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Abstract

We present results on changing supply rates for input output to state stable (IOSS) discrete-time
nonlinear systems. Our results can be used to combine two Lyapunov functions, none of which can be
used to verify that the system has a certain property, into a new composite Lyapunov function from
which the property of interest can be concluded. The results are stated for parameterized families of
discrete-time systems that naturally arise when an approximate discrete-time model is used to design
a controller for a sampled-data system. We present several applications of our results: (i) a Lasalle
criterion for input to state stability (ISS) of discrete-time systems; (ii) constructing ISS lyapunov
functions for time-varying discrete-time cascaded systems; (iii) testing ISS of discrete-time systems
using positive semidefinite Lyapunov functions; (iv) observer based input to state stabilization of
discrete-time systems. Our results are exploited in a case study of a two link manipulator and some
simulation results that illustrate advantages of our approach are presented.
Keywords: Discrete-time; Input-to-State Stability; Lyapunov method; Nonlinear.

1 Introduction

The Lyapunov method is one of the most important and useful methods in stability analysis and design of
nonlinear control systems (see for example [17, 27]). Lyapunov functions, which are the main tool in this
method, can be used to characterize various properties of control systems, such as stability, detectability
and passivity. Unfortunately, there is no general systematic way of finding Lyapunov functions. Hence,
developing methods for constructing Lyapunov functions are of utmost importance.

A very useful method for a partial construction of Lyapunov functions was introduced in [29] where it
was shown how it is possible to combine two Lyapunov functions, none of which can be used to conclude
a property of interest, into a new composite Lyapunov function from which the desired property follows.
Results in [29] apply to the analysis of input to state stability (ISS) property of continuous-time cascade-
connected systems. In [1] a similar proof technique was used to combine a Lyapunov function whose
derivative is negative semidefinite and another Lyapunov function that characterizes a detectability
property, which is called input-output to state stability (IOSS) (see [31]), into a new Lyapunov function
from which ISS of a continuous-time system follows. A discrete-time counterpart of results in [29] was
presented in [25]. These results and proof techniques were used in discrete-time backstepping [24],
stability of continuous-time cascades [29, 3], stability of discrete-time cascades [25], continuous-time
stabilization of robot manipulators [1] and L, stability of time-varying nonlinear sampled-data systems
[36]. A related Lyapunov based method for interconnected ISS continuous-time systems satisfying a
small-gain condition can be found in [14].

The purpose of this paper is to present a general and unifying framework for partial constructions of
Lyapunov functions for families of discrete-time systems parameterized by a positive parameter (sampling
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period). We consider semiglobal practical stability properties of these systems that arise naturally when
approximate discrete-time models are used to design controllers for sampled-data nonlinear systems.
Motivation for our approach is presented in the next section and more information can be found in
[23, 22, 26, 24].

Our main technical result is contained in Lemma 4.1 where we prove a general result on changing
supply rates for a generalized notion of input output to state stability (I0SS) for discrete-time nonlinear
systems. We refer to this property as “IOSS with measuring functions” (see Definition 3.1) and show
that many important properties considered in the literature are special cases of this general property.
The general result of Lemma 4.1 is central to the paper since it allows us to prove several new results
and generalize several existing results in the literature in a unified framework. Lemma 4.1 is a discrete-
time version (as well as generalization) of the continuous-time result in [1] and a generalization of the
discrete-time result in [25].

Using Lemma 4.1 we present two partial constructions of a Lyapunov function from two other Lya-
punov functions in Theorems 4.1 and 4.2. The construction in Theorem 4.1 was used in [1] for continuous-
time systems, whereas the construction in Theorem 4.2 was used in [29] and [25] for continuous-time
and discrete-time systems respectively. However, because of the generality of the “IOSS with measuring
functions property” that we use, we obtain more general results by using the same Lyapunov function
constructions as in the cited references. While the statements of our main results in discrete-time are
very similar to continuous-time results of [1, 29], the proof technique is notably different and it requires
a judicious use of the Mean Value Theorem (see the proof of Lemma 4.1).

Finally, we apply our results in a unified manner to several problems: (i) a Lasalle criterion for
ISS of discrete-time systems (see also [1]); (ii) constructing ISS Lyapunov functions for time-varying
discrete-time cascade systems (see also [13, 25, 29, 12]); (iii) testing ISS of discrete-time systems using
positive semidefinite Lyapunov functions (see also [11, 4]); (iv) observer based input to state stabilization
of discrete-time systems (see also [15, 16]). We emphasize that our results have potential for further
important applications. Finally, we apply our results in a case study of a two link manipulator and
illustrate the usefulness of our results via simulations.

The paper is organized as follows. In Section 2 we provide background and motivation for our
approach and present a result from [26] that we will use in the case study. In Section 3 we introduce
notation and definitions. Main results are stated in Section 4. Four applications of the main results
and a case study are presented respectively in Section 5 and Section 6. The proofs of main results are
provided in Section 7. Conclusions are presented in Section 8.

2 Background and motivation

In order to put our results in a better context, we revise some results in the literature that motivate our
approach. In particular, we recall a result from [26] (see Theorem 2.1) that directly motivates results
of the current paper. Moreover, Theorem 2.1 is used in Section 6 to design a controller for a two link
manipulator based on its Fuler approximate discrete-time model. For any unfamiliar notation refer to
the next section.

Our work is motivated by the fact that most control systems are nowdays sampled-data in nature.
Indeed, the controller is usually implemented digitally using a computer and it is inter-connected with
a continuous-time plant via D/A and A/D converters. One possible approach for controller design in
this case is to design a continuous-time controller and then discretize it for digital implementation.
This approach, which is sometimes referred to as emulation, was pursued for instance in [21, 34]. The
emulation approach often fails to yield satisfactory performance because it usually requires very fast
sampling that may not be achievable due to the hardware limitations. Moreover, the emulation design
ignores sampling at the controller design step and hence it is reasonable to expect that if sampling is
taken into account in the design, then better performance can be achieved.

This has lead to approaches that use the discrete-time model of the plant for the controller design.

However, in the case of nonlinear plants it is in general not possible to obtain the exact discrete-time
model of the plant and an approximate discrete-time plant model has to be used instead. This approach



was taken, for instance, in [8, 9, 19, 28] for several special classes of systems. Recently, a general
unified framework for controller design based on approximate discrete-time models was presented in
[23] for the stabilization problem and further generalized in [26] for the input-to-state stabilization
problem. Advantages of this approach were illustrated in [24] where is was shown for that the Euler
based backstepping controller may outperform the emulated backstepping controller.

It is the main purpose of the current paper to further contribute to the approach that was pursued
in [23, 26]. In order to motivate better our contribution we present a result from [26] on input-to-state
stabilization via approximate discrete-time models that is also needed in Section 6. Our interest in
input-to-state stabilization is motivated by numerous applications of this robust stability property that
have appeared in the literature [?, 12, 18].

Consider a continuous-time nonlinear plant with disturbances:

a(t) = flz(),u), w(t))
y = M) 1)

where x € R", 4 € R™ and w € R? are respectively the state, control input and exogenous disturbance.
The control is taken to be a piecewise constant signal u(t) = u(kT) =: u(k), Vt € [kT,(k+1)T), k € N,
where T' > 0 is the sampling period. Suppose, for simplicity, that the disturbances w(:) are constant
during sampling intervals, that is w(t) = w(k),Vt € [kT, (k + 1)T) (a more general situation when w(-)
is an arbitrary measurable disturbance was considered in [26]). Also, we assume that some combination
(output) or all of the states (z(k) := z(kT')) are available at sampling instant kT, k € N. The exact
discrete-time model for the plant (1), which describes the plant behavior at sampling instants kT, is
obtained by integrating the initial value problem

#(t) = f(x(t), u(k), w(?)) , (2)
with given w(k), u(k) and zo = z(k), over the sampling interval [kT, (k + 1)T.

If we denote by z(t) the solution of the initial value problem (2) at time ¢ with given oy = z(k), u(k)
and w(k), then the exact discrete-time model of (1) can be written as:

(k+1)T
z(k+1) = z(k) + / f(@(7), u(k),w(k))dr =: Fr(z(k),u(k), w(k)) . (3)
kT
We emphasize that F'¢ is not known in most cases. Indeed, in order to compute F'# we have to solve the
initial value problem (2) analytically and this is usually impossible since f in (1) is nonlinear. Hence,
we will use an approximate discrete-time model of the plant to design a controller.

Different approximate discrete-time models can be obtained using different methods, such as a classi-
cal Runge-Kutta numerical integration scheme (such as Euler) for the initial value problem (2) [33, 20].
The approximate discrete-time model can be written as

z(k + 1) = Fp(z(k), u(k), w(k)) - (4)

For instance, the Euler approximate model is z(k + 1) = z(k) + T f(x(k), u(k),w(k)). The sampling
period T is assumed to be a design parameter which can be arbitrarily assigned. Since we are dealing
with a family of approximate discrete-time models Ff, parameterized by T, in order to achieve a certain
objective we need in general to obtain a family of controllers, parameterized by T. We consider a family
of dynamic feedback controllers

Ab+1) = Grla(k), (k) -
uk) = ur(a(k), 2(k) ,

where z € R"=.

