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Abstract

Two frameworks are proposed for extremum seeking of general nonlinear plants based on a sampled-data control law, within
which a broad class of nonlinear programming methods is accommodated. It is established that under some generic assumptions,
semi-global practical convergence to a global extremum can be achieved. In the case where the extremum seeking algorithm
satisfies a stronger asymptotic stability property, the converging sequence is also shown to be stable using a trajectory-based
proof, as opposed to a Lyapunov-function-type approach. The former is more straightforward and insightful. This allows
for more general optimisation algorithms than considered in existing literature, such as those which do not admit a state-
update realisation and/or Lyapunov functions. Lying at the heart of the analysis throughout is robustness of the optimisation
algorithms to additive perturbations of the objective function. Multi-unit extremum seeking is also investigated with the

objective of accelerating the speed of convergence.
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1 Introduction

Modelling of complicated nonlinear dynamical systems
is often a challenging task. Many of such systems mani-
fest an extremal operating condition in its steady-state
input-output behaviour. In the absence of the knowl-
edge of a model of the plant and its steady-state input-
output map, extremum seeking is a real-time optimi-
sation method that drives the system into a vicinity
of this extremum (Ariyur and Krsti¢, 2003; Zhang and
Ordénez, 2011). Extremum seeking has found use in a
broad array of applications, ranging from biochemical
reactors (Wang et al., 1999a; Guay et al., 2003) and gas-
turbine combustors (Moase et al., 2010) to axial com-
pressors (Wang et al., 1999b) and optical fibre ampli-
fiers (Dower et al., 2007).

Teel and Popovi¢ made a significant contribution to the
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area of extremum seeking in Teel and Popovié (2001);
Popovié¢ (2004), where it is shown that under assump-
tions on the asymptotic stability of both the plant
and discrete-time nonlinear programming method, ex-
tremum seeking can be achieved within a periodic
sampled-data framework. This gives rise to powerful
capacity to utilise a wide class of optimisation algo-
rithms for the task of steady-state extremum seeking of
a dynamical system. In particular, complexity of imple-
mentation and convergence speed of the algorithms may
be taken into account in the control design stage. An
important feature of the framework of Teel and Popovié
(2001) is the online approximation of the derivative of
the objective function by applying constant probing
inputs to the plant successively. A Lyapunov stability
proof of the scheme based on interconnected systems’
theory is examined in Kvaternik and Pavel (2011) using
stronger conditions.

In contrast to Teel and Popovié (2001); Popovié (2004),
adaptive control methods have traditionally been the
core of many extremum seeking schemes (Krsti¢ and
Wang, 2000; Ariyur and Krsti¢, 2003, 2004; Tan et al.,
2006; Nesi¢, 2009; Ghaffari et al., 2012). In the absence
of a model for a dynamical plant, the gradient of its
steady-state map is adaptively estimated in real time
using appropriate dither signals (Tan et al., 2008). Cor-
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respondingly, local (Krsti¢ and Wang, 2000) and semi-
global (Tan et al., 2006) asymptotically stable conver-
gence to an extremum (characterised by a zero deriva-
tive) is demonstrated by exploiting the time-scale sepa-
ration between the dynamics of the plant and estimator
via the methods of averaging and singular perturbation.
Inspired by Teel and Popovié¢ (2001); Popovié (2004),
a systematic derivative-based framework for adaptive
extremum seeking control is prescribed in Nesi¢ et al.
(2010, 2012) using similar techniques, in which a large
class of continuous-time optimisation algorithms may
be applicable. Related work on plants with paramet-
ric uncertainties is considered in Nesié et al. (2013a).
These parallel the discrete-time counterpart of Teel and
Popovié¢ (2001), where Lyapunov-based analysis meth-
ods are employed to establish asymptotic convergence.
Note that Nesi¢ et al. (2010, 2012) deal only with non-
linear dynamical systems that are of a finite dimension
to which averaging and singular perturbation analy-
sis (Khalil, 2002; Tan et al., 2006) applies, whereas
infinite-dimensional systems can be accommodated
in Teel and Popovié (2001) and this paper.

Notice that in spite of the generality of the frameworks
proposed in Teel and Popovié (2001); Nesié et al. (2010),
they both rely upon gradient-based optimisation with a
state-update model. A well-known problem with opti-
misation methods of this sort is their inability to locate
a global extremum amongst local ones (Luenberger,
1969; Boyd and Vandenberghe, 2004), and hence the
convexity of the objective function plays a crucial role
in determining the success of global extremum seeking.
In contrast, many discrete-time sampling-based meth-
ods capable of non-convex optimisation are available
in the literature (Pintér, 1996; Strongin and Sergeyev,
2000). These algorithms commonly cannot be put into
the state-update form stipulated in Teel and Popovié
(2001); Nesi¢ et al. (2010), nor do they possess the sta-
bility properties required. Yet recently, a weaker type
of convergence to a global optimum is shown to be
accomplishable based on the sampled-data framework
of Teel and Popovi¢ (2001) for two algorithms of this
sort, namely the Piyavskii-Shubert (Nesié et al., 2013b)
and DIRECT (Khong et al., 2013). This motivates the
development of a more fundamental framework within
which to encompass these global nonconver and nons-
mooth optimisation algorithms.

This paper develops a unifying framework for a class
of sampled-data extremum seeking controllers based on
the notion of attractivity as opposed to asymptotic sta-
bility. It is shown that this covers an even larger class
of extremum seeking controllers than those considered
in Teel and Popovi¢ (2001), including sampling-type
global algorithms. Semi-global practical convergence
is established for the class of extremum seekers which
satisfy a robustness property applied to asymptoti-
cally stable, possibly distributed-parameter, nonlinear
dynamical plants. Examples of extremum seeking al-

gorithms satisfying the required robustness property
are given, which include the aforementioned Piyavskii-
Shubert and DIRECT. In particular, a third example,
the Global Search Algorithm (Strongin and Sergeyev,
2000), is examined in detail; this has not been done in
the literature.

When the extremum seeking controllers possess a
stronger asymptotically stable property, the converging
sequence is also shown to be asymptotically stable using
the notion of multi-step consistency/robustness. The
proof provided is trajectory-based. It serves as a straight-
forward alternative to the Lyapunov-based proof given
in Teel and Popovié (2001); Popovié¢ (2004), which ex-
ploits the closeness of solutions to a differential inclusion
form over a single time step. In particular, it is demon-
strated that by restricting the abstract trajectory-based
convergence result of this paper to one where the ex-
tremum seeking algorithms take a differential inclusion
form as in Teel and Popovié (2001); Popovié¢ (2004),
the underlying technical assumptions employed herein
are no stronger than those in Teel and Popovié¢ (2001);
Popovié¢ (2004). Not only are the trajectory-based as-
sumptions stated here generally easier to verify (or
speculated via simulations/experiments), the proof of
the main result, having no recourse to Lyapunov-type
arguments, is also simpler than that in Teel and Popovié¢
(2001); Popovié¢ (2004). It is more insightful in the
authors’ beliefs, giving rise to the ideas underpinning
the attractivity-based general framework described
above. To use the results in Teel and Popovié (2001);
Popovié¢ (2004), one would typically need to construct
a Lyapunov function or resort to converse Lyapunov
theorems (Khalil, 2002; Kellet and Teel, 2005), whereas
the results in this paper apply directly once asymptotic
stability of extremum seeking algorithms is established.

Efficiency of extremum seeking can be increased by
exploiting parallelism in computations (Strongin and
Sergeyev, 2000). This paper considers generalisations
of the two aforementioned frameworks to cases where
multiple plants of similar but non-identical dynamics
are available for probing as a means of accelerating the
speed of convergence. Methods which do not give rise
to redundancy in the sampling points are discussed for
both the attractivity and asymptotic stability extremum
seeking frameworks.

