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Abstract

The Input-to-state stability (ISS) property for systems with disturbances has
received considerable attention in the last ten years, with many applications and
characterisations reported in the literature. The main purpose of this paper is to
present novel analysis results for ISS that utilise dynamic programming techniques
to characterise minimal ISS gains and transient bounds. These characterisations
naturally lead to computable necessary and sufficient conditions for ISS. Our results
make a connection between ISS and optimisation problems in nonlinear dissipative
systems theory (including L2-gain analysis and nonlinear H∞ theory). As such, the
results presented address an obvious gap in the literature.
Keywords: Analysis; Disturbances; Dynamic Programming; Input-to-state stabil-
ity.

1 Introduction

Among the many stability properties for systems with disturbances that have been pro-
posed in the literature, the input-to-state stability (ISS) property proposed by Sontag
in 1989 [18] deserves special attention. Indeed, ISS is fully compatible with Lyapunov
stability theory [20] while its other equivalent characterizations relate it to robust sta-
bility, dissipativity and input-output stability theory [19, 21, 24]. The ISS property has
found its main application in the ISS small gain theorem that was first proved by Jiang,
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Teel and Praly in [11]. Several different versions of the ISS small gain theorem that use
different (equivalent) characterizations of the ISS property and their various applications
to nonlinear controller design can be found in [12, 13, 25] and references defined therein.

The ISS property and the ISS small gain theorems naturally lead to the concept of non-
linear disturbance gain functions or simply “nonlinear gains”. In this context, obtaining
sharp estimates for the nonlinear gains is an important issue. Indeed, the better the non-
linear gain estimate that we can obtain, the larger the class of systems to which the ISS
small gain results can be applied. Currently, the main tool for estimating the nonlinear
gains are the so called ISS Lyapunov functions that typically produce rather conservative
estimates (over bounds) for the ISS nonlinear gains.

It is the main purpose of this paper to present several results that provide a computational
framework based on dynamic programming for obtaining minimum ISS nonlinear gains.
These results are related to optimization based methods in nonlinear dissipative systems
theory, such as L2-gain analysis and nonlinear H∞ theory (see [5] and references defined
therein), as well as recently developed optimization based L∞ methods (see [3, 6, 8, 14]).
Needless to say, the optimisation approach that we take in this paper can inflict a heavy
(and sometimes infeasible) computational burden on the user. However, this is not due
to the approach we take but rather to the intrinsic complexity of the problem that we are
trying to solve. For technical reasons we present results only for discrete-time nonlinear
systems since many calculations are in this way simplified.

The paper is organised as follows. In Section 2 we present several equivalent definitions of
the ISS property and state a result from the literature that motivates our definitions and
results. A fundamental dynamic programming equation that we need to state our main
results is given in Section 3. Sections 4, 5 and 6 contain results on minimum nonlinear
gains for different equivalent definitions of the ISS property. Two related ISS properties
are analysed in Section 7 using the techniques of Sections 5 and 6. Several illustrative
examples are presented in Section 8 and the paper is closed with conclusions in Section 9.

2 Preliminaries

Sets of real numbers, integers and nonnegative integers are denoted respectively as R,
Z and Z+. A function γ : [0,∞) → [0,∞) is of class K̄ if it is nondecreasing, satisfies
γ(0) = 0 and is right continuous at 0. A function β : [0,∞)× [0,∞) → [0,∞) is of class
K̄L̄ if for each fixed t ≥ 0, β(·, t) is of class K̄ and for each fixed s ≥ 0, limt→+∞ β(s, t) = 0.
Denote l∞ = {u : Z+ → Rm : ‖u‖∞ = sup

k∈Z+

|uk| < ∞} where |·| is the Euclidean norm.

Consider the following dynamical system

xk+1 = f(xk, uk) (1)

where xk ∈ Rn, uk ∈ Rm, and f : Rn ×Rm → Rn is continuous and satisfies f(0, 0) = 0.
For any x0 ∈ Rn and any input u : Z+ → Rm, we denote by x(·, x0, u) the solution of (1)
with initial state x0 and input u.
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The following definitions are taken from ISS related literature. It was shown in [9] that
these definitions of ISS are qualitatively equivalent. However, the gains in different def-
initions are not the same and since we are interested in minimum disturbance gains for
different characterizations, we find it useful to introduce different notation for each of
the different characterizations. In all the definitions below we assume that γ ∈ K̄ and
β ∈ K̄L̄.

Definition 2.1 (Input-to-state stability with + formulation)
System (1) is ISS+ (with (β, γ)) if

|x(k, x0, u)| ≤ β(|x0| , k) + γ(‖u‖∞) (2)

for all x0 ∈ Rn, all u ∈ l∞ and all k ∈ Z+.

Definition 2.2 (Asymptotic gain property)
System (1) is AG (with gain γ) if for all x0 ∈ Rn and all u ∈ l∞,

lim sup
k→+∞

|x(k, x0, u)| ≤ γ(‖u‖∞). (3)

Remark 2.3 Using arguments as in Lemma II.1 of [21], we can show that the above
definition is equivalent to the following: for all x0 ∈ Rn and all u ∈ l∞,

lim sup
k→+∞

|x(k, x0, u)| ≤ γ(lim sup
k→+∞

|uk|), (4)

which is the definition of asymptotic gain property in [9].

Definition 2.4 (Zero global asymptotic stability property)
System (1) is 0-GAS (with β) if the state trajectories with u ≡ 0 satisfy

|x(k, x0, 0)| ≤ β(|x0| , k). (5)

for all x0 ∈ Rn and all k ∈ Z+.

Definition 2.5 (Input-to-state stability with asymptotic gain formulation)
The system (1) is ISSAG (with (β, γ)) if it is AG (with gain γ) and 0-GAS (with β).

Remark 2.6 The above definition is motivated by the result proved in [21] which shows
for continuous-time systems that ISS+ ⇔ AG + 0-GAS. A similar result for discrete-time
systems was proved in [4, 9]. This result is restated below in Theorem 2.9 for convenience.

Definition 2.7 (Input-to-state stability with max formulation)
System (1) is ISSmax (with (β, γ)) if

|x(k, x0, u)| ≤ max{β(|x0| , k), γ(‖u‖∞)} (6)

for all x0 ∈ Rn, all u ∈ l∞ and all k ∈ Z+.
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Remark 2.8 It is more common in the literature to use the classes of functions K and
KL when defining ISS and related properties. A function γ : [0,∞) → [0,∞) is of
class K if it is continuous, strictly increasing and γ(0) = 0. A continuous function
β : [0,∞)× [0,∞) → [0,∞) is of class KL if for each fixed t ≥ 0, β(·, t) is of class K and
for each fixed s ≥ 0 β(s, ·) decreases to zero.

It is not hard to see that the stability definitions that we use are qualitatively equivalent to
the stability definitions when the classes of functions K̄ and K̄L̄ are replaced respectively
by K and KL. This follows from the following three facts: (i) K ⊂ K̄ and KL ⊂ K̄L̄;
(ii) given any γ ∈ K̄, there exists γ1 ∈ K such that γ(s) ≤ γ1(s),∀s ≥ 0; (iii) given
any β ∈ K̄L̄, there exists β1 ∈ KL such that β(s, k) ≤ β1(s, k), ∀s ≥ 0, ∀k ∈ Z+.
Consequently, most results that were proved in the literature for classes of functions K
and KL are still true when stated with function classes K̄ and K̄L̄.

Finally, we note that our relaxed function class definitions are necessitated by the fact
that the minimal ISS gain for some systems can be of class K̄ \ K, as is demonstrated in
Section 8.1, Example 1.

The following theorem has been proved in the context of function classes K and KL for
continuous-time systems in [21] and for discrete-time systems in [4, 9]. However, this
result remains valid for function classes K̄ and K̄L̄.