We emphasize that if the controller (5) input-to-state stabilizes the approximate model (4) for all
small T', this does not guarantee that the same controller would approximately input-to-state stabilize
the exact (3) model for all small T' (for counter-examples see [23]). The following result that was proved
in [26] gives sufficient conditions for input-to-state stabilization of (3) via controllers (5) that are designed

using (4).



Theorem 2.1 Suppose that there exist ay,as,a3 € Koo and ¥ € K, and for any strictly positive real
numbers (A1, Ao, Az, v) there exist p € Koo, strictly positive real numbers T*, L and M such that for
all T € (0,T*) there exists a function Vp : R**"= — Rsq such that for all |(z,z)] < Ay, |u] < Ay,
|lw| < Ag and T € (0,T*) we have:

e ISS Lyapunov conditions for approximate:

ar|@,2)) < Vi) < asl(@,2)) (6)
Vi (Ff (@, ur (o, 2),0),Gr(2,2) = Ve(@,2) < T(=asl(@2)) +5(wl) +v) . (@)

IN

and, moreover, for all x1,xs,z with max{|(z1,2)|,|(z2,2)|} <A1 and all T € (0,T*), we have

|Vr(z1,2) — Vir(za,2)| < L|z1 — 22| - (8)

e consistency between F} and Fi:

|F7€’('(L'7u7w)_F7a"(m7u7w)| STP(T) . (9)

e uniform local boundedness of ur:

Jur(z,2)| < M . (10)

Then, there exists f € KL,y € G such tﬁat for any stfictly positive r@gl numbers (51, 52, V) there exists
T > 0 such that for all [(2(0),2(0))| < A, |lw||,, < Az and T € (0,T) the solutions of (3), (5) satisfy:

e ISS of exact:

|(z(k), 2(k))| < B(|(=(0),z(0))], kT) +v(llwll.) + 7, VE=0. (11)

We emphasize that the consistency condition in Theorem 2.1 is checkable although F7 is not known
in general. This condition is commonly used in numerical analysis literature [33]. Hence, Theorem 2.1
presents sufficient conditions on the approximate model, controller and continuous-time plant model
that guarantee that the controller which input-to-state stabilizes an approximate discrete-time plant
model would also approximately input-to-state stabilize the exact discrete-time model. We emphasize
that under very weak conditions this guarantees that the inter-sample behaviour of the sample-data
closed-loop system would also be bounded (see [22]).

The conditions (6), (7) of Theorem 2.1 are hard to check in general and one of the main contributions
of this paper is in presenting technical results that can be used to verify that conditions similar to (6), (7)
hold for a family of paramtereized discrete-time systems. These technical conditions can be then used in
conjunction with Theorem 2.1 to design input-to-state stabilizing controllers for sampled-data nonlinear
plants via their approximate discrete-time models. This approach is illustrated in Section 6 where we
consider input-to-state stabilization of a two link manipluator via its Euler approximate discrete-time
model.

3 Preliminaries

The set of real numbers is denoted by R. SN denotes the class of all smooth nondecreasing functions
g : R>o = R>o, which satisfy ¢(¢t) > 0 for all £ > 0. A function v : R>o — R>¢ is of class G if it is
continuous, nondecreasing and zero at zero. It is of class K if it is of class G and strictly increasing;
and it is of class K, if it is of class K and unbounded. Functions of class K, are invertible. Given



two functions «(+) and «(-), we denote their composition and multiplication respectively as @ o v(-) and
a(-) - v(+). |z| denotes the 1-norm of a vector z € R*, where |z|:= Y"1 | |z;].

Motivated by the discussion of the previous section, we consider a parameterized family of discrete-
time nonlinear systems of the following form:

z(k +1) = Fr(z(k), u(k))
y(k) = h(z(k))

where £ € R, u € R™, y € RP are respectively the state, input and output of the system. It is assumed
that Fr is well defined for all z, u and sufficiently small T', F7r(0,0) = 0 for all T for which Fry is defined,
h(0) = 0 and Fr and h are continuous. T' > 0 is the sampling period, which parameterizes the system
and can be arbitrarily assigned. Parameterized discrete-time systems (12) commonly arise when an
approximate discrete-time model is used for designing a digital controller for a nonlinear sampled-data
system (see [23, 26]). Non parameterized discrete-time systems are a special case of (12) when T is
constant (for instance T' = 1). We use the following definition.

(12)

Definition 3.1 The system (12) is (Vr,a, @, a, \, 0)-semiglobally practically input-output to state stable
(Vr,a, @, a, A\, 0)-SP-I0SS) with measuring functions, if there exist functions o, @, a € Ky, and A,
o € G, functions wy : R" = R, wgy : R" = R, wy : R = R, wy : R - R™, w, : R™ — R,
wy : R* = R%, w, : R® — R™, which are zero at zero', and for any triple of strictly positive
real numbers Ay, A, v, there exists T* > 0 and for all T € (0,T*) there exists a smooth function
Vr : R® = Rxo such that for all |we(z)| < Az, |wu(u)| < Ay the following holds:

a(jwa(@)]) < Vr(2) < @(|lwg(z)]) (13)
Vr(Fr(z,u)) - Vr(z) < —Ta(jwa(2)]) + TA(lwr(2)]) + To(|wy (u)]) +Tv . (14)

The functions wy, Wg, Wa, Wi, We, Wy and w, are called measuring functions; a, @, «, A, o are called
bounding functions; a, A, o are called supply functions; and Vr is called a SP-I0SS Lyapunov function.
If T* > 0 exists such that (13) and (14), with v = 0, hold for all T € (0,T*), x € R*, u € R™, the
property holds globally and the system (12) is (Vp,a, @, a, \,0)-I0SS with measuring functions. [

Often, when all functions are clear from the context, we refer to the property defined in Definition 3.1
as SP-IOSS (or I0SS if the property holds globally). Moreover, if the system is SP-IOSS (respectively
IOSS) with A = 0 then we say that the system is SP-ISS (respectively ISS). SP-IOSS with measuring
functions is quite a general notion that covers a range of different properties of nonlinear discrete-time
systems, such as stability, detectability, output to state stability, etc. For example, by letting A = 0,0 =0
and wy () = wg(x) = we(x) = x, we obtain the standard Lyapunov characterization for asymptotic
stability of (12). By letting A = 0, wo(2) = wa(z) = we(x) = z, and w,(w) = u, we obtain a Lyapunov
characterization for (semiglobal practical) ISS. The reason for introducing such a general property in
Definition 3.1 is that we will apply our results to a range of its different special cases (see Section 4) for
particular choices of A, 0 and the measuring functions. Hence, Definition 3.1 is a very compact way of
defining various different properties to which our results apply.

The following two lemmas and remark are used in proving our main results (Theorems 4.1 and 4.2).

Lemma 3.1 [29] Assume that the functions 3, 8' € K are such that 3'(s) = O[3(s)] as s = 0F. Then
there ezists a function ¢ € SN so that 8'(s) < q(s)8(s), Vs >0. ]

Lemma 3.2 [29] Assume that the functions 3, 5’ € K are such that 5(r) = O[B'(r)] as r = +00. Then
there exists a function ¢ € SN so that q(r)8(r) < B'(r), VYr>0. [ |

Remark 3.1 Since for any a € K we have a(s1 + s2) < a(2s1) + a(2s2) for all s1 > 0,52 > 0, then for
any a1, € K, there exist a,@ € K such that the following holds:

a(sy + s2) < a1(s1) + as(s2) < a(sy + s2), Vs1 >0,85 >0, (15)

where a(s) := min{a;(5),a2(3)} and a(s) := max{2a(s), 2a2(s)}. ]

1We need to check if it is better to assume this condition only in the application where we use it.



4 Main results

In this section, we state our main results, which consist of two main theorems (Theorems 4.1 and 4.2),
where we show two partial constructions of a SP-IOSS Lyapunov function from two auxiliary Lyapunov
functions. Some corollaries following from our main results are also presented. First, we discuss our
approach with more detail.

When using the SP-IOSS property of Definition 3.1 to check if a certain property (such as, stability,
input-to-state stability or some other special case of SP-IOSS property) holds, one usually needs to have
that all bounding functions and the corresponding measuring functions satisfy appropriate conditions.
For example, if we want to check global asymptotic stability of the origin of the input-free system (12)
then we need to have:

a|wa(2)))
Vir(Fr(z,0)) — Virz)

Vir(z) < a(|lwz(z)|)

<
< —Ta(jwa(2)]) , (16)

for all z € R™ and T € (0,T*), for some T* > 0; a,@ € K and « is positive definite; |wg(a:)| is positive
definite and radially unbounded; and |w,(z)| is positive definite.

However, it is often the case that some of the desired conditions are not satisfied by a candidate SP-
I0SS Lyapunov function Vir. For instance, in the above example it may happen that |wg(w)| and/or
|we ()| is positive semidefinite. If this happens, then one possibility is by trying to prove that the
appropriate property holds with weaker conditions. For instance, in the above example when |wg(m)|
is positive semidefinite one can use the results of [11] to check stability of the system. If, on the other
hand, |wy(z)| is positive semidefinite one can use the celebrated LaSalle’s invariance principle to check
stability. Another approach that is taken in this paper is to construct a new SP-IOSS Lyapunov function
that satisfies all the required conditions. This construction is carried out by first introducing an auxiliary
SP-IOSS Lyapunov function Va7 and then combining the two functions into a new SP-IOSS Lyapunov
function V. We note that neither Vi nor Vor can be used alone to conclude the desired property,
whereas their appropriate combination can.

