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Abstract. We present a general approach to analyzing stability of hy-
brid systems, based on input-to-state stability (ISS) and small-gain theo-
rems. We demonstrate that the ISS small-gain analysis framework is very
naturally applicable in the context of hybrid systems. Novel Lyapunov-
based and LaSalle-based small-gain theorems for hybrid systems are pre-
sented. An illustrative application of the proposed approach in the con-
text of a quantized feedback control problem is treated in detail. The
reader does not need to be familiar with ISS or small-gain theorems to
be able to follow the paper.

1 Introduction

The small-gain theorem is a classical tool for analyzing input-output stability of
feedback systems; see, e.g., [1]. More recently, small-gain tools have been used
extensively to study feedback interconnections of nonlinear state-space systems
in the presence of disturbances; see, e.g., [2].

Hybrid systems can be naturally viewed as feedback interconnections of sim-
pler subsystems. For example, every hybrid system can be regarded as a feedback
interconnection of its continuous and discrete dynamics. This makes small-gain
theorems a very natural tool to use for studying internal and external stability
of hybrid systems. However, we are not aware of any systematic application of
this idea in the hybrid systems literature.

The purpose of this paper is to bring the small-gain analysis method to the
attention of the hybrid systems community. We review, in a leisurely tutorial
fashion, the concept of input-to-state stability (ISS) introduced by Sontag [3]
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and a nonlinear small-gain theorem from [2] based on this concept. The ISS
small-gain theorem states that a feedback interconnection of two ISS systems is
ISS if an appropriate composition of their respective ISS gain functions is smaller
than the identity function. Since a proof of this theorem can be based entirely on
time-domain analysis of system signals, the result is valid for general dynamical
systems, thus providing an “off-the-shelf” method for verifying stability of hybrid
systems. We then discuss Lyapunov-based tools for checking the hypotheses of
this theorem.

As an alternative to time-domain proofs, Lyapunov function constructions for
interconnected systems under small-gain conditions were suggested for continuous-
time systems in [4] and for discrete-time systems in [5]. It is generally well known
that having a Lyapunov function provides additional insight into the behavior of
a stable system and is important for tasks such as perturbation analysis and es-
timating the region of attraction. In this paper, we present a novel construction
of a Lyapunov function for a class of hybrid systems satisfying the conditions of
the ISS small-gain theorem. We also describe another approach, based on con-
structing a weak (non-strictly decreasing) Lyapunov function and applying the
LaSalle invariance principle for hybrid systems from [6]. We note that while the
basic idea of the small-gain stability analysis for hybrid systems was announced
and initially examined by the authors in [7], the Lyapunov function constructions
are reported here for the first time and represent the main technical contribution
of this work.

We illustrate the power of the proposed method by analyzing a quantized
feedback control strategy previously studied in [8, 9] using different tools. Other
applications in the area of hybrid control with communication constraints are
discussed in [7]. The small-gain analysis is found to provide insightful interpre-
tations of existing results, immediately leads to generalizations, and allows a
unified treatment of problems that so far have been studied separately. Due to
the pervasive nature of hybrid systems in applications, we expect that the main
idea proposed in this paper will be useful in many other areas as well.

2 Preliminaries

In what follows, id denotes the identity function and ◦ denotes function com-
position. We write a ∨ b for max{a, b} and a ∧ b for min{a, b}. The class of
continuously differentiable functions is denoted by C1 (the domain will be spec-
ified separately). Given some vectors x1 ∈ R

n1 and x2 ∈ R
n2 , we often use the

simplified notation (x1, x2) for the “stack” vector (xT
1 , xT

2 )T ∈ R
n1+n2 .

2.1 Hybrid system model

We begin by describing the model of a hybrid system to which our subsequent
results will apply. This model easily fits into standard modeling frameworks for
hybrid systems (see, e.g., [10, 6, 11]), and the reader can consult these references
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for background and further technical details. The description to be provided here
is somewhat informal, but it is sufficient for presenting the results.

We label the hybrid system to be defined below as H. The state variables
of H are divided into continuous variables x ∈ R

n, discrete variables µ ∈ R
k,

and additional variables τ ∈ R
l. We note that µ actually takes values in a

discrete subset of R
k along every trajectory of the hybrid system, but this set

need not be fixed a priori and may vary with initial conditions. The variables τ
represent auxiliary states thought of primarily as continuous clocks. The time is
continuous: t ∈ [t0,∞). We also consider external variables w ∈ R

s, viewed as
disturbances.

The state dynamics describing the evolution of these variables with respect
to time are composed of continuous evolution and discrete events. During con-
tinuous evolution (i.e., while no discrete events occur), µ is held constant, x
satisfies the ordinary differential equation

ẋ = f(x, µ, w)

with f : R
n × R

k × R
s → R

n locally Lipschitz, and τ satisfies

τ̇i = 1, i = 1, . . . , l.

We now describe the discrete events. Given an arbitrary time t, we will denote
by x−(t), or simply by x− when the time arguments are omitted, the quantity
x(t−) = lims↗t x(s), and similarly for the other state variables. Consider a
guard map G : R

n+k+l → R
p (where p is a positive integer) and a reset map

R : R
n+k+l → R

n+k+l. The discrete events are defined as follows: whenever

G
(

x−, µ−, τ−
)

≥ 0 (1)

(component-wise), we let





x
µ
τ



 = R(x−, µ−, τ−) =





Rx(x−, µ−, τ−)
Rµ(x−, µ−, τ−)
Rτ (x−, µ−, τ−)



 .

By construction, all signals are right-continuous.
Some remarks on the above relations are in order. In many situations, Rx(x, µ, τ) ≡

x, i.e., the continuous state does not jump at the event times. We want inequal-
ity rather than equality in (1) because for a discrete event to occur, we might
need several conditions which do not become valid simultaneously (e.g., some
relation between x and µ holds and a clock has reached a certain value). Of
course, equality conditions are easily described by pairs of inequalities. The con-
tinuous time t does not explicitly appear in the dynamics. If desired, it could
be incorporated either in x (with equation ṫ = 1) or in τ , and in either case it
is not reset at event times. For simplicity, we assume that the disturbances w
affect only the continuous evolution and the auxiliary variables τ affect only the
discrete events, because this is the case in the examples studied below and in [7].
The discrete events in general do not need to occur in any periodic fashion, and
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different kinds of discrete events can happen completely asynchronously. We can
have synchronous periodic behavior as a special case, if the discrete events are
triggered entirely by a clock reaching a fixed value, after which the clock is reset
to 0.

