denote the zero matrix. We define a collection of
sequences of n× n matrices, Sn(T ), such that

{Ai}i∈N ∈ Sn(T ) ⇐⇒
s+T−1∏

i=s

Ai = 0

for all s ∈ N.
Let An denote the set of all n × n matrices and let A+

n

denote the subset of all matrices that are positive semi-definite,
symmetric and have positive entries and let Rn

+ denote the
nonnegative orthant. We will need to use the notion of a
partial order on a vector space. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Rn. The partial order � is given by:

x � y ⇐⇒ (∀i ∈ {1, . . . , n}) xi ≤ yi. (7)

It is also possible to define an analogous partial order on
elements of A+

n in the natural way:

A � B ⇐⇒ B −A ∈ A+
n

A thorough discussion of the properties and consequences of
the partial order � and the induced partial order on elements of
An is given in Appendix I-B. We will often consider vectors
of the form x, where x ∈ Rn and x = (|x1|, . . . , |xn|)T .
That is, x is the vector that results from taking the absolute
value of each scalar component of x. It is important to note
that the |x| = |x|. For a function f : R → Rn, f denotes
the function that takes components of the image of f to their
absolute value. That is,

t
f7→ f(t).

Finally, let Df(t) denote the left-handed derivative of f : R→
Rn:

Df(t) = lim
h→0,h<0

f(t + h)− f(t)
h

.

B. Underlying Stability Theory

Let {ti}∞i=0 be a sequence of increasing time instants such
that 0 < ti+1− ti < τ <∞ for all i ∈ N. Consider the hybrid
system

Σz : ż = f(t, z, w) t ∈ [ti, ti+1] (8)

with “jump” equation

z(t+i ) = h(i, z(ti)), (9)

initialized at (t0, z0) with input w and a prescribed output

y = g(t, z).

We assume enough regularity on f and h to guarantee exis-
tence of the solution z(·, t0, z0, w) on the interval of interest.
By a solution we mean a (not necessarily unique) function
z(·) such that d

dtz(t, t0, z0, w) = f(t, z, w) for t ∈ [ti, ti+1],

and satisfying (9). A solution z(t, t0, z0, w), t ∈ [tk, tk+1)
can be constructed inductively by integrating (8) from the
initial condition (ti, h(i, z(ti)). This construction forgoes the
discussion of the maximum interval of definition of each
integral and the maximum interval of definition of the entire
solution for which we refer the reader to [3, Section II-B].

Definition 2.1: Let p ∈ [1,∞] and γ ≥ 0 be given. We say
that Σz is Lp stable from w to y with gain γ if

∃K ≥ 0 : ‖y[t0, t]‖p ≤ K|z0|+ γ‖w[t0, t]‖p.
Definition 2.2: Let p, q ∈ [1,∞] and γ ≥ 0 be given. The

state z of Σz is said to be Lp to Lq detectable from output y
with gain γ if

∃K ≥ 0 : ‖z[t0, t]‖q ≤ K|z0|+ γ‖y[t0, t]‖p + γ‖w[t0, t]‖p.
An exposition of these ideas as they pertain to NCS can be
found in [3, Section II-B].

Consider the feedback interconnection of two systems of
the same form as Σz:

ẋ1 = f1(t, x1, x2, w) t ∈ [ti, ti+1]
y1 = H1(t, x1, y2, w)

x1(t+i ) = h1(i, x1(ti)) (10)
ẋ2 = f2(t, x1, x2, w) t ∈ [ti, ti+1]
y2 = H2(t, y1, x2, w)

x2(t+i ) = h2(i, x2(ti)). (11)

This interconnection admits a small-gain theorem presented in
[3, Section II-B] in the same vein as that of systems without
jumps:

Theorem 2.3: Suppose that p ∈ [1,∞], we have the follow-
ing:

1) System (10) is Lp stable from (y2, w) to y1 with gain
γ1;

2) x1 in (10) is Lp to Lp detectable from (y1, w);
3) system (11) is Lp stable from (y1, w) to y2 with gain

γ2;
4) x2 in (11) is Lp to Lp detectable from (y2, w); and
5) the small-gain condition γ1γ2 < 1 holds.

Then, the system (10), (11) is Lp stable from w to (x1, x2).
We will often be interested in analyzing stability properties
of the interconnected system (10), (11) in the absence of
exogenous perturbations. To that end, we use the standard
notion of uniform global exponential stability (UGES):

Definition 2.4: Consider system Σz and suppose that w ≡
0. We say that Σz is uniformly globally exponentially stable
if for every z0 ∈ Rnz ,

∃K, L ≥ 0 : |z(t, t0, z0)| ≤ K exp(L(t0 − t))|z0| ∀t ≥ t0
In particular, the system (10), (11) with w ≡ 0 is UGES
whenever the origin of the system with w ≡ 0 is uniformly
globally fixed time interval stable (UGFTIS)2 with linear gain
and is Lp stable. We will use the following sufficient condition
in this paper to simplify the presentation:

2See [3, Section II-B] for a definition of the UGFTIS property.
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Theorem 2.5: Suppose that in addition to satisfying the
hypotheses of Theorem 2.3, systems (10) and (11) satisfy

∃ L1 ≥ 0 : |f1(t, x1, x2, 0)| ≤ L1(|x1|+ |x2|)
∃ L2 ≥ 0 : |f2(t, x1, x2, 0)| ≤ L2(|x1|+ |x2|)
∃ L3 ≥ 0 : |h1(i, x1)| ≤ L3|x1|
∃ L4 ≥ 0 : |h2(i, x2)| ≤ L4|x2|,

for all x1 ∈ Rnx1 , x2 ∈ Rnx2 , all t ≥ t0 and all i ∈ N. Then
the system (10) and (11) with w ≡ 0 is UGES.

III. WIRELESS AND WIRELINE NETWORKED CONTROL
SYSTEMS

Computer networks and communications systems present
rich and sophisticated models of varying degrees of complex-
ity, within stochastic and deterministic settings, and of vari-
ous underlying physical communication media. The network
model presented in this paper aims to capture the essential
aspects of control over networks in a deterministic setting. In
that vein, we assume:

Assumption 1: All NCS links are connected via a shared,
serial bus on which such links either have exclusive access to
the network medium or no access at all. /

Assumption 2: Transmitted frames are received error-free
and network throughput is high enough to ignore delays due to
transmission time.This is especially true for wireline channels
but some wireless channels may exhibit notable delays. As the
focus of this paper is scheduling, we defer the treatment of
delays and appeal to the robustness properties verified by the
class of systems considered to assert that the results in this
paper remain true for sufficiently small delays. /

A. A Model for NCS

We consider general nonlinear NCS with disturbances con-
ceptually depicted in Figure 1, where xP and xC are, respec-
tively, states of the plant and controller; y is the plant output
and u is the controller output; ŷ and û are the vectors of the
most recently transmitted plant and controller output values
via the network and e is the network-induced error defined as

e(t) :=
(

ŷ(t)−y(t)
û(t)−u(t)

)
.

The key difference between this model and that presented
in [3] is the addition of the scheduler and its corresponding
decision-vector ê that are represented by “dashed” elements
in Figure 1. Special cases of ê-based scheduling were first
considered in [8]. The model we introduced in [1] and used
here formalizes the ê-based scheduling that was considered
in [8] and it generalizes the NCS models considered in [3].
Motivation for considering the class of NCS depicted in Figure
1 is given later in Assumption 3 and the ensuing discussion.

We model the NCS in Figure 1 as a so-called jump-
continuous (hybrid) system. Node data (controller and sen-
sor values) are transmitted at transmission instants at times
{t0, t1, . . . , ti}, i ∈ N satisfying ε < tj+1 − tj ≤ τ for all
j ≥ 0 where τ > 0 and ε > 0.3 The constant τ is the

3This ensures that Zeno solutions cannot occur.

Plant Network Controller

u

ˆ

xp e xc

Scheduler ê(i,ê)e

û

y y

scheduler selects a link j out of
{1, …, N}

Fig. 1. Conceptual diagram of scheduled NCS.

maximum allowable transmission interval (MATI). The system
is initialized at time ts with ts ∈ [0, t0], t0 − ts < τ .

