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Abstract. Averaging theory for ordinary differential equations is extended to a class of

hybrid systems. Rapid time variations in the flow map of a hybrid system generate solutions

that are also solutions of a slightly perturbed time-invariant average hybrid system. Results

relating solutions of the time-varying system to solutions of the average system ensue.

In the absence of finite escape times for the average system, on compact time domains

each solution of the time-varying system is close to a solution of the average system.

If the average system is asymptotically stable, the time-varying system exhibits semi-

global, practical asymptotic stability. These results rely on mild regularity properties for

the average system. In particular, the average system is not required to exhibit unique

solutions. Both periodic and non-periodic flow maps are considered. The results are

partially motivated by the desire to justify a pulse-width modulated implementation of

hybrid feedback control for nonlinear systems.
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1 Introduction

Averaging theory exploits a time-scale separation between the time variations
of the state of a dynamical system and the time variations of the derivative
of that state. The theory justifies the use of a simplified - in particular,
averaged - system to approximate the original system. A concise overview of
averaging theory is provided by Hassan Khalil in the Control Handbook [13].
This article, which extends averaging theory to hybrid systems, is dedicated
to Professor Khalil, who has exploited multiple time-scale phenomena cleverly
throughout his illustrious research career.

Averaging theory for ordinary differential equations has a rich history,
dating to back to the work of Krylov and Bogoliubov [15], and has been used
extensively in engineering applications, including adaptive control [24], vi-
brational control [19], and to justify the implementation of feedback through
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pulse-width modulation [16], [28]. Books that cover averaging theory for
continuous-time systems include [11], [14] and [23].

The objective of this paper is to extend averaging theory to a class of
hybrid dynamical systems. In contrast to a differential equation or differ-
ence equation, the state of a hybrid system changes continuously in some
part of the state space and changes instantaneously in other parts of the
state space. Hybrid systems thus combine continuous-time and discrete-time
systems, providing a rich modeling framework and exhibiting fascinating dy-
namical behavior [17], [27]. An extensive summary of recent results for hybrid
systems can be found in [6].

A few papers in the literature have related averaging and hybrid systems.
The work of which we are aware focuses on a subclass of hybrid systems
(usually switching systems) and aims to approximate a rapidly time-varying
hybrid system by a non-hybrid system [4], [12] and [22]. In the current work,
even the averaged system is a hybrid system. Motivation for such results
include implementing hybrid feedback control using pulse-width modulation.
In this case, it is desirable to prove that the pulse-width modulated imple-
mentation produces closed-loop behavior that is similar to the behavior that
would be generated by implementing the hybrid feedback directly.

Averaging theory is based on two observations: 1) through an appropriate
coordinate transformation, a rapidly time-varying system can be viewed as a
small perturbation of a simplified, time-invariant, average system, and 2) the
qualitative behavior of the solutions to classical dynamical systems is robust
- in a mathematically precise sense not specified here - to small perturba-
tions under appropriate regularity assumptions. When it comes to extending
averaging theory to hybrid systems, we profit from the fact that the second
observation above has already been established for a general class of hybrid
systems (see [6] and [7]). Thus, the main task in extending averaging theory
to hybrid systems is to establish the first observation above. It turns out that
this observation can be established for a class of hybrid systems in a manner
that is analogous to that for ordinary differential equations. It is noteworthy
that averaging results are established without any extra requirement on how
often and where jumps occur in the average hybrid system, beyond those
dictated by the jump set of the averaged hybrid system.

The paper is organized as follows. In Section 2 we review some basic
results about the behavior of hybrid systems and perturbations to hybrid
systems. Section 3 introduces the class of time-varying hybrid systems for
which we generate averaging results. In Section 4 we present averaging re-
sults for periodic hybrid systems. These results include both statements
about “closeness” of solutions on compact time domains and also statements
about semi-global, practical asymptotic stability. In this section, we use
pulse-width modulated hybrid feedback to demonstrate the significance of
the results. In Section 5 we extend the results of Section 4 to time-varying
but not necessarily periodic hybrid systems. In Section 6 we mention some
simple extensions that we have not pursued here due to space constraints.
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Conclusions are provided in Section 7.

2 Preliminaries

The set of real numbers is denoted as R. B denotes a closed unit ball in Rn.
|x| denotes the Euclidean norm of a vector, that is |x| =

√∑n
i=1 x2

1. Given a
set A, we denote the distance of point x to the set as |x|A := infz∈A |x−z|. A
function β : R≥0×R≥0 is said to be of class KL if: (i) it is continuous; (ii) for
each fixed t ∈ R≥0 the function β(·, t) is zero at zero, continuous and strictly
increasing; (iii) for each fixed s ∈ R≥0 the function β(s, ·) is decreasing to
zero as it argument increases.

The definitions and results in this section pertain to the hybrid system

ξ̇ ∈ F (ξ) ξ ∈ C
ξ+ ∈ G(ξ) ξ ∈ D ,

(1)

where ξ+ is a shorthand notation for the value of ξ right after a jump. See
[6] or [7] for examples of hybrid systems of the form (1) and for the definition
of a solution to a hybrid system. The data of (1) satisfies the following
assumption (see [6] and [7]):

Assumption 1 (Basic conditions) The sets C ⊂ Rn and D ⊂ Rn are
closed; the set-valued mapping F : Rn ⇒ Rn is locally bounded, outer semi-
continuous1 and, for each ξ ∈ C, F (ξ) is nonempty and convex; and the
set-valued mapping G : Rn ⇒ Rn is locally bounded, outer semi-continuous
and, for each ξ ∈ D, G(ξ) is nonempty.

We also consider an inflation of (1) given by

ẏ ∈ Fδ(y) ξ ∈ Cδ

y+ ∈ Gδ(y) ξ ∈ Dδ
(2)

where
Cδ := {y : (y + δB) ∩ C 6= ∅}

Fδ(y) := coF ((y + δB) ∩ C) + δB

Dδ := {y : (y + δB) ∩D 6= ∅}
Gδ(y) := G((y + δB) ∩D) + δB

(3)

and coS denotes the closed convex hull of a set S. Under Assumption 1,
the inflated data (Cδ, Fδ, Dδ, Gδ) also satisfies Assumption 1. Given a set
K ⊂ Rn, we use S(K), respectively Sδ(K), to denote the set of maximal
solutions to (1), respectively (2), starting in the set K.