The paper is organised as follows. The type of dynamical
plants considered for extremum seeking is described in
the next section. A generic attractivity robustness prop-
erty of extremum seekers is stated in Section 3, which
is exploited to establish the main convergence proof for
a sampled-data extremum seeking control framework
in Section 4. In Section 5, a trajectory-based proof for
asymptotically stable convergence is given and related
with the more general framework in Section 4. A dis-
cussion about the relation with the work by Teel and
Popovié¢ (2001) is provided in Section 6. The develop-
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ments are furnished with several intertwining examples
which meet the assumptions used in this paper. Ex-
tremum seeking with multiple units/plants is considered
in Section 7 and some simulation examples in Section 8.

2 Dynamical systems

The class of nonlinear, possibly infinite-dimensional, sys-
tems considered in this paper is introduced in this sec-
tion. Specific examples of such systems are presented.
The following notational definitions are important.

A function 7y : R>g — R> is of class-KC (denoted v € K)
if it is continuous, strictly increasing, and v(0) = 0. If
is also unbounded, then v € K. A continuous function
B:R>p x R>g = Rxq is of class-KCL if for each fixed ¢,
B(-,t) € K and for each fixed s, 5(s,-) is decreasing to
zero (Khalil, 2002). The Euclidean norm is denoted ||-||2.

Let X be a Banach space whose norm is denoted || - ||
Given any subset ) of X and a point x € X, define the
distance of x from Y as ||z||y := infey ||z — a||. Also let

U(Y) = A{z € X | [|z]ly < e}

Definition 1 Let the state of a time-invariant dynami-
cal system be represented by x : R>o — X, where X is a
Banach space with norm || - ||. The input to and output of
the system are denoted, respectively, by u : R>g — 0 C
R™ andy : R>o — R. The set Q) denotes the input space
of interest, and is taken to be a compact?® subset of R™
in this paper. Given anyu € Q andxg € X, let x(-, xo, u)
be the state of the dynamical system starting at xo with
mput u.

The following assumption is based to a large extent
on (Teel and Popovié, 2001, Assumption 1).

Assumption 2 Given a system described in Defini-
tion 1, the following hold:

(i) There exists a function A mapping from Q) to subsets
of X such that for each constant w € Q, A(u) is a
nonempty closed set and a global attractor (Ruelle,
1989):

(a) Given any vo € X and € > 0, there exists a
sufficiently large t > 0 such that x(t,zo,u) €
Ue(A(u));

(b) If x(to, xz0,u) € A(u), then x(t,xo,u) € A(u)
forallt > ty;

(c) There exists no proper subset of A(u) having
the first two properties above.

2 This is not a stringent assumption given the ubiquity
of control input saturation constraints in physical sys-
tems (Khalil, 2002).

Furthermore,

sup sup |lz] < oc. (1)
u€Q zeA(u)

(ii) There exists a locally Lipschitz function h : X — R
such that the system output

y(t) = h(z(t,z0,u)) VE>0

for any constant inputu € Q andxy € X. Moreover,
h(zq) = h(xyp) for every x4,z € A(u). Since A(u)
s a global attractor and h is locally Lipschitz, for
anyu € Q andzy € X,

Qu) = tlgglo h(xz(t, zo,u))

=h (tll>rrolo z(t, o, u))
= h(z;), for somex; € A(u)

18 a well-defined steady-state input-output map that
is Lipschitz on €.

(iii) @ takes its global minimum value in a nonempty,
compact set C C Q.

(iv) Given any A > 0, there exists a class-KCL function
B such that

z(t, 2o, u) || aw) < BUlzoll aqw),t)

forallt >0, u € Q, and [|xo]| 4y < A.

Remark 3 The thesis by Popovié (2004) considers also
a closed subset of X on which the system is not allowed
to operate. Such a consideration can be straightforwardly
accommodated in this paper by strengthening Assump-
tion 2 according to (Popovié, 2004, Assumption 2.4(4)).

In the following, two common classes of systems which
satisfy Definition 1 and Assumption 2 are listed.

2.1 Systems with equilibria

Consider the following dynamical system (Ariyur and
Krsti¢, 2003; Tan et al., 2006):

&= f(xvu)
y = h(z),

where f : R” x R™ — R™ and h : R" — R are locally
Lipschitz functions in each argument.

z(0) = xo; (2)

Assumption 4 There exists a locally Lipschitz function
£:Q — R™ such that

fll(u),u) =0 Yue Q.
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Furthermore, © = £(u) is globally asymptotically stable
uniformly in uw € Q (Khalil, 2002), i.e. there exists a
B € KL such that for any u € Q and ¢ € R™,

(2, w0, ) |auy = ll2(t, 20, u) = £(u)]l2
< B(|lwo — L(w)]|2,t) VE >0,

where (-, xg,u) denotes the solution to (2) with respect
to the initial condition xo and input u.

Definition 5 Let
Q(G):=hot(:): Q=R
be the steady-state input-output map of system (2).

Suppose @ achieves its global minimum value on a
nonempty compact set C C €. It can be verified easily
that the system (2) satisfies Assumption 2.

2.2 Systems with periodic attractors

The following class of systems is adopted from Haring
et al. (2012). Stronger differentiability assumptions are
made in Haring et al. (2012), as required to apply the
proof technique to conclude stability of the continuous-
time extremum seeking scheme therein.

Consider a nonlinear plant model:

&= f(z,u,w) x(0) = xp; 3)
Yp = g(x, w),

where f : R" x R™ x Rl = R” and g : R® x R = R
are locally Lipschitz functions in each argument and w
is Ty,-periodic in time, i.e. w(t+Ty,) = w(t) forall t > 0.

Assumption 6 For each fixed u € , there exists a
unique, bounded, uniformly globally asymptotically stable
Ty -periodic solution &,, (Khalil, 2002) to (3) given by

Fu(t) = M(u,w(t)) t>0,

where M = Q x RY — R™ s locally Lipschitz in each
argument.

It follows from the assumption above that the steady-
state output of the plant (3) for a fixed u € Q, i.e. y, =
g(M(u,w),w), is a periodic, continuous function with
period T,. Define the performance measures:

s :
= | — p
[ wora) .

Lo = t 4
(Yp) x| Yy ()] (4)

p € [1,00);

and the cost function C;(y,) := ho L;(y,),i € [1, 0],
where h : R>¢g — R is a locally Lipschitz user-designed
function. The cascade connection of the plant (3) and
C; for i € [1,00] admits the following steady-state map
for u €

Qplu) == h (; / w|g<M<u,w<t>>,w<t>>|pdt> ;

Que(u) = ( max |g<M<u7w<t>>,w(t>>|) ,

t€[0,T2,)

where p € [1,00). Suppose @Q; takes its global minimum
value on a nonempty compact C C €. It can be seen that
the cascade of the plant and C; satisfies Assumption 2
for i € [1,00].

3 Extremum seeking controllers

In this section, a generic robustness property of ex-
tremum seeking algorithms to bounded additive per-
turbations of measurements of the objective function
is stated. This will later prove useful in establishing
the convergence of extremum seeking in the next sec-
tion. Three algorithms which are known to possess this
property are given at the end.

Consider the optimisation problem:

where @ : © C R™ — R is a Lipschitz continuous func-
tion which takes its global minimum value on C C €2,
ie. Q(u) = y* for all u € C. Let X be a discrete-time ex-
tremum seeking algorithm for (5). The output sequence
¥ generates to probe @ is denoted {uy}?°, and in the
case of precise (i.e. noiseless) sampling, the collected
measurements are yr = Q(ux—1), k = 1,2,.... Define
also the sequence

UN = i . 6
gy = min g (6)

.....

Let 6 be a non-negative real number. It follows from the
above definition that the sequence {g; }7° ; converges to
the closed 0-neighbourhood (d-ball) of y* if for all € > 0,
there exists infinitely many N € N such that

uy € {ue Q| |Qu) —y*| <é+ek.

By the Lipschitz continuity of @, corresponding to the B
above, there exists a § > 0 such that the aforementioned
condition holds if the sequence {uy, } 72, converges to the
d-neighbourhood of C. That is, for all € > 0, there exists
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an N € N such that
up, €C+ (0 +€)B Vk >N, (7)
where B denotes the closed unit ball in R™.