Well-posedness (existence and uniqueness of solutions) of the hybrid system
H is an issue; see, e.g., [10]. At the general level of the present discussion, we are
going to assume it. For example, we can assume that the use of auxiliary variables
(clocks) in the reset condition (1) ensures that a bounded number of discrete
events occurs in any bounded time interval. Then, to obtain a solution (in the
sense of Carathéodory), we simply flow the continuous dynamics until either the
end of their domain is reached (finite escape) or a discrete event occurs; in the
latter case, repeat from the new state, and so on. This construction will apply
in the example treated in Section 6. See also [12] for an interesting alternative
definition of solutions of hybrid systems.

2.2 Feedback interconnection structurePSfrag replacements

x

µ

ẋ = f(x, µ, w)

µ = Rµ(x ,−µ ,−τ )

w

w1

w2

z2

z1

H1

H2

PSfrag replacements

x
µ

ẋ = f(x, µ, w)
µ = Rµ(x ,−µ ,−τ )

w

w1

w2

z2

z1

H1

H2

Fig. 1. Hybrid system viewed as feedback interconnection: (a) simple decomposition,
(b) general decomposition

The starting point for our results is the observation that we can view the
hybrid system H as a feedback interconnection of its continuous and discrete
parts, as shown in Figure 1(a). The auxiliary variables τ are available to the
discrete subsystem (because they are needed to determine the event times and
execute resets) and possibly also available to the continuous subsystem. We
do not display their dynamics explicitly in the picture because we will not be
concerned about their behavior.

It is clear that the above decomposition is just one possible way to split
the hybrid system H into a feedback interconnection of two subsystems. There
may be many ways to do it; the best choice will depend on the structure of
the problem and will be one for which the small-gain approach will work (see
below). Each subsystem in the decomposition can be continuous, discrete, or
hybrid, and may be affected by the disturbances. This more general situation is
illustrated in Figure 1(b). Here, the state variables and the external signals of H
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are split as x = (x1, x2), µ = (µ1, µ2), w = (w1, w2), the first subsystem H1 has
states z1 = (x1, µ1) and inputs v1 = (z2, w1), and the second subsystem H2 has
states z2 = (x2, µ2) and inputs v2 = (z1, w2). As we did in the previous example,
we can actually omit some variables that are not of immediate interest from
the states of the feedback interconnection (these variables would still be used
in establishing the desired properties of the two components). Generalization to
the case of partial measurements (outputs) is also straightforward.

In the approach discussed here, coming up with an appropriate decomposition
of the above kind is the first step in the analysis of a given hybrid system H.
As we pointed out, such a decomposition always exists. It can also happen that
the hybrid system model is given from the beginning as an interconnection of
several hybrid systems. Thus the structure we consider is very general and not
at all restrictive.

2.3 Stability definitions

A function α : [0,∞) → [0,∞) is said to be of class K (which we write as α ∈ K)
if it is continuous, strictly increasing, and α(0) = 0. If α is also unbounded, then
it is said to be of class K∞ (α ∈ K∞). The simplest example of a class K∞

function is
α(r) = cr, c > 0. (2)

A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL (β ∈ KL) if
β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) is decreasing to zero as t → ∞
for each fixed r ≥ 0. The simplest example of a class KL function is

β(r, t) = cre−λt, c, λ > 0. (3)

We now define the stability notions of interest in this paper. Consider a
hybrid system with state z = (x, µ) and input v (as a special case, it can have
only continuous dynamics or only discrete events). Following [3], we say that
this system is input-to-state stable (ISS) with respect to v if there exist functions
β ∈ KL and γ ∈ K∞ such that for every initial state z(t0) and every input v(·)
the corresponding solution satisfies the inequality

|z(t)| ≤ β(|z(t0)|, t − t0) + γ(‖v‖[t0,t]) (4)

for all t ≥ t0, where ‖v‖[t0,t] := sup{|v(s)| : s ∈ [t0, t]} (except possibly on a set
of measure 0). We will refer to γ as an ISS gain function, or just a gain if clear
from the context. For time-invariant systems, we can take the initial time to be
0 without loss of generality.

In the case of no inputs (v ≡ 0), the above inequality reduces to

|z(t)| ≤ β(|z(t0)|, t) ∀ t ≥ t0

which corresponds to the standard notion3 of global asymptotic stability (GAS).
In the presence of inputs, ISS captures the property that bounded inputs and

3 This can also be equivalently restated in the more classical ε–δ style (cf. [13]).
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inputs converging to 0 produce states that are also bounded and converging to
0, respectively.

If the inputs are split as v = (v1, v2), then (4) is equivalent to

|z(t)| ≤ β(|z(t0)|, t − t0) + γ1(‖v1‖[t0,t]) + γ2(‖v2‖[t0,t])

for some functions γ1, γ2 ∈ K∞. In this case, we will call γ1 the ISS gain from
v1 to z, and so on.

We note that asymptotic stability of a linear system (continuous or sampled-
data) can always be characterized by a class KL function of the form (3). More-
over, an asymptotically stable linear system is automatically ISS with respect
to external inputs, with a linear ISS gain function γ as in (2).

3 ISS small-gain theorem

Consider the hybrid system H defined in Section 2.1, and suppose that it has
been represented as a feedback interconnection of two subsystems H1 and H2

in the way described earlier and shown in Figure 1(b). The small-gain theo-
rem stated next reduces the problem of verifying ISS of H to that of verifying
ISS of H1 and H2 and checking a condition that relates their respective ISS
gains. The result we give is a special case of the small-gain theorem from [2].
That paper treats continuous systems, but since the statement and the proof
given there involve only properties of system signals, the fact that the dynamics
are hybrid in our case does not change the validity of the argument. We note
that the result presented in [2] is much more general in that it treats partial
measurements (input-to-output-stability, in conjunction with detectability) and
deals with practical stability notions. Many other versions are also possible, e.g.,
we can replace the sup norm used in (4) by an Lp norm [14].

Theorem 1 Suppose that:
1. H1 is ISS with respect to v1 = (z2, w1), with gain γ1 from z2 to z1, i.e.,

|z1(t)| ≤ β1(|z1(t0)|, t − t0) + γ1(‖z2‖[t0,t]) + γ̄1(‖w1‖[t0,t])

for some β1 ∈ KL, γ1, γ̄1 ∈ K∞.
2. H2 is ISS with respect to v2 = (z1, w2), with gain γ2 from z1 to z2, i.e.,

|z2(t)| ≤ β2(|z2(t0)|, t − t0) + γ2(‖z1‖[t0,t]) + γ̄2(‖w2‖[t0,t])

for some β2 ∈ KL, γ2, γ̄2 ∈ K∞.
3. There exists a function ρ ∈ K∞ such that4

(id + ρ) ◦ γ1 ◦ (id + ρ) ◦ γ2(r) ≤ r ∀ r ≥ 0. (5)

Then H is ISS with respect to the input w = (w1, w2).