1A set-valued mapping is outer semi-continuous if its graph {(x, y) : x ∈ Rn, y ∈ F (x)}
is closed.
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2.1 Compact time domains

The following definition and results will be exploited when discussing close-
ness of the solutions of a time-varying system to the solutions of the average
system.

Definition 1 (Forward completeness) A maximal solution is said to be
forward complete if its domain is unbounded. A maximal solution is said to
be forward pre-complete if its domain is compact or unbounded. A hybrid
system is said to be forward pre-complete from a set if each solution starting
in that set is forward pre-complete.

The importance of considering forward pre-completeness rather than just
completeness has been documented in [1] and [6]. The subsequent proposi-
tions are based on results in [7] (see also [6]), which assume forward complete-
ness in place of forward pre-completeness. However, it is trivial to extend
the proofs from the forward complete case to the forward pre-complete case.

Proposition 1 ([7], Corollary 4.7) Let K ⊂ Rn be compact. Under As-
sumption 1, if the system (1) is forward pre-complete from K then, for each
T ∈ R≥0, the set

RT (K) := {z = ξ(t, j) : ξ ∈ S(K) , t + j ≤ T}

is compact.

Proposition 2 ([7], Corollary 5.2) Let Assumption 1 hold and let K ⊂
Rn be compact. If the system (1) is forward pre-complete from K then, for
each T ∈ R≥0, there exists δ > 0 such that the reachable set

RT (K) := {z = y(t, j) : y ∈ Sδ(K + δB) , t + j ≤ T}

is compact.

Definition 2 (Closeness of solutions) Two hybrid arcs x1 : dom x1 →
Rn and x2 : dom x2 → Rn are said to be (T, ρ)-close if

(a) for each (t, j) ∈ dom x1 with t + j ≤ T there exists s such that (s, j) ∈
dom x2, |t− s| ≤ ρ and |x1(t, j)− x2(s, j)| ≤ ρ;

(b) for each (t, j) ∈ dom x2 with t + j ≤ T there exists s such that (s, j) ∈
dom x1, |t− s| ≤ ρ and |x2(t, j)− x1(s, j)| ≤ ρ.

Proposition 3 ([7], Corollary 5.5) Let Assumption 1 hold and let K ⊂
Rn be compact. If the system (1) is forward pre-complete from K then for
each ρ > 0 and T ≥ 0 there exists δ > 0 such that for any solution y to (2)
starting in K + δB there exists a solution ξ to (1) starting in K such that y
and ξ are (T, ρ)-close.
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2.2 Asymptotic stability

The following definitions and results will be exploited when discussing semi-
global, practical asymptotic stability of a time-varying system based on
asymptotic stability for the average system.

Definition 3 (Asymptotic stability) For the system (1), the compact set
A is said to be asymptotically stable if

• (stability) for each ε > 0 there exists δ > 0 such that, for each solution
ξ of (1), |ξ(0, 0)|A ≤ δ implies |ξ(t, j)|A ≤ ε for all (t, j) ∈ dom ξ;

• (attractivity) there exists c > 0 such that, each maximal solution of
(1) satisfying |ξ(0, 0)|A ≤ c is forward pre-complete and, if complete,
satisfies limt+j→∞ |ξ(t, j)|A = 0.

The notion above is called “pre-asymptotic stability” in [1] and [6]. We
drop the prefix “pre” since the distinction is not significant in the current
context.

Definition 4 (Basin of attraction) For the system (1) with an asymptot-
ically stable compact set A, the basin of attraction for A, denoted BA, is the
set of initial conditions having the property that each maximal solution of (1)
is forward pre-complete and, if complete, satisfies limt+j→∞ |ξ(t, j)|A = 0.

Notice that any point not in C ∪ D belongs to BA. The definition of
basin of attraction used here is slightly different than the definition used in
[7] but agrees with the definition used in [1] and [6] (where the term “basin
of pre-attraction” is used). The results quoted below from [7], which pertain
to basins of attraction, apply as well with the definition used here.

Proposition 4 ([7], Proposition 6.4) Under Assumption 1 for the sys-
tem (1), if the set A is asymptotically stable then its basin of attraction is an
open set.

Definition 5 (Proper indicator) Let BA be an open set containing the
compact set A. A function ω : BA → R≥0 is said to be a proper indicator
function for A on BA if ω is continuous, ω(ξ) = 0 if and only if ξ ∈ A,
and if the sequence {ξi}∞i=1, ξi ∈ BA, approaches the boundary of BA or is
unbounded then ω(ξi) is unbounded.

Proposition 5 ([7], Theorem 6.5) Under Assumption 1 if, for the system
(1), the compact set A is asymptotically stable with basin of attraction BA
then for each proper indicator ω for A on BA there exists β ∈ KL such that,
for each solution ξ of (1) starting in BA,

ω(ξ(t, j)) ≤ β(ω(ξ(0, 0)), t + j) ∀(t, j) ∈ dom ξ .
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Proposition 6 ([7], Theorem 6.6) Under Assumption 1 if, for the system
(1), the compact set A is asymptotically stable with basin of attraction BA
then for each proper indicator ω for A on BA there exists β ∈ KL and for
any such fixed β, each compact set K ⊂ BA and ν > 0 there exists δ > 0
such that each solution y of (2) starting in K satisfies, for all (t, j) ∈ dom y,

ω(y(t, j)) ≤ β(ω(y(0, 0)), t + j) + ν ∀(t, j) ∈ dom y .

3 Rapidly time-varying hybrid systems

In this paper, we consider time-varying hybrid systems where the state vari-
able x may contain logic variables, counters, timers, and so on. In particular,
we consider a time-varying hybrid system of the form

ẋ = fε(x, τ)
τ̇ = 1/ε

}
(x, τ) ∈ C × R≥0

x+ ∈ G(x)
τ+ ∈ H(x, τ)

}
(x, τ) ∈ D × R≥0

(4)

where ε is a small, positive parameter, C ⊂ Rn, D ⊂ Rn, fε : C×R≥0 → Rn,
G : D ⇒ Rn and H : D × R≥0 ⇒ R≥0. We impose the following regularity
assumptions on the function fε; the first condition imposes boundedness of
f0 on compact sets whereas the second condition provides continuity of fε at
ε = 0 uniformly on compact sets:

Assumption 2 (C,D, G) satisfy Assumption 1; for each compact set K ⊂
Rn there exists M(K) > 0 and for each δ > 0 there exists ε∗(K, δ) > 0 such
that

|f0(x, τ)| ≤ M (x, τ) ∈ (K ∩ C)× R≥0

|fε(x, τ)− f0(x, τ)| ≤ δ (x, τ, ε) ∈ (K ∩ C)× R≥0 × (0, ε∗] .