In the presence of bounded additive perturbations on
the measurements as illustrated in Figure 1, i.e. yp =
Q(ug—1) + wi with |wy| < v for some v > 0, the follow-
ing assumption is important to establish convergence of
the sampled-data extremum seeking scheme to be con-
sidered in Section 4.

\4
fa)
g

up—1 |Extremum Seeking| Yk
Algorithm ¥

Fig. 1. Extremum seeking algorithm with noisy output mea-
surement.

Assumption 7 Let 6 > 0 be a small number which
characterises the accuracy of convergence as in (7). The
discrete-time extremum seeking algorithm X satisfies the
following: Given any p > §, there exists a v > 0 such
that if |gr — Q(lUk—1)| < v fork =1,2,... and any se-
quence {U}72, C Q, then for every € > 0, there exists
an N € N for which uy, € C+ (u+ €)B for allk > N.
In other words, the output of ¥, {uy}32, converges to a
u-neighbourhood of the set C of global minimisers of Q.

In the following, three sampling-based algorithms that
satisfy the assumption above are given. They do not
require explicit estimation of derivatives of the steady-
state map and are capable of locating a global optimum
in the presence of local extrema.

3.1 The Piyavskii-Shubert method

The Piyavskii-Shubert method (Piyavskii, 1972; Shu-
bert, 1972) is a global optimisation method which is well-
suited for a compact one-dimensional input space, specif-
ically a closed interval  := [a, b]. Specifically, the algo-
rithm is described by ug := (b—a)/2 and for k = 0, 1,.. .,

Ups+1 = argmin max {y; — L|u — u,|}, (8)
w€la,b] 7j=1,....k

where L is the Lipschitz bound for the objective func-
tion @ : © — R. Robustness analysis of the Piyavskii-
Shubert method in Nesi¢ et al. (2013b) shows that with
0 = 0 and given any p > 0, it satisfies Assumption 7
with v = p/3.

3.2 The DIRECT method

The DIRECT algorithm (Jones et al., 1993) addresses
the curse-of-dimensionality drawback of Piyavskii-
Shubert. Operating on a compact bound-constrained
multi-dimensional domain of search

Q:={ueR™ |u; €a;,b)] CR,i=1,2,....,m},

it is intelligently balanced between local and global
search. The trial points DIRECT samples in the input
space always form a dense subset, whereby the output
sequence of DIRECT does not converge to a vicinity of
a global extremum but only a subsequence of it does.
This renders DIRECT unsuitable for the purpose of ex-
tremum seeking control. To circumvent this undesired
property, Khong et al. (2013) proposes a DIRECT algo-
rithm with a modified termination criterion where 6 > 0
in Assumption 7 is a design parameter. Given any u > 0,
choose a positive § < p, then the modified DIRECT is
shown in Khong et al. (2013) to satisfy Assumption 7
with v = (u — 8)/3. The resulting sampled-data control
scheme is of a type where the steady-state output of
the plant is driven to a neighbourhood of its global ex-
tremum within finite time and the corresponding input
is maintained from then onwards.

3.8 The Global Search Algorithm

The core Global Search Algorithm (GSA) from (Stron-
gin and Sergeyev, 2000, Section 3.1) is considered and
its robustness to additive perturbations on measure-
ments analysed; the main result in this subsection is
new. By contrast to the geometric procedures such as
Shubert and DIRECT, the GSA is an information ap-
proach which bases its ideas on approximate stochastic
estimators (Strongin and Sergeyev, 2000, Section 2.2).
(Strongin and Sergeyev, 2000, Section 4.5) shows that
the GSA possesses a geometric local tuning interpreta-
tion, i.e. adaptive estimation of local Lipschitz constants
of the objective function. It thus sits between Shubert
and DIRECT methods, the former of which assumes
knowledge of the global Lipschitz constant while the
latter examines all possible Lipschitz constants without
constructing a specific one. Although for the sake of
simplicity only the GSA for a 1-dimensional compact
interval is considered below, but it should be noted that
its multivariate extension based on the use of Peano-
type space-filling curves to reduce dimensionality can
be found in (Strongin and Sergeyev, 2000, Chapter 8).

Algorithm 1 The algorithm has an input r > 1. The
function to be minimised is Q : [a,b] — R with a Lipschitz
constant L > 0.

Initialisation: ug := a and uy := b
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The choice of ugy1 for k > 1 is determined by the fol-
lowing steps:

(i) Renumber the pointsuo, ..., ug of the previous trials
by superscripts in increasing order, i.e.

a=u’ <u' <...<ufF =0,

alongside the corresponding outputs y* := Q(u?).
(i) Set

i il
o y-y
M= 195k | wi — i1 | ©)
(iii) Let
1, M =0;
m = (10)
rM, M >0,

where v > 1 is the input to the algorithm.
(iv) For each interval [u*=1,u'], 1 <i < k, calculate the
characteristic value

(y' —y=1)?

N i i1
R(@) :=m((u’" —u'™") + o

(11)

(v) Let R(s) := max R(i). If there are more than one
717
solution, then the minimal integer is accepted as s.
(vi) Define

us +US_1 ys _ys—l

2 2m

Uk+1 =

as the next trial point.

(vii) Suppose at some iteration N the length d of the in-
terval on which there lies a trial point 4 satisfying
gn = Q(a) (cf. (6)) is such that Ld < §, then all
subsequent algorithm’s outputs are set to be 4, i.e.
Upyj =0 forj=1,2,....

All of the steps except the last in Algorithm 1 are
taken from (Strongin and Sergeyev, 2000, Section 3.1).
Step (vii) is included additionally as a termination cri-
terion. It is the same as that for the modified DIRECT
method in Khong et al. (2013), which serves the purpose
of asymptotically driving the steady-state behaviour of
the plant to a neighbourhood of an extremum, without
eventually leaving it; see Section 3.2.

The following result shows that given any p > 0, Al-
gorithm 1 satisfies Assumption 7 with v < min{(y —
9)/3,1}, where § < p is a design parameter.

Proposition 8 Let the point @ € [a,b] be a limit point
of the sequence {u}72, generated by Algorithm 1 for

minimising a Q : [a,b] — R with Lipschitz constant L
whose measurements are corrupted by v-bounded noise
with v < 1. Then if at some iteration, the value m from
(10) satisfies

m > 2L, (12)

Q(u) < y* + 3v, where y* denotes the global minimum
point of Q.

PROOF. Suppose (12) is met at some iteration g of
Algorithm 1, then note that from (9) and (10) it will
be met at any subsequent iteration k£ > ¢. Denote by
j = j(k) the number of the interval encompassing a
global minimising point v* (i.e. Q(u*) = y*) at the step
k. Suppose to the contrapositive that

Q) > Q(u*) + 3v. (13)
Then there exists a p > 0 such that for any £ > p

upg1 & (w7 . (14)

Let t = t(k) denote the number of the interval !

[u' =, u']
containing the point @ at the step k, then by (11)
R(t(k)) — R,

where R < —4Q(@) +4v+4v2. From (13), it follows that
for sufficiently large k,

R(t(k)) < —4Q(u*) — 8v + 402, (15)
By the hypothesis that @ is Lipschitz with constant L
and y* € Q(u") + [-v,v] fori =0,1,.. .,

Y- Q*) < Lu* —w/H4v and
: < L(w —u*) +v.

Summing both sides and multiplying by 2 yields
2(y7 + ) = 2L(u? — ) < 4Q(u*) + 4v.
By (11) and (12), it follows that
R(j(k)) > —4Q(u") — 4v for all k > max{p, q}.

This, together with (15) and the fact that v? < v for
positive v < 1, implies that

R(j(k)) > R(t(k))
for sufficiently large k, which in view of the update

rule (v) of Algorithm 1 contradicts (14). Hence, it must
be true that Q(a) < Q(u*) + 3v. O
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Remark 9 Condition (12) can be ensured by selecting a
sufficiently large input r > 1 to Algorithm 1; see (10).

