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Abstract—In the path-following problem formulated in this paper,  than any prespecified constant. The idea of replacing the original
itis requ_ired that the error between the system output and the desirec_j output by an auxiliary one has already been exploited in the
geometric path eventually be less than any prespecified constant. If in flatness approach, see [14]-[15] and references therein. The key
a nonlinear MIMO system the output derivatives do not enter into its . . . . .
zero dynamics, a condition relating path geometry and stabilizability difference here is that instead of searching for a flat output which
of the zero dynamics is given under which a solution to this problem approximates the original output, we construct a feedback law for
exists. The solution is obtained by combining input-to-state stability a derivative off to reduce the difference between the two outputs.
and hybrid system methodologies. In Section Il we formulate a path-following problem for a

class of nonlinear systems with unstable zero dynamics and give
|. INTRODUCTION a sufficient condition for its solvability. We first give a design
Path-following has recently been formulated to replace the st rocedure in Section Ill, and then prove that the designed feedback

dard reference tracking as more suitable for certain applicatior‘ffg/\’S solve the path-following problem in Section IV. An example

[1]-[8]. The primary task in this framework is to steer an object {5 given in Section V and concluding remarks are in Section VI.
reach and follow a geometric path, that is, a manifold parameter-
ized by a scalaf, while properties of the object’'s motion along
the path are of secondary importance. Path-following problems ardn this paper we focus on path-following for nonlinear systems
first solved with respect to the path paramétdeaving the choice with unstable zero dynamics. We consider systems with vector
of a timing law for it as an additional degree of freedom. Thiselative degregry, ..., } which can be transformed by means
additional flexibility of path-following is often a major advantageof a global coordinate and feedback transformation into

over reference tracking. For example, stable walking for biped

Il. PROBLEM STATEMENT

: ; i = flzy), ze R"", 1)
robots [7] is achieved by ensuring that an output converges to a ¥ ; ;
manifold parameterized by the angle of robot's stance leg with @ = Anx' 4 Bru, yi = Cra, 2
respect to the surface. This manifold parametrization led t0\ghare , 2 ()7 ... @™)T)T, o & [z @7,y &
. . e . . .y . . A b .. T i)
dramatic simplification in stability analysis of the underlyin L ym]Tow 2 ur s u]T o 2 T, a CF map

system. Another example is the use of an internal model in [g] . R"™" x R™ — R"™" satisfiesf(0,0) . 0, and matrices
parameterized by system’s output position to reject the disturban/gg € R"*", BT C,, € R are given by
represented by path’s varying curvature. ‘ T

Here, we use the freedom to design a timing law for the _ { 0 I } Bii=[0 ... 0 1],
path parametef to overcome the classical limitations imposed 10 0 T Cr = [ 10 ... 0 } .

by unstable zero dynamics on tracking accuracy [13]. This id@y simplicity we assume that this transformation is valid globally,

was introduced in [9]-[11], where a time derivative of the patl; stress that it needs to exist only in a set containing the path.

parameted is used to stabilize zero dynamics, while the originathe class of systems which are globally diffeomorphic to system

control variable is used for _steerlng the system along the path 1)-(2) is characterized in [16]-[17]. Subsystem (1) represents the
We develop a path-following design for nonlinear systems withstable zero dynamics driven by the outpubut not by any

unstable zero dynamics. Our main assumption is that oUtRitits derivatives. Subsystem (2) consistsrafintegrator chains
derivatives do not enter into zero dynamics. Although restr|ct|v?e|ating the inputz with the outputy.