For each (x, τ) ∈ D × R≥0, H(x, τ) is a nonempty set.

Note that our results will hold under very weak assumptions on H(·, ·) as out-
lined in Assumption 2. We are interested in the following stability property
for the system (4).

Definition 6 (Semi-global, practical asymptotic stability) For the sys-
tem (4), the compact set A is said to be semi-globally (with respect to BA)
practically asymptotically stable as ε → 0+ if, for each proper indicator ω
for A on BA there exists β ∈ KL and for any such fixed β, each compact
set K ⊂ BA and each ν > 0 there exists ε∗ > 0 such that ε ∈ (0, ε∗] and
x(0, 0) ∈ K imply

ω(x(t, j)) ≤ β(ω(x(0, 0)), t + j) + ν ∀(t, j) ∈ dom x .



Short Title of Paper 7

Semi-global practical stability was shown to arise naturally in various
singular perturbation and averaging problems for continuous-time systems,
see [30], [20]. Supposing that BA is the whole state space, the definition
states that we can achieve an arbitrarily large domain of attraction and an
arbitrarily small ultimate bound on all trajectories if we sufficiently reduce
the parameter ε.

4 Periodic systems

In this section, we present two main averaging results for periodic hybrid
systems (4). First we introduce the notion of average for hybrid systems
of the form (4). Our first main result (Theorem 1) establishes closeness of
solutions between the actual hybrid system (4) and its average on arbitrarily
long compact time intervals. We note that this result does not require the
average or actual system to be stable. Our second main result (Theorem
2) demonstrates that if the average system is globally asymptotically stable
in an appropriate sense, then this implies semi-global practical asymptotic
stability of the actual system (4). Our results are derived for stability with
respect to arbitrary compact sets A.

4.1 Assumptions

We now state assumptions that are needed in the sequel and also introduce
the notion of average for the actual system (4).

Assumption 3 (Periodicity) For each x ∈ C, the function f0(x, ·) : R≥0 →
Rn is periodic.

According to Assumption 3, there exists a real number T > 0 such that

f0(x, τ + T ) = f0(x, τ) ∀(x, τ) ∈ C × R≥0 .

For each (x, τ) ∈ C × R≥0, we define

F (x) :=
1
T

∫ T

0

f0(x, s)ds

σ(x, τ) :=
∫ τ

0

[f0(x, s)− F (x)] ds .

(5)

Note that σ(x, ·) is periodic with period T and σ(x, kT ) = 0 for each non-
negative integer k. Using F (·) defined in (5) we now introduce the average
system for the time-varying system (4):

ẋ = F (x) x ∈ C
x+ ∈ G(x) x ∈ D .

(6)
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For simplicity, we consider the case where the jump dynamics for the actual
system (4) and the average system (6) are identical. On the other hand, it
is not difficult to allow the jump map G and jump set D to depend on the
small parameter ε with an appropriate convergence property (see Section 5
of [7]) as ε approaches zero.

Assumption 4 (Regularity; periodic case) The functions F : C → Rn

and σ : C×R≥0 → Rn defined in (5) are continuous and, for each compact set
K ⊂ Rn, there exists L(K) > 0 such that, for all (x, t), (w, s) ∈ (K∩C)×R≥0,

|σ(x, t)| ≤ L
|σ(x, t)− σ(w, s)| ≤ L (|x− w|+ |t− s|) .

(7)

The first condition in (7) is guaranteed by the bound on f0(x, τ) in As-
sumption 2, the continuity of F , and the periodicity of σ(x, ·). The second
condition in (7) implies, using results in [2], that the generalized Jacobian of
σ satisfies

∣∣∂σ
∂x (x, τ)

∣∣ ≤ L,∀(x, τ) ∈ (K ∩ C) × R≥0. The second condition
in (7) is satisfied when, in addition, f has a continuous derivative that is
locally bounded uniformly in τ . The following example illustrates that f can
be discontinuous and still Assumption 4 holds.

Example 1 (Hybrid PWM control) Consider a continuous-time plant of
the form:

ξ̇ = O(ξ) + P (ξ)U
y = Q(ξ)

for which we designed a dynamic hybrid controller of the form:

η̇ = R(η, y) (η, y) ∈ C

η+ = S(η) (η, y) ∈ D

U = U(η, y) ,

where we assume that O(·) and R(·, ·) are continuous while Q(·), P (·) and
U(·, ·) are locally Lipschitz. Denote x := (ξT ηT )T and

f̃0(x) :=
(

O(ξ)
R(η, Q(ξ))

)
; g0(x) :=

(
P (ξ)

0

)
; G(x) :=

(
ξ

S(η)

)
;

and h0(x) := U(η, Q(ξ)). Note that the state x may include physical variables
together with logic variables that are used to describe a stabilizing hybrid
feedback control law h0(x). Several examples of hybrid feedback for nonlinear
control systems appear in [6].

To implement the above controller via PWM control, we introduce

f(x, τ) = f̃0(x) + g0(x)u(h0(x)− p(τ))
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where by our assumptions g0 : C → Rn and h0 : C → [0, 1] are locally
Lipschitz, f̃0 is continuous, u(s) = 1 for s ≥ 0 and u(s) = 0 for s < 0, and p
is periodic with period one and p(t) = t for t ∈ [0, 1). The closed loop system
with the PWM implementation of the above controller takes form (4) where
fε(·, ·) := f(·, ·), G(·) is defined above and H(·, ·) is arbitrary.

It can be verified that F (x) = f̃0(x) + g0(x)h0(x). The function F is
continuous and

σ(x, τ) :=
∫ τ

0

[f(x, s)− F (x)] ds

=
∫ τ

0

g0(x) [u(h0(x)− p(s))− h0(x)] ds

= g0(x)
∫ τ

0

[u(h0(x)− p(s))− h0(x)] ds .

Then a straightforward calculation gives that, for each τ ∈ [0, 1),

σ(x, τ) = g0(x) (min {τ, h0(x)} − h0(x)τ) .

The function σ is locally Lipschitz since g0 and h0 are locally Lipschitz. Then,
since σ(x, ·) is periodic, Assumption 4 holds.