4 If one replaces β + γ with max{β, γ} in the definition (4) of ISS, then the small-gain
condition (5) can be simplified to γ1 ◦ γ2(r) < r for all r > 0.
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Three special cases are worth mentioning explicitly, because they will arise in
the discussions that follow. First, in the case of no external signals (w1 = w2 ≡ 0),
we conclude that H is GAS. Second, when the two ISS gain functions are linear:
γi(r) = cir, i = 1, 2, the small-gain condition (5) reduces to the simple one
c1c2 < 1. Third, the theorem covers the case of a cascade connection, where one
of the gains is 0 and hence the small-gain condition (5) is automatically satisfied.

As already mentioned, we will sometimes concentrate only on some states of
the overall system, excluding the other states from the feedback interconnection.
Typically, these underlying “hidden” states have very simple dynamics and re-
main bounded for all time. Theorem 1 is still valid if we let z1 and z2 include
only the states of interest for each subsystem.5

Small-gain theorems have been widely used for analysis of continuous-time
as well as discrete-time systems with feedback interconnection structure. The
discussion of Section 2.2 suggests that it is also very natural to use this idea
to analyze (internal or external) stability of hybrid systems. Of course, we will
need to be able to prove that the subsystems in a given feedback decomposition
satisfy suitable ISS properties, and calculate the ISS gains in order to check (5).
There exist efficient tools for doing this, as exemplified in the next section.

4 Sufficient conditions for ISS

Consider the hybrid system H defined in Section 2.1, and suppose that it has been
represented as a special feedback interconnection shown in Figure 1(a). The two
lemmas stated below provide Lyapunov-based conditions which guarantee ISS
of the continuous and discrete dynamics, respectively, and give expressions for
the ISS gains. Thus they can be used for verifying the hypotheses of Theorem 1
in this particular case. The first result is well established [3]; the second one is
a slightly improved version of Theorem 4 from the recent paper [16].

Lemma 1 Suppose that there exists a C1 function V1 : R
n → R, class K∞ func-

tions α1,x, α2,x, ρx, σ, and a continuous positive definite function α3,x : [0,∞) →
[0,∞) satisfying

α1,x(|x|) ≤ V1(x) ≤ α2,x(|x|) (6)

and
V1(x) ≥ ρx(|µ|) ∨ σ(|w|) ⇒ ∇V1(x)f(x, µ, w) ≤ −α3,x(V1(x)). (7)

Then the x-subsystem is ISS with respect to (µ, w), with gain γx := α−1
1,x ◦ ρx

from µ to x.

The condition (6) simply says that V1 is positive definite and radially un-
bounded. We can take α3,x ∈ K∞ with no loss of generality [3]. The condition (7)
can be equivalently rewritten as

∇V1(x)f(x, µ, w) ≤ −α4,x(V1(x)) + χx(|µ|)

5 These modified hypotheses amount to replacing ISS with a suitable input-to-output
stability notion (cf. [2, 15]) and requiring that the ISS gain from the hidden states
in each subsystem to the states of interest in the other subsystem be 0.
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for some α4,x, χx ∈ K∞. However, using this condition instead of (7) in the
lemma would in general lead to a more conservative ISS gain. We also note that
Lemma 1 can be easily generalized by allowing V1 to depend on t as well as on
x, leaving the bounds in (6) unchanged, and adding the time derivative of V1

in (7); we will work with a Lyapunov function of this kind in Theorem 2 below.

Lemma 2 Suppose that there exists a C1 function V2 : R
k → R, class K∞ func-

tions α1,µ, α2,µ, ρµ, and a continuous positive definite function α3,µ : [0,∞) →
[0,∞) satisfying

α1,µ(|µ|) ≤ V2(µ) ≤ α2,µ(|µ|) (8)

such that we have

V2(µ) ≥ ρµ(|x|) ⇒ V2(Rµ(x, µ, τ)) − V2(µ)

≤ −α3,µ(V2(µ))
(9)

and

V2(µ) ≤ ρµ(r) and |x| ≤ r ⇒ V2(Rµ(x, µ, τ)) ≤ ρµ(r). (10)

Suppose also that for each t > t0 such that V2(µ(s)) ≥ ρµ(‖x‖[t0,s]) for all
s ∈ [t0, t), the number N(t, t0) of discrete events in the interval [t0, t] satisfies

N(t, t0) ≥ η(t − t0) (11)

where η is an increasing function. Then the µ-subsystem is ISS with respect to
x, with gain γµ := α−1

1,µ ◦ ρµ.

We can take α3,µ ∈ K∞ with no loss of generality [17]. The conditions (9)
and (10) are both satisfied if we have

V2(Rµ(x, µ, τ)) − V2(µ) ≤ −α4,µ(V2(µ)) + χµ(|x|) (12)

for some α4,µ, χµ ∈ K∞. Indeed, letting ρµ(r) := α−1
4,µ(2χµ(r)), we see that (9)

holds with α3,µ := α4,µ/2. Decreasing α4,µ if necessary, assume with no loss of
generality that id − α4,µ ∈ K (cf. [18]). We then have

V2(µ) ≤ α−1
4,µ(2χµ(r)) and |x| ≤ r ⇒ V2(Rµ(x, µ, τ)) ≤ χµ(|x|)+(id−α4,µ)

(

α−1
4,µ(2χµ(r))

)

< α−1
4,µ(2χµ(|x|))

and so (10) holds with the same ρµ. Moreover, (9) implies (12)—and conse-
quently (10)—if the map Rµ is continuous at (x, µ) = (0, 0) and does not depend
on τ . Still, it is useful to write two separate conditions (9) and (10) if we want
the least conservative expression for the ISS gain. The former condition coupled
with (11) is the main ingredient for obtaining ISS, while the latter is automati-
cally enforced if, for example, discrete events can only decrease V2(µ); this is the
case in the example of Section 6. An example of a function η that can be used
in (11) is η(r) = r

δa

− N0, where δa and N0 are positive numbers (see [16]). In
this case, (11) says that discrete events must happen at least every δa units of
time on the average, modulo a finite number of events that can be “missed”.
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Proof of Lemma 2. Let

t̄ := min
{

t ≥ t0 : V2(µ(t)) ≤ ρµ(‖x‖[t0,t])
}

≤ ∞

(this is well defined in view of right-continuity). By virtue of (9), we have

V2(µ) − V2(µ
−) ≤ −α3,µ(V2(µ

−))

at each event time in the interval [t0, t̄). Therefore, there exists a function β̄ ∈ KL
such that