We present in Theorems 4.1 and 4.2 two constructions that can be used (under different conditions
on bounding and measuring functions) to construct a new SP-IOSS Lyapunov function Vp from two
SP-IOSS Lyapunov functions Vi1 and Vap. In particular, in Theorem 4.1 we construct Vp from Vi and
Var, by using a scaling function p € K, of a special form, in the following way:

Vi =Vir + p(Var) , (17)

while in Theorem 4.2 we use two scaling functions p;,p2 € Ko of a special form to construct Vr as
follow:

Vr = pr(Var) + p2(Var) . (18)

In Theorem 4.1 we use weaker conditions on the measuring functions of Vi than in Theorem 4.2. This
leads to a less general construction (17) than (18). The important point to be made is that the measuring
functions for the new function Vr are different from measuring functions of either Vi1 or Vor. It is this
fact that allows us to conclude that the system has a property which was impossible to conclude by
using either Vi1 or Vor alone.

We first present Lemma 4.1, which is instrumental in proving our main results. The lemma is
a discrete-time version, as well as a generalization, of the lemma on changing supply rates for IOSS
continuous-time systems in [1]. Lemma 4.1 also generalizes the result of [25] on changing supply rates
for ISS discrete-time systems. We use the following construction that was introduced in [1, 29]. Given
an arbitrary ¢ € SN, we define:

p(s) = / “g(nr (19)

where it is easy to see that p € Ko and p is smooth. Suppose that we have a SP-IOSS Lyapunov
function Vr for a system, and then consider a new function p(Vr). In Lemma 4.1, we state conditions
under which the new function is also a SP-IOSS Lyapunov function for the system.



Lemma 4.1 Let the following conditions be satisfied:

1. System (12) is (Vr,a, @, @, A, 0)-SP-IOSS with measuring functions wy, Wa, Wq, Wx, Wy, Wy and
Wy-

2. There exist k, K € Koo such that k(|we(z)]) < |wg(x)| and |wg(z)| < B(Jlwa(z)]), Vo € R™.

3. For any strictly positive real numbers A,, A, there exist strictly positive real numbers M and T*
such that

|lwz(z)| < Ag,|wy(u)] <A, T € (0, T) = (20)
max{|wg(Fr(z,u))|, lwz(z)|, [wr(z)|, lwe(w)|} < M .

Then for any ¢ € SN and p € Koo defined by (19) there exist o, @, o/, N, o' such that the system
(12) is (p(Vr), o', &', o/, N, 0')-SP-IOSS with the same measuring functions, where a'(s) = p o a(s),
@(s) = poal(s), a(s) = ;g0 3a0k(s) - a(s), N (s) = 2q00x(s) - A(s), 0'(s) =2 00,(s) - o(s), and

,(s) ;=a@oRoa *odo(s)+20(s) (21)
0r(s) :=a@oRoa"t 04A(s) + 2A(s) . (22)
|

Lemma 4.1 provides us with some flexibility when constructing a SP-IOSS Lyapunov function V7 from
two Lyapunov functions using (17) and (18). We proved the result for semiglobal practical IOSS since
this is a property that naturally arises when an approximate discrete-time model is used for controller
design of a sampled-data nonlinear systems (see Example 6 in the next section). Some of the conditions
of Lemma 4.1 are rather technical but they were considered in order to prove the result in a considerable
generality.

Remark 4.1 Tt is instructive to discuss the third condition of Lemma 4.1 since it appears to be the
least intuitive. We consider its two special cases for stability of the origin and stability of arbitrary (not
necessarily compact) sets.

Let us first consider stability of the origin of the input-free system (12). In this case, the conditions
(16) need to hold and we can assume without loss of generality that wy(z) = wa(r) = we(x) = wy(x) =
x. In this case the third condition of Lemma 4.1 holds if Fr(x,0) is bounded on compact sets, uniformly
in T € (0,T*). This holds if Fr(0,0) =0 for all T € (0,T*) and Fr(z,0) is continuous in x, unifromly
in T € (0,T*). This condition is rather natural to use and it is often assumed in the literature (see for
instance [13]).

Suppose now that (16) hold with wa(x) = wg(x) = wa(r) = we(x) = |2| 4, where A is a non-empty
closed set. In this case, the condition 8 of Lemma 4.1 requires that for any A, there exists M and T*
such that

|z| 4 < Az, T € (0,T*) = |Fr(z,0)| , < M .

This condition also appears to be natural and similar conditions have been used in the literature []. m

We can also state a similar result to Lemma 4.1, when the IOSS property holds globally, that is when
the system (12) is (Vr,a, @, a, A,0)-I0SS with measuring functions. It is interesting that in this case
the third condition of Lemma, 4.1 is not needed to prove the result.

Corollary 4.1 Let the following conditions be satisfied:

1. System (12) is (Vr,a, @, a, A, 0)-I0SS with measuring functions wq, Wa, Wa, Wx and W, .

2. There exist k, K € Koo such that k(|we(z)]) < |wg(x)| and |wg(z)| < B(Jlwa(z)]), Vo € R™.



Then for any q € SN and p € Koo defined by (19) there exist o', @', o', X', o' such that the system (12)
is (p(Vr), o', &', 0/, N, 0')-I0OSS with the same measuring functions, where o', @', o', X', o’ are the same
as i Lemma 4.1. ™

We present our main results below. Note that Theorem 4.1 is a discrete-time version, as well as
generalization, of the continuous-time results in [1], whereas Theorem 4.2 has appeared in a simpler
form in [25], which is a discrete-time version of [29], when A = 0, wya(x) = wg(z) = wqa(z) = 2,
w,(u) = u and all properties hold globally.

Theorem 4.1 Suppose that:

1. the system (12) is (ViT, 0,01, 01,01)-SP-ISS with measuring functions wy, , Wa, , Way , Wo, , Way
Wy, 5

2. the system (12) is (Var, @y, G2, a2, A2, 02)-SP-IOSS with measuring functions wg,, Wg,, Way, Wa,,
Wy, Wy, Wyy, and there ezist Ky, Ko € Koo, such that the second and third conditions of Lemma
4.1 hold;

3. there exist 1,72,73 € Koo such that [wy, (2)| < y1(|way (7)), |wasy (2)] < y2(|wz, (2)]); [wa, (w)] <
Y3(|wy, (W)|) for all z € R™. u € R™;

4. limsup,_, . Qfgg < 400.

Then there exists p € Koo such that the system (12) is (Vr,a, @, a,c)-SP-ISS with new measuring
functions wy, wa, Wa, W, Wy, w, where

Vr =Vir + p(Var) , (23)
and the new measuring functions are
wa(2) := |wa, ()| + |wa, (@)|,  wa(@) = |wg, ()] + lwa, (2)|,  we (@) = wa, (), (24)
Wa(T) = |Wa, (2)] Wo (1) 1= |we, (W)] + [wo, (u)] 5 Wy (u) := Wy, (u).
[

Remark 4.2 We note that in Theorems 4.1 and 4.2 we concentrate only on verifying conditions similar
to (6), (7). However, we note that if the functions Vit and Vaor satisfy the local Lipschitz condition
(8), then the new Lyapunov function constructed using either (17) or (18) would also satisfy the local
Lipschitz condition. Hence, results of Theorem 4.1 and 4.2 can be used to verify the first condition of
Theorem 2.1. [ ]

In the next result, we consider a stronger condition for the Lyapunov function V;7, so that we can
relax the condition 4 of the Theorem 4.1.

Theorem 4.2 Suppose that:

1. the system (12) is (Vir,a,, 01, 01,01)-SP-ISS with measuring functions wy, , Wa, , Way , Wo, , Wa,
Wy, and there ezist k;,%1 € Koo, such that the second and third conditions of Lemma 4.1 hold;

2. the system (12) is (Var, ay, @2, a2, Aa, 02)-SP-I0SS with measuring functions wa,, Way, Way, Wh,,
Wy, Wey, Wy, and there exist Ky, Ko € Koo, such that the second and third condition of Lemma 4.1
hold;

3. there exist y1,72,73 € Koo such that |wy, (z)| < 71 (|wa, (2)]), |z, (@) < Y2(|we, (2)]), |Wu, (u)| <
v3(|wy, (w)|) for all z € R*, u € R™.



Then there exist p1,p2 € Koo such that the system (12) is (Vr,a,@,a,0)-SP-ISS and new measuring
functions wy, Wy, Wa, Wy, Wy, Wy, where

Vr = pr(Vit) + p2(Var) , (25)
and the new measuring functions are
wa(2) := |wa, (2)| + |wa, (@)],  wa(@) = |wg, (@)] + lwa, (2)],  wo(@) = wa, (), (26)
Wa(Z) := [Wa, ()| + [Way (2)],  wo(u) = [we, (W)] + [, (u)],  wu(u) := wy, (v).
|

Note that the main difference between Theorems 4.1 and 4.2 is that in Theorem 4.1 we cannot apply
Lemma 4.1 to the Lyapunov function Vr1, since the second and third conditions of the lemma do not
hold. Consequently, we need an extra condition on the bounding functions (condition 4 in Theorem 4.1)
and we use a less general construction (23) than in Theorem 4.2 where we use (25).