this assumption is a useful starting point common in the literature, pefinition 1: Path Y, is one-dimensional manifold),
see for_example Chapter 2.3 in [12] _ar_wd Chapter 2.4_|n [1612/(1(9) = [ya1(0) ... yam(0)]7 : 6 > 0} whereyy; : R —
We design a feedback law for the original control variable t9,e smooth bounded functiongy; € C™, i =1,...,m.
achieve convergence of an auxiliary output to the path. Theyy, augment system (1)-(2) with the following dynamics
auxiliary output is to have the same relative degree as the original ) o

output and the resulting zero dynamics are to be input-to-state O=A4.0+Buw, ©629...0" VT 3)
i‘tafb le dgssk) \l/vher:( trhe afu;nlla;y rQUttPUt 'z@”.eat;d :S dth(.a'rn'ndpuvt\iherer* = max; r; iS the maximal relative degree of an output
i e: rac | awn 0 af Ithe tre' 'V? “rlie flfh eri i:ﬁ'g r?d { omponenty; in (2), © represents™ additional states stemming
0 ensure closeness of the trajectories of the original a 16m the path parametdt, andw is an additional control input
auxiliary output. We give a sufficient condition on path geomet Loresenting the*”" derivative ofd. 80" 2 w A kev feature of
and stabilizability of the zero dynamics under which dif‘ferenceap 9 ’ — Y

between the original and the auxiliary output can be made small%r

o8 I

th-following is the possibility to design a feedback law for

(3) and determind(¢) as a function of system states. Standard
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R1) Practical convergencelimsup,_, . ||y(t) — ya(0(t))]] <, We design aybrid dynamic feedback law of the form

R2) Forward motion(t) > 0 andlim; ... (t) = oo, w = o(ze,20) W = $(er 50, )
R3) State boundednesst > 0, [lz(t)| < n.(||=(0)]] | =(0) ), g ke = ful@n2e),
A r*_ T T c — Jc sydc)y
Lzl < n=(=O)], 120, [[182)...00 V@]l < 25 2c]" € S(a), g = const. (©)
Mo, +
T N Te = fd(m&mc),
whereng,n. : RT x R™ — IR are continuous functions and 5 zc] €dS(g), { q" = Jy(xs, ze, q)
q sy by

Me > 0. We impose the requiremer2 to mimic reference
tracking, that is, to prevent the outpytto converge to a point
on the pathYy, lim;—. 6(¢t) = oo, and to prevent its backward
motion along the pat®y, 6 > 0.

The presence of unstable zero dynamics prevents asympt
tracking of arbitrary reference signals, and in such situations t
bound on tracking erroe in limsup,_, . |ly(t) — ya(t)] < € © =0y, Tc=2Zco, q=qo. (7)
can not be made arbitrarily small [13]. We exploit the additional . ) )
freedom of path-following and give conditions on path geometr{/® Use the standard definition for the solutions of hybrid system
and stabilizability of zero dynamics such that for arbitrarily sma 1)'(3)_ a_1r_1d (6), [18]'[19]' . T T
¢ > 0 there exist feedback laws farandw guaranteeind@1-R3. Definition 2: A function of time [X™ (¢) ¢(1)]", ¢ € [0,Ty),

The case of interest is when zero dynamics (1) are unstable Bt < ©°: IS @ solution of r]‘%’b”d system (1)-(3), (6) if there exists
the outputy can be used as the control variable to stabilize therft, S€dUence of instan{s; }?=1' tj < tj+1, N < oo, such that for
In Assumption 1 we require existence of a feedbackgaw o(z) &l t € [tj,tj+1) and1 < j < N, the following conditions hold

wherezx. andq are its continuous and discrete states, respectively.
The discrete statg belongs to a finite seQ, S(gq) is a closed
set for allg € Q, clS(q) is the closure of its complement, =

éﬁg 2T T, X & [of 2117, andz(t) £ lim,), z(s). We
H”gtialize subsystem (3) and feedback law (6) at particular values,

and a Lyapunov functiorV;, such that when the feedback law X (¢) € S(q(t)) X (t;) € clS(q(t;))
y = o(z) is implemented with a bounded errdr y — o(z), X(t)=F(X®),q@) , X)) =Fa(X(t;),q(t;)) , (8)
the derivative ofl, satisfies a particular bound. q(t) = q(t)) q(t]) = Jo(X (t5), q(t5))