The calculations of this example together with the results in the next sec-
tions justify implementing the hybrid feedback using pulse-width modulation.

4

4.2 Results for compact time domains

Solutions of the system (4) are compared to the solutions of (6) where F is
defined in (5). The main result of this section is stated as follows.

Theorem 1 Suppose the system (4) satisfies Assumptions 2-4, and the com-
pact set K0 ⊂ Rn is such that the average system (6) is forward pre-complete
from K0. Under these conditions, for each ρ > 0 and each T ≥ 0 there exists
ε∗ > 0 such that each solution of (4) starting in K0 + ρB is (T, ρ)-close to
some solution of (6) starting in K0.

Proof. Given T ≥ 0 and ρ > 0, let Proposition 3 generate δ > 0 so that
for any solution y to (2) starting in K0 + δB there exists a solution ξ to (6)
starting in K0 such that y and ξ are (T, ρ/2)-close. Without loss of generality,
we assume ρ < 1 and δ < 1.

Let S(K0) denote the set of solutions to the average system (6) starting
in K0 and define

RT (K0) := {z = x(t, j) : x ∈ S(K0) , t + j ≤ T}
K1 := RT (K0) + B
K := K1 ∪G(K1 ∩D) .

(8)
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According to Proposition 1 and Assumption 2, the set K is compact.
Let Assumption 2, the set K, and δ generate M(K) ≥ 1 and ε∗1 > 0 such

that

|f0(x, τ)| ≤ M ∀(x, τ) ∈ (K ∩ C)× R≥0

|fε(x, τ)− f0(x, τ)| ≤ δ/2 ∀(x, τ, ε) ∈ (K ∩ C)× R≥0 × (0, ε∗1] .
(9)

Let Assumption 4 and the set K generate L(K) ≥ 1 so that the bounds (7)
hold with L = L(K) for all (x, t), (w, s) ∈ (K ∩ C)× R≥0.

Let ε∗2 = δ
2
√

nL(K)(M(K)+1)
, ε∗3 = ρ/(2L(K)), and ε∗ = min {ε∗1, ε∗2, ε∗3}.

Consider ε ∈ (0, ε∗].
Let (x, τ) be a solution to the system

ẋ = fε(x, τ)
τ̇ = 1/ε

}
(x, τ) ∈ (C ∩K)× R≥0

x+ ∈ G(x) ∩K
τ+ ∈ H(x, τ)

}
(x, τ) ∈ (D ∩K)× R≥0 .

(10)

This system agrees with (4) but with C, D, and G intersected with K. Note
that σ(x, τ) is defined on the set C × R≥0.

Using Lemma 2 we let σ̃(x, τ) be a function defined on Rn × R≥0 that
satisfies the following:

1. σ̃(x, τ) = σ(x, τ) for all (x, τ) ∈ (C ∩K)× R≥0

2. For all (x, τ) ∈ Rn × R≥0

|σ̃(x, τ)| ≤ L .

3. For all x, y ∈ Rn and τ, s ≥ 0 we have

|σ̃(x, τ)− σ̃(y, s)| ≤ √
nL [|x− y|+ |τ − s|] .

By construction, for each (t, j) ∈ dom(x, τ), x(t, j) ∈ K. Therefore,
using Lemma 2 in the Appendix, equation (7) and the definition of ε∗, for
all ε ∈ (0, ε∗] and all (t, j) ∈ dom(x, τ),

|εσ̃(x(t, j), τ(t, j))| ≤ εL(K) ≤ εL(K)M(K) ≤ δ . (11)

For each (t, j) ∈ dom(x, τ), define

y(t, j) = x(t, j)− εσ̃(x(t, j), τ(t, j)) . (12)

It is immediate that y is a hybrid arc. For each (t, j) ∈ dom y such that
(t, j + 1) ∈ dom y,

x(t, j) = y(t, j) + εσ̃(x(t, j), τ(t, j)) ∈ D ∩K
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which, according to (11), implies y(t, j) ∈ Dδ, and

y(t, j + 1) = x(t, j + 1)− εσ̃(x(t, j + 1), τ(t, j + 1))

∈ G(x(t, j) ∩D) ∩K + δB

⊂ G(x(t, j) ∩D) + δB

= G ((y(t, j) + εσ̃(x(t, j), τ(t, j))) ∩D) + δB

⊂ Gδ(y(t, j)) .

Moreover, for each j such that the set Ij := {t : (t, j) ∈ dom y} has nonempty
interior and for all t ∈ Ij ,

y(t, j) + εσ̃(x(t, j), τ(t, j)) ∈ C ∩K ,

which implies y(t, j) ∈ Cδ, and, since σ is Lipschitz continuous, y(·, j) is
locally absolutely continuous and for almost all t ∈ Ij satisfies

ẏ(t, j) ∈ ẋ(t, j)− ε
∂σ̃(x(t, j), τ(t, j))

∂x
ẋ(t, j)− ∂σ̃(x(t, j), τ(t, j))

∂τ

= fε(x(t, j), τ(t, j))− ε
∂σ̃(x(t, j), τ(t, j))

∂x
ẋ(t, j)

−f0(x(t, j), τ(t, j)) + F (x(t, j))

∈ F (y(t, j) + εσ̃(x(t, j), τ(t, j))) + ε
√

nL(K)(M(K) + 1)B+
1
2
δB

∈ F (y(t, j) + δB) + δB

⊂ Fδ(y(t, j)) .

In the first equation above, the term
[

∂σ̃(x, τ)
∂x

∂σ̃(x, τ)
∂τ

]

should be understood to be the generalized Jacobian of σ̃. The sequence of
equalities and inclusions is then justified by the results in [2, Section 2.6], the
definition of σ̃, δ < 1, Assumption 4 and (9).

We conclude that y is (T, ρ/2)-close to some solution ξ of the average
system. Then, by the definition of y and ε∗, we conclude that x is (T, ρ)-
close to ξ.

We now use the properties of the solutions of (10) to derive conclusions
about the solutions of (4) that start in K0. Let (x̃, τ̃) be a solution of (4)
starting in K0. If x̃(t, j) ∈ K for all (t, j) ∈ dom x̃ such that t + j ≤ T then
x̃(t, j) is also (T, ρ)-close to ξ. Now suppose there exists (t, j) ∈ dom x̃ such
that x̃(s, i) ∈ K for all (s, i) ∈ dom x̃ satisfying s + i ≤ t + j and either
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1. (t, j + 1) ∈ dom x̃ and x̃(t, j + 1) /∈ K or else

2. there exists a montonically decreasing sequence ri with limi→∞ ri = t
such that (ri, j) ∈ dom x̃ and x̃(ri, j) /∈ K for each i.