Our NCS model is prescribed by the following dynamical
and jump equations. In particular, for all t ∈ [ti−1, ti]:

ẋP = fP (t, xP , û, w) (12)
ẋC = fC(t, xC , ŷ, w) (13)

u = gC(t, xC) y = gP (t, xP ) (14)
˙̂y = 0 ˙̂u = 0 ˙̂e = 0, (15)

and at each transmission instant ti,

e(t+i ) = (I −Ψ(i, ê(ti)))e(ti) (16)

ê(t+i ) = Λ(i,Ψ(i, ê(ti))e(ti), ê(ti)) (17)

and we refer to Ψ as the scheduling function and Λ as the
decision-update function. The effect of the protocol on the
error is such that if the mth to nth nodes are scheduled. at
transmission instant ti the corresponding components of error,
en, . . . , em, experience a “jump”. It may be the case that a
single logical node (a “link”) consists of several sensors or
several actuators or both with the scheduling of that node
having the effect of setting multiple components of e to zero. It
may also be the case that the network allows the scheduling of
more than one node at each transmission and our model allows
for this extra degree of freedom. For transmission of nodes
mth to nth nodes, though it is not necessary, we will always
assume that en(t+i ), . . . , em(t+i ) = 0 and, hence, Ψ(i, ê(ti))
is a diagonal matrix consisting of entries [aij ], where aii = 1
for n ≤ i ≤ m and 0 elsewhere. We group the nodes that are
scheduled together into logical links, associating a partition
of size si, denoted by ei = (ei1, ei2, . . . , eisi

), of the error
vector e such that we can write e = (e1, . . . , eN ). We say
that the NCS has N links and

∑N
i=1 si nodes. Note that this is

purely a notational convenience and simplifies the description
of scheduling protocols and the NCS itself. We combine the
controller and plant states into a vector x = (xP , xC) and
similarly to [3, pp. 1653], assuming gP , gC are a.e. C1, for
example, we can rewrite (12)-(15):

ẋ = f(t, x, e, w) t ∈ [ti−1, ti] (18)
ė = g(t, x, e, w) t ∈ [ti−1, ti] (19)
˙̂e = 0 t ∈ [ti−1, ti] (20)

e(t+i ) = (I −Ψ(i, ê(ti)))e(ti) (21)

ê(t+i ) = Λ(i, Ψ(i, ê(ti))e(ti), ê(ti)) (22)

where x ∈ Rnx , e ∈ Rne , w ∈ Rnw , ê ∈ Rnê . Note that
implicit to our model is the following assumption:
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Assumption 3: Only the transmitted value Ψ(i, ê(ti))e(ti)
is accessible by the scheduler – the full vector e(ti) is
unavailable. /

IV. NCS SCHEDULING PROTOCOLS

Assumption 3 is quite realistic in a range of wireline NCS
and archetypical in wireless NCS. It was the main moti-
vation for introducing ê-based scheduling in [8]. Moreover,
Assumption 3 is not satisfied by the protocols considered in
[3], excepting RR, that otherwise assume that e(ti) is always
accessible by the scheduler, where (21)-(22) are replaced with
the single e jump equation:

e(t+i ) = (I −Ψ(i, e(ti)))e(ti) . (23)

The maximum-error-first try-once-discard (MEF-TOD or just
TOD) protocol presented in [6] provides part of the rationale
for Assumption 3 and operates as follows:

Example 4.1 (MEF-TOD): At a transmission instant tj , the
scheduler transmits link i with the largest error |ei(tj)| so
that the instantaneous error is minimized after jumps. TOD
can be written in the form (23), where Ψ(i, e) = Ψ(e) =
diag{dj(e)Isj

}, j = [1, . . . , N ], Isj
are sj × sj identity

matrices and

dj(ê) =
{

1 if j = min (arg max1≤k≤N |ek|)
0 otherwise. (24)

It was shown that TOD preserves stability properties of the
network-free system in (linear systems) [4] and (nonlinear
systems with disturbance) [3] for sufficiently small MATI.

Clearly, TOD does not satisfy Assumption 3 since it requires
access to the full error vector e. It is easy to see that this is
equivalent to the scheduler having access to, for example, each
remote sensor’s measurements prior to transmission which
is quite unreasonable for most NCS. TOD is implementable
through binary countdown in CAN-like medium access proto-
cols and generally not implementable over wireless channels
– see [12] and [2] for details. /

Example 4.2 (Round-robin): Round-robin scheduling is
employed in the Token Ring and Token Bus network protocols
as well as (once) being the ubiquitous scheduling protocol of
time-sharing operating systems. Each link of the network is
assigned a unique index and links are “visited” in order of
index. In terms of NCS scheduling, the discrete-time system
is a linear time-varying system with no dependence on state:

e+ = (I −∆(i))e, (25)

where ∆(i) = diag{δ1(i)Is1 , . . . , δN (i)IsN
}, and

δk(i) =
{

1 if k − 1 = i mod N
0 otherwise.

It has been established (in [3] and [7], for instance) that
RR preserves stability properties of the network-free system
for high enough transmission rates. As the protocol does not
depend on NCS state it makes RR easily implementable, and
is an example of protocol satisfying Assumption 3.

For the majority of communications channels, we are
resigned to employing scheduling protocols that are state-
independent or rely upon a decision-vector whose evolution

is only (partially) coupled to plant and controller states and
only at transmission instants. Ignoring the potential presence
of (continuous) decision-vector dynamics, the only way the
discrete-time system (31) is coupled to the plant and controller
states is through the term Ψ(i, ê)e, which we can regard as an
output of the combined error-plant-controller system that we
can design or choose as the protocol designers. Examples of
this style of protocol can be found in [8] and we describe
how two protocols, constant-penalty TOD and hybrid time-
scheduling, can be expressed in the context of our NCS model.

Loosely, if we could design ê dynamics and the associated
jump equation such that ê was a good estimate of e, and the
following protocol was used:

e+ = (I − Φ(ê))e, (26)

where Φ comes from Example 4.1, the TOD scheduling func-
tion, the expectation is that, the NCS should be qualitatively
similar to an NCS using the unmodified TOD protocol. The
issue then becomes designing ê so it is a good enough estimate
for this to be true but there are several fundamental obstacles
that make this difficult:

For unmodified TOD, it is easy to see that the scheduler may
never visit a link because, for example, the link in question is
sensing a set of outputs that remain constant or are evolving
very slowly compared to other outputs. If this status quo ever
changes, that is, if the outputs of the unvisited link suddenly
“speed up”, the magnitude of error for that link will eventually
increase to a level where it will cause the scheduler to visit
(transmit) the link.

TOD’s reluctance to visit links until a link’s error is
sufficiently large is a major issue when we are using an
estimate of error rather than the error itself: in light of the
aforementioned scenario, if the magnitude of error |ej | of
a link j is initially low, the magnitude of the estimate |êj |
should be low as well and TOD, using the estimate to make
the scheduling decision Φ(ê), will (correctly) not visit the link.
Without ê dynamics, when the link’s error potentially grows
to a stage where unmodified TOD would have visited it, êj is
left unchanged because the scheduler has not yet visited the
link. Paradoxically, the scheduler needed to have visited the
link to see the growth in error in order to have updated êj

appropriately and consequently to have known to visit link j.
An ideal solution would be to design ê dynamics so that,

by running a copy of x and e dynamics in the scheduling
device, ê is a copy of e.4 Of course, in the presence of arbitrary
integrable disturbances, this is not possible to do exactly. The
protocols described in [8] are a first attempt at estimation in
this loose sense but these protocols are forced to visit each link
regularly through an additional mechanism described below,
essentially acknowledging that the estimates can potentially
be arbitrarily bad.

Finite silent-time ensures that links are visited within a
fixed-length finite window (T ) of transmission instants but it
is not necessarily the case that the silent-time thresholds are

4Running both x and e dynamics would mean that the dimension of ê is
at least ne + nx so by copy of e, we mean ê = (e, x) and when scheduling,
only make use of the e component of ê.
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exceeded by links in the same order every T transmissions or
it may be the case that the silent-time threshold is not exceeded
by some links that were nevertheless visited.

An alternative approach to ensure that all links are
visited within any contiguous T transmissions is to
enforce interleaved RR scheduling every M transmis-
sion instants. Labelling the links {1, ..., N} and trans-
mission instants {t1, t2, . . . , }, at transmission instants
t1, tM+1, . . . , t(M−1)N+1, links 1, 2, . . . , N would be trans-
mitted, respectively. At other transmission instants, any other
scheduling protocol can be used including the “estimated”
TOD variant employed in CP-TOD.

This hybrid protocol, described in Example 4.5, RR schedul-
ing (Example 4.2) as well as the protocols employing the
mechanism of silent-time are particular examples of protocols
verifying a general protocol robustness property that we refer
to as uniform persistency of excitation and described in the
proceeding section.

A. PET Scheduling Protocols

Motivated by the results in [3], we consider the following
auxiliary discrete-time system induced by the protocol:

e+ = (I −Ψ(i, ê))e (27)
ê+ = Λ(i,Ψ(i, ê)e, ê) (28)

Henceforth, we will “disconnect” the protocol from the NCS
and refer to (27)-(28) as the protocol. It was shown in [3] that
stability properties of the auxiliary system e+ = (I−Ψ(i, e))e
induced by (23) are instrumental in proving Lp stability
properties for a class of NCS for which Assumption 3 does
not hold. For the class of NCS we consider, partial stability
(only in e) of the system (27)-(28) is essential for stability. To
motivate our PE definition, let V (i, e, ê) = |e| in (27)-(28),
we have ∆V = −|Ψ(i, ê)e| and if there exists a T <∞ such
that, for every k ∈ N, ê(k) = ê ∈ Rnê , e(k) = e ∈ Rne :

k+T−1∑
i=k

|Ψ(i, φê(i))e| ≥ |e| , (29)

where φê(i) := φê(i, e, ê), we can conclude partial stability
(in e) of the system (27)-(28) using persistency of excitation
(PE) arguments (see [13], for instance). We can rephrase (29)
by saying that each link is visited within T transmissions. It is
tempting to conjecture that (29) is enough to prove the stability
of (18)-(22) but, notwithstanding the results presented in [3],
this is not true in general.