As a consequence of Corollary 4.1, we can also state global results of the Theorem 4.1 and 4.2, if Vi1
and Var characterize IOSS property of system (12) in a global sense. The following corollary is derived
from Theorem 4.1.

Corollary 4.2 Suppose that:
1. the system (12) is (Vir,q,, @1, a1,01)-ISS with measuring functions wg , Wa,, Way, Woy, We,,
Wy, 5

2. the system (12) is (Var,Qy, @a, 2, A2, 02)-I0SS with measuring functions wa,, Wa,, Ways Wx,y;
Woy, Way, Wy, and there exist Ky, ke € Koo, such that the second condition of Corollary 4.1 holds;

3. there exist 1,72,73 € Koo such that [wy, (2)| < 11 (|wa, (2)]), [we, (2)| < v2(lwz, (2)]), [wa, (w)] <
Y3 (|wy, (w)]) for all z € R*, z € R".

4. limsup,_,, o ;\jgg < +o0.

Then there exists p € Koo such that the system (12) is (Vr,a, @, a,0)-ISS with Vr is given by (23) and
new measuring functions Wy, Wg, Wa, Wy, Wz, Wy, are given by (24). ]

The next corollary, which is derived from Theorem 4.2 considers the same conditions as those of
Theorem 4.2, when I0SS property holds globally for the system (12).

Corollary 4.3 Suppose that:

1. the system (12) is (Vir,q,, @1, a1,01)-ISS with measuring functions wy , Wa,, Way, Woy, Way,
Wy, , and there exist k;,R1 € Ko, such that the second condition of Corollary 4.1 holds;

2. the system (12) is (Var, @y, ®a, 2, A2, 02)-I0SS with measuring functions wa,, Wa,, Way, Wx,,
Wy, Wy, Wy, and there exist Ky, Ke € Koo, such that the second condition of Corollary 4.1 holds;

3. there exist y1,7v2,73 € Koo such that |wy, (z)| < v1(|wa, (2)]), |wz, ()| < Y2(|wa, (2)]), |Wa, (u)| <
3 (|wy, (w)]) for all x € R™.

Then there exist p1,p2 € Koo such that the system (12) is (Vr,a, @, a,0)-ISS with Vi is given by (25)
and new measuring functions Wy, Wg, Wa, We, Wy, Wy are given by (26). [ ]



5 Applications

In this section we show how our results can be specialized to deal with several important situations:
(i) a LaSalle criterion for SP-ISS of parameterized discrete-time systems;; (ii) SP-ISS of parameterized
time-varying discrete-time cascaded systems; (iii) SP-ISS via positive semidefinite Lyapunov functions
for parameterized discrete-time systems; (iv) observer based ISS controller design for paramtereized
discrete-time systems. We emphasize that our results are general enough for other applications to be
also possible. This section also illustrates the generality of Definition 3.1, since we show that a range of
properties considered in the literature are in fact special cases of the SP-IOSS property with measuring
functions.

5.1 LaSalle criterion for SP-ISS

In this subsection, we present a novel result which is a discrete-time version of the continuous-time result
presented in [1]. This result is a direct consequence of Theorem 4.1. We use this result in the next section
to design a digital controller for a two link manipulator via its Euler approximate model.

It was shown in [1] that if for the continuous time system:

z = flz,u)
= h(z) (27)

there exist two Lyapunov functions V7 and Vs, the functions a,, @1, a1, 0,5, 02,02 € Koo, and 01, A2, 09 €
G satisfying the following conditions for all  and wu:

a(|z)) < Vi(e) < au(lz))

o) < —arlly) + o (lu) (28)
and
ay(el) S Vale) < mlla) )
M fla,u) < —asfol) + dalyl) + oa(lul)
and, moreover,
T I (30)

s—+oo 1 (8)

then there exists an ISS Lyapunov function V, functions a, @, a € K and o € G satisfying the following
conditions for all z and w:

a(lz]) < V(z) < a(|z])
Pf@u) < —a(lz]) +o(lul) -
In other words, the system (27) is ISS. In [1] the properties in (28) and (29) were respectively referred to
as quasi input-to-state stability (qISS) and input-output-to-state stability (IOSS). Using Theorem 4.1
we can state a semiglobal practical version of this result for parameterized discrete-time systems (12).
In particular, we show that semiglobal practical qISS, semiglobal practical IOSS and the condition (30)
imply semiglobal practical ISS. We use the following assumption:

Assumption 5.1 For any strictly positive real numbers Ay, A, there exist strictly positive real number
M, T* such that |z| < Ay, |u| < Ay, T € (0,T*) implies |Fr(z,u)| < M. ]

We state now a discrete-time version of the result in [1].

Corollary 5.1 Consider the system (12) and suppose that Assumption 5.1 holds. Suppose that there
exist aq,q1,Q1,Qy, 02,02 € Koo, and o1, 2,02 € G such that:
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1. for any triple of strictly positive real numbers (A, Ay, v) there exists T* > 0 and for any T €
(0,T*) there exist Vit : R* = R>o and Var : R* — Rxq such that for all |z| < A,, |u| < Ay,
T € (0,T*) we have the following:

- a,(lel) < Vir(@) < @i(lal)
Vir(Fr(z,w)) = Vir() < T( = ai(ly) +or(|ul) +v) o
op_ 1085 ay(al) < Var(@) < @)
Var(Fr(@,u) = Var(e) < T( = aa(lal) + Xa(ly]) + o2(ju) +v)

2. the condition (30) holds.

Then,_there exist a,a,a € Ko and o € G such that for any triple of strictly positive real numbers
(Ag, Ay, D) there exists T > 0 and for any T € (0,T) there exist Vr : R® — R>o such that for all
|z| < Ay, |ul < Ay, T € (0,T) we have:

a(lz])

Ve (Fr(z,u)) — Vr(z) (32)

<
SP—1S5S <

Proof of Corollary 5.1: It can be seen immediately that all conditions of Theorem 4.1 hold, by noting
that: (i) the system (12) is (Vir,q,@1,a1,01)-SP-ISS with measuring functions wy, (z) = wg, () =
Wz, (T) = T, wa, (x) = Wz) =y, we, (u) = wy, (u) = u; (i) the system (12) is (Var, @y, @2, @2, A2, 02)-
SP-IOSS with measuring functions wg, (z) = Wa, (T) = Way (T) = Wa, (x) = =, wr,(z) = h(z) = y and
Wy, () = Wy, (u) = u; the second condition of Lemma 4.1 holds since wy, (z) = wa, () = wa,(x); from
Assumption 5.1 and Remark 4.1 we have that the third condition of Lemma, 4.1 holds; hence, the second
condition of Theorem 4.1 holds; (iii) the third condition of Theorem 4.1 holds since wq, () = wy, (z) =
h(z) =y, We, () = wz,(x) = z and wy, (u) = wy,(u) = u for all z € R*, u € R™; (iv) the fourth
condition of Theorem 4.1 follows trivially from the second condition of the corollary.

Therefore, applying Theorem 4.1 and defining the new SP-ISS Lyapunov function V7 as in (23), we
obtain that the system (12) is SP-ISS with measuring functions wy (2) = wg(z) = we(z) = wz(z) = =
and wy (u) = wy(u) = u. ]

5.2 SP-ISS of time-varying cascade systems

A novel result on SP-ISS for time-varying discrete-time cascade-connected system is presented in this
subsection. This result is a direct consequence of Theorem 4.2 and it generalizes the main result of [25]
in two directions: (i) the result is stated for semiglobal practical ISS (only global stability was considered
in [25]); (ii) the result is stated for time-varying cascade-connected systems (only time-invariant cascade-
connected systems were considered in [25]). We note that similar non Lyapunov based proofs of the same
result can be found in [13] for non paramtereized discrete-time systems.

Consider the time-varying discrete-time system:

z(k +1) = Fr(k, z(k), 2(k), u(k))

z(k+1) = Gr(k, 2(k), u(k)) , (33)

where x € R, z € R"> and u € R™. The state of the overall system is denoted as # := (2T 27)7, ¥ €
R”™, where n := n; + n,. We will assume the following:

Assumption 5.2 For any strictly positive real numbers Az, A, there exist strictly positive real numbers
M and T* such that

12| < Az, |ul < A, T € (0,T%),k > 0 = max{|Fr(k,z,2,u)|,|Grk,z,u)|} <M . (34)

11



The family of systems (33) is not in the form (12) which is time invariant. However, we can still apply
results of our paper in the following way. The time-varying system (33) can be written as an augmented
time-invariant system in the following way:

z(k +1) = Fr(p(k), z(k), 2(k), u(k))
z(k +1) = Gr(p(k), z(k), u(k)) (35)
pk+1) =pk)+1,

where p € R is a new state variable. Then it is standard to show that semiglobal practical uniform ISS
of the time-varying system (33) with respect to the origin (z, z) = (0,0) can be deduced from semiglobal
practical ISS of the time-invariant system (35) with respect to a noncompact set A := {(%,p) : & = 0}.
Note also that we can write |Z| = [(Z, p)| 4.