Theorem 2.9 The following statements are equivalent:

1. There exist βAG ∈ K̄L̄ and γAG ∈ K̄ such that the system (1) is ISSAG with
(βAG, γAG);

2. There exist β+ ∈ K̄L̄ and γ+ ∈ K̄ such that the system (1) is ISS+ with (β+, γ+);

3. There exist βmax ∈ K̄L̄ and γmax ∈ K̄ such that the system (1) is ISSmax with
(βmax, γmax).

In the sequel we use the non-standard notation from Theorem 2.9 since it is important
to distinguish between different characterizations and the related functions. Indeed, the
functions βAG, β+, βmax (respectively functions γAG, γ+, γmax) in the above theorem are
all different in general. Note that although notation βAG characterizing 0-GAS seems
counterintuitive, it is consistent with the definition of ISSAG in Definition 2.5.

Remark 2.10 We note that each of the properties ISSAG, ISS+ and ISSmax has been
used in the literature. In particular, there exist small gain theorems that use each of these
different characterizations (see, for instance, [10, 11, 12, 13, 25]). Computing the smallest
possible functions β, γ (or their estimates) in each of these properties is an important
problem for the following reasons: (i) the smaller the estimates of gains functions, the
larger the class of systems to which the small gain theorem can be applied; (ii) better
estimates of the functions β, γ for subsystems produce (via the small gain theorems)
sharper bounds on solutions of the composite system; (iii) the smallest functions will
be different in general for each of the properties ISSAG, ISS+ and ISSmax (this further
motivates our notation). In the sequel, we provide a framework for the computation of
minimum functions βAG, β+, βmax and γAG, γ+, γmax via dynamic programming.
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3 Dynamic Programming

In this section we define a value function that is used in the derivation of our subsequent
results, and present a dynamic programming equation to compute it. The dynamic pro-
gramming equation can be used in developing numerical algorithms for testing each of
the characterizations of the ISS property that were defined in the previous section. In
particular, we can obtain minimum disturbance gains and/or the minimal bounds on the
transients by using this technique.

For x ∈ Rn, δ ≥ 0, integer k ∈ Z+, denote

V δ(x, k) := sup
‖u‖∞≤δ

{|x(k, x0, u)| : x0 = x} . (7)

The Dynamic Programming Equation (DPE) for V δ(x, k) is

V δ(x, k) = sup
|u|≤δ

V δ(f(x, u), k − 1) (8)

with the initial condition
V δ(x, 0) = |x| . (9)

In subsequent sections, we show how V δ(x, k) can be used to compute the functions β, γ
needed in different characterizations of ISS.

4 Necessary and sufficient conditions for ISSAG

The main results of this section are necessary and sufficient conditions for ISSAG. The
results do not require a Lyapunov function but rather use the value function V δ(x, k) to
generate γAG and βAG directly. More importantly, we show that the computed functions
are minimal. This type of result is not possible to obtain via Lyapunov techniques since
they involve a certain conservatism in estimating γAG and βAG.

Using V δ(x, k) we introduce

V δ
a (x) := lim sup

k→+∞
V δ(x, k) (10)

and
γ∞(δ) := sup

x∈Rn

V δ
a (x) (11)

Denote
βa(s, k) := sup

|x|≤s

V 0(x, k) . (12)

Using the above definitions, we can state the main result of this section:

Theorem 4.1 If the system (1) is ISSAG with (βAG, γAG) then γ∞ ∈ K̄, βa ∈ K̄L̄ and

γ∞(s) ≤ γAG(s), ∀s ≥ 0

βa(s, k) ≤ βAG(s, k), ∀s ≥ 0, ∀k ∈ Z+ .

If, on the other hand, γ∞ ∈ K̄ and βa ∈ K̄L̄, then the system (1) is ISSAG with (βa, γ∞).
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Proof. Suppose the system (1) is ISSAG with (βAG, γAG). Then, the system is AG with
γAG ∈ K̄.

Since f is continous, by Lemma 10 in [4], ∀δ ≥ 0,∀x0 ∈ Rn, we can prove the following
property: ∀ε > 0,∃K (depend only on x0 and ε), such that

|x(k, x0, u)| ≤ γAG(δ) + ε, ∀ k ≥ K, ∀ ‖u‖∞ ≤ δ. (13)

which implies
V δ(x0, k) ≤ γAG(δ) + ε, ∀k ≥ K. (14)

Since ε is arbitrary, we have
V δ

a (x0) ≤ γAG(δ). (15)

Hence
0 ≤ γ∞(δ) ≤ γAG(δ) < +∞, ∀δ ≥ 0.

Since γAG(0) = 0 and γAG is right continuous at 0, we have γ∞(0) = 0 and γ∞ is right
continuous at 0. Hence γ∞ ∈ K̄.

Since the system is ISSAG with (βAG, γAG), it is 0-GAS with βAG ∈ K̄L̄. Hence, when
u ≡ 0, the trajectories satisfy

|x(k, x0, 0)| ≤ βAG(|x0| , k), ∀x0 ∈ Rn,∀k ∈ Z+.

Consequently, ∀s ≥ 0,∀k ∈ Z+, for any initial state x0 such that |x0| ≤ s, we have

|x(k, x0, 0)| ≤ βAG(|x0| , k) ≤ βAG(s, k).

By (7) and (12),
βa(s, k) ≤ βAG(s, k) < +∞, ∀s ≥ 0, ∀k ∈ Z+.

For fixed k ∈ Z+, since 0 ≤ βa(s, k) ≤ βAG(s, k) and βAG(s, k) is right continuous at 0 with
βAG(0, k) = 0, βa(s, k) must be right continuous at 0 with βa(0, k) = 0. So βa(·, k) ∈ K̄.
Moreover, for fixed s ≥ 0, since 0 ≤ βa(s, k) ≤ βAG(s, k) and βAG(s, k) tends to zero as
k →∞, βa(s, k) also tends to zero as k →∞. Thus, we have proved that βa ∈ K̄L̄.

The sufficiency part of the proof follows directly from the definitions of ISSAG, AG, 0-GAS,
the gain γ∞ and the function βa. ¤

Remark 4.2 It is clear from the above proof that system (1) is AG if and only if γ∞ ∈ K̄.
Moreover, system (1) is 0-GAS if and only if βa ∈ K̄L̄.

5 Necessary and sufficient conditions for ISS+

In this section we show how the value function V δ(x, k) can be used in analysing the
ISS+ property. Results of this section are slightly weaker than the results of the previous
section since they do not produce minimal β+ and γ+ simultaneously. Instead, we show
that given a fixed γ+ it is possible to compute a minimal β+ corresponding to the given
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γ+ and vice versa. Consequently, results of this section are divided into two subsections
addressing respectively the case when β+ is fixed and the case when γ+ is fixed.

We note that the gain γ∞ which was used in characterizing the ISSAG property is not
appropriate for results in this section. For this reason, we introduce a new function γa.
Define

γa(δ) := max{γ∞(δ), sup
k≥0

V δ(0, k)}. (16)

We first show that βa and γa are respectively lower bounds for β+ and γ+.

Lemma 5.1 If the system (1) is ISS+ with (β+, γ+), then γa ∈ K̄, βa ∈ K̄L̄ and

γa(δ) ≤ γ+(δ), ∀δ ≥ 0

βa(s, k) ≤ β+(s, k), ∀s ≥ 0,∀k ∈ Z+.

Proof. Since system (1) is ISS+ with (β+, γ+), it is AG with γ+ and 0-GAS with β+.
From Theorem 4.1, we only need to prove that supk≥0 V δ(0, k) ≤ γ+(δ),∀δ ≥ 0. Choosing
x0 = 0, the ISS+ property implies that ∀k ∈ Z+,

sup
‖u‖∞≤δ

|x(k, 0, u)| ≤ γ+(δ).