The solution x̃ must agree with a solution x of (10) up to time (t, j), and
thus must satisfy x̃(t, j) ∈ RT (K) + ρB. It then follows, by the definition
of K in (8) and ρ < 1, which implies that RT (K) + ρB is contained in the
interior of K, that neither of these two cases can occur. This establishes the
result. ¥

4.3 Results based on asymptotic stability

The main result of this section is stated as follows.

Theorem 2 Suppose the system (4) satisfies Assumptions 2-4, and the com-
pact set A is asymptotically stable with basin of attraction BA for the system
(6). Under these conditions, for the time-varying hybrid system (4), the set
A is semi-globally (with respect to BA), practically asymptotically stable as
ε → 0+.

Proof. Let ω : BA → R≥0 be a proper indicator function for A with respect
to BA. Let β ∈ KL be such that each solution ξ of the system (6) starting
in BA satisfies, for all (t, j) ∈ dom ξ,

ω(ξ(t, j)) ≤ β(ω(ξ(0, 0)), t + j) .

Let K0 ⊂ BA be compact. Define

K1 :=
{

x ∈ BA : ω(x) ≤ β

(
max
y∈K0

ω(y), 0
)

+ 1
}

K := K1 ∪G(K1 ∩D) .

(13)

The set K is a compact subset of BA since ω is a proper indicator and G is
an outer semi-continuous mapping that maps BA ∩D to BA.

Let ν ∈ (0, 1). Using Proposition 6, there exists δ > 0 such that each
solution y of (2) starting in K + δB satisfies, for all (t, j) ∈ dom y,

ω(y(t, j)) ≤ β(ω(y(0, 0)), t + j) + ν/3 . (14)

Without loss of generality we assume that δ < 1. Let Assumption 2, the set
K, and δ generate an M(K) ≥ 1 and ε∗1 > 0 such that

|f0(x, τ)| ≤ M ∀(x, τ) ∈ (K ∩ C)× R≥0

|fε(x, τ)− f0(x, τ)| ≤ δ/2 ∀(x, τ, ε) ∈ (K ∩ C)× R≥0 × (0, ε∗1] .
(15)

Let Assumption 4 and the set K generate an L(K) ≥ 1 so that the bounds
(7) hold with L = L(K) for all (x, t), (w, s) ∈ (K ∩ C)× R≥0.
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Let ε∗2 = δ
2L(K)(M(K)+1) .

Using the continuity of ω and β and the fact that, for each s ∈ R≥0,
β(s, ρ) converges to zero as ρ tends to infinity, let ε∗3 > 0 be such that for all
x ∈ K and y ∈ K + ε∗3L(K)B satisfying |x − y| ≤ ε∗3L(K) and all ρ ∈ R≥0,
we have

ω(x) ≤ ω(y) + ν/3
β(ω(y), ρ) ≤ β(ω(x), ρ) + ν/3 .

(16)

Define ε∗ = min {ε∗1, ε∗2, ε∗3} and consider ε ∈ (0, ε∗]. Next we introduce
the system (10) and define y via (12). Using steps identical to the steps in
the proof of Theorem 1 we can show that y(t, j) is a solution of the inflated
system (2). By construction we have that (14) holds. In turn, using (16), for
all (t, j) ∈ dom x,

ω(x(t, j)) ≤ ω(y(t, j)) + ν/3
≤ β(ω(y(0, 0)), t + j) + 2ν/3
≤ β(ω(x(0, 0)), t + j) + ν .

(17)

In particular, since ν < 1, each solution of (10) starting in K0 remains in the
compact set

Kν :=
{

x ∈ BA : ω(x) ≤ β

(
max
y∈K0

ω(y), 0
)

+ ν

}

which, due to the continuity of ω and ν < 1, is contained in the interior
of the compact set K1 defined in (13). Finally, using steps identical to the
steps in the proof of Theorem 1, we use the bound (17) on the solutions of
(10) to derive conclusions about the solutions of (4) that start in K0. This
establishes the result. ¥

5 Not necessarily periodic systems

This section demonstrates that we can also deal in a similar manner with
not necessarily periodic systems. We present two main averaging results
for a larger class of not necessarily periodic hybrid systems (4). First, we
introduce the notion of generalized average for hybrid systems in this case.
Our first main result (Theorem 3) establishes closeness of solutions between
the actual hybrid system (4) and its generalized average on arbitrarily long
compact time intervals. Our second main result (Theorem 4) demonstrates
that if the generalized average system is globally asymptotically stable in an
appropriate sense, then this implies semi-global practical asymptotic stability
of the actual system (4). Our results are derived for stability with respect to
arbitrary compact sets A.

5.1 Assumptions

In this section, the periodicity assumption on f0(x, ·), Assumption 3, is re-
laxed to the following condition:
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Assumption 5 (Well-defined “generalized” average) For each (x, τ) ∈
C × R≥0, the limit

lim
T→∞

1
T

∫ τ+T

τ

f0(x, s)ds =: F (x) (18)

exists, is independent of τ , and the convergence is uniform in τ . In partic-
ular, for each compact set K ⊂ Rn there exists a continuous, nonincreasing
function ΘK : R≥0 → R≥0 satisfying limT→∞ΘK(T ) = 0 such that, for all
(x, τ, T ) ∈ (K ∩ C)× R≥0 × R≥0,

∣∣∣∣∣
∫ τ+T

τ

(f0(x, s)− F (x)) ds

∣∣∣∣∣ ≤ TΘK(T ) .

With this assumption in place we define, for each (x, τ, µ) ∈ C × R≥0 ×
R≥0,

σ(x, τ, µ) :=
∫ τ

0

eµ(s−τ) [f0(x, s)− F (x)] ds . (19)

A key property of σ is established in the following lemma that is proved in
the Appendix.

Lemma 1 If Assumption 5 holds then, for each compact set K ⊂ Rn, there
exists a continuous, nondecreasing function αK : R≥0 → R≥0 such that
αK(0) = 0 and, for all (x, τ, µ) ∈ (K ∩ C)× R≥0 × R≥0,

µ|σ(x, τ, µ)| ≤ αK(µ) .