In the next result we show that SP-ISS Lyapunov function for the overall system (35) can be con-
structed from Lyapunov functions for individual subsystems in (35). In particular, we can state the
following:

Corollary 5.2 Consider the system (33) and suppose that Assumption 5.2 holds. Suppose that there
erist ay,q1,0q, g, 02,03 € Ko, and o1,A\1,02 € G such that for any triple of strictly positive real
numbers (Az, Ay, v) there exists T* > 0 and for any T € (0,T*) there exist Vit : R x R — R>¢ and
Vor : R x R": — R>q such that for all |Z| < Az, |u| < Ay, p>0, T € (0,T*) we have the following:

o (lz]) < Vir(p,z) < oa(|=])
Virp + 1, Pr(p,2,2) ~Vir(p.2) < T( = a(lel) + Ma(lzl) + o1 (ul) +) %)
a(|zl) < Ver(p,2) < @([2])
Vor (p+1,Gr(p,7,0) = Var(p,2) < T( = aa(j2]) +oa(ful) +v) .
Then,_there exist a,@,a_€ Ko, and o € G such that for any triple of strictly positive real numbers
(Az, A~u,'17) theri exists T > 0 andi‘or any T € (0,T) there exist Vr : R x R" — R such that for all
|Z] < Az, |u| <Ay, p>0,T € (0,T) we have:

o(|Z]) < Vr(p, 2, 2) <a(|Z|)

VT(p+ 17FT(p,.Z'7Z7U),GT(p,Z,U)) - VT(pJ'Z'Jz) < T( - Oé(l.’1~7|) + O’(|U|) + ;) - (37)

SP—ISS{

Proof of Corollary 5.2: It follows directly from Assumption 5.2 and conditions of the corollary that all
conditions of Theorem 4.2 hold. Indeed, we have that: (i) the system is (Vir, a;, @1, 1,01, A1)-SP-IOSS
with measuring functions wy, (%,p) = wa, (%,p) = wa, (%,p) = z, wx, (%,p) = 2, Wy, (T,p) = T, Wo, (u) =
Wy, (u) = u, so that k;, K1 exist; morover, from Assumption 5.2 we have that the third condition of
Lemma 4.1 holds; hence, condition 2 of Theorem 4.2 holds; (ii) the system is (Var, ay, @, a2, 02)-SP-ISS
with measuring functions wg, (%,p) = wa, (F,p) = Way (T,0) = 2, W, (F,p) = F, We,(v) = Wy, (u) = u
and A2 = 0, so that k,, R2 exist; moreover, from Assumption 5.2 we have that the third condition
of Lemma 4.1 holds; hence, condition 1 of Theorem 4.2 holds; (iii) |wx, (Z,p)| = |wa,(&,0)| = |2],
|Wey (Z,0)| = |way (Z,0)] = |Z| and |wy, (u)| = |wy, (u)| = |u| for all Z € R”, u € R™; hence, condition 3
of Theorem 4.2 holds.

Therefore, applying Theorem 4.2 and defining the new SP-ISS Lyapunov function Vr as in (25), we

obtain that the system (33) is SP-ISS with measuring functions wq (z) = wg(z) = we(z) = wy(z) = &
and w, (u) = wy(u) = u. ]

5.3 SP-ISS via positive semidefinite Lyapunov functions

The problem of checking stability using positive semidefinite Lyapunov functions has been considered
in [4] for continuous-time systems and in [11] for discrete-time systems. The idea is to use a Lyapunov
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function V' (z), which is positive semidefinite, to check stability of a system. An approach taken in [4, 11]
was to use a trajectory based proof to prove stability of the origin of the system. In particular, besides
appropriate conditions on the Lyapunov function it was required in [4, 11] that all trajectories in the
maximal invariant subset of the set Z := {z : V(z) = 0} satisfy the e—J definition of asymptotic stability
(this property was referred to as conditional stability to the set Z).

We note that the results on stability of cascade-connected systems in [25, 29] and the previous
section can be interpreted as a special case of testing ISS using positive semidefinite Lyapunov functions.
However, this approach is different from the one in [4, 11] since an ISS Lyapunov function is constructed
explicitly from ISS and IOSS Lyapunov funcitons of subsystems. The advantage of the approach of
[25, 29] is that it leads to a construction of a Lyapunov function for the overall system. A disadvantage
is that it requires usually stronger conditions and it appears to apply only to a special class of cascade-
connected systems. However, we show here that the same approach can be used with little modifications
to test semiglobal practical ISS of general parameterized discrete-time systems (12) that are not in the
cascade form. In particular, we can state:

Corollary 5.3 Consider the family of systems (12) and suppose that Assumption 5.1 holds. Suppose that
there exist oy, q1,01, Qy, 02,2 € Ko, 01, A1,02 € G and positive semidefinite functions Wi : R* — R>g
and Wy : R® — Rx>o whose sum Wi(x) + Wa(z) is positive definite and radially unbounded, such that
for any triple of strictly positive real numbers (Ay, Ay, v) there exists T* > 0 and for any T € (0,T*)
there exist Vi : R* = R>o and Var : R* = Rsq such that for all |x| < A,, ju| < Ay, T € (0,T*) we
have the following:
a;(Wi(z)) < Vir(z) < @ (Wi(w))
Vir(Fr(z,u) = Vir(@) < T( = a(Wi(2) + M (W (@) + o1 (ul) +v)
a,(Wa()) Var(z) < @a(Wa(2))
Var(Pr(z,u) = Var(a) < T = az(Wa(@)) + oa(Jul) +v)

< (39)
<

Then, there exist a,a,a € Ko and o € G such that for any triple of strictly positive real numbers
(Ag, Ay, D) there exists T > 0 and for any T € (0,T) there exist Vr : R* = R>o such that for all

|z| < A, |u| < Ay, T € (0,T) we have:

< a(al)
Ve(Pr(z,w) = V(@) < T(—a(z))+o(ul) +7) .

o

SP—1SS { (39)

Proof of Corollary 5.3: It can be seen immediately that all conditions of Theorem 4.1 hold, by
noting that: (i) the system (12) is (Vir, 4,01, 1, A1,01)-SP-IOSS with measuring functions wy, (z) =
Wz, (T) = wq, () = Wi(x), we, () = z, wy, () = Wa(x), wy, (u) = wy, (u) = u, so that k;, &1
exist; moreover, from Assumption 5.1 and Remark 4.1 we have that the third condition of Lemma 4.1
holds; hence, condition 2 of Theorem 4.2 holds; (ii) the system (12) is (Var, @y, @2, a2, 02)-SP-ISS with
measuring functions wq, () = wa, (2) = wa, () = Wa(x), we, (z) = z and w,, (u) = wy, (u) = u, so that
Ko, Ko exist; moreover, from Assumption 5.1 and Remark 4.1 we have that the third condition of Lemma
4.1 holds; hence, condition 1 of Theorem 4.2 holds; (iii) the third condition of Theorem 4.2 holds since
Wa, () = wy, () = Wa(x), we, () = wa, (2) =  and wy, (u) = wy, (u) = u for all x € R, u € R™;
Then, applying Theorem 4.2 and defining the new SP-ISS Lyapunov function V7 as in (25), we obtain
that the system (12) is SP-ISS with measuring functions wy(z) = wg(z) = we(z) = Wi(z) + Wa(z),
wy(z) = x and w, (u) = wy (u) = u. The conclusion follows from the fact that Wi (z) +Ws(z) is a positive
definite and radially unbounded and hence there exist &y, @s € Ko such that a; (|z]) < Wi(z)+Wa(z) <
a(|z]) for all 2 € R™. |

5.4 Observer based input-to-state stabilization of discrete-time systems

Observer based stabilization of discrete-time nonlinear systems that was considered in [15, 16] uses a very
similar construction to the ones considered in this paper. It was shown in [15, 16] that if a discrete-time
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plant can be robustly stabilized with full state feedback (in an ISS sense) and there exists an observer
for the system satisfying appropriate Lyapunov conditions (that is, the system is weakly detectable),
then the plant is also stabilized using the controller/observer pair where the controller uses the state
estimate obtained from the observer. Both local and global results were considered in [15, 16].

In this section, we show that our results, particularly Theorem 4.2, can be used to generalize results
of [15, 16] in two directions: (i) we present results on observer based input-to-state stabilization of
discrete-time systems (in [15, 16] only stabilization was considered); (ii) results on semiglobal practical
ISS of parameterized systems (12) are presented (in [15, 16] only global and local stabilization of non-
parameterized discrete-time systems were considered).