Indeed, it can be shown that if we integrate the equations
(19)-(20) on the interval [t+i−1, ti] and then use (21), (22) at
ti, the NCS induces the following discrete-time system:

e+ = (I −Ψ(i, ê))(e + d) (30)
ê+ = Λ(i,Ψ(i, ê)(e + d), ê) , (31)

where d captures the inter-sample behavior of e(·). For specific
initializations (k, e(k), ê(k)) and specific (bounded) values of
d(j), j ≥ k the solution of the system (30)-(31) coincides
with that of (18)-(22) at time instants t+j , j ≥ k. In contrast,
while the system (27)-(28) may satisfy the PE condition

(29) and, hence, is partially stable in e, there may exist a
bounded disturbance d for its perturbed counterpart (30)-(31)
that destroys the PE property along with partial stability in
e. Hence, our formal definition of PE needs to possess an
appropriate robustness property and will be stated using (30)-
(31):

Definition 4.3: The protocol (27)-(28) is said to be (ro-
bustly) persistently exciting in T or PET if there exists
T ∈ (0,∞) such that (29) holds for all k ∈ N, ê(k) =
ê ∈ Rnê , e(k) = e ∈ Rne and all d ∈ `∞, where φê(i) :=
φê(i, e, ê, d[k,i]) is the ê component of the solution of the
system (30)-(31). /

Definition 4.4: Uniform persistence of excitation in time T
admits an equivalent definition to (29) in terms of the action
of the scheduling protocol on the error e at each transmission
instant:

i+T−1∏
k=i

[I −Ψ(i, φê(k))] = 0, (32)

for every k ∈ N and any initial condition e(i), ê(i) where we
have written φê(k) in place of φê(k, i, e(i), ê(i), d[k,i]).
More intuitively, a protocol is PE if it regularly visits every
NCS node within a fixed period of time.

The protocols below are typical of what has been proposed
in NCS literature and what is used in practice.

We will always assume an N -link NCS with the ith linking
consisting of Ni nodes and an error vector ei.

Two PET protocols that satisfy Assumption 3 are presented
next though we note that the simplest example of a PE protocol
is RR (Example 4.2).

Example 4.5 (Hybrid RR-TOD Scheduling Protocol):
The hybrid RR-TOD scheduling protocol enforces PE in a
time-periodic manner. For a prescribed M ∈ N, the protocol
takes the form:

e+ = (I − Ω(i, ê))(e + d) (33)
ê+ = (I − Ω(i, ê))ê + Ω(i, ê)(e + d) , (34)

Ω(i, ê) :=
{

diag{p1(i)Is1 , . . . , pN (i)IsN
}, mod(i, M) = 0

diag{d1(ê)Is1 , . . . , dN (ê)IsN
}, otherwise,

where, pn(i) = 1 when mod(i/M,N) = n − 1 and pn(i) =
0 otherwise with dj defined in (24). The hybrid RR-TOD
protocol is PET with T := MN . In particular, when M = 1,
we obtain the simplest PET protocol: “classical” RR.

Example 4.6 (Constant-Penalty TOD): Constant-penalty
TOD (CP-TOD) [8] uses the mechanism of “silent-time”
to ensure that every link is eventually visited within a
finite window of time: each link j has a counter rj that
is incremented at every transmission instant that it is not
scheduled and reset to zero when it is scheduled. Irrespective
of the underlying scheduling protocol, when a link’s counter
reaches a predetermined threshold, say M , it will be
scheduled. This ensures that every link is scheduled within
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N + M transmission instants5. The protocols in [8] use
the mechanism of “silent-time” to enforce PE: each link j
has a counter rj that is incremented at every transmission
instant that it is not scheduled and reset to zero when it is
scheduled. Irrespective of the underlying scheduling protocol,
when a link’s counter reaches a predetermined threshold, say
M , it will be transmitted. This ensures that every link is
scheduled within M + N − 1 transmission instants, hence,
T = M + N − 1. The underlying scheduler in this example
is TOD and corresponds to the constant-penalty TOD scheme
in [8] with a penalty (vector) of Θ:

e+ = (I − Φ(r, ζ))(e + d) (35)
ζ+ = (I − Φ(r, ζ))(ζ + Θ) + Φ(r, ζ)(e + d) (36)
r+ = (I − Φ(r, ζ))(r + 1), (37)

where 1 = [1 . . . 1]T , the scheduling function Φ is given by
Φ(r, ζ) = diag{ϕj(r, ζ)Isj

}, j ∈ [1, . . . , N ] and

ϕn(r, ζ) =


1 if [n = min{m : rm ≥M})
∨
(
n = min

(
arg max1≤j≤N |ζj |

)
∧(∀m ∈ {1, . . . , N})(rm < M)]

0 otherwise.

(38)

The role of estimating e is played by ζ and through the
term Φ(r, ζ)e, ζ is updated with ej whenever the jth link
is transmitted. For those links that are not transmitted, the
estimated error is incremented by a fixed penalty Θ that might
capture the worst-case growth of error (in the absence of
disturbance) for a given MATI. In addition to performing this
ad hoc estimation, the scheduling protocol counts the number
of transmission instants that a link has not been visited for,
the link’s silent time, and schedules links that have exceeded
a predetermined threshold for silent-time. In this way, if ζ is
degenerating into an arbitrarily bad estimate of e, all links will
continue to be visited in within a fixed-length, finite window
of transmission instants through the mechanism of forcing a
finite silent-time for each link. In a loose sense, the protocol’s
behavior will “often” be qualitatively similar to that of RR , a
protocol that has been shown to lead to Lp stability of the NCS
with appropriate conditions. A proof that this indeed holds
true for CP-TOD and other silent-time protocols is provided
in Section VII-A.

Theorem 5.1 and Theorem 5.2 confirm that PE in the sense
of (29) is the only property needed to assert Lp stability of an
NCS for high enough transmission rates when the network-free
system is Lp stable. PE is clearly not a necessary condition for
Lp stability as [3] shows that TOD leads to Lp stability under
appropriate conditions. It may also be the case that the open-
loop system in question is Lp stable. These two examples can
be considered to be extremes as the former requires the free
flow of error information from nodes to the scheduler and the
latter is atypical in practice and theoretically uninteresting.

5The silent-time protocols described in [8] have the links measure continu-
ous time as opposed to counting the number of transmission instants elapsed
(discrete-time) and set the silent-time threshold in terms of an integer multiple
of MATI, say Mτ . Since, for all i ∈ N, Mτ ≥ M(tsi+1−tsi+1 ), our silent-
time threshold will be smaller for the same M but the protocol will behave in
precisely the same manner as when using the verbatim definition of silent-time
given in [8].

For all other situations, PE seems to be a key property for
stabilization of the NCS.

V. Lp STABILITY OF NCS

A. Lp Stability Properties of Error Dynamics with PET
Scheduling Protocols

The following theorem is the main component of our Lp

stability result for the NCS as a whole. In essence, we show
that for sufficiently small MATI, PE protocols lead to the
finite Lp stability of the e-subsystem. Note that in the both this
section and the proceeding section, we only consider stability
of e and x. The decision-vector, if used in the protocol being
analyzed, may fail to verify any stability properties but as ê
has no physical significance as a state vector whose evolution
is governed by the protocol, this is generally not an issue.

Theorem 5.1: Suppose that the NCS scheduling protocol
(18)-(22) is uniformly persistently exciting in time T and there
exists A ∈ A+

ne
and a continuous ỹ : Rnx × Rnw → Rne

+ so
that the error dynamics (19) satisfy

g(t, x, e, w) � Ae + ỹ(x, w) (39)

for all (x, e, w) ∈ Rnx ×Rne ×Rnw , all t ∈ (ti, ti+1), for all
i ∈ N. Further suppose that MATI satisfies τ ∈ (κ, τ∗), κ ∈
(0, τ∗) where

τ∗ =
ln(2)
|A|T

. (40)

Then, the NCS error subsystem (19)-(22) is Lp stable from ỹ
to e for p ∈ [1,∞] with gain

γ̃(τ) =
T exp(|A|(T − 1)τ)(exp(|A|τ)− 1)

|A|(2− exp(|A|Tτ))
. (41)

Proof: The proofs are deferred until Section VII-A and
further technical results needed in the proof can be found in
the Appendix.

Remark 1: The inequality (39) is the vector analogue of the
dissipation-type inequality

V̇ ≤ LV + ỹ t ∈ (ti, ti+1)

used in [3]. In some respects, the function e can be viewed as a
particular choice of a vector Lyapunov function. The additional
property

∃ ρ ∈ [0, 1) : V (e(t+i )) ≤ ρV (e(ti)) ∀ i ∈ N

was enough to establish the finite Lp gain of the e-subsystem
in [3]. This strict decrease at transmission instants is not
verified by general PE protocols and a different argument
based on the effect of the scheduling protocol on e and, hence,
e directly is used in the proof of the theorem. /

Remark 2: Suppose that g(t, x, e, w) = Bx+Ce+Dw and
let A = [aij ], where aij = max{|cij |, |cji|} and ỹ(x, w) =
Bx + Dw. We immediately have that A and ỹ(x,w) satisfy
condition 2 of Theorem 5.2 and ‖ỹ(x, w)‖p = ‖Bx+Dw‖p ≤
‖Bx‖p + ‖Dw‖p. Whenever g satisfies a linear growth bound
of the form |g(t, x, e, w)| ≤ L(|x| + |e| + |w|), it is straight-
forward to construct an appropriate A and ỹ. /
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B. Lp Stability Properties of NCS with PET Scheduling Pro-
tocols

The following theorem provides the closed-loop Lp stability
result for persistently exciting scheduling protocols and is the
main result of the paper. It asserts that PE protocols lead
to Lp stability of the NCS for sufficiently small MATI. While
we do not provide a closed-form expression for MATI bounds,
the bounds are readily obtained in examples by numerically
solving for τ∗ in (42). We do, however, provide a closed-form
approximation in Section VI-C for the purposes of analytic
comparison and show that this lowerbound is asymptotically
larger by a factor of O(N1/2) than the MATI obtained in [3]
for linear systems using the RR scheduling protocol.