V2(µ(t)) ≤ β̄(V2(µ(t0)), N(t, t0)) ∀ t ∈ [t0, t̄)

(cf. [18]). Invoking (11), we have

V2(µ(t)) ≤ β̄
(

V2(µ(t0)), η(t − t0)
)

∀ t ∈ [t0, t̄)

hence

|µ(t)| ≤ α−1
1,µ

(

β̄
(

α2,µ(|µ(t0)|), η(t − t0)
))

=: βµ(|µ(t0)|, t − t0) ∀ t ∈ [t0, t̄)

Next, (10) applied with r := ‖x‖[t0,t] at each event time guarantees that

V2(µ(t)) ≤ ρµ(‖x‖[t0,t]) ∀ t ≥ t̄

hence
|µ(t)| ≤ α−1

1,µ ◦ ρµ(‖x‖[t0,t]) ∀ t ≥ t̄

Combining the two bounds for |µ(t)| gives the desired estimate. ut

Remark 1 If the second inequality in (9) holds always, i.e., the hypotheses of
Lemma 2 are satisfied with ρµ = 0, then the proof shows that the µ-subsystem
is GAS (γµ = 0). ut

5 Lyapunov-based small-gain theorem

Consider again the hybrid system H defined in Section 2.1 and decomposed as
in Figure 1(a). Here we assume for simplicity that Rx(x, µ, τ) ≡ x (continuous
state does not jump at the event times). Theorem 1, applied to this special
feedback decomposition, provides sufficient conditions for ISS. The proof of this
theorem is based on trajectory analysis. Lemmas 1 and 2 can be used to check
the hypotheses of Theorem 1, and involve ISS-Lyapunov functions for the two
subsystems. The question naturally arises whether Theorem 1 can be formulated
and proved entirely in terms of such Lyapunov functions. It is known that such
an alternative formulation is possible for continuous-time as well as discrete-
time small-gain theorems [4, 5], but this issue has not been pursued for hybrid
systems.

Here we present a preliminary result in this direction. We denote by tk,
k = 1, 2, . . . the discrete event times, which we assume to be distinct (with
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no significant changes, we could allow finitely many discrete events to occur
simultaneously). It is also convenient to introduce a special clock variable τ̄ ,
which counts the time since the most recent discrete event and is reset to 0
at the event times: τ̄ (t) := t − tk for t ∈ [tk, tk+1). It must be noted that the
Lyapunov function V constructed in Theorem 2 below depends, besides x and
µ, on this variable τ̄ . Therefore, it can really be viewed as a Lyapunov function
only if the sequence {tk} is independent of the initial state. Otherwise, the proof
of ISS using this function is actually a trajectory-based argument (but it still
represents an interesting alternative to a purely time-domain one).

Theorem 2 Suppose that there exist positive definite, radially unbounded C1

functions V1 : R
n → R and V2 : R

k → R, class K∞ functions χ1, χ2, σ, and
positive constants b1, b2, c, d, T such that we have

V1(x) ≥ χ1(V2(µ)) ∨ σ(|w|) ⇒ ∇V1(x)f(x, µ, w) ≤ −cV1(x), (13)

V2(µ) ≥ χ2(V1(x)) ⇒ V2(Rµ(x, µ, τ)) ≤ e−dV2(µ), (14)

V2(µ) ≤ eb2χ2(e
b1V1(x)) ⇒ V2(Rµ(x, µ, τ)) ≤ χ2(V1(x)) (15)

the small-gain condition

eb1χ1(e
b2χ2(r)) < r ∀ r > 0 (16)

holds, and the discrete events satisfy

tk+1 − tk ≤ T ∀ k ≥ 0. (17)

Then there exist a locally Lipschitz function V : [0, T ]×R
n×R

k → R, class K∞

functions α1, α2, σ̄, a continuous positive definite function α3 : [0,∞) → [0,∞),
and a continuous function α4 : [0, T ] × [0,∞) → [0,∞) satisfying α4(τ̄ , r) > 0
when τ̄ r 6= 0, such that for all τ̄ ∈ [0, T ] and all (x, µ) ∈ R

n × R
k the bound

α1(|(x, µ)|) ≤ V (τ̄ , x, µ) ≤ α2(|(x, µ)|) (18)

holds and we have

V (τ̄ , x, µ) ≥ σ̄(|w|) ⇒ V̇ (τ̄ , x, µ) :=
∂V

∂τ̄
(τ̄ , x, µ)+

∂V

∂x
(τ̄ , x, µ)f(x, µ, w) ≤ −α3(|(x, µ)|)

(19)
for the continuous dynamics6 and

V (0, x, Rµ(x, µ, τ)) − V (τ̄ , x, µ) ≤ −α4(τ̄ , |(x, µ)|) (20)

for the discrete events. Consequently, H is ISS with respect to w.

6 We will define V as a maximum of two C1 functions, hence the gradient ∂V /∂x is
in general not defined at the points where these two functions are equal. At these
points, the second term in the definition of V̇ is to be understood as the directional
derivative of V along f . Alternatively, one can use a regularization technique to
obtain a smooth Lyapunov function from the locally Lipschitz function V ; cf. [4].
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In spirit, the hypotheses of Theorem 2 match the hypotheses of Theorem 1
and Lemmas 1 and 2, although there are some differences. We note that the
condition (17) can be written as N(t, s) ≥ t−s

T
for all t > s ≥ t0, i.e., it is a

strengthened version of (11). For simplicity, we assumed in (13) and (14) that
V1 and V2 decay at exponential rates. This assumption can be removed, and the
more general construction is sketched later in Remark 3. In the special case when
the gain functions χ1 and χ2 are also linear, b1 and b2 in (15) and (16) can be
set to 0. Note also that (13) only needs to hold for those states where we have
continuous evolution, i.e., where G(x, µ, τ) < 0, while (14) and (15) only need
to hold for those states where discrete events occur, i.e., where G(x, µ, τ) ≥ 0.