In this section we consider the parameterized family of plants:

z(k+1) = Fr(z(k),u(k),v(k))
y(k) = h(z(k)), (40)
where u and v are respectively the control and exogeneous inputs, with the following observer
z(k +1) = Gr(z(k), h(z(k)), u(k), v(k)) , (41)
and controller
u(k) = ¢r(2(k)) (42)

that are defined for sufficiently small 7. Let & := (z7 27)T, annd we assume the following:

Assumption 5.3 For any strictly positive real numbers Az, Ay, A, there exist strictly positive real
numbers M and T* such that

|Z] < Az, |u| < Ay, [v] <A, T € (0,T*) = max{|Fr(z,u,v)|,|Gr(z, z,u4,v)|,|or(2)|} <M . (43)
n

Then, we can state the following result:

Corollary 5.4 Consider the family of systems (40), (41) and (42) and suppose that Assumption 5.3
holds. Suppose that there exist, aq,01,01, Qy, 02,02 € Koo, 01,A1,02 € G, such that for any triple
of strictly positive real numbers (Az,A,,v) there exists T* > 0 and for any T € (0,T*) there exist
Vir : R* = Rso and Var : R2" — Rso such that for all |Z| < Az, |v] < A,, T € (0,T*) we have the
following:

Vir(z) < ai(|z|)

T (= en(lz)) + Mi(lz = 20) + o (o)) + )
a(z—2) < Var(s2) < @l —2)

a;(|z)

<
Vir(Fr(z, ¢7(2),v)) — Vir(z) <

(44)

‘/ZT(FT($7¢T(Z)7U)JGT(Z7h(x)7¢T(Z)7U)) _VTZT(mJZ) ; T(—a2(|$—2|)—|—0'2(|’l)|)+1/

Then,_there exist a,@,a € Koo and o € G such that for any triple of strictly positive real numbers
(AZ,AU,W there exists T > 0 and for any T € (0,T) there ezist Vi : R2" — R>o such that for all

17| < Az, |v] < A,, T € (0,T) we have:

aof|z]) < Vr(z,2) <))

Ve(Fr(e,67(2),0), Gr(z. h(@), ér(2),)) = Va(e,2) < T( = a(fz) + oo +7)  *)

SP—ISS{

Proof of Corollary 5.4: It can be seen immediately that all conditions of Theorem 4.2 hold, by
noting that: (i) the systems (40), (42) is (Vir,ay, @1, a1, A1, 01)-SP-IOSS with measuring functions
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Wy, (Z) = wg, (%) = wa, (£) = 2, wa, (%) = T, wx, (T) = = — 2, Wy, (v) = wy, (v) = v, s0 that k,, K1 exist;
moreover from Assumption 5.3 and Remark 4.1 we have that the third condition of Lemma 4.1 holds;
hence, condition 2 of Theorem 4.2 holds; (ii) the systems (40), (41) and (42) is (Var, @y, @2, a2, 02)-SP-
ISS with measuring functions wg, (%) = Wa, (F) = Wa, (Z) = T — 2, We, (T) = T and W, (v) = Wy, (v) = v,
so that K, ®o exist; moreover, from Assumption 5.3 and Remark 4.1 we have that the third condition
of Lemma 4.1 holds; hence, condition 1 of Theorem 4.2 holds; (iii) the third condition of Theorem 4.2
holds since wa,(Z) = wx, () = © — 2, Wy, () = Wz (Z) = T and wey, (vV) = wy,(v) = v for all z € R?,
v € R™;

Then, applying Theorem 4.2 and defining the new SP-ISS Lyapunov function Vr as in (25), we
obtain that the system (40), (41) and (42) is SP-ISS with measuring functions w,(%) = wg(Z) =
wo(Z) = |z| + |z — 2|, we(Z) = & and w,(v) = wyu(v) = v. The proof follows from the fact that
3 1E < e + |z — 2| < 213 n

Remark 5.1 There are many variations of conditions in (44) that could be used to state similar results
(for more details see [15, 16]). Also, there is a small discrepancy between the way we write conditions
(44) and conditions used in [15, 16]. However, it is not hard to show that these conditions are equivalent.
For example, we note that instead of the second inequality in (44) we could use:

Vir(Fr(z, ¢r(z +d),v)) = Vir(@) < T = as(la]) + M (d]) + o1(o]) +7) ,

where d is a “new disturbance” (similar conditions were used in [15, 16]). This condition states that the
full state feedback controller u = ¢r(x) robustly stabilizes the plant (40) in an ISS sense. Since for the
controller that uses the estimates state we can write ¢r(z) = ¢pr(z + (2 —x)) and let d = z — z, we can
see that this is the same condition as the one we used in (44).

6 Case study: two link manipulator

We now revisit the problem of controlling a two link manipulator considered in [1]. In particular, we
illustrate how Theorem 2.1 and Corollary 5.1 may be used to obtain a controller based on the Euler
approximate discrete-time model of the manipulator. We emphasize that our results provide a rigorous
framework for achieving ISS via approximate discrete-time models. Finally to illustrate advantages of out
approach, we compare the performace of this controller with the discretized continuous-time controller
obtained in [1].

Consider a two link manipulator shown in Fig.1, with mass of the arm M and length L, and the
gripper with mass m. We denote the angle of the link and the position of the gripper respectively as 6

and r. The continuous time model of the manipulator is:
(mr? + ML?/3)0 + 2mrif = 1 (46)
mi —mrf? = F

We denote the state vector (8 r 8 7#)T as x := (q1 g2 z1 22)T and then write the model in a state space
form:

g1 =21
g2 = 22
4= 2mygaz122 T (47)

T m@2+ MIL2/3 " mqE+ MIL2/3
2y = qozi + — ,
m
and the output equations are

1=z
Ya =22 .

(48)
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Figure 1: A two link manipulator

The physical parameters of the manipulator are given in Table 1. A continuous-time ISS controller was
designed for the system (47) in [1]:

Te = —ka, 21 — km ((]1 - CIld)

3 3 (49)
Fe = —kay 22 — kp, (@2 — G2a) — kni (g5 — @34) »

where w := (q14 g24) and the value of the controller gains are given in Table 1.

Suppose now that the manipulator is controlled digitally using sample and zero order hold devices.
That is, F' and 7 are constant during sampling intervals and the state z is measured at sampling instants
kT, where T is the sampling period. In this case one may simply discretize the controller (49) in the

Table 1: Manipulator’s and controller’s parameters

Parameter | Value | Parameter | Value
m 1 MIL? 3
kp, 2 kp, 1
kdl 2 kd2 ]_
kel 2 keZ 2
- - kni 1
following way:
Te(z(k),w(k)) = —ka,21(k) — kp, (@1 (k) — qua(k))
F.(z(k),w(k)) = —ka,za(k) = kp,(g2(k) — qaa(k)) — ki (a3 (k) — a3,(F)) ,

and implement the emulated controller digitally. It was proved in [21, 34] that the sampled-data closed-
loop system with this controlled would be semiglobally practically ISS.

However, as will be shown below, it may be better if one takes the sampling into account when
designing a controller by using a discrete time model of the plant. Since it is very hard to obtain the
exact discrete time model of the manipulator, we use instead the Euler approximate discrete time model
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for controler design. The Euler approximate model of the manipulator with sampling period T, when
we substitute values of the physical parameters is:

qa(k+1) =q(k)+Tz(k)

o(k+1) = ga(k) + T2(k) =: F3(z(k), 7(k), F (k) (50)
) =) [ ] = TR R,
zo(k+1) =2k )+T[q2(k) (k)2+F(k)] .

where In order to guarantee that the controller that achieves ISS for system (50) would also achieve
SP-ISS of the sampled-data system, we need to use the results Theorem 2.1. In particular, consistency
condition of Theorem 2.1 holds since we are using the Euler approximate model. We have supposed that
the controller has the following form

Tf”l” =1+ Tg(z)

51
FEuler — B, 4 Tgo(x) , (51

where g; and g» are functions that need to be designed based on (50) to for the Euler closed loop system
to satisfy (32). We formally let the control input to be u := (g1 g2)” and using (49), (50) and (51) we
can write the approximate model as follows:

a(k +1) = Ff(z(k), 7(@(k), w(k)) + Tg1(k), F(a(k), w(k)) + Tga(k)) =: Ff(a(k), u(k),w(k)) ,

which has the desirable form. If g1, go are bounded on compact sets we can conclude that the controller
(51) is locally uniformly bounded and hence the third condition of Theorem 2.1 holds. Although other
controller structures are possible, our choice is guided by the fact that we want to have that the continuous
time and the Euler based controllers coincide for 77 = 0, so that it makes sense to compare their
performance. Systematic controller design procedure based on these ideas are an interesting topic for
further research.

It remains to design g; and g so that the ISS Lyapunov conditions for approximate model in Theorem
2.1 hold. In order to do this we use Corollary 5.1 and Remark 4.2. Let K and P be the kinetic and
potential energy of the system.

(1+¢)z} 1
2, 1o 1,
P=gqg + 5% + 1% (53)
The same as in [1], we let the Lyapunov function Vir to be the energy function of the system:
1+¢2)22 1 1 1
V1T=K+P=%+§Z§+qf+§qg+zqg; (54)

We next consider the first difference for Vi1 to compute g; and g, and we write
AVir = Vir(Fr) — Vir(x)

=T(=22] — 25 + 221q14 + 22G2a + 22454) + T* (z1 (91 +3—5—— +0.5z}¢3)

@ + 1 (55)

2
X4
+ (02 0557 + o+ Lsegd) + (0 .a0)) + O(T%)

22 +1

where z := (21 22)7, ¢ := (q1 ¢2)T. g1 and g are designed to reduce the positivity of the O(T?) term
on the right-hand side of (55) and we choose the following:

21
(%1 (.73) = _kel (3@ + 052?(]3)

2
_ 2227
92(z) = —ke, (0.5q22

et 1.5z2q§> :
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where the values of ke, , ke, are listed in Table 1. With the Euler based controller (51), (56), we obtain
the dissipation inequality:

2 2,2
2 2 3 2 41 4 2 22741 2
AVip < T(—22] — 25 + 22114 + 22G2q + 22454) + T (— 3q% 1 0.527¢5 — 0.5q22 1 25
ST(—2 o o +an[of*) + T2 (— 352 — 05213 —05 220 — 23 °
——|z a a: - —0.527¢5 — 0. -
= 2 119 2 |4 S +1 1492 22 + 1 2

— 1.52363) + T2/ (g, 2,44) + O(T?) |

where a; and as are sufficiently large positive numbers. The system is SP-qISS and hence the first part
of condition 1 of Corollary 5.1 holds.