4 Sampled-data extremum seeking control

The main sampled-data extremum seeking framework
based on Teel and Popovié¢ (2001) is detailed in this sec-
tion. A convergence proof using only the assumptions on
the dynamical plant and extremum seeker stated in the
previous sections is provided. The section is concluded
with a procedure for realising the proposed sampled-data
extremum seeking control on dynamical plants.

Let {uy}2, be a sequence of vectors in 2 and define the
zero-order hold (ZOH) operation

u(t) :=wuy forallt e [kT,(k+1)T) (16)

and kK = 0,1,2,..., where T" > 0 denotes the sampling
period or waiting time. Furthermore, let the state and
output of a dynamical system in Definition 1 with re-
spect to the input u be respectively x and y and define
the ideal periodic sampling operation zj := z(kT);

yp = y(kT) forallk=1,2,.... (17)

Figure 2 shows an extremum seeking scheme based on
a sampled-data control law with period T'. The follow-
ing lemma on dynamical systems is needed to establish
the main result of this section. The proof is based on
ideas from (Nesi¢ et al., 2013b, Prop. 1), where finite-
dimensional state-space systems with asymptotically
stable equilibrium points are considered. Note that
infinite-dimensional systems with general attractors are
accommodated here.

A
ZOH
Sampler
u(t) = u T
t e [kT, (k+1)T) yr = y(kT)
A
up—q |Extremum Seeking|  yk

Algorithm

Fig. 2. Sampled-data extremum seeking control.

Lemma 10 Given any dynamical system described in
Definition 1 that satisfies Assumption 2, A > 0, and
v > 0, there exists aT > 0 such that for any {uy}72, C Q2
and ||zol| aque) < A,

|yk7Q(uk71)|§V forallk:172,...7

whereyy, is asin (17) withy being the output of the system
for the input u given by (16).

Remark 11 The proof of Lemma 10 can be found
in Khong et al. (2013). It exploits the assumption that
the set of attractors is uniformly bounded with respect
to all constant inputs in Q; see (1). Alternatively, an
assumption as in (Teel and Popovié, 2001, Assumption
4(1)) can be made to ensure the conclusion of the lemma
holds.

The following is the main extremum seeking convergence
result of this section. The feedback configuration in Fig-
ure 2 of a dynamical plant satisfying Definition 1 and
Assumption 2 and an extremum seeking algorithm X
satisfying Assumption 7, interconnected through a T-
periodic sampler (17) and a synchronised zero-order hold
(16), has the following convergence property:

Theorem 12 Given any (A, p) such that Ajpu > 9,
where d > 0 is given in Assumption 7, there exists a sam-
pling/waiting period T > 0 such that for any || zo|| 4(ue) <
A, {ug}3e, converges to C + uBB, where C is the set of
global minimisers for @ : Q@ C R™ — R, the steady-state
input-output map of the plant, as in Assumption 2.

PROOF. By Assumption 7, there exists a v > 0 such
that if the input to X, g satisfies

19k — Q(ik—1)| < v (18)

for k=1,2,... and any {a;}32, C ©Q, then ¥ generates
an output sequence {uy }3°, which converges to C + uB3.
Furthermore, Lemma 10 ensures the existence of a sam-
pling period T > 0 such that the above-mentioned suf-
ficient condition (42) holds for any initial plant’s state
condition ||zl a(uy) < A. O

Remark 13 The above theorem holds for any dynamical
plants that satisfy Definition 1 and Assumption 2. These
include a broad class of general distributed-parameter
nonlinear systems, such as those with periodic attractors
as delineated in Section 2.2.

4.1  Extremum seeking implementation

The following procedure summarises the implementa-
tion of the proposed extremum seeking scheme in Fig-
ure 2 to achieve a semi-global practical convergence.

Procedure 14 Given a dynamical plant satisfying Def-
inition 1 and Assumption 2, select an extremum seeking
algorithm which has the robustness property stated in As-
sumption 7 with the parameter § > 0, for instance, the
aforementioned Piyavskii-Shubert algorithm, DIRECT
algorithm, or GSA.

(i) Let ug € Q be the initial trial point determined by
the extremum seeking algorithm.
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(ii) Select a sufficiently large region of convergence A >
d such that ||zo|| A(ug) < A, where 2(0) = o denotes
the initial condition for the dynamical plant, and a
sufficiently small desired accuracy of convergence to
an extremum p > 9.

(iii) Select a sufficiently large sampling period T > 0
corresponding to (A, u) such that the implications
of Theorem 12 hold.

(iv) Letk:=0.

(v) Fort = [k,(k+ 1)T), set the input to the plant to
be u(t) := uyg using the zero-order hold (ZOH); see
(16).

(vi) Increment k.

(vil) Sample the outputy of the plant at timet = kT, i.e.
yi = y(kT); see (17).

(viii) Determine the next output of the extremum seeking
controller uy based on past inputs and output mea-

surements u; and y;11, fori =0,1,....k —1; see
Section 3 for examples.
(ix) Loop from (v). O

Remark 15 Given the need to widely probe the input
domain, practical implementations of the Piyavskii-
Shubert, DIRECT and GSA extremum seekers to dy-
namic plants are likely to involve algorithm deployment
during a calibration phase, that may be periodically
repeated if the plant is known to be slowly time-varying.

5 Asymptotically stable convergence

It is shown here that when the extremum seeking algo-
rithms ¥ satisfy a stronger convergence and robustness
property than that given in Assumption 7, specifically,
asymptotic stability and multi-step consistency, it is pos-
sible to establish semi-global practical asymptotic stabil-
ity for the feedback system in Figure 2. This result is then
related with that for the unified framework developed in
the previous section. Some examples of asymptotically
stable optimisation algorithms are also provided.

The convergence proof in this section is established via
the use of trajectory-type properties, which is more
straightforward than the Lyapunov method employed
in Teel and Popovié¢ (2001); Popovié (2004). The merits
of doing so and the comparison between these results
are provided in the succeeding section.

5.1 Convergence proof

Consider the following optimisation problem:

y* := min Q(u). (19)

u€eN

Assumption 16 In reference to Figure 1, the extremum
seeking controller ¥ in Figure 2, when applied to (19),
satisfies the following conditions:

(i) X is time-invariant. Denote by {ur}5>, C § the
output sequence X genmerates based on input to X,
{06172, where gy = Q(Tk_1). ¥ is causal in the
sense that the output at any time N € N, i.e. Uy,
is determined based only on uy and Jr41 for k =
0,1,...,N — 1, that is the past probe values to @
and the corresponding measurements.

(ii) Denote by S(tg) the set of all admissible output se-
quences of ¥ with respect to the initial point g.
There exists a class-KCL function B such that for any
initial point Gy € Q, all outputs & € S(tg) satisfy
for some § >0

liw(ao)le < Blliollc k) +6 k=0, (20)

(iii) Let yx = Q(ug—1) + wy, where wy € R. Denote
by {ur}2, the output sequence ¥ generates based
on input {yr }72 ;. The pair (u,y) is multi-step con-
sistent/close (Nesic et al., 1999) with (u,), in the
sense that for any positive (A,n) and N € N, there
exists a v > 0 such that if ||ugllc < A and |wg| < v
fork=1,... N, then there exists a i € S(ug) sat-

1sfying
||uk *ﬁkHQ <n fOT’]{IZO,l,...,N.

Remark 17 The set of outputs S(ig) in Assump-
tion 16(ii) arises, for example, from modelling the opti-
misation algorithm with a difference inclusion involving
a set-value ‘state-update’ map F by 0t € F(a,G(4));
see Kellet and Teel (2005) and Section 6. In the sim-
plest case, S(tp) is a singleton, i.e. there is only one
possible output sequence given a fized initial condition.
For example, one modelled by a difference equation

at = F(a, G(4)).