Hence V δ(0, k) ≤ γ+(δ), ∀k ∈ Z+ and hence supk≥0 V δ(0, k) ≤ γ+(δ). ¤

5.1 Minimal β+ for fixed γ+

In this subsection we address the question of constructing the minimal transient bound
β+ for a fixed gain γ+ such that the system is ISS+ with (β+, γ+).

For γ+ ∈ K̄, we define

βγ+(δ, s, k) := max

{
sup
|x|≤s

V δ(x, k)− γ+(δ), 0

}
(17)

and
βγ+

a (s, k) := sup
δ≥0

βγ+(δ, s, k). (18)

The main result of the subsection is presented below.

Theorem 5.2 For fixed γ+ ∈ K̄, if there exists β+ ∈ K̄L̄ such that system (1) is ISS+

with (β+, γ+), then βγ+
a ∈ K̄L̄ and

βγ+
a (s, k) ≤ β+(s, k), ∀s ≥ 0, k ∈ Z+ . (19)

Conversely, if βγ+
a ∈ K̄L̄, then the system (1) is ISS+ with (βγ+

a , γ+).
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Proof. Let γ+ ∈ K̄ be fixed, if there exists β+ ∈ K̄L̄ such that system (1) is ISS+ with
(β+, γ+), then ∀δ ≥ 0,

|x(k, x0, u)| ≤ β+(|x0| , k) + γ+(δ), ∀x0 ∈ Rn,∀‖u‖∞ ≤ δ,∀k ∈ Z+.

Hence
V δ(x, k)− γ+(δ) ≤ β+(|x| , k), ∀x ∈ Rn,∀k ∈ Z+,∀δ ≥ 0.

Since β+(s, k) is nondecreasing in s (for fixed k), we have

sup
|x|≤s

V δ(x, k)− γ+(δ) ≤ β+(s, k), ∀s ≥ 0,∀k ∈ Z+, ∀δ ≥ 0.

Noting that β+(s, k) is nonnegative, by (17) we have

0 ≤ βγ+(δ, s, k) ≤ β+(s, k), ∀s ≥ 0,∀k ∈ Z+,∀δ ≥ 0.

Since δ is arbitrary, we have

0 ≤ βγ+
a (s, k) ≤ β+(s, k), ∀s ≥ 0,∀k ∈ Z+.

It is easy to see that βγ+
a ∈ K̄L̄, as β+ ∈ K̄L̄.

The sufficiency part of the proof follows from the definitions of βγ+
a and ISS+. ¤

5.2 Minimal γ+ for fixed β+

The purpose of this section is to find the minimum gain γ+ when the transient bound β+

is fixed so that the system is ISS+ with (β+, γ+). To this end we define

γβ+
a (δ) := sup

x∈Rn

sup
k∈Z+

max
{
V δ(x, k)− β+(|x|, k), 0

}
. (20)

The main result of the subsection is presented below.

Theorem 5.3 For fixed β+ ∈ K̄L̄, if there exists γ+ ∈ K̄ such that system (1) is ISS+

with (β+, γ+), then γβ+
a ∈ K̄ and

γβ+
a (δ) ≤ γ+(δ), ∀δ ≥ 0 . (21)

Conversely, if γβ+
a ∈ K̄, then system (1) is ISS+ with (β+, γβ+

a ).

Proof. Let β+ ∈ K̄L̄ be fixed, if there exists γ+ ∈ K̄ such that system (1) is ISS+ with
(β+, γ+), then ∀δ ≥ 0,

|x(k, x0, u)| ≤ β+(|x0| , k) + γ+(δ), ∀x0 ∈ Rn,∀‖u‖∞ ≤ δ,∀k ∈ Z+.

Hence
V δ(x, k)− β+(|x| , k) ≤ γ+(δ), ∀x ∈ Rn, ∀k ∈ Z+,∀δ ≥ 0.

Noting that γ+(δ) is nonnegative, by (20) we have

0 ≤ γβ+
a (δ) ≤ γ+(δ), ∀δ ≥ 0.

Since γ+ ∈ K̄, we have γβ+
a ∈ K̄.

The sufficiency part of the proof follows from the definitions of γβ+
a and ISS+. ¤
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6 Necessary and sufficient conditions for ISSmax

In this section we present necessary and sufficient conditions for ISSmax and moreover, we
obtain in a similar manner as in the previous section, a minimum gain γmax for a fixed
transient bound βmax and vice versa. The constructions of the minimal functions are
different from the constructions in the previous section although the ideas are the same.

Lemma 6.1 If the system (1) is ISSmax with (βmax, γmax), then γa ∈ K̄, βa ∈ K̄L̄ and

γa(δ) ≤ γmax(δ), ∀δ ≥ 0

βa(s, k) ≤ βmax(s, k), ∀s ≥ 0, ∀k ∈ Z+ .

Proof. Follows directly from the definitions of βa, γa and the property ISSmax.

6.1 Minimal βmax for fixed γmax

In this subsection we present results for a fixed gain γmax ∈ K̄. In particular we find the
minimal transient bound βmax such that the system is ISSmax with (βmax, γmax).

To this end, for γmax ∈ K̄, we define

β̃γmax(δ, s, k) :=





sup
|x|≤s

V δ(x, k) if sup
|x|≤s

V δ(x, k) > γmax(δ),

0 if sup
|x|≤s

V δ(x, k) ≤ γmax(δ).
(22)

and
β̃γmax

a (s, k) := sup
δ≥0

β̃γmax(δ, s, k) (23)

The main result of this subsection is presented next.

Theorem 6.2 For a fixed γmax ∈ K̄, if there exists βmax ∈ K̄L̄ such that the system (1)
is ISSmax with (βmax, γmax), then β̃γmax

a ∈ K̄L̄ and

β̃γmax
a (s, k) ≤ βmax(s, k), ∀s ≥ 0, k ∈ Z+ . (24)

Conversely, if β̃γmax
a ∈ K̄L̄, then the system is ISSmax with (β̃γmax

a , γmax).

Proof. Let γmax ∈ K̄ be fixed. If there exists βmax ∈ K̄L̄ such that system (1) is ISSmax

with (βmax, γmax), then ∀δ ≥ 0,

|x(k, x0, u)| ≤ max{βmax(|x0| , k), γmax(δ)}, ∀x0 ∈ Rn,∀‖u‖∞ ≤ δ,∀k ∈ Z+.

Hence

V δ(x, k) ≤ max{βmax(|x| , k), γmax(δ)}, ∀x ∈ Rn,∀k ∈ Z+,∀δ ≥ 0.
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Since βmax(s, k) is nondecreasing in s (for fixed k), we have

sup
|x|≤s

V δ(x, k) ≤ max{βmax(s, k), γmax(δ)}, ∀s ≥ 0, ∀k ∈ Z+,∀δ ≥ 0. (25)

By (22), if sup
|x|≤s

V δ(x, k) > γmax(δ), then

β̃γmax(δ, s, k) = sup
|x|≤s

V δ(x, k) ≤ max{βmax(s, k), γmax(δ)} = βmax(s, k).

If sup
|x|≤s

V δ(x, k) ≤ γmax(δ), then

β̃γmax(δ, s, k) = 0 ≤ βmax(s, k).

So, in either case we have

0 ≤ β̃γmax(δ, s, k) ≤ βmax(s, k).

Since δ is arbitrary,

0 ≤ β̃γmax
a (s, k) ≤ βmax(s, k), ∀s ≥ 0,∀k ∈ Z+.

It is easy to see that β̃γmax
a ∈ K̄L̄, since βmax ∈ K̄L̄.

The sufficiency part of the proof follows from the definitions of β̃γmax
a and ISSmax. ¤

6.2 Minimal γmax for fixed βmax

In this section we present results for a fixed transient bound βmax ∈ K̄L̄. In particular, we
find the minimal gain γmax such that the system is ISSmax with (βmax, γmax). We define

γ̃βmax(δ, s, k) :=





sup
|x|≤s

V δ(x, k) if sup
|x|≤s

V δ(x, k) > βmax(s, k),

0 if sup
|x|≤s

V δ(x, k) ≤ βmax(s, k).
(26)

and
γ̃βmax

a (δ) := sup
s≥0

sup
k∈Z+

γ̃βmax(δ, s, k). (27)

The main result of this subsection is presented next.