Theorem 5.2: Consider NCS (18)-(22) and suppose that:
1) the hypotheses of Theorem 5.1 hold with ỹ = G(x) +

H(w);
2) system (18) is Lp stable from (e, w) to G(x) with gain

γ for some p ∈ [1,∞]; (19) is Lp to Lp detectable from
ỹ;

3) and MATI satisfies τ ∈ (ε, τ∗), ε ∈ (0, τ∗), where

τ∗ =
ln(z)
|A|T

and z solves

γκTz1+1/T + z(|A| − γκT )− 2|A| = 0, (42)

where κ = exp(−1) and |A| comes from (39).
Then, the NCS is Lp-stable from w to (x, e) with linear gain.

Proof: Together with the detectability assumptions, con-
dition 1 ensures that (19) is Lp-stable from (x, w) to e with
gain γ̃(τ) where

γ̃(τ) =
T exp(|A|(T − 1)τ)(exp(|A|τ)− 1)

|A|(2− exp(|A|Tτ)).
(43)

We note that γ̃(τ) is differentiable and monotonically increas-
ing in τ for τ ∈ [0, ln(2)/|A|T ). By the inverse function
theorem (see [14, Theorem 2-11], for instance), there exists
a unique solution τ∗ to γ̃(τ)γ = 1. By monotonicity of γ̃(τ),
γ̃(τ)γ < 1 for any τ ∈ [0, τ∗). Moreover, as γ̃(0) = 0, and by
monotonicity of γ̃ and monotonicity of its (implicit) inverse,
τ∗ > 0 for every γ <∞. The proof is complete in light of the
small-gain theorem for jump-discontinuous systems, Theorem
2.3.

Remark 3: Suppose that the network-free system is Lp

stable from w to x with gain γ and the NCS satisfies the
hypotheses of Theorem 5.2. Then for any γ∗ > γ, it is possible
to show that there exists a MATI τ such that the NCS is Lp

stable from w to x with gain γ∗. This corollary of Theorem
5.2 is particularly useful in the design of optimal/robust
controllers. /

VI. CASE STUDIES & ANALYTICAL BOUNDS

For simplicity, and since Lp stability results are not provided
in [8], we restrict the discussion to linear time-invariant system
in the absence of exogenous disturbances and verify UGES,
specializing Lp stability results via Theorem 2.5. Primarily,
we will examine performance bounds of NCS employing RR

scheduling as it is the only scheduling protocol that can been
mutually treated by the analysis frameworks in this paper, [3]
and [8].

Suppose that the simplified equations for an N -link NCS
take the form

ẋ = A11x + A12e ė = A21x + A22e (44)

together with jump equations (21)-(22) and let σ1 and σ2 to be
the largest and smallest singular value of P , respectively, that
solve the Lyapunov matrix equation AT

11P +PA11 = −I . We
set ỹ = A21x, and let kh =

∣∣A11 A12
A21 A22

∣∣. From the discussion in
[3, Section VII], we have that the MATI bound for RR stated
therein, which we will refer to as τ∗[3] is given by6

τ∗[3] =
1

kh

√
N

ln

(
kh + γ

kh

√
(N − 1)/N + γ

)
, (45)

the MATI bound, τ∗[8], obtained via [8][Theorem 1] is given
by

τ∗[8] = min

{
ln(2)
khT

,
S

8
,

S

16σ2

√
σ2/σ1kh

}
(46)

where S = [kh

√
σ2/σ1

∑N
i=1(i + T − N)]−1, and that of

this paper, τ∗new is given by Theorem 5.2 – readily obtained by
application of Remark 2 and solving (42) numerically.

A. CH-47 Tandem-Rotor Helicopter

We consider the networked control of a CH-47 tandem-rotor
helicopter in horizontal motion about a nominal airspeed of 40
knots as discussed in [15]:

ẋP = AxP + Bu; y = CxP , (47)

where CP = [ 0 1 0 0
0 0 0 57.3 ] ,

AP =
[−0.02 0.005 2.4 −32
−0.14 0.44 −1.3 −30

0 0.018 −1.6 1.2
0 0 1 0

]
, BP =

[
0.14 −0.12
0.36 −8.6
0.35 0.009
0 0

]
.

The outputs y1, y2 are vertical velocity (knots/hr) and pitch al-
titude (radians) respectively and the inputs u1, u2 are collective
rotor thrust and differential collective rotor thrust respectively.
Let the stabilizing output feedback be u = Ky where K is
given by K =

[−12.7177 −45.0824
63.5123 25.9144

]
. The design of K is due

to [16]. We assume that only outputs are transmitted via the
network thus e = ŷ−y with two links (N = 2) in the NCS and,
hence, we have A11 = AP + BP KCP , A12 = BP K, A21 =
−CP A11, and A22 = −CP A12, kh = 19482, σ1 = 0.0009
and σ2 = 399.22. For the purposes of applying Remark 2, we
select A = [ 550.78 239.09

239.09 0 ] with |A| = 640.09 and A22 � A.
We can readily compute the L2 gain from ỹ to e and have
γ = 769.

From the perspective of MATI bounds, neither the results of
this paper nor those in [8] distinguish between different PET

scheduling protocols. The comparison results are summarized
below:

6In principle, different choices of Lyapunov function and “output” ỹ in the
framework presented in [3] may lead to improved MATI bounds. We have
followed [3, Section VII] in choices of Lyapunov function and ỹ – these were
choices that lead to the best previously obtainable MATI bounds for RR.
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1) The MATI bounds are shown in Table I with the bounds
in this paper larger than those obtained using the results
of [8] by a factor of 1014 and larger than the bound
obtained by the results of [3] by factor of 23. The bounds
τ∗new and τ∗[8] apply to any PET protocol for the original
two-link system (44). The bound τ∗[3] only applies to RR
(T = N = 2).

2) The improvements are significant and to put them into
perspective, when using RR, τ∗new that achieves UGES
is equivalent to a network throughput of 3.7 Mbps
(assuming 128 byte frames), achievable on current
802.11g wireless networks, while τ∗[3] requires an
effective network throughput of 84 Mbps.

3) We formally fix σ1, σ2, γ, kh and |A| and plot τ∗[3] and
τ∗[8] with T = N ∈ [1, 1000] in Figure 2 to examine the
behavior of the bounds as the number of links grow. We
also fix N = 2 and allow T ≥ 2 to vary for τ∗[8] and τ∗new.7

The differences are marked on the log10(T )× log10(τ∗)
scale used in Figure 2.

 Theorem 5.2
 [1, Section III] T=N
  [2, Theorem 1] N=2, T ≥ 2 
  [2, Theorem 1] T=N

log10HTL

log10

1.25 1.5 1.75 2.25 2.5 2.75 3

20

15

10

5

Fig. 2. CH-47 Tandem-Rotor Helicopter MATI bounds comparison for PET

protocols, T ∈ [1, 1000].

T = 2 T = 6 T = 50
τ∗new 2.81× 10−4 9.12× 10−5 1.08× 10−5

τ∗[3] 1.20× 10−5 N/A N/A
τ∗[8] 3.13× 10−19 8.52× 10−20 9.47× 10−21

τ∗new/τ∗[8] 8.97× 1014 1.07× 1015 1.14× 1015

τ∗new/τ∗[3] 23.4 N/A N/A

TABLE I
MATI BOUNDS ACHIEVING UGES FOR THE CH-47 TANDEM-ROTOR

HELICOPTER WITH PET PROTOCOLS.

B. Batch Reactor

The linearized model of an unstable batch reactor is a two-
input-two-output NCS that can be written as:

ẋP = AP xP + BP u y = CP xP

7For the purposes of applying Theorem 5.2, it is immaterial as to whether
N is fixed and T ≥ N is varied or whether T = N is varied.

where CP =
[

1 0 1 −1
0 1 0 0

]
AP =

[ 1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

]
BP =

[
0 0

5.679 0
1.136 −3.146
1.136 0

]
.

The system is controlled by a PI controller with a state-space
realization prescribed by

ẋC = ACxC + BCy u = CCxC + DCy

and

AC =
[

0 0
0 0

]
BC =

[
0 1
1 0

]
−CC =

[
2 0
0 8

]
−DC =

[
0 2
−5 0

]
.

Assuming that only the outputs are transmitted via the
network, we have a two link NCS (N = 2, N1 = N2 = 1)
with error and state equations[

ẋ
ė

]
=
[

A11 A12

A21 A22

] [
x
e

]
(48)

where

A11 =
[

AP + BP DCCP BP CC

BCCP AC

]
A12 =

[
BP DC

BC

]
A21 = −

[
CP 0

]
A11 A22 = −

[
CP 0

]
A12.

The error equation is given by

ė = A22e + A21x (49)

and, in light of Remark 2, we have

ė � Ae + ỹ, (50)

where ỹ = A21x and A = A22, as A22 is diagonal and has
all nonnegative entries.

We compute the L2 gain for the x subsystem from the input
e to an auxiliary output A21x which is γ ≈ 15.9222 however
we note that the “gain” from A21x to ỹ is unity (see Remark
2), hence, γ is also the gain from input e to output ỹ. Lastly,
we note that |A| = 15.73, σ1 = 11.09, σ2 = 0.0245 and
kh = 61.46.

As in Section VI-A, neither the results of this paper nor
those in [8] distinguish between different PET scheduling
protocols with respect to MATI bounds. The comparison
results are summarized below:

1) The MATI bounds are shown in Table II with the bounds
in this paper larger than those obtained using the results
of [8] by a factor of 107 and larger than the bound
obtained by the results of [3] by factor of 1.5. The
bounds τ∗new and τ∗[8] apply to any PET protocol for
the original two-link system (44). The bound τ∗[3] only
applies to RR (T = N = 2).