Assumption 6 (Regularity; general case) The function F : C → Rn

defined in Assumption 5 is continuous and for each compact set K ⊂ Rn

there exists L(K) > 0 such that, for all (x, t), (w, s) ∈ (K ∩ C)× R≥0

|σ(x, t, 0)− σ(w, s, 0)| ≤ L (|x− w|+ |t− s|) . (20)

The Lipschitz property in Assumption 6 implies a similar Lipschitz con-
dition for σ(x, τ, µ) for each µ > 0. Indeed, integrating by parts in the
definition of σ, we have

σ(x, τ, µ) = σ(x, τ, 0)− µ

∫ τ

0

eµ(r−τ)σ(x, r, 0)dr

so that (without loss of generality we assume s ≥ t)

|σ(x, t, µ)− σ(w, s, µ)| ≤ |σ(x, t, 0)− σ(w, s, 0)|+
µ

∫ t

0

eµ(r−t)|σ(x, r, 0)− σ(w, r + s− t, 0)|dr

≤ L (|x− w|+ |t− s|)
(

1 + µ

∫ t

0

eµ(r−t)dr

)

≤ 2L (|x− w|+ |t− s|) .
(21)
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Like in the periodic case, this Lipschitz condition is used to bound the
elements of the generalized Jacobian of σ. The following example illustrates
a not necessarily periodic, discontinuous function f(x, τ) for which Assump-
tions 5 and 6 are satisfied.

Example 2 (Multi-rate hybrid PWM control) As an extension of Ex-
ample 1, we consider a multi-rate PWM implementation of hybrid feedback
control for multi-input nonlinear systems. In particular, let

f(x, τ) = f̃0(x) +
n∑

i=1

gi(x)u(hi(x)− pi(τ))

where gi : C → Rn and hi : C → [0, 1] are locally Lipschitz, f̃0 is continuous,
u(s) = 1 for s ≥ 0 and u(s) = 0 for s < 0, and pi is periodic with period
Ti and p(t) = t/Ti for t ∈ [0, Ti). This function can be used to model
a multi-rate implementation of a PWM hybrid controller. Consider T >
max {T1, . . . , Tn}. For each i ∈ {1, . . . , n}, let ki = ki(T ) be a positive
integer and T̃i ∈ [0, Ti) such that T = kiTi + T̃i. Note that ki(T ) → ∞ as
T → ∞. The set valued function G(·) in (4) is given and satisfies all stated
assumptions.

We have

1
T

∫ τ+T

τ

f(x, s)ds = f̃0(x) +
n∑

i=1

gi(x)
1
T

∫ τ+T

τ

u(hi(x)− pi(s))ds

= f̃0(x) +
n∑

i=1

gi(x)

(
1
T

∫ τ+kiTi

τ

u(hi(x)− pi(s))ds

+
∫ τ+kiTi+T̃i

τ+kiTi

u(hi(x)− pi(s))ds

)

= f̃0(x) +
n∑

i=1

gi(x)
(

kiTi

kiTi + T̃i

hi(x) +
vi(x, τ)

kiTi + T̃i

)

where |vi(x, τ)| ≤ T̃i. It follows that Assumption 5 is satisfied with

F (x) = f̃0(x) +
n∑

i=1

gi(x)hi(x) , ΘK(T ) =
Θ̄K

T + 1

for some Θ̄K > 0.
Now we verify Assumption 6. Note that σ(x, τ, 0) is the sum of n periodic

terms where each term has the form of the σ that appears in Example 1.
Since, according to Example 1, each such term has the appropriate Lipschitz
continuity property, it follows that σ(x, τ, 0) satisfies Assumption 6. ¥
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5.2 Results for compact time domains

The main result of this section is stated as follows.

Theorem 3 Suppose the system (4) satisfies Assumptions 2, 5, and 6, and
the compact set K0 ⊂ Rn is such that the average system (6) with (18) is
forward pre-complete from K0. Under these conditions, for each ρ > 0 and
each T ≥ 0 there exists ε∗ > 0 such that each solution of (4) starting in
K0 + ρB is (T, ρ)-close to some solution of (6), (18) starting in K0.

Proof. Given T ≥ 0 and ρ > 0, let Proposition 3 generate δ > 0 so that
for any solution y to (2) starting in K0 + δB there exists a solution ξ to (6)
starting in K0 such that y and ξ are (T, ρ/2)-close. Without loss of generality,
we assume ρ < 1 and δ < 1.

Let S(K0) denote the set of solutions to the average system (6) starting
in K0 and define

RT (K0) := {z = x(t, j) : x ∈ S(K0) , t + j ≤ T}
K1 := RT (K0) + B
K := K1 ∪G(K1 ∩D) .

(22)

According to Proposition 1 and Assumption 2, the set K is compact.
Let Assumption 2, the set K, and δ generate M(K) ≥ 1 and ε∗1 > 0 such

that

|f0(x, τ)| ≤ M ∀(x, τ) ∈ (K ∩ C)× R≥0

|fε(x, τ)− f0(x, τ)| ≤ δ/3 ∀(x, τ, ε) ∈ (K ∩ C)× R≥0 × (0, ε∗1] .
(23)

Let Assumption 5, the set K, and Lemma 1 generate αK and pick µ > 0
so that αK(µ) ≤ δ/3.

Let Assumption 4 and the set K generate L(K) ≥ 1 so that the bound (20)
holds with L = L(K) and for all (x, t), (w, s) ∈ (K∩C)×R≥0. Note that (21)
also holds for this L, the selected µ, and for all (x, t), (w, s) ∈ (K ∩C)×R≥0.

Let ε∗2 = δ/(6L(K)
√

n(M(K) + 1)), ε∗3 = (3ρµ)/(2δ)), ε∗4 = 3µ and
ε∗ = min {ε∗1, ε∗2, ε∗3, ε∗4}. Consider ε ∈ (0, ε∗].

Let (x, τ) be a solution to the system

ẋ = fε(x, τ)
τ̇ = 1/ε

}
(x, τ) ∈ (C ∩K)× R≥0

x+ ∈ G(x) ∩K
τ+ ∈ H(x, τ)

}
(x, τ) ∈ (D ∩K)× R≥0 .

(24)

This system agrees with (4) but with C, D, and G intersected with K.
Using Lemma 2 and the discussion below Assumption 6, we let σ̃(x, τ, µ) be
a function defined on Rn × R≥0 × R>0 that satisfies the following:

1. σ̃(x, τ, µ) = σ(x, τ, µ) for all (x, τ) ∈ (C ∩K)× R≥0
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2. For all (x, τ) ∈ Rn × R≥0

|σ̃(x, τ, µ)| ≤ δ

3µ
.