Theorem 6.3 For a fixed βmax ∈ K̄L̄, if there exists γmax ∈ K̄ such that the system (1)
is ISSmax with (βmax, γmax) for some γmax ∈ K̄, then γ̃βmax

a ∈ K̄ and

γ̃βmax
a (δ) ≤ γmax(δ), ∀δ ≥ 0. (28)

Conversely, if γ̃βmax
a ∈ K̄, then the system is ISSmax with (βmax, γ̃

βmax
a ).
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Proof. Let βmax ∈ K̄L̄ be fixed, if there exists γmax ∈ K̄ such that system (1) is ISSmax

with (βmax, γmax), then from (25) in the proof of Theorem 6.2,

sup
|x|≤s

V δ(x, k) ≤ max{βmax(s, k), γmax(δ)}, ∀s ≥ 0, ∀k ∈ Z+,∀δ ≥ 0.

By (26), if sup
|x|≤s

V δ(x, k) > βmax(s, k), then

γ̃βmax(δ, s, k) = sup
|x|≤s

V δ(x, k) ≤ max{βmax(s, k), γmax(δ)} = γmax(δ).

If sup
|x|≤s

V δ(x, k) ≤ βmax(s, k), then

γ̃βmax(δ, s, k) = 0 ≤ γmax(δ).

So, in either case we have

0 ≤ γ̃βmax(δ, s, k) ≤ γmax(δ), ∀s ≥ 0, k ∈ Z+, δ ≥ 0.

Since s, k are arbitrary,

0 ≤ γ̃βmax
a (δ) ≤ γmax(δ), ∀δ ≥ 0.

It is easy to see that γ̃βmax
a ∈ K̄, since γmax ∈ K̄.

The sufficiency part of the proof follows from the definitions of γ̃βmax
a and ISSmax. ¤

Remark 6.4 It can be seen from Theorem 4.1, Lemmas 5.1 and 6.1 (see also equation
(16)) that the minimal ISSAG gain γ∞ defined by (11) is a lower bound of both the
minimal ISS+ gain and the minimal ISSmax gain (this is also clear from the different ISS
definitions). However, we do not have clear formulas for the the minimal ISS+ gain and
the minimal ISSmax gain. In fact, there is a tradeoff between the minimal ISS gain and
the minimal transient bound for the ISS+ and ISSmax cases. Moreover, our examples (see
Examples 2 and 3 in Section 8) shows that the limit of some good ISSmax gains may
not be a good ISSmax gain itself. Our results (see (20) and (27)) also show that for a
fixed transient bound β+ = βmax, the minimal ISS+ gain γβ+

a is not greater than the
minimal ISSmax gain γ̃βmax

a if they both exist. The minimal transient bounds of different
ISS definitions enjoy a similar property.

7 Analysis of related ISS like properties

It is possible to analyse several other ISS like properties using techniques of Sections 5 and
6. In particular, we sketch below how one can analyse input-to-output stability (IOS) and
incremental input-to-state stability (∆-ISS) that were respectively considered in [22, 23]
and [1]. Other ISS like properties can be analysed using similar techniques, but we have
omitted those results for space reasons.

Consider the system (1) with the output

yk = h(xk). (29)

We introduce the following two IOS properties:

11



Definition 7.1 The system (1) with the output (29) is IOS+ (with (β, γ)) if there exists
γ ∈ K̄ and β ∈ K̄L̄, such that

|h(x(k, x0, u))| ≤ β(|x0| , k) + γ(‖u‖∞), ∀x0 ∈ Rn, u ∈ l∞, k ∈ Z+. (30)

Definition 7.2 The system (1) with the output (29) is IOSmax (with (β, γ)) if there exists
γ ∈ K̄ and β ∈ K̄L̄, such that

|h(x(k, x0, u))| ≤ max{β(|x0| , k), γ(‖u‖∞)}, ∀x0 ∈ Rn, u ∈ l∞, k ∈ Z+. (31)

For x ∈ Rn, δ ≥ 0, integer k ∈ Z+, denote

U δ(x, k) := sup
‖u‖∞≤δ

{|h(x(k, x0, u))| : x0 = x} . (32)

The Dynamic Programming Equation (DPE) for U δ(x, k) is

U δ(x, k) = sup
|u|≤δ

U δ(f(x, u), k − 1) (33)

with the initial condition
U δ(x, 0) = |h(x)| . (34)

Results similar to those in Sections 5 and 6 still hold for IOS properties defined above.
It should be noted that the results in Section 4 do not hold since we do not have an
appropriate asymptotic gain characterization of IOS.

Another property that can be treated in a similar way is incremental ISS (∆-ISS) consid-
ered in [1]. In particular, we can define the following two characterizations of ∆-ISS:

Definition 7.3 The system (1) is ∆-ISS+ (with (β, γ)) if there exists γ ∈ K̄ and β ∈ K̄L̄,
such that any two solutions x(k, x0, u) and x(k, z0, v) satisfy:

|x(k, x0, u)− x(k, z0, v)| ≤ β(|x0 − z0| , k) + γ(‖u− v‖∞) , (35)

for all x0, z0 ∈ Rn, all u, v ∈ l∞ and all k ∈ Z+.

Definition 7.4 The system (1) is ∆-ISSmax (with (β, γ)) if there exists γ ∈ K̄ and β ∈
K̄L̄, such that any two solutions x(k, x0, u) and x(k, z0, v) satisfy:

|x(k, x0, u)− x(k, z0, v)| ≤ max{β(|x0 − z0| , k), γ(‖u− v‖∞)} (36)

for all x0, z0 ∈ Rn, all u, v ∈ l∞ and all k ∈ Z+.

In order to state the appropriate dynamic programming equation for ∆-ISS, we introduce
the following 2n dimensional auxiliary system containing system (1) and an augmented
exact copy:

xk+1 = f(xk, uk),

zk+1 = f(zk, vk).

12



Here xk, zk ∈ Rn and uk, vk ∈ Rm. Then, we introduce for x, z ∈ Rn, δ ≥ 0, integer
k ∈ Z+

W δ(x, z, k) := sup
‖u−v‖∞≤δ

{|x(k, x0, u)− x(k, z0, v)| : x0 = x, z0 = z} . (37)

The Dynamic Programming Equation (DPE) for W δ(x, z, k) is

W δ(x, z, k) = sup
|u−v|≤δ

W δ(f(x, u), f(z, v), k − 1) (38)

with the initial condition
W δ(x, z, 0) = |x− z| . (39)

Results similar to those in Sections 5 and 6 still hold for ∆-ISS while the results in Section
4 do not hold since we do not have an appropriate asymptotic gain characterization of
∆-ISS.

8 Examples

In this section, we present four examples to which the results of Sections 3, 4, 5 and 6 are
applied. The first example shows that the minimal asymptotic gain for an ISS system may
be discontinuous. The second and third examples consider respectively scalar linear and
nonlinear systems, whilst the fourth example considers a second order nonlinear system.

Where necessary in analysing these examples, a numerical scheme is applied to solve DPE
(8) approximately. This scheme utilizes a bounded discretized input bound space ∆, state
space X and input space U . In terms of notation, these spaces are denoted respectively
by

∆ = {δ ∈ R : δmin ≤ δ ≤ δmax}N∆
,

X = {x ∈ R : |x| ≤ xmax}NX
,

U δ = {u ∈ R : |u| ≤ δ}NU
, δ ∈ ∆.