2) The improvements are not as dramatic as those real-
ized in Section VI-A, essentially, since the system is
“slower”. When using RR, τ∗new that achieves UGES is
equivalent to a network throughput of 84 kbps (assuming
128 byte frames), achievable on current 802.11g and
802.11b wireless networks and τ∗[3] requires an effective
network throughput of approximately 125 kbps.
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3) We formally fix σ1, σ2, γ, kh and |A| and plot τ∗[3] and
τ∗[8] with T = N ∈ [1, 1000] in Figure 2 to examine the
behavior of the bounds as the number of links grow. We
also fix N = 2 and allow T ≥ 2 to vary for τ∗[8] and
τ∗new. Despite the relatively modest improvements for the
nominal two-link system using RR, the differences are
significant on the log10(T ) × log10(τ∗) scale used in
Figure 3 when we formally increase T or, equivalently,
the number of links.

 Theorem 5.2
 [1, Section III] T=N
  [2, Theorem 1] N=2, T ≥ 2 
  [2, Theorem 1] T=N

log10HTL
log10

1.25 1.5 1.75 2.25 2.5 2.75 3

- 14

- 12

- 10

- 8

- 6

- 4

- 2

Fig. 3. Batch Reactor MATI bounds comparison for PET protocols, T ∈
[1, 1000].

T = 2 T = 6 T = 50
τ∗new 0.0123 0.004 4.75× 10−4

τ∗[3] 0.0082 N/A N/A
τ∗[8] 1.05× 10−9 2.86× 10−10 3.18× 10−11

τ∗new/τ∗[8] 1.18× 107 1.40× 107 1.49× 107

τ∗new/τ∗[3] 1.50 N/A N/A

TABLE II
MATI BOUNDS ACHIEVING UGES FOR THE BATCH REACTOR WITH PET

PROTOCOLS.

C. Analytic Comparison With Existing Results

We focus on comparing performance bounds of RR schedul-
ing as it is the only scheduling protocol that can been mutually
treated by the analysis frameworks in this paper, [3] and [8].

The bounds in [3] are, in turn, analytically better than
the bounds provided in [8] for every scheduling protocol
considered therein.

Consider the NCS dynamics equations[
ẋ
ė

]
=
[

A11 A12

A21 A22

] [
x
e

]
(51)

and suppose the RR scheduling protocol is used in an NCS
consisting of N links. By Theorem 5.1, the error subsystem
is Lp stable from ỹ to e if τ ∈ [0, τ∗e,new) where

τ∗e,new =
ln(2)
|A|N

.

We require A to be a symmetric, nonnegative matrix with
nonnegative entries such that for all e ∈ Rne

+ , (A − A22)e ∈

Rne
+ . A procedure for constructing such an A was given in

Remark 2. The analogous bound for error subsystem stability
in [3] is given as τ∗e,old where, following [3, Section VII],

τ∗e,old

1
2
√

Nkh

ln
(

N

N − 1

)
for LTI systems employing RR scheduling, where kh =∣∣A11 A12

A21 A22

∣∣. We have that,

τ∗e,new

τ∗e,old

≥ 2kh ln(2)

|A|
√

N ln
(

N
N−1

) . (52)

In the limit, we have

lim
N→∞

τ∗e,new

τ∗e,old

≥ 2kh ln(2)
|A|

√
N.

That is, τ∗e,new = O(N1/2) · τ∗e,old.
The remarks toward the end of Theorem 5.2 establish that

there is indeed a “best” MATI to look for, that is, there exists a
unique τ∗new that satisfies (42). Although (42) is transcendental
in τ∗new, we seek a lower bound by assuming it has the form:

τ∗new =
ln(z)
|A|T

.

We substitute this into the small-gain condition (42) (43)
yielding a new equation in z:

R(z) = γ exp(−1)Tz1+1/T +z(|A|−γ exp(−1)T )−2|A| = 0,

where z ∈ [1, 2] and γ is the gain from (e, w) to x. As we are
establishing a MATI bound for RR, we henceforth set T = N ,
the number of links in the NCS. We seek to approximate R(z)
by a degree 1 polynomial R∗(z) = Mz + c for which we can
write the MATI bound

τ∗new ≥
ln(−c/M)
|A|T

.

Conservatively, we can upperbound M by

M = max
z∈[1,2]

∂R

∂z

= max
z∈[1,2]

(
γ exp(−1)N(1 + 1/N)z1/N

+ |A| − γ exp(−1)N
)

.

It is obvious that the maximum is attained at z = 2 so we
have

M = γ exp(−1)N(1 + 1/N)21/N + |A| − γ exp(−1)N.

We also have that R(1) = −|A| for all γ > 0 and N ≥ 1 so
we impose the condition R∗(1) = M + c = −|A| and have
that the solution to R∗(z) = 0 is given by z = |A|/M + 1.
Our lowerbound for τ∗new becomes τ∗new ≥ 1

|A|N ln(η), where

η = 1+
|A|

|A| −N exp(−1)γ + 21/N (N + 1) exp(−1)γ
. (53)

The analogous result for RR scheduling in [3] has that

τ∗old =
1√
Nkh

ln

(
kh + γ

kh

√
(N − 1)/N + γ

)
.
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It is clear that limN→∞ τ∗old = 0 and limN→∞ τ∗new = 0 and
the arguments of the logarithm in each MATI expression tend
to unity. As the function ln(1 + ζ) is analytic in the region
|ζ| < 1, we can differentiate τ∗old and τ∗new with respect to N
to evaluate the limit limN→∞ τ∗new/τ∗old via l’Hôpital’s rule
and it can be shown that

lim
N→∞

τ∗new

τ∗new

= lim
N→∞

αN1/2,

where

α =
4(γ + kh)

3|A|
ln
(

|A|
|A|+ exp(−1)γ(1 + ln(2))

+ 1
)

.

That is, τ∗new = O(N1/2) · τ∗old.

D. Comparison With Simulation-based Bounds

Simulations and alternative techniques for calculating MATI
are a key test of the practicality of the MATI bounds and
stability results produced in this paper and in the literature. For
linear systems with equidistant transmission times employing
RR scheduling, an actual analytic MATI bound can be com-
puted as discussed in [3, Section VII-A]. For general protocols,
however, simulations are the only resort and, as such, no firm
conclusions can be drawn vis-a-vis the theoretical bounds for
arbitrary NCS.

We revisit the example of Section VI-A and simulate the
system employing the silent-time variant of TOD (CP-TOD
with zero penalty) described in Example 4.6. As discussed, for
an N -link NCS, the protocol is PET with T = N + M − 1,
where M denote the silent-time threshold. Determining the
MATI via simulation involves iterating over an initial search
space, τ ∈ [0, 1] seconds, for example, and successively
integrating (44) for some choice of τ and applying the protocol
map. The NCS is deemed to be unstable when |(xi, ei)|
exceeds a large constant multiple, K, of the norm of the
initial condition (x0, e0), and exponentially stable if the norm
of (x, e) satisfies |xi, ei| < R|(x0, e0)| exp(−λiτ) at the ith
transmission instant. In practice, various heuristics are used to
“guess” appropriate value of λ, K and R and the simulation
is repeated for a large number of randomly selected initial
conditions. This process itself is iterated for various τ ∈ [0, 1]
using Algorithm 1, where the parameter δ determines the
coarseness of the search.

Algorithm 1 Binary search for a MATI upperbound.
1: τu ← 1, τl ← 0, τm ← 0.5
2: while τu − τl > δ do
3: run simulation transmitting every τm seconds
4: if system is exponentially stable then
5: τl ← τm

6: else {system is not exponentially stable}
7: τu ← τm

8: end if
9: τm = 1

2 (τu + τl)
10: end while

The simulation-based MATI bounds, τm, are compared to
those obtained via Theorem 5.2, τ∗new, for various values of the

silent-time threshold M (through the effect on T ) in Table III
to one significant figure.

T 10 102 103 104

τ∗new 5.4× 10−5 5.4× 10−6 5.4× 10−7 5.4× 10−8

τm 2.0× 10−4 1.9× 10−5 8.0× 10−6 8.7× 10−8

τm/τ∗new 3.7 3.5 15 1.6

TABLE III
THEORETICAL AND SIMULATION-BASED MATI BOUNDS ACHIEVING

UGES FOR THE CH-47 TANDEM-ROTOR HELICOPTER USING THE

CP-TOD PROTOCOL.

Importantly, both τ∗new and τm are O(1/T ) over the range
of T considered and τ∗new is within an order of a magnitude of
τm. Intuitively, beyond the parameter T of the PE property, the
remaining attributes of the protocol that are not captured by
our analyis framework contribute no more than a multiplicative
constant to the “true” MATI. In the case of the bounds obtained
via Theorem 5.2, it can be seen from (53) that for |A| �
N , τ∗new ≈ ln(2)/(|A|T ), hence the approximately constant
multiples in Table III.

We emphasize that this particular set of simulations only
suggest that Theorem 5.2 may not be overly conservative
when used to find MATI bounds and that general properties of
scheduling protocol beyond uniform persistency of excitation
may be relatively fine.

VII. PROOFS OF MAIN RESULTS

We will first need the following technical lemma to conclude
that the NCS error decreases over T transmission instants for
small enough MATI.

Lemma 7.1: Suppose that A ∈ A+
n and {Qi}i∈N ∈ Sn(T ),

arbitrary. Then

(∀n ∈ N)

∣∣∣∣∣
n+T−1∏

i=n

Qi exp(Aτ)

∣∣∣∣∣ < 1 (54)

for all τ ∈ [0, τ∗) where τ∗ = ln(2)
|A|T .