3. For all x, y ∈ Rn and τ, s ≥ 0 we have

|σ̃(x, τ, µ)− σ̃(y, s, µ)| ≤ √
n2L [|x− y|+ |τ − s|] .

By construction, for each (t, j) ∈ dom(x, τ), x(t, j) ∈ K. Therefore, using
Lemma 2, (7) and the definition of ε∗, for all ε ∈ (0, ε∗] and all (t, j) ∈
dom(x, τ),

|εσ̃(x(t, j), τ(t, j), µ)| ≤ εδ/(3µ) ≤ δ . (25)

For each (t, j) ∈ dom(x, τ), define

y(t, j) := x(t, j)− εσ̃(x(t, j), τ(t, j), µ) . (26)

It is immediate that y is a hybrid arc. For each (t, j) ∈ dom y such that
(t, j + 1) ∈ dom y,

x(t, j) = y(t, j) + εσ̃(x(t, j), τ(t, j), µ) ∈ D ∩K

which, according to (25), implies y(t, j) ∈ Dδ, and

y(t, j + 1) = x(t, j + 1)− εσ̃(x(t, j + 1), τ(t, j + 1), µ)

∈ G(x(t, j) ∩D) ∩K + δB

⊂ G(x(t, j) ∩D) + δB

= G ((y(t, j) + εσ̃(x(t, j), τ(t, j), µ)) ∩D) + δB

⊂ Gδ(y(t, j)) .

Moreover, for each j such that the set Ij := {t : (t, j) ∈ dom y} has nonempty
interior and for all t ∈ Ij ,

y(t, j) + εσ̃(x(t, j), τ(t, j), µ) ∈ C ∩K ,
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which implies y(t, j) ∈ Cδ, and, since σ̃ is Lipschitz continuous, y(·, j) is
locally absolutely continuous and for almost all t ∈ Ij satisfies

ẏ(t, j) ∈ ẋ(t, j)− ε
∂σ̃(x(t, j), τ(t, j), µ)

∂x
ẋ(t, j)− ∂σ̃(x(t, j), τ(t, j), µ)

∂τ

= fε(x(t, j), τ(t, j))− ε
∂σ̃(x(t, j), τ(t, j), µ)

∂x
ẋ(t, j)

−f0(x(t, j), τ(t, j)) + F (x(t, j))− µσ̃(x(t, j), τ(t, j), µ)

∈ F (y(t, j) + εσ̃(x(t, j), τ(t, j), µ)) + ε(2L(K)
√

n(M(K) + 1))B

+ 1
3δB+ 1

3δB

∈ F (y(t, j) + δB) + δB

⊂ Fδ(y(t, j)) .

In the first equation above, the term

[
∂σ̃(x, τ, µ)

∂x

∂σ̃(x, τ, µ)
∂τ

]

should be understood to be the generalized Jacobian of σ. The sequence of
equalities and inclusions is then justified by the results in [2, Section 2.6], the
definition of σ, δ < 1, Assumption 6 and (23).

We conclude that y is (T, ρ/2)-close to some solution ξ of the average
system. Then, by the definition of y and ε∗, we conclude that x is (T, ρ)-
close to ξ.

We now use the properties of the solutions of (10) to derive conclusions
about the solutions of (4) that start in K0. Let (x̃, τ̃) be a solution of (4)
starting in K0. If x̃(t, j) ∈ K for all (t, j) ∈ dom x̃ such that t + j ≤ T then
x̃(t, j) is also (T, ρ)-close to ξ. Now suppose there exists (t, j) ∈ dom x̃ such
that x̃(s, i) ∈ K for all (s, i) ∈ dom x̃ satisfying s + i ≤ t + j and either

1. (t, j + 1) ∈ dom x̃ and x̃(t, j + 1) /∈ K or else

2. there exists a montonically decreasing sequence ri with limi→∞ ri = t
such that (ri, j) ∈ dom x̃ and x̃(ri, j) /∈ K for each i.

The solution x̃ must agree with a solution x of (10) up to time (t, j), and
thus must satisfy x̃(t, j) ∈ RT (K) + ρB. It then follows, by the definition
of K in (22) and ρ < 1, which implies that RT (K) + ρB is contained in the
interior of K, that neither of these two cases can occur. This establishes the
result. ¥
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5.3 Results based on asymptotic stability

The main result of this section is stated as follows.

Theorem 4 Suppose the system (4) satisfies Assumptions 2, 5, and 6, and
the compact set A is asymptotically stable with basin of attraction BA for
the system (6) with (18). Under these conditions, for the time-varying hy-
brid system (4), the set A is semi-globally (with respect to BA), practically
asymptotically stable as ε → 0+.

Sketch of proof: First, in a manner similar to the proof of Theorem 2
we choose a sufficiently small ε∗ that guarantees that solutions of the inflated
system (2) satisfy an appropriate stability bound. Then, using steps like in
Theorem 3 we consider y(·, ·) defined by (26) and show that they are solutions
of (2). The proof is then completed using the steps identical to the proof of
Theorem 2.

6 Additional research directions

There are several useful extensions that have not been pursued here. First
note that it is straightforward, equipped with robustness results for hybrid
systems, to allow the sets C and D and the jump map G to depend on ε and
to define the average system in terms of these objects when ε = 0.

An interesting research topic involves providing conditions that guarantee
global asymptotic stability, rather than just semi-global practical asymptotic
stability. The key idea for such results is that the asymptotic stability in
the average system should be robust (in the sense of [1, Theorem 7.9] or
[6, Theorem 15]) to the perturbations induced by the averaging coordinate
transformation. In this direction, the concepts of homogeneity [8] and conic
linearizations [9] for hybrid systems should be relevant.

Like in the case of ordinary differential equations [29], [20], it is inter-
esting to consider the problem of averaging in the presence of exogenous
disturbances and the input-to-state stability notion introduced in [26]. A
related topic is averaging where the flow map is a set-valued mapping. This
topic has been pursued for differential inclusions (see, for instance, [3], [21])
and impulsive differential inclusions (see [25] and references cited therein).