(40)

Here, N∆, NX and NU respectively refer to the number of points in each of the discretized
spaces ∆, X and U δ. The result of applying DPE (8) over these discretized spaces
is an approximation for V δ. With V δ(x, k) computed for all δ ∈ ∆, computation of
approximations for the remaining quantities is then possible.

We acknowledge that, while straightforward in principle, these approximations can be
computationally expensive to obtain. Aside from this observation, we stress that while
the details of the attendant numerical scheme are important, the scheme itself is not
fundamental to understanding the concepts presented in this paper. Consequently, a
detailed discussion of possible numerical schemes is postponed for inclusion in a later
paper.

8.1 Example 1: A system with discontinuous minimal asymp-
totic gain

Consider the one dimensional system

xk+1 =
1

2
xk (1 + φ(|xk|) a(|uk|)) (41)
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where

φ(s) =





1, s ∈ [0, 20),
21− s, s ∈ [20, 21),

0, s ∈ [21,∞),
and a(s) =





0, s ∈ [0, 9),
s− 9, s ∈ [9, 10),

1, s ∈ [10,∞).
(42)

ISSAG property: To demonstrate that system (41) satisfies the ISSAG property, we show
that the AG and 0-GAS properties hold.

(i) AG property: First, we can show that the dynamics of (41) are attracted to an
input invariant set as k →∞. Consider two cases for |xk|.
(a) |xk| ≥ 21: For any uk, |xk| ≥ 21 implies that |xk+1| ≤ 1

2
|xk|.

(b) |xk| < 21: For any uk, |xk| < 21 implies that |xk+1| ≤ 1
2
|xk| + 1

2
a(|uk|) |xk|φ(|xk|) ≤

1
2
|xk|+ 1

2
|xk| = |xk|.

Hence, combining these two cases, for any input u,

sup
x◦∈R

lim sup
k→∞

|x(k, x0, u)| ≤ 21. (43)

Next, consider four cases defined by different bounds on ‖u‖∞ to bound the candidate
asymptotic gain.

(a) ‖u‖∞ < 9: By definition, a(|uk|) = 0. So, for any xk, |xk+1| ≤ 1
2
|xk|. That is,

‖u‖∞ < 9 ⇒ sup
x◦∈R

lim sup
k→∞

|x(k, x0, u)| = 0.

(b) ‖u‖∞ ∈ [9, 10): There exists δ ∈ (0, 1) such that ‖u‖∞ ≤ 10 − δ, which implies that
a(|uk|) ≤ 1− δ. So, for any xk,

|xk+1| ≤ 1
2
|xk|+ 1

2
(1− δ) |xk|φ(|xk|) ≤ 1

2
|xk|+ 1

2
(1− δ) |xk| = (1− 1

2
δ) |xk| . (44)

That is,
‖u‖∞ ∈ [9, 10) ⇒ sup

x◦∈R
lim sup

k→∞
|x(k, x0, u)| = 0.

(c) ‖u‖∞ = 10: First, consider x0 = 20. By inspection, xk+1 = 1
2
xk + 1

2
xk = xk = 20.

Hence, for x0 = 20, lim supk→∞ |x(k, x0, u)| = 20, and so supx◦∈R lim supk→∞ |x(k, x0, u)| ≥
20. Combining this limit with (43), implies that

‖u‖∞ = 10 ⇒ sup
x◦∈R

lim sup
k→∞

|x(k, x0, u)| ∈ [20, 21].

(d) ‖u‖∞ ∈ (10,∞): In this case, we defer to the bound (43). That is,

‖u‖∞ ∈ (10,∞) ⇒ sup
x◦∈R

lim sup
k→∞

|x(k, x0, u)| ≤ 21.

Combining these four cases along with (3) implies that system (41) satisfies the AG
property with gain γAG, where γAG is any K̄ function such that γAG(s) ≥ γ1(s), and

γ1(s) =

{
0, s ∈ [0, 9),
21, s ∈ [9,∞).
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(ii) 0-GAS property: As a(0) = 0, uk = 0 implies that xk+1 = 1
2
xk for all k ≥ 0. Hence,

applying inequality (5), the 0-GAS property holds with transient bound βAG(s, k) =
s
(
2−k

)
.

This demonstrates that system (41) satisfies the ISSAG property.

(iii) Minimal asymptotic gain: Referring to AG property above, it also follows that
any candidate asymptotic gain γAG ∈ K for system (41) must satisfy the inequality
γAG(s) ≥ γ0(s) for all s ≥ 0, where

γ0(s) =

{
0, s ∈ [0, 10),
20, s ∈ [10,∞).

Hence, the minimal asymptotic gain γ∞ defined by (11) must satisfy γ0(s) ≤ γ∞(s) ≤ γ1(s)
for all s ≥ 0, which implies a jump discontinuity in γ∞ at s = 10.

(iv) Minimal asymptotic gain via dynamic programming: In computing an ap-
proximation of γ∞ via the dynamic programming approach, we selected the following
numerical parameters as per (40):

N∆ = 41, δmin = 9, δmax = 11,
NX = 201, xmax = 20,
NU = 21.

The obtained approximation of γ∞ is shown in Figure 1. Although computed on a finite
grid, this approximation clearly demonstrates the jump discontinuity (at s = 10) in γ∞.
An example of a numerical approximation of V δ is shown in Figure 2.

9 9.5 10 10.5 11

0

2

4

6

8

10

12

14

16

18

20

δ

γ ∞(δ)

Figure 1: Approximation of γ∞ obtained by dynamic programming (Example 1).

ISS+ Property: System (41) satisfies the ISS+ property for β+(s, k) = s
(
2−k

)
and any

K function γ+ with γ+(9) ≥ 21. However, system (41) can not be ISS+ for γ∞ and any
β+ ∈ K̄L̄, as it is impossible to find a β+ ∈ K̄L̄ such that β+(s, k) ≥ (1 − 1

2
δ)ks for all

δ ∈ (0, 1) (see inequality (44)).
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Figure 2: Approximation of V δ for δ = 9.95 (Example 1).

Remark 8.1 This example demonstrates that for some systems, the minimal asymptotic
gain γ∞ can be of class K̄ \ K. Furthermore, γ∞ may not be a candidate gain for the
ISS+ property, even though it is the minimal asymptotic gain. Consequently, we cannot
use γ∞ to determine a minimal candidate transient bound for the ISS+ property in this
example.

8.2 Example 2: A class of scalar linear systems

Consider the class of scalar linear systems given by

xk+1 = axk + buk, (45)

where 0 < a < 1 and b ≥ 0. By direct calculation, DPE (8) and initialisation (9) for V δ

imply that for any k ≥ 0,

V δ(x, k) = ak|x|+
(

1− ak

1− a

)
bδ. (46)

ISSAG property: Applying definitions (10), (11), and (12) of respectively V δ
a (x), γ∞(δ)

and βa(s, k),

V δ
a (x) = lim sup

k→∞
V δ(x, k) =

(
b

1− a

)
δ,

γ∞(δ) = sup
x∈Rn

V δ
a (x) =

(
b

1− a

)
δ,

βa(s, k) = sup
|x|≤s

V 0(x, k) = sak.

Since γ∞ ∈ K̄ and βa ∈ K̄L̄, Theorem 4.1 implies that system (45) is ISSAG with (βa, γ∞).
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ISS+ property: Applying definition (16) of γa(δ),

γa(δ) = max

{
γ∞(δ), sup

k≥0
V δ(0, k)

}
= max

{
γ∞(δ),

(
b

1− a

)
δ

}
= γ∞(δ).

(i) Minimal β+ for fixed γ+: Using γa as a candidate (fixed) gain in testing ISS+

(i.e. γ+ = γa), the definition (17) of the minimal corresponding transient bound β+ for
‖u‖∞ ≤ δ yields

βγ+(δ, s, k) = max

{(
s− bδ

1− a

)
ak, 0

}
.