Proof: We have that 0 � Qi � I . By using Properties
2 and 3 of Lemma 1.4 we can upperbound instances of Qn

with I where need be, hence,

Qn+1 exp(Aτ)Qn exp(Aτ) =
(Qn+1 + Qn+1(exp(Aτ)− I))(Qn + Qn(exp(Aτ)− I))
= Qn+1Qn + Qn+1(exp(Aτ)− I)Qn

+ Qn+1(exp(Aτ)− I)Qn(exp(Aτ)− I)
+ Qn+1Qn(exp(Aτ)− I)

� Qn+1Qn + 2(exp(Aτ)− I) + exp(2Aτ) + I − 2 exp(Aτ)
= Qn+1Qn + exp(2Aτ)− I.

This establishes the base case for a proof by induction. To
continue, we assume that

n+K−1∏
i=n

Qi exp(Aτ) �

(
n+K−1∏

i=n

Qi

)
+(exp(AKτ)−I) (55)
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and show that
n+K∏
i=n

Qi exp(Aτ) �

(
n+K∏
i=n

Qi

)
+ (exp(A(K + 1)τ)− I).

We first note that
n+K∏
i=n

Qi exp(Aτ) = Qn+K exp(Aτ)
n+K−1∏

i=n

Qi exp(Aτ)

(56)
and, by assumption, we can use (55) to bound the right-hand
side of (56) to obtain:

n+K∏
i=n

Qi exp(Aτ)

� Qn+K exp(Aτ)

((
n+K−1∏

i=n

Qi

)
+ exp(AKτ)− I

)
= (Qn+K + Qn+K(exp(Aτ)− I))×((

n+K−1∏
i=n

Qi

)
+ exp(AKτ)− I

)

=

(
n+K∏
i=n

Qi

)
+ Qn+K(exp(AKτ)− I)

+ Qn+K(exp(Aτ)− I)

(
n+K−1∏

i=n

Qi

)
+ Qn+K(exp(Aτ)− I)(exp(AKτ)− I)

�

(
n+K∏
i=n

Qi

)
+ exp(A(K + 1)τ)− exp(Aτ)− exp(AKτ)

+ I + exp(AKτ)− I + exp(Aτ)− I

=

(
n+K∏
i=n

Qi

)
+ exp(A(K + 1)τ)− I.

Hence, by induction we have shown that

n+T−1∏
i=n

Qi exp(Aτ) �

(
n+T−1∏

i=n

Qi

)
+ exp(ATτ)− I

=

(
n+T−1∏

i=n

Qi

)
+ p(ATτ),

where p(s) :=
∑∞

k=1
sk

k! . As {Qi}i∈N ∈ Sn(T ), we have∣∣∣∣∣
(

n+T−1∏
i=n

Qi

)
+ p(ATτ)

∣∣∣∣∣ ≤
∣∣∣∣∣
n+T−1∏

i=n

Qi

∣∣∣∣∣+ |p(ATτ)|

≤ |p(ATτ)|

and by Lemma 1.3, for all τ ≥ 0, we have

|p(ATτ)| = |p(|A|Tτ)| = exp(|A|Tτ)− 1. (57)

Define
ρ̃(τ) = exp(|A|Tτ)− 1 (58)

and it is clear that we wish to choose τ such that ρ̃(τ) < 1.
We let ρ̃(τ∗) = 1 in (58) and solve for τ∗ to immediately

yield

exp(|A|Tτ∗) = 2⇒ τ∗ =
ln(2)
|A|T

. (59)

By monotonicity of ρ̃(τ) in τ , ρ̃(τ) < 1 for all τ ∈ [0, τ∗).

A. Proof of Theorem 5.1

We write ỹ(s) in place of ỹ(x(s), w(s)) and let Qi = I −
Ψ(i, ê(ti)) for each i ∈ N and note that {Qi}i∈N ∈ Sne

(T ).
By hypothesis, we have

g(t, x, e, w) = ė � Ae + ỹ(t), (60)

on each interval [ti−1, ti] and the ith component of ė is given
by: ∣∣∣∣ d

dt
ei(t)

∣∣∣∣ = ∣∣∣∣ lim
h→0,h<0

ei(t + h)− ei(t)
h

∣∣∣∣
≥ lim

h→0,h<0

|ei(t + h)| − |ei(t)|
h

= Dei(t),

hence,
De � Ae + ỹ(t) (61)

Since the right-hand side of (61) is globally Lipschitz, uni-
formly in t, by applying Corollary 1.8 with the initial condition
e(ti−1) we can establish the bound:

e(t+i ) � Qi exp(A(ti − ti−1))e(t+i−1)

+ Qi

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds (62)

for all i ∈ N.
Since I � exp(At) for all t ≥ 0 and with Properties 2 and

3 of Lemma 1.4, we can upperbound (62) with

e(t+i ) � Qi exp(Aτ)×(
e(t+i−1) + exp(−Aτ)

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

)
(63)

for all i ∈ N.
For brevity, define Ri = Qi exp(Aτ). With a MATI τ , we

can immediately solve the linear recurrence (63) to produce
the bound:

e(t+k ) �

(
k∏

i=0

Ri

)
e(ts)

+ exp(−Aτ)
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

(64)

for all k ∈ N.
Fix τ ∈ (0, τ∗), where τ∗ comes from (59), and let λ =

ρ̃(τ), where ρ̃(·) is defined in (58). By Lemma 7.1,

1 > λ ≥

∣∣∣∣∣
n+T−1∏

i=n

Qi exp(Aτ)

∣∣∣∣∣ =
∣∣∣∣∣
n+T−1∏

i=n

Ri

∣∣∣∣∣
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for every τ ∈ (0, τ∗). We set the disturbance term ỹ ≡ 0 and
have that

|e(t+mT−1)| ≤

∣∣∣∣∣
mT−1∏

i=0

Ri

∣∣∣∣∣ |e(ts)| ≤ λm|e(ts)|
(
∀m ∈ N+

)
.

(65)

With ỹ = 0, De � Ae and for the initial condition e(s0) = e0,
we have

e(s) � exp(A(s− s0))e0. (66)

Taking the norm of the left and right hand sides of (66) and
using the bound in (65) as the initial condition, we have that for
all m ∈ N+, θ ∈

(
tmT−1, t(m+1)T−1

)
, the following bound

on |e| holds:

|e(θ)| ≤ exp(|A|(θ − tmT−1))λm|e(ts)|. (67)

Raising to the pth power and integrating over each interval
[tmT−1, t(m+1)T−1], we obtain

‖e[tmT−1, t(m+1)T−1]‖pp ≤
λmp

p|A|
(exp(|A|pTτ)− 1) |e(ts)|p

(68)

for all for all m ∈ N+ and all p ∈ [1,∞). We can also bound
|e| on the interval [ts, tT−1] by |e(θ)| ≤ exp(|A|(θ−ts))|e(ts)|
and obtain an Lp bound as above:

‖e[ts, tT ]‖pp ≤
1

p|A|
(exp(|A|pTτ)− 1) |e(ts)|p (69)

for any p ∈ [1,∞).
Taking the pth root in (68) and (69) and summing with

m→∞, we have that, for all t ≥ ts,

‖e[ts, t]‖p ≤
∞∑

i=0

λi

(
exp(|A|pTτ)− 1

p|A|

)1/p

|e(ts)|

=
1

1− λ

(
exp(|A|pTτ)− 1

p|A|

)1/p

|e(ts)|, p ∈ [1,∞). (70)

The L∞ bound is easily obtained by taking limp→∞ ‖e[ts, t]‖p
in (70):

‖e[ts, t]‖∞ ≤
1

1− λ
exp(|A|Tτ)|e(ts)|. (71)

We now set e(ts) = 0 in (64) and estimate the contribution
from the disturbance term to yield:

e(t+k ) � exp(−Aτ)
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds.

(72)

Applying the variations of parameters formula to (72), we have

e(θ) � exp(−Aτ) exp(A(θ − tk))×
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

+
∫ θ

tk

exp(A(θ − tk))ỹ(s)ds (73)

for θ ∈ [tk, tk+1]. Consider the term
∏k

n=i Rn. By the division
algorithm, we can always write k − i + 1 = qT + r where
q, r ∈ Z and r ≤ T − 1. In particular, q =

⌊
k+1−i

T

⌋
. For

q > 0, we can now rewrite the product in consideration as:

k∏
n=i

Rn =

(
k∏

n=k′+1

Rn

) k′∏
n=i

Rn

 , (74)

where k − k′ = r and k′ + 1 − i = qT . For q = 0, we have
k − i + 1 = r and for notational convenience, we can set
k′ = i− 1 in (74). By the PET property (32),∣∣∣∣∣∣

k′∏
n=i

Rn

∣∣∣∣∣∣ ≤ λq = λb(k+1−i)/Tc,

∣∣∣∣∣
k∏

n=k′+1

Rn

∣∣∣∣∣ ≤ exp(|A|r) ≤ exp(|A|(T − 1)τ).