Proof of Theorem 2. We have that V1 stays constant during the discrete
events while V2 stays constant along the continuous dynamics. First, we want
to construct modified functions V 1 and V 2 which strictly decrease during the
discrete events and the continuous dynamics, respectively, while also enjoying
decreasing properties similar to (13)–(15). Pick a number L1 ∈

(

0, c ∧ (b1/T )
)

and define

V 1(τ̄ , x) := eL1τ̄V1(x). (21)

Using (17), we have

V1(x) ≤ V 1(τ̄ (t), x) ≤ eL1T V1(x) ∀ t, x (22)

Similarly, pick a number L2 ∈
(

0, (d ∧ b2)/T
)

and define

V 2(τ̄ , µ) := e−L2τ̄V2(µ) (23)

to obtain

e−L2T V2(µ) ≤ V 2(τ̄ (t), µ) ≤ V2(µ) ∀ t, µ. (24)

Define χ̄1(r) := eL1T χ1(e
L2T r) and σ̄(r) := eL1T σ(r). Combining (13), (21),

(22), and (24), we have for the continuous dynamics

V 1(τ̄ , x) ≥ χ̄1(V 2(τ̄ , µ))∨ σ̄(|w|) ⇒
∂V 1

∂τ̄
(τ̄ , x)+

∂V 1

∂x
(τ̄ , x)f(x, µ, w) ≤ −(c−L1)V 1(τ̄ , x)

(25)
and for the discrete events

V 1(0, x) = e−L1τ̄V 1(τ̄ , x). (26)

Similarly, the evolution of V 2 satisfies

∂V 2

∂τ̄
(τ̄ , µ) = −L2V 2(τ̄ , µ), (27)

V 2(τ̄ , µ) ≥ χ2(V 1(τ̄ , x)) ⇒ V 2(0, Rµ(x, µ, τ)) ≤ e−(d−L2T )V 2(τ̄ , µ), (28)

V 2(τ̄ , µ) ≤ χ2(V 1(τ̄ , x)) ⇒ V 2(0, Rµ(x, µ, τ)) ≤ χ2(V 1(τ̄ , x)) (29)
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The condition (16) implies χ̄1 ◦ χ2(r) < r for all r > 0, which is equivalent to
χ2(r) < χ̄−1

1 (r) for all r > 0. As in [4], pick a C1, class K∞ function ρ with

ρ′(r) > 0 ∀ r > 0 (30)

such that
χ2(r) < ρ(r) < χ̄−1

1 (r) ∀ r > 0. (31)

We are now ready to define a (time-varying) candidate ISS-Lyapunov function
for the closed-loop system H as

V (τ̄ , x, µ) :=

{

ρ(V 1(τ̄ , x)) if ρ(V 1(τ̄ , x)) ≥ V 2(τ̄ , µ)

V 2(τ̄ , µ) if ρ(V 1(τ̄ , x)) < V 2(τ̄ , µ)
(32)

We claim that it satisfies (18)–(20). To prove this, pick arbitrary τ̄ ∈ [0, T ] and
(x, µ) 6= (0, 0). Let us first consider the case when V (τ̄ , x, µ) ≥ σ̄(|w|). We further
distinguish between the following two cases.
Case 1: ρ(V 1(τ̄ , x)) ≥ V 2(τ̄ , µ), so that V (τ̄ , x, µ) = ρ(V 1(τ̄ , x)). If ρ(V 1(τ̄ , x)) >
V 2(τ̄ , µ), then we have, using (25), (30), (31), and positive definiteness of V1 and
V2, that x 6= 0 and

V̇ (τ̄ , x, µ) = ρ′(V 1(τ̄ , x))

(

∂V 1

∂τ̄
(τ̄ , x) +

∂V 1

∂x
(τ̄ , x)f(x, µ, w)

)

≤ −ρ′(V 1(τ̄ , x))(c−L1)V 1(τ̄ , x) < 0.

If ρ(V 1(τ̄ , x)) = V 2(τ̄ , µ), then by positive definiteness of V1 and V2 both x and
µ are nonzero and, invoking also (27), we have

V̇ (τ̄ , x, µ) = ρ′(V 1(τ̄ , x))

(

∂V 1

∂τ̄
(τ̄ , x) +

∂V 1

∂x
(τ̄ , x)f(x, µ, w)

)

∨
∂V 2

∂τ̄
(τ̄ , µ)

≤ −ρ′(V 1(τ̄ , x))(c − L1)V 1(τ̄ , x) ∨ −L2V 2(τ̄ , µ) < 0

Turning to the discrete events, we have three possible cases. If ρ(V 1(0, x)) ≥
V 2(0, Rµ(x, µ, τ)), then from (26) we have V (0, x, Rµ(x, µ, τ)) = ρ(V 1(0, x)) =
ρ(e−L1τ̄V 1(τ̄ , x)) ≤ ρ(V 1(τ̄ , x)) = V (τ̄ , x, µ), and the inequality is strict when
τ̄ > 0. If ρ(V 1(0, x)) < V 2(0, Rµ(x, µ, τ)) and V 2(τ̄ , µ) ≥ χ2(V 1(τ̄ , x)), then
using (28) we have V (0, x, Rµ(x, µ, τ)) = V 2(0, x, Rµ(x, µ, τ)) < V 2(τ̄ , µ) ≤
ρ(V 1(τ̄ , x)) = V (τ̄ , x, µ). Finally, if ρ(V 1(0, x)) < V 2(0, Rµ(x, µ, τ)) and V 2(τ̄ , µ) ≤
χ2(V 1(τ̄ , x)), then with the help of (29) we obtain V (0, x, Rµ(x, µ, τ)) = V 2(0, x, Rµ(x, µ, τ)) ≤
χ2(V 1(τ̄ , x)) < ρ(V 1(τ̄ , x)) = V (τ̄ , x, µ).
Case 2: ρ(V 1(τ̄ , x)) < V 2(τ̄ , µ), so that V (τ̄ , x, µ) = V 2(τ̄ , µ). Using (27) and
positive definiteness of V2, we have µ 6= 0 and

V̇ (τ̄ , x, µ) =
∂V 2

∂τ̄
(τ̄ , µ) = −L2V 2(τ̄ , µ) < 0.

As for the discrete events, (28) and (31) imply that V 2(0, Rµ(x, µ, τ)) < V 2(τ̄ , µ).
If V 2(0, Rµ(x, µ, τ)) > ρ(V 1(0, x)), then V (0, x, Rµ(x, µ, τ)) = V 2(0, Rµ(x, µ, τ)) <

12



V 2(τ̄ , µ) = V (τ̄ , x, µ). On the other hand, if
V 2(0, Rµ(x, µ, τ)) ≤ ρ(V 1(0, x)), then by virtue of (26) we have V (0, x, Rµ(x, µ, τ)) =
ρ(V 1(0, x)) ≤ ρ(V 1(τ̄ , x)) < V 2(τ̄ , µ) = V (τ̄ , x, µ).

Since V1 and V2 are positive definite and radially unbounded, there exist
functions α1,x, α2,x, α1,µ, α2,µ ∈ K∞ such that (6) and (8) hold. Using (22),
(24), and (32), we obtain

ρ(α1,x(|x|) ∨ e−L2T α1,µ(|µ|) ≤ V (τ̄ , x, µ) ≤ ρ(eL1T α2,x(|x|) ∨ α2,µ(|µ|).