Taking the supremum over all input bounds δ yields the minimal ISS+ transient bound
for gain γ+,

βγ+
a (s, k) = sup

δ≥0
βγ+(δ, s, k) = sak,

which in this case is the same as βa(s, k). By inspection, γ+ = γa ∈ K̄ and βγ+
a ∈ K̄L̄.

Theorem 5.2 then implies that system (45) is ISS+ with (βγ+
a , γ+), where γ+ = γa and

βγ+
a is the minimal corresponding transient bound.

(ii) Minimal γ+ for fixed β+: Using βa as a candidate (fixed) transient bound in testing
ISS+ (i.e. β+ = βa), the definition (20) of the minimal corresponding gain yields

γβ+
a (δ) =

(
b

1− a

)
δ = γa(δ)

in this case. Since γa ∈ K̄ and βa ∈ K̄L̄, Theorem 5.3 implies that system (45) is ISS+

with (β+, γβ+
a ), where β+ = βa and γβ+

a is the minimal corresponding gain.

Remark 8.2 Calculations (i) and (ii) above highlight an important property of scalar
linear systems. In particular, (i) shows that the minimal ISS+ transient bound βγ+

a deter-
mined using the minimal candidate ISS+ gain γ+ = γa is exactly the minimal candidate
ISS+ transient bound βa. Similarly, (ii) shows that the minimal candidate ISS+ gain
bound γa is recovered as the minimal ISS+ gain. That is, both approaches yield that the
ISS+ property holds with the transient bound / gain pair defined by the minimal can-
didate transient bound βa and the minimal candidate gain γa. We note that this is not
in general the case, either for other classes of systems or other equivalent ISS properties.
This is illustrated below in the ISSmax case.

ISSmax property: Based on the candidates βa and γa for βmax and γmax, it is also possible
(in this case) to explicitly test the ISSmax property. Unlike the ISS+ property however,
we find that (for this example) the ISSmax property does not hold for the pair defined by
the minimal candidate transient bound βa and the minimal candidate gain γa.

(i) Minimal βmax for fixed γmax: Using γa as a candidate (fixed) gain in testing ISSmax

(i.e. γmax = γa), the definition (22) of the minimal corresponding transient bound βmax

for ‖u‖∞ ≤ δ yields

β̃γmax(δ, s, k) =

{ (
s− bδ

1−a

)
ak +

(
bδ

1−a

)
s > bδ

1−a
,

0 s ≤ bδ
1−a

.
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Taking the supremum over all input bounds δ yields the minimal ISSmax transient bound
(23), given by

β̃γmax
a (s, k) = s,

which is not of class K̄L̄. Hence, the gain γa is too small to be a gain candidate for
computing the minimal transient bound. To illustrate this point further, suppose a slightly
larger candidate gain is chosen, namely

γmax(δ) = (1 + ε)γa(δ)

where ε > 0 is fixed and small. Repeating the above computation yields that

β̃γmax
a (s, k) =

(
1 + ε

ak + ε

)
sak =

(
1 + ε

ak + ε

)
βa(s, k),

which is of class K̄L̄ for any ε > 0. Hence, by Theorem 6.2, system (45) is ISSmax with
(β̃γmax

a , γmax), γmax = (1 + ε)γa.

(ii) Minimal γmax for fixed βmax: Using βa as a candidate (fixed) transient bound in
testing ISSmax (i.e. βmax = βa), the minimal corresponding gain (26) for ‖u‖∞ ≤ δ is

γ̃βmax(δ, s, k) =

{
sak +

(
1−ak

1−a

)
bδ δ > 0,

0 δ = 0.

Taking the supremum over all time k ∈ Z+ and all s ≥ 0 yields the corresponding minimal
ISSmax gain (27),

γ̃βmax
a (δ) ≥ sup

s≥0
s = ∞, (47)

for all δ > 0, which is clearly not of class K̄. As in the minimal transient bound case,
this implies that the transient bound βa is too small to be a candidate transient bound
for ISSmax. To illustrate that this system is ISSmax, choose the slightly larger transient
bound

βmax(s, k) = (1 + ε)βa(s, k)

where ε > 0. Repeating the above computation yields that

γ̃βmax
a (δ) =

(
1 +

1

ε

)
bδ

1− a
=

(
1 +

1

ε

)
γa(δ),

which is of class K̄. Theorem 6.3 then implies that system (45) is ISSmax with (βmax, γ̃
βmax
a ),

βmax = (1 + ε)βa.

8.3 Example 3: A scalar nonlinear system

Consider the scalar nonlinear system

xk+1 =
x3

k

2(1 + x2
k)

+ u3
k (48)
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Figure 3: Approximation of V δ(x, k) with δ = 1.00 (Example 3).

In computing an approximate solution to the DPE (8), we selected the following numerical
parameters as per (40):

N∆ = 301, δmin = 0, δmax = 3,
NX = 1501, xmax = 15,
NU = 201.

The result of the applying DPE (8) over these discretized spaces is an approximation for
V δ. For example, V δ(x, k) for δ = 1.00 obtained in this way is illustrated in Figure 3.

ISSAG property: Computing V δ
a (x) from definition (10) yields (in this case) functions

that are independent of x (see for example k = 10 in Figure 3). γ∞ then follows from

definition (11). Note that since
∣∣∣ x3

k

2(1+x2
k)

∣∣∣ ≤
∣∣xk

2

∣∣, it is easy to prove that γ∞(δ) ≤ 2δ3,

thereby providing a useful upper bound for this gain. βa likewise follows from definition
(12). The resulting approximations are illustrated in Figures 4 and 5 respectively. As
βa ∈ K̄L̄ and γ∞ ∈ K̄ (at least over the discretized spaces used in the computation),
Theorem 4.1 implies that system (48) is ISSAG with (βa, γ∞).

ISS+ property: Computing γa based on definition (16) yields an identical gain to γ∞,
as shown in Figure 4.

(i) Minimal β+ for fixed γ+: Utilising γ+ = γa allows the computation of the minimal
transient bound βγ+

a from definition (18). This function is illustrated in Figure 6, and is
of class K̄L̄ on the domain of computation. We also verified that βγ+

a ≥ βa. Theorem 5.2
then implies that system (48) is ISS+ with (βγ+

a , γ+), γ+ = γa.

19



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

δ

Ga
in 

γ ∞(δ)

 
Gain γ∞(δ)

Upper bound 2δ3

Figure 4: Approximation of γ∞(δ) (Example 3).
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Figure 5: Approximation of βa(s, k) (Example 3).
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Figure 6: Approximation of βγ+
a (s, k) with γ+ = γa (Example 3).

(ii) Minimal γ+ for fixed β+: Utilising β+ = βa allows the computation of the minimal
gain γβ+

a from definition (20). This function is of class K̄ as illustrated in Figure 7. Hence,
Theorem 5.3 implies that system (48) is ISS+ with (β+, γβ+

a ), β+ = βa.

ISSmax property: As in the ISS+ case, it is possible to compute an approximation to
the minimal transient bound given a fixed gain, or vice versa. However, unlike the ISS+

case, it is not possible to compute these bounds where the fixed function is minimal (for
example, γ̃βmax

a with βmax = βa), as the numerical approximation becomes very sensitive
to the parameters (40). This suggests that either the ISSmax property does not hold for
system (48) where the fixed function in minimal, or the numerical approximation is too
coarse. Given that it was the ISSmax property that did not hold (as was shown explicitly)
for the scalar linear system (45), it is plausible that this also the case for system (48).

Regardless of this, it is still possible to demonstrate that the ISSmax property holds, but
a larger gain or transient bound must be used. This is demonstrated below.