Define another Lyapunov function Va7 in the following form:

@z +a(l+¢)x

Vor =K +P+e
T 1+qt+q3)%/"

; (58)

where € > 0 is a sufficiently small constant (to guarantee that Vor positive definite). We can write
AVor = Vor (Fr) — Vor(x)
= T[ — 22} — 2} + 22114 + 2224 + 22q2d’

A+ 24375 + 2 + @2(Fe + Tg2) + i (e + Tgn)
(1+q5 +q7)%* (59)

3 4¢im +2qx 5 )
P BE T ENA e+ (14 ¢2)21)| + O(T
10+ g+ ) (@2 +al+a) 1)] (%)

< T|Milgly+ @ha+a8a) — Mo + Ma2f + e

@F. +q ] 2
———7| +OT
(1+q5 +a)%/* )
for a sufficiently small T', € and M and sufficiently large M; and Mj3. Substituting the controller 7-2uler
and FEer we can write the dissipation inequality as

@F.+q

2 2 6\ _ 2 2
AVor < T{M:i(aiq + @za + G2a) — M2 |2|" + M3 |2[|" + 6(1 a t )

}+0(T?) (60)

for a sufficiently small T, € and M, and sufficiently large M; and Mj. The system is SP-IOSS and hence
the second part of condition 1 of Corollary 5.1 holds. Finally, since a;(s) = % and A (s) = Mss?, we
have that condition 2 of Corollary 5.1 holds. Hence, from Corollary 5.1 and Remark 4.2 we have that
the first condition of Theorem 2.1 holds and it follows from Theorem 2.1 that the exact discrete-time
closed-loop system is SP-ISS. Finally, using results of [22] we can conclude that the closed-loop sampled

data system is SP-ISS.

We show some simulation results using SIMULINK to illustrate the performance of the system when
we apply the Euler based controller (51), and comparing it with the emulation controller (49). Fig. 2
shows the simulation results with simulation parameters given in Table 2.

Fig. 2(a) shows the reference signal §; and the actual angular position of the arm 6, while Fig. 2(b)
shows the position of the gripper r obtained when applying the Euler based controller, while Fig. 2(c)
and (d) are respectively showing the response of the corresponding variables with emulation controller.
By computation it has been shown that applying the emulation controller also renders SP-ISS property
to the closed-loop system. However, it is shown by simulation results that the Fuler based controller
(51) performs significantly better than the emulation controller (49) for the corresponding simulation
setup.
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Figure 2: Responses with Euler based controller (a,b) and emulation controller (¢,d), for T=0.1.

Table 2: Simulation parameters

Parameter Value
Sampling period (T) 0.1s
Initial state (0.10.10.10.1)T
04 0
T4 3sign(6)
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Figure 3: Responses with Euler based controller (a,b) and emulation controller (¢,d), for T=0.01.

Another set of simulations has been done to obtain a similar response for both controllers. The
simulations are carried out using the same parameter as given in Table 2, except now we need to reduce
the sampling period to T' = 0.01s. The simulation results are shown in Fig. 3.

From its formulation, the Euler based controller approximate the emulation controller with order
O(T), and both controllers coincide at T' = 0. It is shown by the second simulation set that reducing
T makes both controllers to have similar performance. However, since reducing T" means reducing the
effect of the O(T) term of the Euler based controller, it degrades the performance of the controller, while
the contrast happens to the emulation controller. We remark that since the Euler based controller (51)id
designed by taking the advantage of the term that multiplied by T, we may expect that controllers which
take this form will always outperform the emulation controller for relatively high sampling period.

7 Proofs of main results

In this section, we provide proofs of our main results. The proofs of corollaries are omitted since they
follow directly from the main results. We use a proof technique, which is similar to the one used in [1]
and [25]. The proof of Lemma 4.1 is the main difference between the continuous-time results in [1] and
our discrete-time results.

Proof of Lemma 4.1

We denote Vi (Fr) := Vy(Fr(z,u)) and Vp := Vp(z). Suppose that all conditions in Lemma 4.1 are
satisfied. Fix an arbitrary ¢ € SN and let p be defined using (19). We prove next that p(Vr) is a
SP-IOSS Lyapunov function for the system with appropriate bounding and measuring functions stated
in the lemma.

First, note that from the Mean Value Theorem and the fact that ¢(-) = %(-) is nondecreasing, it
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follows that
p(a) —p(b) < g(a)Ja—b Va>0,b>0. (61)

Let arbitrary strictly positive real numbers (AL, Al /v') be given. Let the numbers A/, A! generate
numbers M, T} via the third condition of the lemma, so that (20) holds. Let v4 be such that

max{A(M),o(M)}g(s + 1) — ¢(s)] < %I Vs € [0,a(M) + 2max{A(M), o (M)}] .

Such »; always exists since ¢(-) is continuous. We define:

/
— A/ — Al —_—mind Y
Ag = AL, Ay =AY, Vi= mm{2qoa(M)’V1} (62)

Let (A, Ay, v) determine T > 0 and Vr using the first condition of the lemma, such that for all T' €
(0,Ty) and all |wy (z)] < Az, |wy(u)] < Ay the inequalities (13) and (14) hold. Fix T* := min{T}, T, 1}.
In the rest of the proof we always consider arbitrary T' € (0,7%), |we(z)| < Ay and |wy,(u)| < A,.

Note that a direct consequence of condition 1 of the lemma and the fact that T* <1 is:

Vr > max{a(|wa(2)]), Ta(|wa(@)]) = TA(jwa(2)]) — To(jws (u)]) — Tv} (63)
Vr(Fr) < a(jlwg(z)]) + o(|w, (w)|) + A|wa(z)]) + v . (64)
Note first that
poa(|lwg(2)|) < p(Vr) < poa(jwg(z))) ,
which shows that (13) holds with the new bounding functions a'(s) = po a(s) and @' (s) = poa(s) and

the same measuring functions. Now we prove that (14) holds for p(Vr) with the new bounding functions
and the same measuring functions. The following two preliminary cases are first considered:

1. Vo (Fr) < 3Vr

Using the inequalities (61) and

~—

63) and the definition of M and v we obtain

p(Vr(Fr)) — p(Vr) <p

S
S——
|
PN
S

IN IN
(S
N ~
N[ = N~
N = N = N
5
N N N~/

[
5

(—a(jwa(2)]) + o(|wo (w)]) + Alwa(2)]) +v) (65)

(—a(lwa(2)]) + o(|we (u)]) + A(|wa(2)])) + T%Q(JVI)V

I/I

4

A
(>
5

|
v N MQI’\] | N
AN N N

(=a(jwa(2)]) + o (lws (w)]) + AJwr(2)])) + T

2. VT(FT) > %VT
Using the inequalities (61) and (14) and the definition of M and v we obtain

p(Vr(Fr)) — p(Vr) < q(Vr(Fr)) [Vr(Fr) — Vr]
< Tq(Vr(Fr)) - (—a(|lwa(z)]) + o (jws (u)]) + A(|wa(2)]) + v)
< Tq(Ve(Fr)) - (—a(|wa(@)]) + o(|ws (u)]) + M|wa(@)])) + Tgoa@(M)y (66)
< Tq(Vr(Fr)) - (—a(|wa(z)]) + o(|ws (w)]) + A(lwa(2)])) + T% :

The proof is completed by considering the following three cases.
Case 1: A(Jwa(#)]) + o(|wo (u)]) < 5a(|wa()])

21



o Vi (Fr) < %VT
We use (65) to write:

p(Vr(Fr)) — p(Vr) <

, (67)
<-70(3%) - alua@ + 7%
° VT(FT) > %VT
We use (66) and the fact that g is nondecreasing to write:
1 v
p(Vr(Fr)) — p(Vr) < Tq(Vr(Fr)) - (—§Q(|wa($)|)) +T5
T (1 v
<-50(3%) -alua@ + 7 (68)

< —%q (%VT> -a(|wa (2)]) + T%I

Since ¢ is nondecreasing, using (63) and the second condition of the lemma, the following always holds
for Case 1:

pVe(Fr) = V) < 24 (G0 sllua())) -allua(ol) + T (69)
Case 2: A(|wa(@)]) + o(lwy (W)]) > Fa(|wa(@)]), A(|war()]) > o(jw, (u)])
o Vr(Fr) < %VT
We use (65), (13), the fact that ¢ is nondecreasing, T* < 1 and the choice of v; to write:
pVe(Fr) = V) < T (37) - (allua@)) + 2(ur@) +T5
<—54(3%) - alua@)) + Tq (jalus@D) ) Adur@) + 745
T (1
<-50(3%) alua@) | -
+ Tq(@(|lws(z)]) + 2X(Jwa(@)]) + 11) - A(lwa(2)]) + TVZ
<-5a(3V) -allwa@)
+Tq @(uwa(z)]) + 2(wr () - A (@)) + T + T2
o Vr(Fr)>ivp
We use (66), (13), the fact that ¢ is nondecreasing, T* < 1 and the choice of v1 to write:
o(Ve(Pr)) = p(Vr) < Tq(Ve(Fr) - (=a(fun(z)) + 2A(un (@) + T
< ~7q (3% ) a(uwa (o))
+2Tq (a(|lwa(z)]) + 2A(Jwa(z)|) + v1) - M(|wa(z)]) + T%I (71)

<_Tq (gvT) - af|walz))

! !