Assumption 1:Let C"" functiono : IR"™" — IR™, ¢(0) = 0,
C? Lyapunov functionV, : R — IRT, V,(0) = 0, class
K> functionsa; : Rt — R*, i = 1,2,3, and C* function
m:IR"" — IR™, w(0) =0, satisfyVz € R"™" andVd € R™
AL an([lz]]) < Vz(2) < (/2.

where the functiong’s and F,; are suitably defined by combining
(1)-(3), (6). We say that at= t; the j** transition occurs. [
Theorem 1:Let zero dynamics (1) and the paffy; satisfy
Assumptions 1-2. Then for any accuraey> 0 there exists
feedback law (6) and initial conditions (7), such that the solutions

. 9V, T

Az Gl U(Zl")ﬁ + ﬁ) < —as(|z]) + 7 (2)d, of system (1)-(3), () satisfy the requiremeiits — R3. (]

A3: hm“z”—»(.)c as([[z]) — 0. ] D Remark 2:For controllable linear systems (1)-(2), that is, when
In Assumption 2 we relate path geometry with the function ¢, ) = A.» + B.y and the pair(A., B.) is controllable,

from Assumption 1. Assumption 1 is automatically satisfied, while Assumption 2 is

Assumption 2:There exist constant$y; > 6., > 0 such that equivalent to existence of constafits > 6,, > 0 such that for all
Vz € IR"™" andVé > 0, min,c(o40,,,0+0,,] ”T(Z)yd(s) <00 weR™andd e RT we haveminge(gyo,,,0+6] wTyd(s) <
Remark 1:Assumption 1 implies that zero dynamics (1) ar). Thus, for such linear systems the requiremdnts— R3 hinge
ISS Wrt d. To show that we define a nondecreasing, ContinUOldﬁ] Assumption 2, which is then a pure|y geometric condition.
function For example, when the output is two dimensional, Assumption 2
p(s) £ inf M, requires that for alp > 0 the section of the path; corresponding
12112 max{1, [|=(2)ll} to the intervallf + 0.,., 0 + 6,/] enters into all quadrants. We note
which due to A3 satisfieBm;_. p(s) = co. Consequently, there that a sufficient condition under which the requireménts— R3
exists a functiono € K> satisfyingo(s) < p(s), for all s # 0. can be ensured for = 0 and controllable linear systems (1)-(2)
From A2, for||z|| > o~ *(||d]]), ||d|| # 0, we obtain is given in [11] and it implies Assumption 2. O

Ve < —as(flzl) + max{1, |7 (2) [ }e(ll=]])

>

IIl. DESIGN
= max{l,||7(2)|} {—% + Q(HZH)} In this Section we design feedback law (6) that ensures the
< 1 - ’ 0 requirementsR1-R3. If a quantity in the designed feedback law
< max{L [7(2)[I} {=p(ll=I]) + e(llzID} <0, depends on the path-following accuraey we write € in its
which implies that zero dynamics (1) are 1SS wt[20]. If d € superscript. By considering dependence of such quantities on
L, then there exists a function € KL such that solutions of We study properties of the resulting family of feedback laws with

zero dynamics (1) satisfy an emphasis on members corresponding to small values of
. Let zero dynamics (1) and the path satisfy Assumptions 1-2,
=)l < v(llz(0)[],t) + « (b;l>11§ d@)), (4)  and fix the path-following accuraay> 0. Utilizing the function

o from Assumption 1, the feedback law farin (6) is given by
where o* 2 a7’ o az o p7!, and the level set of the

o A, (ri) (rs) ey ey T
Lyapunov functionV. specified by the constant = ay o '~ 0i(@s,Te) = 4y (O)+077 (2) =K', o = [cpl...wm(]g),
(i d(t
0 ( 1msup;_, o H ( )”) where the gainsKi c Rlxn make the matrleZ A A'ri *BriKz’
Q(c) 2 {z e R"" : Vo(2) < ¢}, (5) Hurwitz, e £ [(e")"...(e™)"]", & £ [éf...&.]", and

is globally attractive and forward invariant for (1). O E =l —0i—ya ... ab, —o" 7 — 4T (10)