It is now a routine exercise to construct functions α1, α2 ∈ K∞ for which (18)
holds. Next, observe that the condition V (τ̄ , x, µ) ≥ σ̄(|w|) was used, via (25),
only to prove the decrease of V along the continuous dynamics but not during
the discrete events. Thus (19) and (20) are established (constructing α3 and α4

is again a simple exercise). Finally, ISS of H with respect to w follows from (18)–
(20) via standard arguments (cf. [3, 16]). ut

Remark 2 ISS of H would still hold if we relaxed (20) to just V (0, x, Rµ(x, µ, τ)) ≤
V (τ̄ , x, µ), leaving all the other hypotheses of Theorem 2 unchanged. To con-
struct a function V with these weaker properties, we could set L1 = 0 in the
above proof, i.e., work with the original function V1 in place of V 1; accordingly,
we could set b1 = 0, and also the linearity of the right-hand side of (13) in
V1 would not be important (see also Remark 3 below). On the other hand, the
stronger condition (20) makes the Lyapunov function V more useful for quan-
tifying the effect of the discrete events. In particular, if we impose a dwell-time
constraint tk+1 − tk ≥ ε > 0 for all k ≥ 0, then a uniform decrease condition of
the form V −V − ≤ −ᾱ4(V

−), with ᾱ4 continuous positive definite, holds for all
discrete events, yielding the stronger property of ISS with respect to a “hybrid
time domain” in which the continuous time t and the discrete event index k play
essentially equivalent roles (see [12]). ut

Remark 3 If the right-hand side of (13) in nonlinear in V1:

V1(x) ≥ χ1(V2(µ)) ∨ σ(|w|) ⇒ ∇V1(x)f(x, µ, w) ≤ −α1(V1(x))

for some α1 ∈ K∞, then the construction of V 1(τ̄ , x) needs to be modified. A
standard comparison principle gives a class KL function β1 such that V1(τ̄ ) =
β1(V1(0), τ̄ ). With no loss of generality, we take it to be of class K∞ in r (for each
fixed t) and strictly decreasing in t (for each fixed r). We can use this function to
define V 1(τ̄ , x(t)) := β1(V1(x(t− τ̄ )), δτ̄ ), where δ ∈ (0, 1). This can be rewritten
as V 1(τ̄ , x) = β1(β

−1
1,τ̄ (V1(x)), δτ̄ ), where β1,t(r) := β1(r, t). It follows from this

and (17) that V1(x) ≤ V 1(τ̄ (t), x) ≤ (id + κ1)(V1(x)) for some positive definite
function κ1. Similarly, if the right-hand side of (14) is given by (id−α2)(V2(µ))
and we define a function V 2(τ̄ , µ) in the same way as V 1 above but using β2

associated with 1
τ
α2, then it satisfies (id − κ2)(V2(µ)) ≤ V 2(τ̄ (t), µ) ≤ V2(µ).

The statement of the result and the rest of the proof are then analogous to those
of Theorem 2, except that the small-gain condition becomes more complicated
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because it depends on κ1 and κ2. (Note that the linear dependence of the right-
hand sides of (25), (27), and (28) on V 1 and V 2 played no role in the subsequent
arguments.) ut

As an alternative to constructing a Lyapunov function strictly decreasing
along solutions, we can work with a weak Lyapunov function non-strictly de-
creasing along solutions and apply a LaSalle invariance principle for hybrid sys-
tems, such as the one proved in [6] (see also [19] for recent generalizations and
improvements). As can be seen from the proof of the result given next, such an
approach is perhaps simpler and more natural in the situation at hand, and the
relevant hypotheses more closely match those of Theorem 1 and Lemmas 1 and 2.
However, the result has inherent limitations characteristic of LaSalle theorems;
in particular, it is restricted to disturbance-free, time-invariant dynamics.

Consider the same hybrid system H as in Theorem 2, but assume that there
are no disturbances, i.e., the continuous dynamics are described by ẋ = f(x, µ).
We omit also the clock variables τ , so that the discrete events are defined as
G(x−, µ−) ≥ 0 ⇒ µ = Rµ(x−, µ−). We assume as before that the resulting
discrete event times are distinct (the extension to the case when a finite number
of discrete events can occur simultaneously is straightforward). We also assume
that the behavior of H is continuous with respect to initial conditions, in the
sense defined and characterized in [6].

Theorem 3 Suppose that there exist positive definite, radially unbounded C1

functions V1 : R
n → R and V2 : R

k → R, class K∞ functions χ1, χ2, and
continuous positive definite functions α1, α2 : [0,∞) → [0,∞) such that we have

V1(x) ≥ χ1(V2(µ)) ⇒ ∇V1(x)f(x, µ) ≤ −α1(V1(x)), (33)

V2(µ) ≥ χ2(V1(x)) ⇒ V2(Rµ(x, µ, τ)) − V2(µ) ≤ −α2(V2(µ)), (34)

V2(µ) ≤ χ2(V1(x)) ⇒ V2(Rµ(x, µ, τ)) ≤ χ2(V1(x)) (35)

the small-gain condition

χ1 ◦ χ2(r) < r ∀ r > 0 (36)

holds, and for each t > t0 such that V2(µ(s)) ≥ χ2(V1(x(s))) for all s ∈ [t0, t),
the number N(t, t0) of discrete events in the interval [t0, t] satisfies (11) for some
increasing function η. Then there exists a positive definite, radially unbounded,
locally Lipschitz function V : R

n × R
k → R such that for all (x, µ) ∈ R

n × R
k

we have

V̇ (x, µ) :=
∂V

∂x
(x, µ)f(x, µ) ≤ 0 (37)

for the continuous dynamics7 and

V (x, Rµ(x, µ, τ)) ≤ V (x, µ) (38)

7 When the gradient ∂V /∂x is not defined, V̇ is to be interpreted as the directional
derivative of V along f ; cf. footnote 6.
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for the discrete events. Moreover, there is no (forward) invariant set other than
the origin inside the set S1 ∪ S2, where

S1 := {(x, µ) : V̇ (x, µ) = 0, G(x, µ) < 0}

and

S2 := {(x, µ) : V (x, Rµ(x, µ, τ)) = V (x, µ), G(x, µ) ≥ 0}.

Consequently, H is GAS.

As in Theorem 2, the condition (33) only needs to be true for those states
where we have continuous evolution, i.e., where G(x, µ) < 0, while (34) and (35)
only need to be true for those states where discrete events occur, i.e., where
G(x, µ) ≥ 0.