Remark 18 The notion of stability has not been em-
ployed in Assumption 7 of Section 3. Unlike the gradi-
ent and Newton methods to be considered later in this
section, sampling algorithms like Piyavskii-Shubert, DI-
RECT, and GSA always initialise at a fixed starting
point given a domain of search. As such, the usual defi-
nition of stability or attractivity (Khalil, 2002) does not
apply to their outputs. Instead, what is contained in As-
sumption 7 is a robustness property to generate a con-
vergent sequence in the face of perturbed measurements.
In fact, it can be seen that the outputs produced by the
Piyavskii-Shubert (Shubert, 1972; Nesié et al., 2015b),
DIRECT (Jones et al., 1993; Khong et al., 2013), and
GSA (Strongin and Sergeyev, 2000) do not satisfy (20)
in general. In particular, suppose the initialisation point
of these algorithms fall within C, the set of global min-
imisers of a static objective function QQ with only a finite
number of local minima on its domain Q). Observe that
the updates (8) of the Piyavskii-Shubert method and GSA
dictate several samples outside C C €2 to be taken. The
same can be said for DIRECT, due to the fact that it is
set up to sample a dense subset of the whole input space
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Q. The termination criterion proposed in (Khong et al.,
2013) is dependent on the size of the hyper-rectangle, in
which the sample that gives rise to the lowest function’s
output 1s taken, lying below a certain threshold.

The following result shows asymptotic stability of the ex-
tremum seeking scheme satisfying Assumption 16. The
closed-loop system depicted in Figure 2, consisting of
a dynamical plant satisfying Definition 1 and Assump-
tion 2, T-periodic sampler (17), zero-order hold (16),
and an extremum seeking algorithm satisfying Assump-
tion 16, is asymptotically stable in the following sense:

Theorem 19 Given any (A, p) such that Ajpu > 9,
where § > 0 is described in Assumption 16(ii), there ex-
ist a sampling/waiting period T > 0 and a 8 € KL such
that for any ||zoll au,) < A and |luglle < A,

luklle < B(lluolle, k) + p (21)

forallk =0,1,..., whereC is the set of global minimisers
for @Q : Q2 C R™ — R, the steady-state map of the plant,
as in Assumption 2.

PROOF. The proof mimics aspects of (Nesié et al.,
1999, Thm. 1). Suppose § is the class-KCL function given
in Assumption 16(ii). Let n > 0 be such that

2n<A-9 (22)
and

B(2n+6,0) < (1 —6)/2. (23)

Note that 1 exists since 8(-,0) € K and ((s,0) > s — 4,
where the last inequality holds by setting k = 0 in (20).
By the same inequality, from (23) that 2n < (u —§)/2,
whereby

n<(u—29)/4. (24)
Now let N € N be such that
B(A,N) <n, (25)

which exists by virtue of the fact that S(A, -) is decreas-
ing to zero. With respect to the pair (A,7n), Assump-
tion 16(iii) guarantees the existence of a v > 0 and a
@ € S(up) such that if |Jugllc < A,

lug — Gglle <n for k=0,1,...,N, (26)

whenever |y, — Q(ux—1)| < v, k = 1,2,...,N. By
Lemma 10, the latter can be obtained by selecting a suf-
ficiently large waiting time or sampling period 7' > 0 for
the extremum seeking scheme in Figure 2. As such, for

k=0,1,...,N,

lurllc = [|tx + ur — e
< ltglle + |lux — Gxll2
< B(lltolle, k) + 3 +mn, (27)

where (20) and (26) have been exploited. Also, since
by (24) n < (p —0)/4 < p — 6, by letting 8 := § it
follows from (27) that (21) is satisfied for k = 0,1,..., N.
Therefore, it remains to show that the same is true for
k> N.

First note that by (27), (25), and (22),
lunlle < BIAK) +6+n <20+ <A,

Therefore, using time-invariance, (26), (23), and (24), it
follows that for all k = N,N +1,...,2N,

urlle = |luk(uo)lle
= [luk—n~(un)lle
< |lag-n(un)lle + [[ar—n(un) — up—n(un)ll2
< B(llunllc,k = N)+d+mn (28)
<B(2n+46,0)+d5+n
S(w=90)/2+5+(p—-0)/4<p

Moreover, note that (28) implies
luanlle < BA,N)+5+n<2n+d <A.

The claimed result then follows from an inductive argu-
ment. (N

Remark 20 Since @ is Lipschitz-continuous, Theo-
rem 19 implies that there exists a ji > 0 corresponding
to p such that Q(ug) — y* + B3 as k — oo, where B de-
notes the closed unit ball (interval) in R. In other words,
the output of the plant converges to a fi-neighbourhood
of the global minimum y*.

5.2 Comparison with the general framework

The proof of Theorem 19 effectively demonstrates that
any extremum seeking algorithm ¥ satisfying Assump-
tion 16 also satisfies Assumption 7. Note that Assump-
tion 16 is expressed in terms of a property of an ex-
tremum seeking algorithm in the absence of measure-
ment perturbation and a consistency condition. On the
other hand, Assumption 7 directly states a robustness
property of the algorithm in the face of bounded addi-
tive perturbation. The major difference between Theo-
rem 19, which exploits a stronger Assumption 16, and
Theorem 12, which is based on the more general As-
sumption 7, is that asymptotically stable convergence
can be shown for the former, whereas only attractivity
for the latter. It is known that asymptotic stability guar-
antees robustness to (other forms of) perturbations of
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the closed-loop system (Khalil, 2002). This is not true
in general for attractive but unstable systems.

5.3  Ezamples of extremum seeking algorithms

Two gradient-based examples of extremum seeking
controllers are shown to satisfy Assumption 16. It is
often the case that gradient-based extremum seeking
algorithms can be serially decomposed into a deriva-
tive® estimator and a nonlinear programming method
as shown in Figure 3. This paradigm is analogous to
its continuous-time counterpart in Nesi¢ et al. (2010,
2012), where the singular perturbation technique and
time-scale separation are used to establish convergence
of the extremum seeking scheme therein.

Suppose the map @ : Q@ C R"™ — R is N times continu-
ously differentiable, define

Q(2)

D1,0,...,0(Z)
Q
DY) =] 0

N,...,N
DQ (2)
_ ai1+-»-imQ(Z)

L Aim
Ozt ...0z"

., zm + denotes a set of basis vectors for R™.

where ’Dg“’”(z) : for some z € Q C R™

and {z1,..

Derivative
estimator

1
1
Uk O Optimisation
| algorithm le—

Extremum Seeking Algorithm

Fig. 3. A gradient-based extremum seeking controller
paradigm.

Procedure 21 Let the initial output of the extremum
seeking controller be ug. As determined by the derivative
estimator, the following length-p sequence of step com-
mands, spaced T seconds apart, can be used to probe the
dynamical plant along the directions given by the basis
Vectors 21, ..., 2m:

(uo + di(uo), - - -, uo + dp(uo)), (29)

where d; : Q — R™ denote the dither signals. The corre-
sponding outputs of the plant are then sampled and col-
lected by the derivative estimator to numerically approz-
imate the first N -order partial derivatives of the steady-
state map Q at ug, i.e. Dé(uo), . ,Dg(uo), as needed
by the optimisation algorithm. This can be achieved, for
example, by using the Euler methods, trapezoidal rule,

3 The first or higher derivatives of an objective function.

or the more sophisticated Runge-Kutta methods (Press
et al., 2007); see also Zong and Zhang (2009) for differ-
ential quadrature methods. FExploiting this information,
the optimisation algorithm can then update its control
command to uy, and the series of steps described above
repeats. In particular, ug + dp(ug) and uq + di(uq) are
spaced T seconds apart.

Two of the most well-known methods (Boyd and Van-
denberghe, 2004; Polak, 1997) in operations research are
(i) the gradient descent method:

uk+1 = U — )\kVQ(uk),

where \; denotes the step size which can be computed
by, say, the Armijo method (Polak, 1997, Alg. 1.3.3) and
(ii) the Newton’s method:

U1 = up — V2Q(ur) ' VQ(uy),

where VQ(-) and V2Q(-) denote, respectively, the Jaco-
bian and Hessian of Q). It can be readily seen that the gra-
dient and Newton methods satisfy the time-invariance
and causality Assumption 16(i). The following result
can be found in Polak (1997); Boyd and Vandenberghe
(2004).