With this observation, together with the estimate (73), we can
bound |e(θ)| by:

|e(θ)| ≤ exp(|A|(θ − tk)) exp(|A|(T − 2)τ)×
k∑

i=0

λb
k+1−i

T c
∫ ti

ti−1

exp(|A|(ti − s))|ỹ(s)|ds

+
∫ θ

tk

exp(|A|(θ − tk))|ỹ(s)|ds (75)

for all θ ∈ [tk, tk+1]. Let ϕ(s) = exp(|A|s). Integrating (75)
and using Young’s inequality8 yields the L1-norm estimate:

‖e[tk, tk+1]‖1 ≤ ‖ϕ[0, τ ]‖1 exp(|A|(T − 2)τ)×
k∑

i=0

λb
k+1−i

T c
∫ ti

ti−1

exp(|A|(ti − s))|ỹ(s)|ds

+ ‖ϕ[0, τ ]‖1‖ỹ[tk, tk+1]‖1. (76)

Applying Hölder’s inequality to the term
∫ ti

ti−1
exp(|A|(ti −

s))|ỹ(s)|ds in (76), we have

‖e[tk, tk+1]‖1 ≤ ‖ϕ[0, τ ]‖1×

exp(|A|(T − 1)τ)
k∑

i=0

λb
k+1−i

T c‖ỹ[ti−1, ti]‖1

+ ‖ϕ[0, τ ]‖1‖ỹ[tk, tk+1]‖1

≤ ‖ϕ[0, τ ]‖1 exp(|A|(T − 1)τ)
k+1∑
i=0

λb
k+1−i

T c‖ỹ[ti−1, ti]‖1.

(77)

Analogously, taking suprema in (75) and applying Young’s

8Letting ∗ denote convolution over the interval Ω, f ∈ Lp(Ω), g ∈ Lq(Ω),
Young’s Inequality is ‖f ∗ g‖r ≤ ‖f‖p‖g‖q for r−1 = p−1 + q−1 − 1,
p, q, r > 0. See [17, Chap. 25, Convolution of Functions], for instance.
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inequality, we can bound the L∞ on the interval [tk, tk+1] by

‖e[tk, tk+1]‖∞ ≤ exp(|A|τ)×

exp(|A|(T − 2)τ)
k∑

i=0

λb
k+1−i

T c‖ϕ[0, τ ]‖1‖ỹ[ti−1, ti]‖∞

+ ‖ϕ[0, τ ]‖1‖ỹ[tk, tk+1]‖∞

≤ ‖ϕ[0, τ ]‖1 exp(|A|(T−1)τ)
k+1∑
i=0

λb
k+1−i

T c‖ỹ[ti−1, ti]‖∞.

(78)

We can regard e in the left-hand side of (73) as the image of
ỹ under the action of a linear operator G with bounds for the
norms ‖G‖1 ≤ ‖G‖∗1 and ‖G‖∞ ≤ ‖G‖∗∞ given by (77) and
(78). As ‖G‖∗1 = ‖G‖∗∞, by the Riesz-Thorin Interpolation
Theorem (see Appendix 1.2), ‖G‖p ≤ ‖G‖∗1 = ‖G‖∗∞ for all
p ∈ [1,∞]. Summing (76) (equivalently, (78)), we have

‖e[ts, tM ]‖p ≤ ‖ϕ[0, τ ]‖1 exp(|A|(T − 1)τ)×
M−1∑
k=−1

k+1∑
i=0

λb
k+1−i

T c‖ỹ[ti−1, ti]‖p p ∈ [1,∞]. (79)

Applying Lemma 1.1 to (79), and taking the limit as M →∞
in the summation, the Lp norms can be estimated by

‖e[ts, tM ]‖p ≤ ‖ϕ[0, τ ]‖1 exp(|A|(T − 1)τ)×

‖ỹ[ts, tM ]‖p
∞∑

k=0

λb
k
T c

= ‖ϕ[0, τ ]‖1 exp(|A|(T − 1)τ)×

‖ỹ[ts, tM ]‖p
T

1− λ
p ∈ [1,∞]. (80)

Either ‖ỹ[ts, tM ]‖p = 0 or the ratio ‖e[ts, tM ]‖p/‖ỹ[ts, tM ]‖p
is bounded by an expression that is independent of M , hence,
(80) remains true with t in lieu of tM for any t ≥ ts.

Using the definition of ϕ, substituting the value of λ from
(58) and adding the contributions of (80) and (70) yields:

‖e[ts, t]‖p ≤
|e(ts)|

2− exp(|A|Tτ)

(
exp(|A|pTτ)− 1

p|A|

)1/p

+

T exp(|A|(T − 1)τ)(exp(|A|τ)− 1)
|A|(2− exp(|A|Tτ))

‖ỹ[ts, t]‖p. (81)

for p ∈ [1,∞). Making similar substitutions but this time
adding the contributions of (80) and (71), the L∞ bound is
given by

‖e[ts, t]‖∞ ≤
exp(|A|Tτ)|e(ts)|
2− exp(|A|Tτ)

+

T exp(|A|(T − 1)τ)(exp(|A|τ)− 1)
|A|(2− exp(|A|Tτ))

‖ỹ[ts, t]‖∞. (82)

VIII. CONCLUSION

This paper presented a general framework for the study of
general nonlinear control systems with disturbances that relies
upon properties of the network-free system and the uniform
persistency of excitation interval of the scheduling protocol

used. We provided a proof for the following qualitative state-
ment that intuition suggests: for high enough transmission
rates, a scheduling protocol that regularly visits every NCS
node within a fixed period of time ought to preserve stability
properties of the network-free system. In particular, the order
and the precise times at which nodes are visited are immaterial
to the analysis so long as the persistency of excitation property
of the protocol is preserved uniformly. Quantitatively, this pa-
per provides sharp bounds for the MATI of the RR and hybrid
scheduling protocols, significantly improving upon bounds
provided in [3] and [1]. However, the PE approach to the
analysis of protocol performance neglects any improvement
that might be won by using estimation schemes that do not
directly influence the periodicity of the uniform PE property
and this is reflected in the disparity between theoretical MATI
values and those obtained by simulations for protocols that are
PE over a large number of transmissions but employ estimation
schemes for “inter-PE” transmission instants.

With the analysis focussed on the periodicity of the PE
property, there are no theoretical arguments to support using
protocols other than RR and, in special cases, TOD. Simula-
tions and experiments suggest otherwise and the development
of frameworks that are able to address the performance of
scheduling protocols using properties complementary to PE
would be an important step to a systematic approach to the
design of NCS and scheduling protocols.

APPENDIX I
LINEAR AND NONNEGATIVE ANALYSIS

The following is a collection of definitions and results
from linear and convex analysis and the theory of differential
equations in Banach spaces needed to carry out the main
proofs in this paper. These are also useful results in their own
right. Lemma 1.3 is a new result to the best of the authors’
knowledge and is novel in combining two notions of positivity
of matrices to conclude a tight bound on matrix norms of
functions of matrices.

A. Linear Analysis & Spectral Theory

Lemma 1.1 (Discrete Young’s Inequality): Suppose M ∈
[0,∞], and un ≥ 0 and hn ≥ 0 for all n ∈ N, then

M∑
t=0

(
t∑

n=0

ht−nun

)p

≤

(
M∑

n=0

hn

)p( M∑
n=0

up
n

)
. (83)

This is based on [18, Theorem 8.14] and [19, Example 5.2],
following almost immediately from a generalized Hölder’s
inequality.

Theorem 1.2 (Riesz-Thorin): Let F : An → An be a linear
operator and suppose that p0, p1, q0, q1 ∈ [1,∞] satisfy p0 <
p1 and q0 < q − 1. For any t ∈ [0, 1] define pt, qt by

1
pt

=
1− t

p0
+

t

p1

and
1
qt

=
1− t

q0
+

t

q1
.
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Then
‖F‖pt→qt

≤ ‖F‖1−t
p0→q0

‖F‖tp1→q1
.

In particular, if ‖F‖p0→q0 ≤M0 and ‖F‖p1→q1 ≤M1, then

‖T‖pt→qt
≤M1−t

0 M t
1.

For any A ∈ An, we denote the spectrum of A by σ(A)
and the spectral radius by r(A) = supλ∈σ(A) |λ|.

A matrix calculus for self-adjoint A ∈ An can be defined
for (real) analytic functions f(s) =

∑
k=0 cksn in the natural

way:
f(A) =

∑
k=0

ckAk. (84)

The series converges absolutely (in the matrix norm) and
satisfies

σ(f(A)) = f(σ(A)) (85)
|f(A)| ≥ r(f(A)). (86)

This matrix calculus is a specialization of the Riesz-Dunford
calculus for linear operators discussed in [20] and equation
(85) is known as the spectral mapping theorem. With appro-
priate conditions on A and f , we may obtain equality in (86).
This motivates the following lemma:

Lemma 1.3: Let A ∈ A+
n and f : R → R analytic

everywhere with f ∈ K. Then

|f(A)| = f(|A|). (87)
Proof: Write f(A) =

∑∞
k=0 ckAk with ck ∈ R for all

k ∈ N. Let SM =
∑M

k=0 ckAk and S = limM→∞ SM . We
have that

|S∗M − S∗| = |(SM − S)∗| = |SM − S|,

since |B∗| = |B| for any B ∈ An. We also have that

S∗M =
M∑

k=0

ck(Ak)∗ =
M∑

k=0

ckAk,

and passing to the limit M →∞ shows that f(A)∗ = f(A).
Recall that for any self-adjoint B ∈ An, |B| = r(B), hence

f(A)∗ =
∞∑

k=0

ck(A∗)k =
∞∑

k=0

ckAk = f(A)

⇒ |f(A)| = r(f(A)).

Since A is symmetric and non-negative, σ(A) ⊂ [0,∞).
Since A consists of non-negative entries, by [21, Chapter 1,
Theorem 3.2], r(A) is a spectral point of A. Hence, by the
continuity of f and the spectral mapping theorem, we have

|f(A)| = r(f(A)) = sup
λ∈σ(f(A))

|λ|

= sup
λ∈σ(A)

|f(λ)| = f(r(A)) = f(|A|). (88)

The last equality in (88) follows from the fact that A is self-
adjoint and f , being continuous and increasing, attains its
maximum at r(A) when restricted to σ(A).