T



The hybrid dynamic feedback law fas is based on the Lya- where ®;(r, zq, 04) fo i 1 (11, 24, 0a)dT1, ®o(T, 24,04) =
punov functionV, and the bound on its derivative from Assump-p4(r, z4, 84) represents the" integral of the functiony$, and
tion 1. It has one discrete statec Q = {Start, Wait, Align} 7T is defined in (25). Condition (17) combined with (11) ensures
denoting its mode, and three continuous states? [ zJ 64]7. continuity of the signalu(t) with respect to time, (18) requires
The stater measures the duration of the visit to the currerthat states of subsystem (3) reach the vdlligzq, 64) 0...0]7
mode, whilez, and 8, respectively represent the values of zerin T; seconds and remain there, while (19) corresponds to the
dynamics’ states and path parametérat the instant of the most requirememé(t) > 0, seeR2. We construct the functiop, by
recent transition. The mod&art is used only initially until the introducing a polynomial parametrization,
zero dynamic states and the errorg do not become sufficiently . . x .
small. In the modeAlign the path parametef is driven to a G (7,20, 0a) = 35—y Pk(20,00)7", 7 € [0, T5), (20)
value at which the bound on derivative of the Lyapunov functiognd computing the parametep§(z4,64), k = 1,...,k*, such
Vz is negative. During this mode the Lyapunov functiBhmay that conditions (17)-(19) hold.
increase. In the mod@ait the path parametet is kept constant e complete our design by setting the initial conditions for
and the Lyapunov functioft’; is decreased for an amount that issypsystem (3) t®(0) = ©¢ = [0 0...0]”, 6o > 0, and for

larger than its increase d_uring t_he previous visitAthgn. (12) toz.(0) = xc0 2 [0 0 0]7, ¢(0) = Start, that is, we restrict
The feedback law fow in (6) is given by the initial conditions of system (1)-(3), (12) to the set
e 2 f 0, q # Align, XX O0o2{X:0=0 - x {Start 21
w=¢(r2e040) 2 { 65 (7, 70,00), q= Align, (D) bx Qo =X o e = weof < {Starth - (2)

Remark 3:1t can be shown that there exists a sufficiently large

+ n—r +
where the functionp, : JB™ x R"""xR" — IRisto be deflned integer k* such that for allz; and 6, there exist coefficients

The continuous and jump dynamics for the states= [r zJ 4]

. . i P, k=1,...,k*, for which polynomial (20) satisfies conditions
in (6) are respectively given by (17)-(19). Moreover, using (16) and (18) it follows that the first
7=1 =0 integrals of polynomial (20) over the intenv@l, T'; ) are uniformly
XeS 24=0 , XcclS ; =z , (12) bounded for alkq andf4. Then the coefficients;, can be selected
6s=0 9; =0 to make polynomial (20) uniformly bounded as well,
whereS £ U,eoS(q). The sets on which continuous dynamics sup |4 (T, za,0a)| < M, (22)
are valid for a particular mode are defined by Zq €M7, fg€ R, 7€(0,TF]
S(Start) 2 cl{X : ¢ Q:(15) V2 & Qu(ch)), where for s*malle the constantM, can be written as\/;, =
S(Align) 2 cl{X : 7 < TE} (13) M., (1/T5)" . We note that bound (22) does not necessarily hold

3 if the function Jy is unbounded, that is, #,; = co in (16). O
=T We now specify the relevant constants in our design. The path-
where Q.(y) £ {¢ € R" : V.(€) < ~} is a level set of the related constants are given by

Lyapunov function . _

yap M, 2 suplga(®), ¢ 2as00 (M) +1, (23)
V.(é) £ eTPe, P = diag{P1,...,Pn}, 620
P=PF'>0, ATP,+ P,A; < —1I,