Finally, a challenging problem is averaging theory for hybrid systems
when the rapid time variations are due to some state components changing
much more rapidly than other state components. This situation is closely
related to singular perturbation theory but where the fast dynamics do not
necessarily settle down to a neighborhood of an equilibrium manifold. See
[30], [5], [10] and the references therein.
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7 Conclusions

Averaging theory has been developed for a class of hybrid dynamical systems.
When the flow map admits an average and the time variations of the flow map
are sufficiently fast, the solutions of the average system are a good approxi-
mation of the solutions to the original, time-varying system. In particular, if
the average system does not exhibit finite escape times from a given compact
set then, on compact time domains, each solution of the time-varying system
is close to some solution of the average system. If the average system exhibits
an asymptotically stable compact set then, for the time-varying system, that
set is semi-globally, practically asymptotically stable in the rate of the time
variations.

The techniques used to establish these results are very similar to classical
techniques used for ordinary differential equations, once it is recognized that
the behavior of hybrid systems is robust in much the same way that the
behavior of ordinary differential equations is robust. This robustness for
hybrid systems, established in [7], is the key to the results provided herein.
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A Proof of Lemma 1

The proof follows the calculations in [14, p. 415]. First observe that, accord-
ing to the definition of σ and Assumption 5, for all (x, τ, T ) ∈ (K ∩ C) ×
R≥0 × R≥0,

|σ(x, τ + T, 0)− σ(x, τ, 0)| ≤ TΘK(T ) . (27)

Also, integrating by parts in the definition of σ and adding and subtracting
µσ(x, τ, 0)

∫ τ

0
eµ(s−τ)ds, we have

σ(x, τ, µ) = σ(x, τ, 0)− µ

∫ τ

0

eµ(s−τ)σ(x, s, 0)ds

= e−µτσ(x, τ, 0) + µ

∫ τ

0

eµ(s−τ) [σ(x, τ, 0)− σ(x, s, 0)] ds .

(28)
It follows from (27) and the fact that σ(x, 0, 0) = 0 that

µ|σ(x, τ, µ)| ≤ e−µτµτΘK(τ) + µ2

∫ τ

0

eµ(s−τ)(τ − s)ΘK(τ − s)ds

= e−µτµτΘK(τ) + µ2

∫ τ

0

e−µrrΘK(r)dr

= e−µτµτΘK(τ) +
∫ µτ

0

e−zzΘK(z/µ)dz .

Now consider the two cases: µτ ≤ √
µ and µτ ≥ √

µ. In the first case, we
have

e−µτµτΘK(τ) +
∫ µτ

0

e−zzΘK(z/µ)dz ≤ ΘK(0) (
√

µ + µ/2) . (29)

In the second case, using e−ηη ≤ e−1 for all η ≥ 0 and
∫∞
0

e−zzdz = 1, we
have

e−µτµτΘK(τ) +
∫ µτ

0

e−zzΘK(z/µ)dz

≤ e−1ΘK(1/
√

µ) + ΘK(0)
∫ √

µ

0

zdz + ΘK(1/
√

µ)
∫ ∞

√
µ

e−zzdz

≤ (e−1 + 1)ΘK(1/
√

µ) + ΘK(0)µ/2 .

The result follows with αK(0) = 0 and, for µ > 0,

αK(µ) :=
ΘK(0)µ

2
+ max

{
ΘK(0)

√
µ, ΘK(1/

√
µ)

(
e−1 + 1

)}
.

Since ΘK is continuous, nonincreasing, and limT→∞ΘK(T ) = 0, it follows
that αK is continuous and nondecreasing. ¥

The following claim, based on [18, Theorem 1], is a Lipschitz extension
theorem that is useful in proving our main results.
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Lemma 2 Let J ⊂ Rn be closed, L > 0, and M > 0. For a vector-valued
function f := (f1, · · · , fn) where fi : J → R are real-valued functions, define

g̃i(x) := sup
z∈J

{fi(z)− L|x− z|}. (30)

Let

sat(s) :=
Ms

max{M, |s|} , (31)

and g(x) := sat(g̃(x)) with g̃ := (g̃1, · · · , g̃n). Then, the function g satisfies
the following properties:

1. |g(x)| ≤ M for all x ∈ Rn,

2. |g(x)− g(y)| ≤ √
nL|x− y| for all x, y ∈ Rn and

3. if, for all i ∈ {1, · · · , n}, x, y ∈ J , |f(x)| ≤ M and |fi(x) − fi(y)| ≤
L|x− y|, then g(x) = f(x) for all x ∈ J .

¤

Proof of Lemma 2: Noting g(x) = sat(g̃(x)) and (31), it is straightforward
that the first property is satisfied.

Let N̄ = {1, · · · , n}. Let k ∈ N̄ satisfy |g̃k(x)− g̃k(y)| = maxi∈N̄ |g̃i(x)−
g̃i(y)|. Without loss of generality, assume g̃k(x) ≥ g̃k(y). Using the fact
|sat(ξ)− sat(ψ)| ≤ |ξ − ψ| for all ξ, ψ ∈ Rn, the extended function g satisfies

|g(x)− g(y)|
= |sat(g̃(x))− sat(g̃(y))|,
≤ |g̃(x)− g̃(y)|,

=

(
n∑

i=1

|g̃i(x)− g̃i(y)|2
) 1

2

,

≤ (
n · |g̃k(x)− g̃k(y)|2)

1
2 ,

≤
(

n ·
∣∣∣∣sup
a∈J

[(fk(a)− L|a− x|)− (fk(a)− L|a− y|)]
∣∣∣∣
2
) 1

2

,

≤
(

n · sup
a∈J

|L|a− x| − L|a− y||2
) 1

2

,

≤
(

nL2 · sup
a∈J

|a− x− a + y|2
) 1

2

=
√

nL|x− y|,

for all x, y ∈ Rn. Now, consider the third property. Let M > 0 be such that

|f(x)| ≤ M ∀ x ∈ J. (32)
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Let L > 0 be such that

|fi(x)− fi(y)| ≤ L|x− y| ∀ x, y ∈ J, i ∈ N̄ . (33)

Using (33), for x ∈ J , we have

fi(x) ≤ sup
z∈J

{fi(z)− L|x− z|}

= g̃i(x) = sup
z∈J

{fi(z)− fi(x) + fi(x)− L|x− z|} ≤ fi(x)

which shows g̃i(x) = fi(x) for all x ∈ J . Then, with (32) and the definition
of g, it follows that g(x) = satM (f(x)) = f(x) when x ∈ J . ¤