Proposition 22 Suppose @ : Q — R is twice Lipschitz
continuously differentiable and strictly convexr on S C 2,
whereby there exist m, M € R such that

mil < VQQ(u) <MI foralluesS.

Furthermore, suppose there exists a minimiser u* € S
such that VQ(u*) = 0. Let {uy }32, be the sequence gen-
erated by the gradient or Newton method when applied to
minimising Q. Then there exists a class-KCL function (3
such that for anyug € S,

lur, — u*lla < B([luo — u”l2, k) ¥k = 0. (30)

Note that the rate of convergence for the gradient de-
scent method is linear while that for Newton is quadratic,
at least within a sufficiently small neighbourhood of the
minimiser.

By the converse Lyapunov theorem (Vidyasagar, 2002;
Kellet, 2002), there exists a continuously differentiable
positive definite Lyapunov function V : Z; x Q@ — R
such that

V(k+ 1, upg1) = VI(kue) < —a([uklle),

for some « € K, where C := {u*}.

Suppose the use of the derivative estimates (instead of
their precise values) in Figure 3 introduces a bounded
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additive error term in the update of the gradient and
Newton methods:

Uk41 = U, — )\kVQ(uk) + e1(/<;,uk) and

U1 = wr — V2Q(ur) T VQ(uy) + ea(k, ug), (8D

where

llex(k,ur)ll2 <l + qra([urllc)  and (32)

lle2(k, ur)ll2 < Iz + gza([[urllc),
for some ly,l3,q1,92 > 0. It follows from the non-
vanishing perturbation results for discrete-time systems
in Cruz-Herndndez et al. (1999) that the gradient /Newton-
based extremum seeking controller in Figure 3 satisfies
the ultimately bounded asymptotic stability Assump-
tion 16(ii) for some § > 0, which is a function of I; and
q1 in the case of the gradient method and Iy and g5 in
the case of Newton. The following is taken from (Teel
and Popovi¢, 2001, Assumption 4).

Assumption 23 There exists anag € K andc > 0 such
that the dither signals in (29) satisfy for eachi =1,...,p,

ldi(w)]]2 < aq(||ullc) + ¢

When Assumption 23 holds with ¢ = 0, it follows that
the step size used in estimating the derivatives converges
to zero as uy tends to the minimising set C. This implies
by the definition of differentiation that the magnitudes
of the error terms e; and ey in (32) tend to zero as k —
o0, i.e. Iy = Iy = 0. In other words, the perturbations
are vanishing and the extremum seeking controller is
asymptotically stable as in Assumption 16(ii) with 6 =
0 (Cruz-Herndndez et al., 1999).

Consider now the case of imprecise sampling:

Y = Quk—1) + Wi, (33)
where |wg| < vfor k =1,2,... as in Assumption 16(iii).
The reference Holoborodko (2008) proposes several high-
frequency-noise-robust differentiators.

The following result is in order.

Proposition 24 Suppose a gradient or Newton based
extremum seeking controller depicted in Figure 3 is inter-
connected in feedback with a dynamical plant satisfying
Assumption 2 through T-periodic sampler (17) and zero-
order hold (16) as in Figure 2. Then given any positive
pair (A, §), there exist ac > 0, a sampling/waiting period
T >0, and a B € KL such that if the dither signals sat-
isfy Assumption 23 with the given c, for any ||ugllc < A,

lurlle < B(luolle, k) +6  VEk >0,

where C := {u*} and u* is the global minimiser for Q :
Q C R™ — R, the steady-state input-output map of the
plant which satisfies the assumptions in the statement of
Proposition 22.

PROOF. Let A,é > 0 be given and [y, ¢1,l2,92 > 0 in
(32) be such that the equilibrium point v* of (31) is ulti-
mately d-bounded globally asymptotically stable (Cruz-
Herndndez et al., 1999). There exist sufficiently small
¢>0and v > 0 (a bound on the perturbations of sam-
pled output measurements of the plant (33)) such that
if the dithers satisfy Assumption 23 with this parameter
¢, the error terms arising from imprecise plant’s output
measurements satisfy inequalities (32) with the selected
l1, q1, l2, and g2. Such a bound v can be guaranteed by
invoking Lemma 10, which involves employing a suffi-
ciently long waiting/sampling period T > 0. O

The above proposition is purely one of a qualitative na-
ture because designing the dither signals to satisfy As-
sumption 23 would not always be possible unless the
minimising set C were known in advance, thereby elim-
inating the need of extremum seeking in the first place.
In general, however, the perturbations in (32) are per-
sistent and ultimately bounded asymptotic stability of
the extremum seeking algorithms can be concluded.

Finally, it is remarked that the extremum seeking al-
gorithm in Figure 3 based on the gradient or Newton
method satisfies the multi-step consistency in Assump-
tion 16(iii) follows from the fact that the right-hand sides
of (31) are Lipschitz continuous in the error terms and
Lemma 28 of the next section. Putting the results in this
subsection, it can be concluded that the gradient and
Newton methods satisfy Assumption 16.

6 Relation to the work by Teel and Popovié

This section discusses the link between this paper and
the predecessor work by Teel and Popovié (Teel and
Popovié, 2001; Popovié, 2004). The stability and consis-
tency assumptions used are clarified and the differences
and similarities/links identified.

6.1 Consistency

This subsection demonstrates that the assumptions
made in Teel and Popovié¢ (2001) automatically de-
liver the multi-step consistency condition of Assump-
tion 16(iii). The following difference inclusion form de-
scribing the extremum seeking/optimisation algorithm
¥ is assumed in Teel and Popovié¢ (2001):

ut € F(u,G(u)), (34)
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where F is an upper semi-continuous (cf. Definition 26)
set-valued map (the update u™ can be any element of
the set) and G is a function that carries information
regarding the estimate of the gradient of () around u. In
particular, F' maps from R” x RP to subsets of R™,

Q(uk + di(ur))
Glug) = )
Q(uk + dp(uy))
and d; : @ — R, i = 1,...,p are dither/perturbation

functions. For each u € €, the set F(u,G(u)) is
nonempty and compact. See Teel (2000) for a class of
Lyapunov-based nonsmooth optimisation algorithms of
the form described above which employ the notion of
Clarke generalised gradient. The algorithms iterate by
issuing commands in the same way delineated in Proce-
dure 21. Note that (34) is time-invariant and causal as
per Assumption 16(i).

Remark 25 FExtremum seeking algorithms modelled by
(34) are not a strict subset of those depicted in Figure 3.
In particular, some algorithms may not admit a form
explicitly separable into a derivative estimator and an
optimisation subblock.

Definition 26 F(u,G(u)) is said to be an upper semi-
continuous function of u € Q if for every u, € Q and
€ > 0, there exists 6 > 0 such that for all up € €,

|ua —uplle <6 = F(up, G(up)) C F(ua, G(ug)) + B,

where B denotes the open unit ball in R™.

The following one-step consistency (i.e. closeness of
solution over the next time step) assumption is taken
from (Teel and Popovié, 2001, Assumption 4(4))
or (Popovié¢, 2004, Assumption 2.12(5)).

Assumption 27 Given anyuy € F(u, H), let ug be its
closest point in the set F'(u, G(u)), i.e.

ug = argmin |ju—ug||s.
u€F (u,G(u))

Then for all A > 0, there exists Ly > 0 such that if
lulle < A and ||H||2 < A, then

lurr —ucllz = lubl|Pu.cw) < LrllH — G(u)ll2.

The next result demonstrates that given upper semi-
continuity of the set-valued function F, single-step con-
sistency in Teel and Popovié¢ (2001) implies multi-step
consistency used in this paper.