S(Wait) 2 cl{X : 2 € Q(L)AV. <

(14)

while constants related to the Lyapunov functidh and zero
dynamics (1) are given by* £ sup,cq_(.+ [[7(2)],

vV, 2 aa‘f f(z,y) denotes the derivative of the Lyapunov function
V. from along the solutions of zero dynamics (1), and constantg,, £ SUD,ca, (et | — as(||z])) + [|=(2)|| (M, + 1)),
c*, 71, 75, andTy are given in (23) and (25), respectively. ag 2 SUp. . (C*) H ar H gL SUP.co (e, HyH<1+M 171,
The next mode of feedback law (6) is determined by the , 52 v, aV. Y
function JS : R" " x R* x Q — Q 44 = sup (H as + %2 (” H))’ (24)
J(2,0,q) = { Align, ¢ # AlignVze Q. (%), (15) wheresup for a4 is taken overz € Q. (c¢*) and||y|| < M, + 1,
anme Wait, ¢ = AlignAz ¢ Q.(%), and for brevity we writef £ f(z,0(z)+y). Finally, the constants

dependent on the path-following accuraey> 0 are given by

where the constant® is defined in (25).
(25) d* 2 sup{c>0: SUP,cq, (o) lo(2)] < €}, and

To construct the functionp, in (11) that governs evolution

of the path parameta‘)ln the JrrnodeAlign we first define the e 2 . ay ' (d° /2) 4§ 2 ppmin {1, (v¢/(47%))%}
function Jo : IR"™" x IR™ — IR™ that determines its target value $ 2 /4, TS 2~/ (das), A2 min{d/4,~5T5)
at the end of the visit in terms of the states at the beginning 01/ 2 min {A%,d} /2, T2 min{1,~¢/a1,7¢/(4Mpazas)} .
the visit (25)
Jo(za,04) = arg min ﬂ‘T(Zd)yd(S). (16) Note that the constants;, : = 1,2, 3,4, are finite because they
’ s€[04+0m.04+01s] represent maxima of continuous functions over compact sets, and
satisfieso(0) = 0.
¢6A(T7 Zd, gd) = O,VT 2 Taem ¢f4(07 Zd, ed) =0 (17)
(@4 (T5, 24, 0a) ®pr—1(T5, 24,0a) - .. P1 (T, 2a,04)]" = IV. PROOF
T
[Jo(2a,0a) —6a 0...0]", (18) In this Section we prove Theorem 1. We first infer properties

D, _1(7,24,04) >0, VT € [0,Ty), (19) induced by the feedback law far in (9), and then with three



() = ©¢g, ®c(0) = x.0 T - 2 F

q = Start, q = Align
2= flz, v, 2= flz. )
@7 = Ay, @l + Bry (s, we), @t = Ayt + Brei(zs, we),
O = A, .0, ) © = A, %O + Boxbalr, 2q,
F =1, Zg = O, a4 = O r:,zd:o,udi
g € Qe (vf) A= € Q2(c*)

++ — o z;f:z, sjl’:s

Fig. 1. Hybrid system (1)-(3), (9), (11)-(12), wheie=1,...,m.

Lemmata prove that under feedback laws (9), (11) all solutions Bfy using induction the claim of Lemma 1 then follows.
system (1)-(3), (12) starting from set (21) satisfy the requirementsDuration of visits to the moddlign is fixed, see (13), thus the
R1—R3. Substituting coordinates (10) and feedback law (9) intg + 1°¢ transition occurs at the instanf.; = t; + T;. During
system (1)-(3), we obtain the intervalt € [t;,t;4+1), combining (11), (18)-(19) and (16),
we conclude that(t) > 0 and O(t;+1) = [0(tj+1) 0...0]7,

5 = e 2 H
- f(zjia(.Z) Fal®) =) (20 wheref(t;1) — 0(t;) = Jo(za(tj+1),0a(tj+1)) = Om. Then if
¢ = Al i=1...m, (27)  2(tj41) € Q.(%), from (15) we get that the + 1°! transition
O = A0+ Buuw, (28) is into the modeAlign, hence (32) holds fot = t;41.