+2Tq @(jws(@)]) + 2\ (A @)]) - Mlwa@)]) + T5 + T
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Since ¢ is nondecreasing, using (63), (70), (71), the second condition of the lemma, the condition that
AJwa(z)]) > ra(|lwa(z)|) and the definition of 6 given by (22), the following always holds for Case 2:

Ve (Fr) = p(Vr) < ~ 4 (G20 s(wa(@)) ) - allua(@)
+27q 0 0x(lur (W) - A(wr(w) +Tv (72)

Case 3: A(lwa(2)|) + o(Jws (w)]) > Fa(|lwa(®)), A(lwr(@)]) < o(jws (u)])

o Vp(Fr) < 3Vr
We use (65), (13), the fact that ¢ is nondecreasing, T* < 1 and the choice of 14 to write:

!

p(Ve(Fr)) = p(Vie) < =g (37 ) -allua@)) + Ta 3V ) ol ) + 7%

2 i

) -allun(a +Tq(1 a(lus(o))) - o(ua (W) + 7%
(3%) =

o Vr(Fr) > %VT
We use (66), (13), the fact that ¢ is nondecreasing, T* < 1 and the choice of v4 to write:

p(Ve(Fr) = (V) < Tq (Ve (r)) - (~a(fuw())) + 20y () + T2

< =Tq(Vr(Fr)) - a(lwa(2)]) + 2Tq (Vr(Fr)) - o(jws (u)]) + T%

< -Tq (%VT) - a(|wa(z)]) (74)

!

+2Tq (@(|wa(2)]) + 20(|lwo (2)]) + 1) - o(|lwe (u)]) + T%

< Tq( VT) - af|wa(z))

+ 274 @(wa(@)]) + 20 (e (@) - o (|ws (w)]) + 5 + T

Since ¢ is nondecreasing, using (63), (73), (74), the second condition of the lemma, the condition that
o(|wy(u)|) > $a(|wa(z)|) and the definition of 6, given by (21), the following always holds for Case 3:

T (1
pVr(Fr) = (V) <~ 0 (a0 s(wa(@)) ) - allua(@)
+2Tq 0 b (Jwo (2)]) - o(|lwe (2)]) + TV (75)
We have shown through these three cases that the following holds:

p(Vr(Fr(z,u))) — p(Vr(2)) < T[Zq 0 b (Jwo (w)]) - o(|we (w)])

1

+2¢ 0 Ox(Jwa(2)]) - AMlwa(@)]) = 7a° %Q ° K&(|wa(2)]) - a(|wa(z)]) + V'] » (76)
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which completes the proof of Lemma, 4.1. [

Proof of Theorem 4.1 Suppose that all conditions of the theorem be satisfied. Let oy, @1, a1, 01
come from the condition 1 and a,, @2, a2, A2, 02 come from the condition 2. Define § as:

G(r) := inf 01(5)

r<s 2(1 4 Az(s)) (")

Notice that § is by definition a nondecreasing function. Condition 4 of the theorem implies ¢(r) > 0 for
all 7 > 0. Let q(s) := Gonyy " 00;21(5), where 6, is defined in (22) and v; comes from the third condition
of the theorem. Using ¢(-) we define p(-) via (19). Let p generate via Lemma 4.1 the new bounding
functions ab, @b, ab, Ay, o}.

Let arbitrary strictly positive real numbers (A;, Ay, v) be given. Let (Az, Ay, §) generate via con-
dition 1 the number T} and Vir. Let (v2(Az),v3(Au), §) generate via condition 2 and Lemma 4.1 the
number T3 and p(Var). Let T* = min{T}, T3} and define now Vr as:

Ve =Vir + p(Var) . (78)

Let wy () := wy, (z) and wy(u) := wy, (u). We consider now arbitrary |wg(z)| < Ay, Jwy(u)| < Ay
and T € (0,7*). Note that this implies via condition 3 of the theorem that w,,(z) < v2(4A,;) and
Wy ('Z') < ’73(Au)

First, it follows from the definition of Vi that

a;(|wa, (@)]) + po ay(|wa, (2)]) < Vr(z) <@ (jwa, (2)]) + po@s(|wg, (@)]) - (79)
Then by Remark 3.1, there exist o, @ € K such that
a(|wa, (2)] + |wa, (2)|) < Vr(z) < a(|wa, (2)| + lwa, ()]) - (80)
Using condition 4 of the theorem, the dissipation inequality for Vr can be written as:

Vr(Fr(z,u)) — Vr(z) = Vir(Fr) = Vir + p(Var (Fr)) — p(Vor)

< T [o1 (i, ()]) + 05 (0 (w)]) + 5 = 1 (o (@)
+ X 01 (s (2)) = 0w (@) + 5 81)
< T [o1 (i (W)]) + 05 (0 (1)) + 5 = 1 (o, (@)

a1 (|wa, (#)) A2 (|way (2)]) _

R n(u @y~ @D + 3]
Since
)\2(8)
5 00) <1,Vs>0,

by monotonicity of ¢(-) and using Remark 3.1, there exist o € Ko, and ¢ € K so that we can write
Vr(Fr(z,u)) = Vr(z) < —To(|lwa, (2)] + [wa, (2)]) + To(lws, (w)] + [we, (w)]) + Tv . (82)

This completes the proof of Theorem 4.1. [ |

Proof of Theorem 4.2 Suppose that all conditions of the theorem are satisfied. Let o, @i, a1, 01
come from the condition 1 and a,, @s, a2, A2, 02 come from the condition 2. Define a function o € K
as follows

ol (s) = {al(s) for small s, (83)

A2(s) for large s.
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It is clear that o}(s) = Ofai(s)] for s — 0*. Hence, by Lemma 3.1 there exists g € SN such that
G1(s) - a1(s) > a)(s). Further, define a function A} € K:

X (6) = 50k(s) (84)

and it is clear that A2(s) = O[M,(s)] for s =& +o00. Then by Remark 3.1, there exists o € SA such that
G2(8) - Aa(8) < Aa(s). Let

q1(s) = 4G o 5y " 0 a; '(25) (85)
1.
@(s) = ghom 06, (s), (86)

where 6, is given in (22) and 7; comes from the third condition of the theorem. We use ¢; and go
respectively to define p; and po, and then let (g1, p1) and (go, p2) respectively generate via Lemma 4.1
new bounding functions o}, @}, o}, o} and ab, al, ab, ob.

Let arbitrary strictly positive real numbers (A;, A,,v) be given. Let (A;, Ay, §) generate via item

1 of the theorem and Lemma 4.1 T{* and p; (Vi7) and let (72(Az),73(Ay), ) generate via item 2 of the
theorem and Lemma 4.1 Ty and p2(Var). Let T* := min{T},T5}. We now define Vr as:

Vr := pr(Vit) + p2(Var) (87)

Let wy(x) := wy, (z) and wy,(u) := wy, (v). In all calculations below we consider arbitrary |w, ()] < A,,
|wy(u)] < Ay and T € (0,7*). Note that this implies |wz, ()| < 12(Az) and |wy, (2)] < 13(Ay)-
It follows from the definition of Vi that

p1 oy (|wg, (@)]) + p2 0 @y (Jwa, (2)]) < Vi (2) < proar(jwa, (2)]) + p2 0 T (lwa, (2)]) - (88)
Then by Remark 3.1, there exist a,@ € K, such that
a(|wa, ()| + [wa, (2)|) < Vr(2) <a(|lwg, (2)] + [w, (2)]) - (89)
Using condition 3 of the theorem and (84), we have:

Vr(Fr(z,u)) — Vr(z) = pr(Vir (Fr)) — pr(Vir) + p2(Var (Fr)) — p2(Vor)

< T = (jway @)]) + 01 ([, (W)]) + 5 — ah(|was ()]) + Xs 0 1 (|way ()

+ (o (w))) + 3] (90)
<[~ 0 (e (2)]) — 504 (i (@)]) + 04 (5, ()] + B ()]

+3+3]-

Finally, using Remark 3.1, there exist 0 € K and a € K that
Vr(Fr(z,u)) — Vr(z) < T[U(Iwa1 ()| + |wey (u)]) — alwa, ()] + |wa, (2)]) + v| - (91)

This completes the proof of Theorem 4.2. [

8 Conclusions

We have presented results on changing supply rates for discrete-time SP-IOSS systems that allow for
a partial construction of Lyapunov functions. OQur results apply to investigation of different semiglobal
practical stability properties of discrete-time parameterized systems that arise when an approximate
discrete-time model is used for controller design of a sampled-data nonlinear system. We have applied
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our results to several problems, such as the LaSalle criterion for SP-ISS of discrete-time systems. We
emphasize that there is a great potential for further applications of our results. We have illustrated this
approach by an example where a discrete-time SP-ISS controller was designed for a manipulator based
on its Euler approximate model. Using simulations, we compared the performance of our controller with
the performance of the discretized continuous-time controller obtained in [1] for the same problem and
it was shown that our controller yielded better performance. This strongly motivates a development of
systematic controller design procedures for sampled-data nonlinear systems based on their approximate
discrete-time models where results the present paper could play an important role.
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