(i) Minimal βmax for fixed γmax: Recall that both γ∞(δ) and γa(δ) are bounded above
by 2δ3. Consequently, a suitable choice of a candidate gain is γmax = (2 + ε)δ3, ε > 0.
Case (i)(a): With ε = 0.1, computation of the minimal transient bound β̃γmax

a from
definition (23) is then possible. This function is illustrated in Figure 8, and is of class
K̄L̄ on the domain of computation. We also verified that β̃γmax

a ≥ βa. Theorem 6.2 then
implies that system (48) is ISSmax with (β̃γmax

a , γmax), γmax = (2 + ε)δ3, ε = 0.1.

Case (i)(b): The tightness of the aforementioned gain bound 2δ3 may be tested by
repeating Case (i)(a) with ε = 0. In this case, illustrated in Figure 9, it is evident that
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Figure 7: Approximation of γβ+
a (δ) with β+ = βa (Example 3).
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Figure 8: Approximation of β̃γmax
a (s, k) with γmax = (2 + ε)δ3, ε = 0.1 (Example 3).
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Figure 9: Approximation of β̃γmax
a (s, k) with γmax = (2 + ε)δ3, ε = 0.0 (Example 3).

the resulting function β̃γmax
a is not of class K̄L̄. Hence, we cannot conclude that the ISSmax

property holds for the pair (β̃γmax
a , γmax), where γmax = (2 + ε)δ3, ε = 0.

(ii) Minimal γmax for fixed βmax: In choosing a candidate function βmax, it is reasonable
to choose a K̄L̄ function that is the result of Case(i)(a) above. Alternatively, we may
choose an arbitrary class K̄L̄ function. These two cases are considered in Case (ii)(a) and
Case (ii)(b) below.

Case (ii)(a): Choosing βmax = β̃γmax
a (the result of Case (i)(a)), γmax = (2+ε)δ3, ε = 0.1,

yields a minimal gain bound γ̃βmax
a equal to the original function γmax(δ) = (2 + ε)δ3. As

such, the corresponding figure is omitted.

Case (ii)(b): Lemma 6.1 indicates that any candidate K̄L̄ transient bound βmax must
be bounded below by βa. One such candidate function is βmax(s, k) = se−k/3. Utilising
this choice of transient bound allows the computation of the minimal corresponding gain
γ̃βmax

a from definition (27). This function is of class K̄ as illustrated in Figure 10. Hence,
Theorem 6.3 implies that system (48) is ISSmax with (βmax, γ̃

βmax
a ), βmax = se−k/3.

Iterated computation of minimal gains and transient bounds: Given that it is
now possible to compute the minimal gain given a candidate transient bound, and the
minimal transient bound given a candidate gain, it is intuitively clear that iterated com-
putation of minimal gains and minimal transient bounds is possible. The following case
illustrates this idea for the ISSmax property, and follows on from Case (ii)(b) above.

The minimal gain γ̃βmax
a obtained in Case (ii)(b) can be used as the candidate gain γmax to

repeat Case (i)(a), thereby yielding a necessarily smaller transient bound β̃γmax
a (by Lemma

6.1). That is, we expect β̃γmax
a (s, k) ≤ se−k/3. This is indeed the case, as illustrated in

Figures 11 and 12. Further iterations yield the same minimal gain and minimal transient
bound, and as such, are omitted.
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Figure 10: Approximation of γ̃βmax
a (δ) with βmax = se−k/3 (Example 3).
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Figure 11: β̃γmax
a (s, k) with γmax = γ̃βmax

a as obtained from Case (ii)(b) (Example 3).
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Figure 12: Approximation of β̃γmax
a (s, k) − se−k/3 with γmax = γ̃βmax

a obtained from Case
(ii)(b) (Example 3).

8.4 Example 4: A two dimensional nonlinear system

In this example, the ISSAG property is examined for a two dimensional nonlinear system.
In particular, consider the (asymptotically stable) closed loop system

x1,k+1 = x2,k + 3
√

x1,k

x2,k+1 = x2,k − 1
4
x1,k + 3

√
x1,k − 3

√
x2,k + 3

√
x1,k + wk,

(49)

obtained via backstepping from the corresponding open loop system with x2,k+1 = uk+wk.
Here, uk ∈ R and wk ∈ R represent respectively control and disturbance inputs at time
k ∈ Z≥0. The Lyapunov function utilized in the backstepping procedure was

V (x1, x2) =
1

2
|x1|+ 3

2

∣∣∣x2 − x1

2
+ 3
√

x1

∣∣∣ . (50)

The aim is to determine the minimal asymptotic gain and transient bound for which the
ISSAG property holds (from disturbance to state) for this closed loop system.

ISS Lyapunov characterizations: We present Lyapunov characterizations of ISS for
two state space representations of the closed loop system (49). The state vector used in
each case is respectively x := [x1 x2]

T and ξ := [x1 y2]
T , where y2 := x2− x1

2
+ 3
√

x1. Using
the Lyapunov function V given by (50), we find (in both characterizations) the functions
α1, α2, α3, σ ∈ K∞ such that for all x ∈ R2 (equivalently ξ ∈ R2),

α1(|x|) ≤ V (x) ≤ α2(|x|)
V (f(x,w))− V (x) ≤ −α3(|x|) + σ(|w|). (51)

These characterizations yield two conservative estimates for the asymptotic gain. A fur-
ther less conservative estimate is obtained from the second Lyapunov characterization,

25



based on a bound for the asymptotic gain of another state space representation of the
same system.

(i) Characterization 1: (State vector x = [x1 x2]
T .) System (49) satisfies the Lyapunov

characterization (51) of ISS, with Lyapunov function (50). In particular, (51) holds with

α1(s) = min
(

1
10

s, 1
16

s3
)
,

α2(s) = 5
√

2
4

s + 3 6√2
2

3
√

s,

α3(s) = min
(

1
20

s, 1
32

s3
)
,

σ(s) = 3
2
s.

(52)

(ii) Characterization 2: (State vector ξ = [x1 y2]
T .) System (49) can be expressed in

the coordinates ξ := [x1 y2]
T , where y2 := x2− x1

2
+ 3
√

x1. Then, the closed loop dynamics
are linear, with

ξk+1 =

[
1
2

1
0 1

2

]
ξk +

[
0
1

]
wk. (53)

Consequently, system (53) satisfies the Lyapunov characterization (51) of ISS (in the ξ
coordinates) with Lyapunov function (50), V (x1, y2) = 1

2
|x1|+ 3

2
|y2|, and

αlin
1 (s) = 1

4
s,

αlin
2 (s) = 3√

2
s,

αlin
3 (s) = 1

4
s,

σlin(s) = 3
2
s.

(54)

Applying results from [16], there exists κ1,κ2 ∈ K∞ such that

κ1(|x|) ≤ |ξ| ≤ κ2(|x|). (55)

In this case,

κ1(s) =

√
κ̃1

(
1√
2
s
)
,

κ2(s) =
√

3s + 2 3
√

s,
(56)

where

κ̃1(s) = min

(
1

4
s2,

(
ϕ̃−1

1

(
1

2
s

))2
)

and ϕ̃1(s) := s + 3
√

s. Note that

ϕ̃−1
1 (s) = s + 2

1
3

(27 s+
√

108+729 s2)
1
3
− (27 s+

√
108+729 s2)

1
3

3 (2)
1
3

.

Here, it can be shown that ϕ̃−1
1 ∈ K∞. Combining (51), (54), (55) and (56) implies that

the closed loop system (49) satisfies the Lyapunov characterization of ISS in the original
x coordinates with bounds

α1(s) = αlin
1 ◦ κ1(s) = 1

4
κ1(s),

α2(s) = αlin
2 ◦ κ2(s) = 3√

2
κ2(s),

α3(s) = αlin
3 ◦ κ1(s) = 1

4
κ1(s),

σ(s) = σlin(s) = 3
2
s.