If z(tj41) & QZ(%E) the j + 1°* transition is into the mode

where &, 2 [el...e]T. Taking the derivative of Lyapunov _ . A / . .
function (14) along the solutions of subsystem (27), we get th\?yalt’ q(tjy;) = Wait. We show that there exists an instant
> t;41 such that

V. < —||é||?, and thus the errors, converge to zero,
ey @Il < 1@ < (ar/pm) [EO) ™. (29) ) € A&/ V V2D 2 =5 53

Using (5) withd = ya(0)+&, and (29), we conclude that feedbackThen from the definition of sef(Wait) in (13) and (15), we get
law (9) renders globally attractive and forward invariant a levdhat; +2" transition is into the modalign, q(t*) = Align, and
setQ.(c*) of the Lyapunov functiori, for (26), that is, it occurs att;1» = t. Using (11) we obtain thav(¢) = 0 during
_ the visit to the modéWait, ¢ € [tj1+1,¢;12), hence©(t;12) =
. * * 1 J v Y] J
lim sup V- (2(t)) < ¢’ " =azoo (My)+ 1. (30) gz,,). Thus, (32) holds fof = t; 12 > t; + T¢.

Remark 4:Feedback law for: in (9) is designed to achieve Taking the derivative of the Lyapunov functidri. along the

asymptotic path-following for the auxiliary outpgt=y — o(z), solutions Of_(ZAG)’ using Assu[nption E(tj11) € Qe(71), and

. - _ ; i, ; 2(tj41) € Q7 £ Q.(c*) \ Q.(%) we get

limy oo ||§(t) — ya(0(t))]| = 0. This auxiliary output is selected “\*J+ z 2

such that the_r_esultlng zero dynamics of gygtem (2)-(2) are ISS Vz(tj+1) < —as(||z(tje)|) + 77 (1) [ya(tier)

when the auxiliary outpuf is treated as their input. O ey (tjie1)] < —inf__.— as(|2]]) + 7TT(t'+1)yd(t' )
Lemma 1:Under feedback laws (9), (11) all solutions of sys- v ol = €9 ! =

tem (1)-(3), (12) starting from set (21) satisR2. |
Proof: Due to (21) the initial mode iStart, ¢(0) = Start. By where, for brevity, we writer(¢t) = w(2(t)) and yq(0(¢)) =

using bo_unds (.29)'(30) and SS(SFart) n (.13) we C(_)_nclu_de that ya4(t). We compute the bound on the second term in (34) from
there exits an instarty > 0 at which the first transition into the

modeAlign occurs,q(t{) = Align. Combing feedback law (11) 77 (t;41)ya(tj+1) < 77 (t;)ya(tjs1) + My||m(tiz1) — m(t;)||
and initial condition®(0) = ©o, we getO(t1) = Go. Moreover, < 77 (t;)ya(Js(2(t;), 0(t;))) + My ||m(tjs1) — w(t;)|

vVt > t; we have thatz(t) € Q.(c*) andé(t) € Qc(77), which < My ||w(tj41) — m(t;)]|

with the constantyf in (25) implies < Myazsup,_ o 12 I<1, 050 ft’;i-%—l I|2(t)||dt

i My 3 —ti)
Héya)us,/%||é<t>n2§./ive<é<t>>s,/lj—;s1. @ = Mol —t) (35)

where the third inequality follows from Assumption 2 and (16).

Let the j* transition be into the modelign, a(tf) = substituting (35) into (34) and utilizing the constants defined in
Align, and let the states of subsystem (3) satiéljt;) = (23)-(25) we obtain

[0(t;) 0...0]". (This hypothesis holds foj = 1). We show
that there exists an instant> ¢, + T¢ at which the modeAAlign Vi(tjan) < 7 +TE Myazas+* [ 1 < _}76 < -5 (36)
is revisited, while the value of the path parametert at ¢ has - Pm — 2
increased by at lea#t,, > 0, that is,
q(fT) = Align, O©(#) = [0({) 0... 0],
0(f) > 0(t;) + Om, 0(t) >0,Vt € [t;,1).