Proof of Theorem 3. The condition (36) is equivalent to χ2(r) < χ−1
1 (r) for

all r > 0. As in [6], pick a C1, class K∞ function ρ satisfying (30) and

χ2(r) < ρ(r) < χ−1
1 (r) ∀ r > 0. (39)

Define a candidate weak Lyapunov function for H as

V (x, µ) :=

{

ρ(V1(x)) if ρ(V1(x)) ≥ V2(µ)

V2(µ) if ρ(V1(x)) < V2(µ)

This function is positive definite and radially unbounded by construction. We
now prove that it satisfies (37) and (38). We consider two cases, similarly to the
proof of Theorem 2.

Case 1: ρ(V1(x)) ≥ V2(µ), so that V (x, µ) = ρ(V1(x)). If ρ(V1(x)) > V2(µ), then
we have, using (30), (33), (39), and positive definiteness of V1 and V2, that x 6= 0
and

V̇ (x, µ) = ρ′(V1(x))
∂V1

∂x
(x)f(x, µ) ≤ −ρ′(V1(x))α1(V1(x)) < 0.

If ρ(V1(x)) = V2(µ) then, since V2 stays constant along the continuous dynamics,
we have

V̇ (x, µ) ≤ −ρ′(V1(x))α1(V1(x)) ∨ 0 ≤ 0.

We know that the discrete events do not change the value of ρ(V1(x)). If V2(µ) ≥
χ2(V1(x)), then using (34) we have V2(x, Rµ(x, µ, τ)) ≤ V2(µ) ≤ ρ(V1(x)). If
V2(µ) ≤ χ2(V1(x)), then with the help of (35) we obtain V2(x, Rµ(x, µ, τ)) ≤
χ2(V1(x)) ≤ ρ(V1(x)). In either case we have V2(Rµ(x, µ, τ)) ≤ ρ(V1(x)), hence
V (x, Rµ(x, µ, τ)) = ρ(V1(x)) = V (x, µ).

Case 2: ρ(V1(x)) < V2(µ), so that V (x, µ) = V2(µ). For the continuous dynam-
ics, we have V̇ (x, µ) = 0. As for the discrete events, (34) and (39) imply that
V2(Rµ(x, µ, τ)) < V2(µ). If V2(Rµ(x, µ, τ)) > ρ(V1(x)), then V (x, Rµ(x, µ, τ)) =
V2(Rµ(x, µ, τ)) < V2(µ) = V (x, µ). If V2(Rµ(x, µ, τ)) ≤ ρ(V1(x)), then we have
V (x, Rµ(x, µ, τ)) = ρ(V1(x)) < V2(µ) = V (x, µ).
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The properties (37) and (38) are therefore established. Next, we turn to the
claim about the absence of a nonzero invariant set inside S1 ∪ S2. The previous
analysis implies that we have S1 ⊆ S̃1 and S2 ⊆ S̃2, where

S̃1 := {(x, µ) : ρ(V1(x)) ≤ V2(µ), G(x, µ) < 0}

and
S̃2 := {(x, µ) : ρ(V1(x)) ≥ V2(µ), G(x, µ) ≥ 0}.

Hence it is enough to prove the claim for S̃1 ∪ S̃2. By (39) and the hypotheses
placed on the discrete events, no subset of either S̃1 or S̃2 can be invariant.
Indeed, while the state is in S̃1, (11) holds and so a discrete event must even-
tually occur, which means that the state must leave S̃1. On the other hand,
since consecutive discrete events are assumed to be separated by positive in-
tervals of continuous evolution, S̃2 is not invariant. It remains to show that
discrete events cannot take the state from S̃2 \ {(0, 0)} to S̃1. Consider an ar-
bitrary (x, µ) ∈ S̃2 \ {(0, 0)}. If V2(µ) ≥ χ2(V1(x)), then from (34) we have
V2(x, Rµ(x, µ, τ)) < V2(µ) ≤ ρ(V1(x)). If V2(µ) ≤ χ2(V1(x)), then from (35) we
have V2(x, Rµ(x, µ, τ)) ≤ χ2(V1(x)) < ρ(V1(x)). We conclude that (x, Rµ(x, µ))

cannot be in S̃1, which establishes the claim.
Stability in the sense of Lyapunov and boundedness of all solutions follow

from (37), (38), and the fact that V is positive definite and radially unbounded.
Since H is non-blocking and deterministic by construction, the invariance prin-
ciple for hybrid systems from [6] applies. To conclude GAS, we need to rule out
the existence of an invariant set different from the origin inside the set on which
V does not strictly decrease. But this latter set is precisely S1 ∪ S2, hence the
proof is complete. ut

We see that although the function V in Theorem 3 is a weak Lyapunov func-
tion, it has the right properties for applying the LaSalle invariance principle and
concluding GAS. However, for other purposes (such as, for example, analyzing
stability under perturbations of the right-hand side) it is still desirable to have
a strictly decreasing Lyapunov function. One may try to construct such a Lya-
punov function by modifying V under appropriate “observability” conditions
(see, e.g., [20, 21] for results of this kind for continuous systems).

6 Application example: quantized feedback stabilization

Consider the linear time-invariant system

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m (40)

where A is a non-Hurwitz matrix. We assume that this system is stabilizable, so
that there exist matrices P = P T > 0 and K such that

(A + BK)T P + P (A + BK) ≤ −2I. (41)

We denote by λmin(·) and λmax(·) the smallest and the largest eigenvalue of a
symmetric matrix, respectively. A quantizer is a piecewise constant function q :
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R
n → Q, where Q is a finite subset of R

n, for which there exist positive numbers
M (the range of q, possibly ∞) and ∆ (the quantization error) satisfying

|z| ≤ M ⇒ |q(z) − z| ≤ ∆. (42)

It is well known that quantization errors in general destroy asymptotic stability,
in the sense that the quantized feedback law u = Kq(x) is no longer stabilizing.
To overcome this problem, we will use quantized measurements of the form

qµ(x) := µq
(x

µ

)

, µ > 0. (43)

The quantizer qµ has range Mµ and quantization error ∆µ. The “zoom” variable
µ will be the discrete variable of the hybrid closed-loop system, initialized at some
fixed value. The idea behind achieving asymptotic stability is to “zoom in”, i.e.,
decrease µ to 0 in a suitable discrete fashion, while applying the feedback law
u = Kqµ(x). To simplify the exposition, we will assume that the condition
|x| ≤ Mµ always holds, i.e., x always remains within the range of qµ. This
is automatically true if M is infinite. For finite M , this can be achieved by
incorporating an initial “zooming-out” scheme and subsequently ensuring that
the condition is never violated (see [9] for details).

We view the closed-loop system as the feedback interconnection of Fig-
ure 1(a), with w ≡ 0 for the time being. Its continuous dynamics are

ẋ = Ax + BKqµ(x) = (A + BK)x + BKµ

(

q
(x

µ

)

−
x

µ

)

.