Lemma 28 Given a difference inclusiont™ € F(u,G(u))
and its perturbed formu™ € F(u, H(u)), where tig = ug,
H(uk) = G(’U,k)-i-W(’LL}C)

= G(uk)-‘r[wl(uk) e 'wp(uk)]T

with

|wi(u)] < v foralli=1,...,p,u €9, (35)
and F (-, G(+)) is upper semi-continuous, one-step consis-
tency in Assumption 27 implies multi-step consistency
in Assumption 16(iii).

PROOF. Let n > 0 be given and A > 0 be sufficiently
large so that for all &k = 0,1,..., N, |luglle < A and
|H (ug)||l2 < A. Exploiting upper semicontinuity of F’
and the compactness of €2, let § > 0 be such that for any
Ug, Up € €1,

g — upll2 < 6 = F(up, G(up)) C F(ua, Glua)) + =B,

Now select a sufficiently small perturbation bound 5u in
(35) such that Lp||H (uy) — G(ug)|2 < min {3k, 3%}
Consequently, by Assumption 27,

0
||uk?-‘r1||F(’u,k7 G(ur)) < mln{QN 2N} ) k= 0517'-- aN_ 1.
(37)
Let g := ug, observe that (37) implies
. fn 4
w1l P(ao,Gla0)) < min {QN’ QN} <d  (38)
and
. fn 9
el oy < min{ .5 |- 0
Let
Gy :=  argmin |lug —yl2,

yEF (1o,G(1o))

so that ||ug — t1]|2 < ¢ from (38). Using this 44, appli-
cation of (36) to (39) then yields

1)
lluzll F(ay,c(a,)) < 2min { SN 2N}

By applying the argument above inductively, it follows
that for k=0,1,...,N — 1,

0
s = il < (6 Duin {2 <
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where
gy i= argmin[lugr — Y2,
YyEF (iy,G(lr))

as required. O

6.2 Asymptotic stability

It is of importance to note that by the Lyapunov stability
result (Kellet and Teel, 2005, Thm. 2.7), the existence
of a continuous Lyapunov function V for (34) presumed
in (Teel and Popovié, 2001, Assumption 2) or (Popovié,
2004, Assumption 2.7) implies that Assumption 16(ii)
is true; see also Kellet (2002). In particular, V : Q C
R™ — R satisfies

1% —Vu) < — +6 Yue.
ot V(w) = V() < llulle +6

Albeit not explicitly stated in (Teel and Popovié¢, 2001,
Assumption 2) or (Popovié¢, 2004, Assumption 2.7), the
Lyapunov function therein should actually be bounded

below and above two o, functions o7 and a5 as in Kellet
and Teel (2005); Kellet (2002), i.e.,

ar([[ulle) < V(u) < as(fulle)-

This is necessary for the main extremum seeking results
of Teel and Popovié¢ (Teel and Popovié, 2001, Rem. 5)
and (Popovié, 2004, Cor. 2.15) to hold, by the stability
results in Kellet and Teel (2005); Kellet (2002). Indeed,
(Popovié, 2004, Rem. 2.9) notes that the existence of the
required Lyapunov function is ascertained by a converse
Lyapunov theorem in Kellet (2002).

6.3 Discussion

The work by Teel and Popovi¢ (Teel and Popovié, 2001;
Popovié¢, 2004) establishes semi-global practical asymp-
totic stability of the sampled-data extremum scheme
in Figure 2 via the Lyapunov’s second method (Khalil,
2002; Kellet and Teel, 2005; Kellet, 2002) for a particu-
lar class of algorithms modelled by the state-update dif-
ference inclusion of the form (34). The main regularity
condition* which ensures robustness to dynamical per-
turbation of the steady-state map is one-step consistency
of the algorithm’s state, as described in Assumption 27.
By contrast, a trajectory-based approach is adopted in
this paper to developing the same end result, but in con-
junction with consistency of output of the extremum
seeking algorithm over multiple time steps (cf. Assump-
tion 16(iii)), without stipulating a differential inclusion

4 There are other assumptions made in Teel and Popovié
(2001) to facilitate the Lyapunov-function-based stability
proof given the difference inclusion form (34).

model as in (34). Interestingly, Lemma 28 shows that
multi-step consistency follows from one-step consistency
provided the right-hand side of (34) satisfies the upper
semicontinuity property given in Definition 26. In view
of this result, it can be concluded that the asymptot-
ically stable convergence of extremum seeking in The-
orem 19 is developed using no more assumptions than
those made in Teel and Popovi¢ (2001); Popovié (2004).
To be specific, Assumption 16 is a consequence of real-
ising the extremum seeking algorithm with the differen-
tial inclusion (34) whose right-hand side is upper semi-
continuous, the Lyapunov stability results in Kellet and
Teel (2005); Kellet (2002), and the one-step consistency
Assumption 27.

It is the authors’ belief that the trajectory-based sta-
bility proofs presented in Section 5 are more direct and
straightforward than the Lyapunov methods in Teel and
Popovié¢ (2001); Popovié (2004). Take the well-known
descent methods of gradient and Newton for example,
their convergence proofs are readily established via a
KCL-type trajectory-based argument; see (Boyd and Van-
denberghe, 2004, Chapter 9) or (Polak, 1997, Chapter
1). As a second example, recall that taking the notion
of physical energy into account, there exist many sys-
tems for which Lyapunov functions whose derivative
are not strictly negative can be found. The principle of
Krasovskii-Lasalle (Khalil, 2002) is often exploited to
conclude asymptotic stability of such systems. To ap-
ply the extremum seeking convergence result in Teel and
Popovié (2001) to the above cases, one would need to ap-
peal to the converse Lyapunov theorems in Kellet (2002)
to arrive at the required Lyapunov functions for the ex-
tremum seeking algorithm. Furthermore, since the main
result in Teel and Popovié¢ (2001) is expressed in terms
of Lyapunov functions, the user would need to apply
the Lyapunov theorems in Kellet and Teel (2005); Kel-
let (2002) to conclude the asymptotic stability derived
in Theorem 19. The results in this paper eliminate the
need for such a detour, while accommodating situations
where the sought Lyapunov theorems are not readily
available. This may be the case when, for instance, the
extremum seeking algorithms are not realisable by a dif-
ference inclusion.

In fact, Section 3 demonstrates that pursuing conver-
gence of extremum seeking control in this direction lends
insights to a developing a more fundamental framework
through which to incorporate an even larger class of op-
timisation algorithms. For instance, those which cannot
be written down as a state-update difference inclusion
(34) or do not satisfy the asymptotic stability properties
specified in Assumption 16.

As a final note, it is mentioned that a recurring theme
of this paper is about making use of sufficiently long
waiting times to decouple the plant’s dynamics from
the extremum seeking algorithm. The merits of using a
shorter waiting time have been investigated in Popovié
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(2004) with the goal of accelerating the rate of conver-
gence to the extremum. This effectively leads to more
dynamic interaction between the plant and extremum
seeker, whereby the convergence speedup is obtained at
the expense of lowered accuracy.

7 Multi-unit paradigms

Prevalent in engineering is the problem of driving a
finite number of almost identical systems/units to an
optimal steady-state input-output behaviour, which
arises, for example, in micro-array reactors and fuel cell
arrays (Esmaeil-Zadeh-Azar, 2010; Woodward et al.,
2009). In the presence of more than a single unit, mea-
surement collection for the purpose of extremum seeking
can be made more efficient in an appropriate fashion via
parallel computation. Figure 4 shows a generalisation of
the sampled-data extremum seeking control scheme of
Figure 2 to multiple units. Within this context, each of
these units may be driven with a different input concur-
rently and the corresponding outputs collected /sampled
after a chosen waiting time. This results in several
function evaluations of the (perturbed) steady-state
behaviour within the same sampling/waiting period.

_Plant M_]

Plant M

Multi-unit

extremum

[uﬂ seeking algorithm [y]i‘]

Fig. 4. Extremum seeking with multiple units

As an extension of the multi-unit framework in Khong
et al. (2013), this paper considers systems or units that
may exhibit different dynamics and steady-state input-
output maps subject to a sufficiently small error bound.
The performance measure of extremum seeking is de-
pendent on an auxiliary system, which is taken to be the
‘average’ of all the available systems. Semi-global con-
vergence that is practical with respect to the infinity-
norm error bound on the discrepancy between units is
established within the unified frameworks of Sections 4
and 5, which in the case of the latter is also asymptoti-
cally stable.