+7" SuPzcq, (v¢) I€ll;
(34)

A A

which ascertains that at the instant of the1** transition into the
mode Wait the derivative of Lyapunov functiof, is negative.

(32) From (36) we deduce existence of an instapt. > ¢;11 at



which eitherV, becomes smaller thaéi (tj42) € Q:(% -, or
its derivative becomes larger thamys, V. (tj+2) > —v5. Thus
condition (33) holds and the claim of Lemma 1 follows. H

j + 2™ transition is again into the modglign, and z(t;12) €
Q.(c* — LA“). Repeating this argumerit times, wherek >
27 24° e obtain thatz(t; 2r) € Q.(c* — EA9) C Q.(L).

The proof of Lemma 1 implies that at most two transitions occurhis proves claim (39) for* = j + k.

within any interval of duratiorily;, tj+2 —t; > T, j > 1, and

that the sequencét;}72, is unbounded, that is, the transitionsAlign, q(t+)

never stop. Thus for any fixee > 0 hybrid system (1)-(3), (12)

does not have Zeno solutions. Using dependence of the constgnégain Align, q( i )=

T; on the path-following accuracy in (25), we conclude that
smallere may lead to more frequent transitions.

We next show the trajectory closeness for the original ougputwait and q(

and the auxiliary outpuf, that is,limsup,_, . |ly(t) — 9(¢)| =
limsup,_, . ||lo(2(t))]] < e. Since feedback law fow in (9)
guarantees convergence of the auxiliary outpub the path),,
lim;—oo ||7(t) — ya(0(2))|| = 0O, this implies the requirememt1.
We prove that the level s€t. (d°) of the Lyapunov functiorV is

globally attractive and forward invariant for zero dynamics (26),

where the constant® > 0 in (25) is chosen such thate Q. (d°)
implies ||o(2)|| < e.

To prove claim (40), let thej*” transition be into the mode
Align, and z(t;) € Q.(d/2). If at t;41 =
t; + Ty we have thatz(tﬁl) € Q. (d°/2), then the next mode
Align, and using (38) we obtain that
vVt € [tj,t]+1) Z() e Q. ( ) If Z(tj+1) g Q. (d6/2) then
from (15) the next two modes af@ait and Align, ¢(¢ J+1) =
5) = Align. Combining (37)-(38) we get that
z(tj42) € Qz(d€/2+min{d€/2,AE/Z}—AG) C Q.(d/2), and
Yt € [tj,tj42), 2(t) € Q.(d°). Letting £; be the instant of the
first transition into the mode\lign after the j*" transition, we
have

q(t]) = Align, z(t;) € Q. (d°/2) =
35]‘ > tj, Vit € [tj,fj), Z(t) S Qz(de), and
q(fj) = Align, z(f;) € Q. (d/2).

Lemma 2:Under feedback laws (9) and (11) all solutions of

system (1)-(3), (12) starting from the set (21) satiBfy. |

By using induction claim (40) follows. |

Proof: We compute the minimal decrease of the Lyapunov Lemma 3:Under feedback laws (9), (11) all solutions of sys-

function V., during a visit to the mod&Vait. Let the]th transition
be in the modeWait, implying that z(t;) ¢ Q.(% ") due to
(15), andV. (t;) <
(36) we conclude existence of an instant= t;; at whlch we
either havez(t ]+1) € (L) or Valtjo1) > —s = —29"
If 2(tj41) € Qu(4) then Va(z(tj41)) — Valz(ty) < -4 If
Va(tjsr) =
of Lyapunov functionV, to reach this value is equal t&; =
i’ye <tjt1 —tj, since

17 S Valtyen) —

wherea4 is given in (25). Hence, we obtaii. (¢t;+1) —

Va(ty) = [0 Va()dt < (tar — ty)aa,
Va(t;) <

tem (1)-(3), (12) starting from the set (21) satigh. |
Proof: To prove R3 we construct functions:z and 7. for

—37° due to (36). Using the argument belowwhich [|&, ()| < ne([|€(0)[]), [[2()]] < n=([[E(0)], [|2(0)]|) and

compute the constant/e > 0 such that||©(t)|| < Me, where
© 2 [6...67"~Y]T. Then using (10) and boundedness of the
map yq and its partial derivatives, existence of the appropriate

—1~¢, the minimal time needed for the derivativefunctionsn, andn. in R3 follows.