In view of (42) and the fact that A + BK is Hurwitz, we have ISS with respect
to µ. Let us use the Lyapunov function V (x) := 1

2xT Px, with P from (41), to
compute the ISS gain. Its derivative along solutions satisfies

V̇ ≤ −|x|2 + |x|‖PBK‖∆µ

where ‖·‖ stands for matrix induced norm. A simple square completion argument
shows that for an arbitrary ε > 0, we have

|x|2 ≥ (1 + ε)2‖PBK‖2∆2µ2 ⇒ V̇ ≤ −
ε

1 + ε
|x|2.

It follows that the condition (7) of Lemma 1 holds with ρx(r) := λmax(P )(1 +
ε)2‖PBK‖2∆2r2, and consequently the x-subsystem is ISS with respect to µ,
with gain

γx(r) :=

√

λmax(P )

λmin(P )
(1 + ε)‖PBK‖∆r. (44)

We now need to describe a scheme for updating µ, which we refer to as
a quantization protocol. The goal is to guarantee ISS of the µ-subsystem with
respect to x, with the ISS gain γµ such that the small-gain condition of Theorem 1
holds. Any such ISS quantization protocol will do; we now give an example.
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Pick a number C satisfying

√

λmin(P )C >
√

λmax(P )‖PBK‖∆. (45)

Define the guard map by

G(x, µ, τ) :=

(

(C + ∆)µ − |qµ(x)|
τ − δ

)

for some δ > 0, where the auxiliary clock variable τ is scalar-valued. Define the
reset map by

R(x, µ, τ) :=





x
Ωiµ
0





for some Ωi ∈ (0, 1). In other words, whenever we have |qµ−(x−)| ≤ (C +
∆)µ− and τ− ≥ δ, we set µ = Ωiµ

− (“zoom in”) and τ = 0 (reset the clock).
The system is clearly well posed. In view of (42), it is easy to see that the
condition (9) of Lemma 2 is satisfied with W (µ) := µ2 and ρµ(r) := r2/C2. The
other hypotheses of that lemma are also satisfied by construction. Therefore, the
µ-subsystem is ISS with respect to x, with gain

γµ(r) := r/C.

We see that both gain functions are actually linear gains, and to apply Theorem 1
we need the product of these gains to be smaller than 1. Since ε in (44) can be
arbitrarily small, the small-gain condition is exactly (45).

This quantization protocol has a clear geometric interpretation. We zoom in
if the quantized measurements show that |x| ≤ (C + 2∆)µ, which is guaranteed
to happen whenever |x| ≤ Cµ. The condition (45) means that for each µ, the
ball of radius Cµ around the origin contains the level set of V superscribed
around the ball of radius ‖PBK‖∆µ, outside of which V is known to decay
(thus ensuring that the zoom-in will be triggered). Similar ideas were used in [8,
9], but previous analyses did not employ the small-gain argument and were
arguably less transparent.

We remark in passing that the choice of precise values for C and Ωi is also
dictated by the need to keep x within the range of qµ. Namely, for each µ, the
ball of radius (C +2∆)µ must be contained in the level set of V inscribed in the
ball of radius MΩiµ, so we must have

√

λmax(P )(C + 2∆) ≤
√

λmin(P )MΩi.

Since these considerations seem to be decoupled from the small-gain argument,
we refer the reader to [9] for details.

Several variations of the above scheme are possible. One is a “sampled-data”
version, where the zoom-in condition is checked and transition is executed only
at integer multiples of δ, i.e., τ− ≥ δ would be complemented by −τ− ≥ −δ
(cf. the discrete-time design of [8]). We could also just zoom in at each sampling
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time, independently of the quantized measurement, so that the first component
of G would be eliminated. Then the µ subsystem becomes GAS (cf. Remark 1)
and the feedback connection reduces to the cascade (γµ = 0); on the other hand,
this scheme involves more frequent discrete transitions and requires more care
in choosing Ωi. This variant is pursued in [22].

Nonlinear quantized control systems can also be treated in an entirely sim-
ilar way, under the assumption of ISS of the continuous closed-loop dynamics
with respect to measurement errors. In particular, the quantization protocol
for nonlinear systems proposed in [9] lends itself to a small-gain interpretation
along the above lines, except that the ISS gains are nonlinear and so the general
small-condition (5) must be used.

Probably the most important advantage of the small-gain viewpoint for the
quantized feedback problem is that it allows us to establish robustness (in the ISS
sense) with respect to external disturbances. This aspect has not been addressed
in earlier work and seems to be much more difficult to handle with previously
used tools. In the case of infinite quantizer range M , the small-gain approach
makes the extension immediate. Namely, if we augment the system with an
external disturbance w to have

ẋ = Ax + Bu + Dw

then Theorem 1 yields ISS of the closed-loop system described above with re-
spect to w. If the quantizer range M is finite, then the situation is much more
complicated because it is necessary to “zoom out” to keep x within the range of
qµ, and in the presence of the disturbance we will keep switching back and forth
between the zooming-in and zooming-out stages. A solution to this problem is
described in the recent paper [22].

7 Conclusions and future work

The main purpose of this paper was to bring the small-gain analysis method
to the attention of the hybrid systems community. We argued that general hy-
brid systems can be viewed as feedback interconnections of simpler subsystems,
and thus the small-gain analysis framework is very naturally applicable to them.
While the small gain theorem based on time-domain analysis provides an “off-
the-shelf” tool for studying stability of hybrid systems, Lyapunov function con-
structions are also of interest and were addressed in this paper. For a class of
hybrid systems satisfying the conditions of the small-gain theorem, we described
a construction of a Lyapunov function and another construction of a weak Lya-
punov function, each of which can be used to establish stability. An application of
the proposed approach to a quantized feedback stabilization problem was shown
to lead to useful new interpretations and generalizations of existing results.

Further research is needed for improving Lyapunov function constructions
of Section 5, which are currently not quite satisfactory. First, Theorem 2 falls
short of recovering the ISS result of Theorem 1. Second, both Theorem 2 and
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Theorem 3 are restricted to the special feedback interconnection shown in Fig-
ure 1(a). Another direction for future work is to systematically exploit the pro-
posed method in application-motivated contexts. As demonstrated in [7] (see
also [14] and the subsequent work [23]), networked control systems represent a
very promising application area, but we expect the small-gain analysis to be
useful for hybrid systems arising in many other areas as well.
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21. Mazenc, F., Nešić, D.: Strong Lyapunov functions for systems satisfying the con-
ditions of La Salle. IEEE Trans. Automat. Control 49 (2004) 1026–1030
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