(57)
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ISSAG gains: Applying results from [9], the Lyapunov characterization (51) of ISS implies
that the ISSmax property holds with gain

γmax(s) = α−1
1 ◦ γ̂(s), (58)

where
γ̂(s) = α̂−1

4 (kσ(s)), k > 1,
α̂4(s) ≤ α4(s), Id− α̂4 ∈ K,
α4(s) = α3 ◦ α−1

2 (s).
(59)

Here Id refers to the identity map, Id(s) = s. Where α̂4 can be selected as α4, (58)
simplifies to

γmax(s) = α−1
1 ◦ α2 ◦ α−1

3 (kσ(s)), k > 1, (60)

as α̂−1
4 (s) = α2◦α−1

3 (s). As the ISSmax property implies the ISSAG property (with identical
gains), (60) is an upper bound for the minimal ISSAG gain γ∞. That is,

γ∞(s) ≤ γAG(s) := γmax(s). (61)

(i) Upper bound 1: By direct calculation using Characterization 1,

α−1
2 (s) =

(
2
√

2
5

)
s− 108 (2)

5
6

(−72900000 s+
√

2125764000000000+5314410000000000 s2)
1
3
+

( −72900000 s+
√

2125764000000000+5314410000000000 s2)
1
3

375 (2)
5
6

(62)

Applying (59) yields α4, which can be shown to be a suitable candidate for α̂4. Hence,
(60) can be applied using (52), where

α−1
1 (s) = max

(
10s, 3

√
16s

)
,

α−1
3 (s) = max

(
20s, 3

√
32s

)
.

(63)

This yields a conservative ISSmax gain γmax,1 which provides an upper bound (61) for the
minimal asymptotic gain γ∞:

γ∞(s) ≤ γmax,1(s) = max


2

4
3

(
3 max(30 k s,2 (6k s)

1
3 )

1
3

2
5
6

+ 5 max(30 k s,2 (6k s)
1
3 )

2
√

2

) 1
3

,

10

(
3max(30 k s,2 (6k s)

1
3 )

1
3

2
5
6

+ 5 max(30 k s,2 (6k s)
1
3 )

2
√

2

))
,

(64)
where k > 1.

(ii) Upper bound 2: We repeat the calculation of (58) using the Characterization 2.
First, note that by direct calculation,

κ−1
1 (s) =

√
2κ̃−1

1 (s2) = 2
√

2 max (s, ϕ1(s)) = 2
√

2 (s + 3
√

s) ,

κ−1
2 (s) = s√

3
+ 8 (2)

1
3

(
1944

√
3 s+
√

4478976
√

3+11337408 s2

) 1
3
−

(
1944

√
3 s+
√

4478976
√

3+11337408 s2

) 1
3

9 (2)
1
3
√

3

(65)
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Hence, using (57) and (65),

α−1
1 (s) = α−1

3 (s) = κ−1
1 (4s) = 2

√
2
(
4s + 3

√
4s

)
,

α−1
2 (s) = κ−1

2

(
s
√

2
3

)
.

(66)

Applying (59) reveals that α4 is a suitable candidate for α̂4, so that (60) can be applied.
So, (60) and (66) yield a conservative ISSmax gain γmax,2 which provides an upper bound
(61) for the minimal asymptotic gain γ∞:

γ∞(s) ≤ γmax,2(s) = 4

(
6
√

2
(
6 k s + (6k s)

1
3

) 1
3

+ 6
√

6
(
6 k s + (6k s)

1
3

)) 1
3

+

24

(
2
√

2
(
6 k s + (6k s)

1
3

) 1
3

+ 2
√

6
(
6 k s + (6k s)

1
3

))

(67)
where k > 1.

(iii) Upper bound 3: Suppose that V δ(ξ, k) is defined for system (53). Then, from (7)
and (55),

V δ(x, k) ≤ sup
‖u‖∞≤δ

{
κ−1

1 (|ξ(k, ξ0, u)|) : ξ0 = ξ
}

= κ−1
1

(
V δ(ξ, k)

)
. (68)

The minimal asymptotic gain γ∞ for system (49) is then

γ∞(δ) = sup
x∈R2

lim sup
k→∞

V δ(x, k) ≤ κ−1
1

(
sup
ξ∈R2

lim sup
k→∞

V δ(ξ, k)

)
= κ−1

1 ◦ γlin
∞ (δ), (69)

where γlin
∞ is the minimal asymptotic gain for system (53). It can be shown that a

candidate asymptotic gain γlin
AG for system (53) is γlin

AG(s) = 5s. Hence, an upper bound
(69) for minimal asymptotic gain γ∞ is

γ∞(s) ≤ κ−1
1 (5s). (70)

(iv) Lower bound 1: A lower bound γ− for the minimal ISSAG gain γ∞ follows from
(11). In particular, for any ũ satisfying ‖ũ‖∞ ≤ s, we can define

γ−(s) := sup
x∈Rn

lim sup
k→∞

{|x(k, x0, ũ)| : x0 = x} ≤ γ∞(s). (71)

For this example, ũ was chosen (arbitrarily) to be a square wave of amplitude s and period
10 samples.

(v) Minimal asymptotic gain via dynamic programming: An approximation to
the minimal asymptotic gain γ∞(δ) for the nonlinear system (49) was computed over three
overlapping intervals and combined. These intervals and the corresponding parameters
as per (40) are as follows:

δ ∈ [0.00, 0.05] :

N∆ = 11, δmin = 0.00, δmax = 0.05,
NX1 = 201, x1max = 2.00,
NX2 = 161, x2max = 0.80,
NU = 21,
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Figure 13: Comparison of γ∞ obtained by dynamic programming, upper bounds 1-3, and
lower bound 1 (Example 4).

δ ∈ [0.05, 0.25] :

N∆ = 21, δmin = 0.05, δmax = 0.25,
NX1 = 251, x1max = 2.50,
NX2 = 201, x2max = 1.00,
NU = 21,

δ ∈ [0.25, 1.00] :

N∆ = 16, δmin = 0.25, δmax = 1.00,
NX1 = 33, x1max = 8.00,
NX2 = 21, x2max = 5.00,
NU = 21.

Figures 13 and 14 clearly demonstrate that asymptotic gains obtained from the Lyapunov
characterization of ISS can be very conservative when transformed to other characteri-
zations. This highlights a distinct advantage of the dynamic programming approach
presented, particularly in (for example) small gain applications.

(vi) Minimal transient bound for ISSAG: The computation outlined in (v) above also
enables approximation of the minimal transient bound βa for which the ISSAG property
holds. This approximation is illustrated in Figure 15, which show qualitatively that
βa ∈ K̄L̄. Theorem 4.1 then implies that system (49) satisfies the ISSAG property with
(βa, γ∞).

9 Conclusions

We have presented results for verifying different characterizations of ISS via dynamic pro-
gramming. Formulas for minimum nonlinear gains and bounds on transients for different

29



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

s

Bo
un

ds
 o

n 
m

in
im

al
 a

sy
m

pt
ot

ic
 g

ai
n

DPE computation
Upper bound 1
Upper bound 2
Upper bound 3
Lower bound 1

Figure 14: Enlargement of Figure 13 illustrating the DPE computation and lower bound
(Example 4).
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Figure 15: Approximation of βa (Example 4).
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characterizations are presented. A discussion on how these results can be used to anal-
yse input-to-output stability and incremental input-to-state stablity is also given. We
illustrated our approach by four examples.

The aim of this paper is to present a constructive formulation for finding minimal ISS
gains and transient bounds. The results of this paper provide a framework for generating
numerical algorithms for calculation calculating ISS gains and transient bounds. These
numerical algorithms will require extra analysis since they are inherently local in nature (in
the states, the inputs, and the time) as opposed to the global results that we presented.
This is an important direction for our future research and we believe it is outside the
scope of this paper. Our example indicate, however, potential benefits of this numerical
approach and the motivate careful investigation of numerical issues.

Acknowledgements. We wish to thank Yuan Wang and Lars Grüne for indicating to us
several useful references. Especially, Yuan Wang provided us the continuous-time version
of Example 1 in this paper.
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