The functionn; is obtained from (29) by taking.:(||z|) £
‘;M |lz||. The functionn. is obtained by substitutingl(t) =
¢5(t)+ya(0(1)) and (29) into (8), that is|z(1)|| < v(||=(0)]], 0)+
a* (2 |e0)]| + My) = n=(]|e(0)l, [12(0)]]). Boundedness of
the state® follows from feedback law (11), conditions (18), and

~<T.. Combining the two cases, the minimal decrease of tRoUNd (22). In mode8Vait andStart we have|[©(t)|| = 0. In the

Lyapunov functionV, during a visit to the modéVait is

Va(tj) = Va(t;) < —min{d"/4,5°T; /4} = —A°. (37)

Similarly, we compute the maximal increase of the Lyapuno

function V, during a visit to the mode\lign. Since duration of
the visit to Align is equal toT}, using (25) we have

Va(tjra) — Va(t5)
< 7 (aa(lz@)) + 7" (0 (ya() + &(1)) dt < Tia
<a1m1n{ 5 7 }<m1n{ A€, 1d5}

a1’ 4Mgazas

(38)
Finally, we show that the level séb.(d) of the Lyapunov

mode Align we use bound (22) and integrating backwards from
conditions (18), we get thalo(t)|| < Mg £ M& YT T (1)
Note that the norm of the staté€¥(t) can be bounded by a fixed
constant because their initial conditié@(0) in (21) is fixed. B
Remark 5:We compute an upper bound on the derivative of
the path parametet for small path-following accuracies Using
Remark 2, that isMS = M, (1/T§)T*, it follows that under
feedback law (11) we haveup,, [8(t)] < M;/Ts, where the
constantM, is independent ot. Thus, the smaller is the path-
following accuracy, the faster the motion along the path may

function V, is forward invariant and globally attractive for zero

dynamic (26) by proving the following two claims
357, Q(t;—*) = Align, Z(tj") € (d6/2) )

q(t]) = Align, 2(t;) € Q. (d°/2) =
Vvt > tj» 2(t) € Q5 (d°).

To prove claim (39), let thg" transition be into the modalign,
q(t;r) = Align, and z(¢t;) ¢ Q.(d°/2). From (13) and (30),
we have thatz(t;) € Q.(c*). If at the end of the current visit,
that is, att;+1 = t; + T, we have thatz(t;11) € Q. (d°/2),
using (15) claim (39) is satisfied for* = j + 1. If 2(¢;+1) ¢

(39)

(40)

Q. (d°/2) combining (15) and (37)-(38) we conclude that ther(z1,22) =

be required. |
V. EXAMPLE
We apply our design to the system
=272+ 21y1, U1 = ua,
2': _ 2 2 . (41)
2 = 2221 + 23Y2, Y2 = U2,

with output y [y1 2)", for which the corresponding zero
dynamicsz; = zizs, %2 = z125 are unstable. We consider a
circular path with radiusk, Y = {[Rsin@ Rcos6]" : § > 0}.
With the auxiliary outputj £ [§1 2]* = y — o (21, 22), where
—[z1 + 22 21 + 22]T, and error coordinateg, 2



éy1 6y2]T = [§1 — Rsin® g2 — Rcos0]T system (41) becomes
[Eur 8yl [ b2 I sy (“1) systems [16], [17]. For this subclass we provided a constructive

2= —28 + 23 (Rsinf 4 &,1), éyl =wu1 —u— Rwcosf,  solution to the practical path-following problem combining ISS

o= —2z5 + 23(Rcos O + &y2), €2 = uz — U+ Rwsind, and hybrid system methodologies.

0 =w.
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