B. The Partial Order � and its Properties

Let Rn◦
+ denote the interior of the positive orthant. The par-

tial order � discussed in the Preliminaries can be formalized
by

x � y ⇐⇒ y − x ∈ Rn
+ (x, y ∈ Rn), (89)

an ordering on Rn. We write

x ≺ y ⇐⇒ y � x ⇐⇒ y − x ∈ Rn◦
+ . (90)

Let π(Rn
+) denote the set of n×n matrices with non-negative

entries. We note thatA+
n ⊂ π(Rn

+) and that elements of π(Rn
+)

are Rn
+-invariant and this property completely characterizes

π(Rn
+). That is,

A ∈ π(Rn
+) ⇐⇒ (∀x ∈ Rn

+)Ax ∈ Rn
+. (91)

Let A,B ∈ π(Rn
+). We write

A � B ⇐⇒ B −A ∈ π(Rn
+). (92)

This induced partial order � defined on elements of π(Rn
+)

satisfies two key properties:
Lemma 1.4: Let A,B ∈ π(Rn

+), A � B. Then
1) (∀x ∈ Rn

+)Ax � Bx;
2) (∀C ∈ π(Rn

+))AC � BC.
3) (∀C ∈ π(Rn

+))CA � CB.
Proof: Property 1 follows from the Rn

+-invariance char-
acterization of elements of π(Rn

+):

A � B ⇒ (B −A) ∈ π(Rn
+)

⇒ (∀x ∈ Rn
+)(B −A)x ∈ Rn

+

⇒ (∀x ∈ Rn
+)Ax � Bx.

Property 2 is similar: Fix x ∈ Rn
+ and by invariance, (∀C ∈

π(Rn
+))Cx ∈ Rn

+. Let Cx = yC to emphasize that C is the
free variable. We have

(∀C ∈ π(Rn
+))(BC −AC)x

⇐⇒ (∀C ∈ π(Rn
+))((B −A)Cx

⇐⇒ (∀C ∈ π(Rn
+))(B −A)yC ∈ Rn

+,

where the last equivalence follows from invariance of B−A.
Since invariance is also a sufficient condition for characterizing
elements of π(Rn

+), we have that:

(∀C ∈π(Rn
+))(B −A)yC ∈ Rn

+

⇐⇒ (∀C ∈ π(Rn
+))(B −A)Cx ∈ Rn

+

⇐⇒ (∀C ∈ π(Rn
+))(BC −AC) ∈ π(Rn

+)
⇐⇒ (∀C ∈ π(Rn

+)) ⇐⇒ AC � BC.

Now release x and the result follows. Property 3 is proved in
much the same way.

C. Quasimonotonicity and results on (vector) Differential In-
equalities

Let (Rn
+)∗, the dual space of Rn

+ be given by

(Rn
+)∗ = {ϕ ∈ (Rn)∗ : ϕ(x) ≥ 0 ∀x ∈ Rn

+}. (93)
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Definition 1.5: A function H : Rn → Rn is said to be
quasimonotone increasing if for all x, y ∈ Rn and all ϕ ∈
(Rn

+)∗ we have

x � y, ϕ(x) = ϕ(y)⇒ ϕ(Hx) ≤ ϕ(Hy). (94)
Quasimonotonicity also admits the following characterization
presented in [22]:

Lemma 1.6: Let | · |1 denote the 1-norm on Rn and Ψ(x) =∑n
i=1 xk. Note that whenever x ∈ Rn

+ we have that Ψ(x) =
|x|1. Let m+ denote the one-sided directional derivative of the
norm:

m+[x, y] = lim
h→0+

|x + hy|1 − |x1|
h

.

Equivalent are:
1) f : Rn → Rn is quasimonotone increasing;
2) m+[y − x, f(y)− f(x)] = Ψ(f(y)− f(x)) (x � y).
Remark 4: Note that a corollary of Lemma 1.6 is that A

is quasimonotone for all A ∈ π(Rn
+). To see this, note that

x− y ∈ Rn
+ and A ∈ π(Rn

+) implies that ARn
+ ⊂ Rn

+, hence

Ψ(Ax−Ay) = Ψ(A(x− y)) = |A(x− y)|1.

We also have that

m+[y − x, f(y)− f(x)] =

lim
h→0+

|x− y + hA(x− y)|1 − |x− y|1
h

= lim
h→0+

h|A(x− y)|1
h

= |A(x− y)|1.
Theorem 1.7: Let I = [t0, t1]. Suppose v, w : I →

Rn are any continuous functions such that v(t0) ≺ w(t0),
Dv(t), Dw(t) exist for t ∈ I and

Dv(t)− f(t, v(t)) ≺ Dw(t)− f(t, w(t)) (∀t ∈ I), (95)

then v(t) ≺ w(t) for t ∈ I if f(t, ·) is quasimonotone for all
t ∈ I .

Proof: The proof is similar to that of [23, Theorem 1]
and [24, Theorem 1]. Let d(t) = w(t) − v(t). Immediately
we have that d(t0) ∈ Rn◦

+ . For a contradiction, suppose that
we had w(t) � v(t). Then there exists κ ∈ (t0, t1] such that
d(t) ∈ Rn◦

+ for t ∈ [t0, κ) and d(κ) = 0. By the Hahn-Banach
Theorem, there exists ϕ ∈ (Rn

+)∗ such that ϕ(d(κ)) = 0 and
ϕ(x) > 0 for all x ∈ Rn◦

+ . We then have

Dϕ(d(κ)) = lim
h→0,h<0

ϕ(d(κ + h))− ϕ(d(κ)
h

= lim
h→0,h<0

ϕ(d(κ + h))
h

≤ 0. (96)

Moreover, as ϕ is linear, we have that Dϕ(d(κ)) = ϕ(Dd(κ))
and, hence, ϕ(Dd(κ)) ≤ 0. As d(κ) = 0 we have w(κ) =
v(κ) and by the quasimonotonicity of f , we must have

ϕ(f(κ, v(κ)) ≤ ϕ(f(κ, w(κ)). (97)

By (95) and (97) we have that

ϕ(Dv(κ))− ϕ(f(κ, v(κ)) < ϕ(Dw(κ))− ϕ(f(κ, w(κ))
⇒ ϕ(Dw(κ))− ϕ(Dv(κ)) > 0.

Finally, this is in contradiction with (96) and so it must be the
case that v(t) ≺ w(t) for t ∈ I .

Remark 5: With a slight abuse of notation, we can rephrase
this as: Suppose that f is quasimonotone and consider the
system of ordinary differential equations

Du = f(t, u) (∀t ∈ I), (98)

where we assume u and Du(t) to exist for t ∈ I . Let v(t) be
a continuous function where Dv(t) exists for all t ∈ I and
satisfies the inequality

Dv ≺ f(t, v(t)) (∀t ∈ I)(v(t0) ≺ u(t0)). (99)

We then have v(t) ≺ u(t) for t ∈ I .
Remark 6: (c.f. [24][Theorem 1].) We can relax the strict

inequality (95) to a non-strict inequality when f is locally Lip-
schitz, uniformly in t. Let Dv(t) � f(t, v(t)), v(t0) � u(t0)
and define en = 1

n (1, . . . , 1)T ∈ Rn. Let Dun = fn(t, un),
where fn(t, un) = f(t, un) + en, with initial condition
un(t0) = u(t0) + en. We note that if f is quasimonotone,
then fn is quasimonotone for each n since

x � y, ϕ(x) = ϕ(y)
⇒ ϕ(f(t, x)) ≤ ϕ(f(t, y))
⇒ ϕ(f(t, x)) + ϕ(en) ≤ ϕ(f(t, y)) + ϕ(en)
⇒ ϕ(fn(t, x)) ≤ ϕ(fn(t, y)).

We then apply Theorem 1.7 with Dv(t) ≺ fn(t, v(t)) and
v(t0) ≺ un(t0) to show that v(t) ≺ un(t) for each n. We
have that, for all t ∈ I , un(t)− v(t) ∈ Rn◦

+ for each n and so
limn→∞ un(t) − v(t) ∈ closure(Rn◦

+ ) = Rn
+, hence, v(t) �

limn→∞ un(t). It is clear that limn→∞ un(t) = u(t) from, for
instance, [19, Theorem 3.5].

Corollary 1.8: (c.f. [24][Example 2].) Let v ∈ Rn and
consider the inequality

Dv � Av + d(t), v(t0) = v0, (∀t ∈ I), (100)

where A ∈ π(Rn
+) and d(t) : I → Rn is continuous. Then,

for all t ∈ I , v(t) is bounded by

v(t) � exp(A(t− t0))v0 +
∫ t

t0

exp(A(t− s))d(s)ds. (101)

Proof: Let g(t, v) = Av+d(t). Let v2, v1 ∈ Rn, v1 � v2.
We have

m+[v2 − v1, g(t, v2)− g(t, v1)] =

lim
h→0+

|v2 − v1 + hAv2 + hd(t)− hAv1 − hd(t))|1 − |v2 − v1|
h

= |A(v2 − v1)|1 = Ψ(g(t, v2)− g(t, v1)),

and hence, by Lemma 1.6, g(t, v) is quasimonotone increasing.
In light of Remark 6, v(t) � u(t), where u(t) is the solution
to

Du(t) = g(t, u) u(t0) = v(t0). (102)

Applying the variation of parameters formula to (102) imme-
diately yields

u(t) = exp(A(t− t0))u0 +
∫ t

t0

exp(A(t− s))h(s)ds,

and the result follows.
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