Definition 29 Given M number of dynamical plants Py
to Pyy each satisfying Definition 2, let the average system

1 M
P, ::M;Pi.

Denote respectively the corresponding steady-state input-
output maps by Q1,...,Qn and Qu, all mapping from
Q C R™ intoR. LetC C Q) be the set of global minimisers

of Qa-

Throughout, superscripts are used to label the in-
puts/outputs corresponding to a particular system. For
instance, the input, state, and output of P; are u?, z?,
and y°, respectively, for ¢ = 1,..., M. The T-periodic
sampling and hold operations of Figure 4 are described
similarly to (17) and (16) as

u'(t) :=ui forallt € [kT, (k+ 1)T) (40)
and z, = 2% (kT),
yi =y (kT) forallk=1,2,.... (41)
Assumption 30 There exists a v > 0 such that
19 = Qalloo = sup [Qiu) = Qu(u)] < 7
foralli=1,..., M.

Remark 31 Note that by Definition 29 the plants do not
need to exhibit identical dynamics. However, it is required
in Assumption 30 that their steady-state behaviours differ
by no more than some bound y in the infinity-norm sense.
The average plant P, is taken to be the nominal system.
Py, ..., Py ocan be modelled by a stochastic variable with
its mean approximated by P,, for instance.

Based on the preceding developments, two convergence
results for the sampled-data extremum seeking frame-
works of Sections 4 and 5 are presented below.

7.1 The attractivity based unified framework

The following is a multi-unit expression of Assumption 7.

Assumption 32 The extremum seeking algorithm %
satisfies the following: There exists a & dependent on ~y
in Assumption 30 such that given any p > §, there exists
av > 0 such that if |§, — Qi(tg—1)| < v fork =1,2,...,
i =1,2,...,M, and any sequence {Ur}>, C Q, then
for every e > 0, there exists an N € N for which
ul € C+ (u+€)B for allk > N. In other words, all the
outputs of ¥, {ul}32, converges to a p-neighbourhood
of the set C of global minimisers of Q.

Remark 33 The difference between the multiple Q; acts
as additional perturbations on the steady-state input-
output map Q. In general, the larger the 7y is in Assump-
tion 30, the larger 6 in Assumption 32 will be. The latter
corresponds to a lesser accuracy of convergence.
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The following theorem contains the main convergence
result of this subsection. The feedback interconnection
in Figure 4 of M dynamical plants satisfying Defini-
tion 29 and Assumption 30 and an extremum seeking al-
gorithm ¥ satisfying Assumption 32, connected through
a T-periodic sampler (41) and a synchronised zero-order
hold (40), has the following convergence property:

Theorem 34 Given any (A,p) such that A,u > 0,
where § > 0 is given in Assumption 32, there exists
a sampling/waiting period T > 0 such that for any
||336||A(ug) < A, {u}32, converges to C + uBB, where C
is the set of global minimisers for QQ, : 0 C R™ — R for
i=1,...,M.

PROOF. By Assumption 32, there exists a v > 0 such
that if the input to X, §* satisfies

|9 — Qi(tug—1)| < v (42)

fork=1,2,...,1=1,2,...,M, and any {a;}3>, C Q,
then the output of ¥, i.e. {u} }$, converges to C + ubB.
Furthermore, application of Lemma 10 to the i*" plant
leads to a sampling period 7; > 0 such that the con-
dition (42) holds for any initial plant’s state condition
Izl i)y < A. The overall sampling period for the
whole feedback setup can then be taken to be T :=

maxM T;. O

i=1,...,

Remark 35 An inherent issue with parallelism is that
of redundancy of sample points (Strongin and Sergeyev,
2000, Chapter 5). Specifically, suppose an extremum
seeking algorithm catered for parallel computations out-
puts M > 1 trial points to M dynamical systems shown
in Figure 4. It is apparent that only one of these points
is decided on the basis of all the previous sample values,
while the rest M — 1 points are selected in the absence of
information concerning the results of the other trials, as
would otherwise be the case if a sequential or serial ex-
tremum seeking method had been employed. These points
may potentially be redundant or even slow down the pro-
cess of the search for an extremum. Nevertheless, this
problem is in general optimisation-algorithm-specific.
For example, the DIRECT method in Section 3.2 is
particularly suited for parallelism since within each it-
eration, it normally requires more than one trial point
to be collected independently of each other; see Jones
et al. (1993); Khong et al. (2013). In addition, the
Global Search Algorithm in Section 3.3 has also a non-
redundant parallel version in (Strongin and Sergeyev,
2000, Chapter 5). Its robustness analysis is left as a
future work. On the other hand, it is not clear how the
Piyavskii-Shubert method in Section 3.1 can be adopted
into a multi-unit framework non-redundantly.

7.2 The asymptotic stability based unified framework

Assumption 36 Suppose Assumption 16 is generalised
to a multi-unit setting appropriately as in Assumption 32.

Asymptotic stability of the extremum seeking scheme is
shown next. The closed-loop system depicted in Figure 4,
consisting of M dynamical plants satisfying Definition 29
and Assumption 30, T-periodic sampler (41), zero-order
hold (40), and an extremum seeking algorithm satisfying
Assumption 36, is asymptotically stable in the following
sense:

Theorem 37 Given any (A,pu) such that A,u > 9,
where 6 > 0 is as in Assumption 36, there exist a sam-
pling/waiting period T > 0 and a € KL such that for
any [|zg)l ague) < A and [luglle < A,

luille < B(lublle, k) + (43)

forallk=0,1,...andi=1,..., M.

PROOF. The theorem can be established using the
same arguments in Theorem 19 by appropriately replac-
ing references to the properties in Assumption 16 with
those in Assumption 36, along the same lines of the proof
for Theorem 34. O

Remark 38 As demonstrated by the theorem above, an-
other benefit of working with trajectories instead of Lya-
punov functions is that generalisation of convergence re-
sults to multi-unit systems is rather straightforward. It
does not involve constructing aggregate Lyapunov func-
tions.

For nonlinear systems whose steady-state input-output
maps are multivariate, the multi-unit framework pro-
posed above equipped with gradient-based extremum
seeking controllers (cf. Section 5.3) delivers great ben-
efits in terms of increasing the efficiency of asymptotic
convergence. To be specific, in view of Procedure 21, if
the number of available units M is no less than the num-
ber of dither signals p required to perform a good deriva-
tive estimate on a multidimensional space, the required
measurements that

(uk + dl(uk), U+ dp(uk)),

entail can be all collected within a sampling/waiting pe-
riod, instead of p-multiples of it in the case of sequen-
tial extremum seeking. This is carried out by feeding
ub == uy, + d;(uy,) to the i*® plant and sampling the cor-
responding output y* after T seconds, fori =1,...,p.
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8 Numerical examples

Consider the following nonlinear dynamical system with
periodic steady-state orbits:

Bo(t) = =201 (t) — 5as(t) 4+ 20u(t)? sin(20t);

with initial condition z(0) = [3, —1]T and u(t) € [-5, 10]
for allt > 0. Denote by @), the steady-state input-output
map of the plant. See Section 2.2 for a general description
of models of this type. The following cost function is
introduced as in (4):

yY(t) = Loo(yr(t)) := _max_ [yi(7)| > 0.

TE[tt—T5

The global minimum of the steady-state map with re-

spect to the cost function ) := Lo 0 @ is located at

u = 0, which leads to y = 0. To see this, note that

when u = 0, the steady state of the system is given by
1 = x9 = 0, whereby y; = 0. Thus, y = Loo(y1) = 0.

8.1 Single unit

The extremum seeking control scheme in Figure 2 is ap-
plied with the controller being the DIRECT optimisa-
tion method described in Section 3.2. Figure 5 shows the
output of the system over time. Using a waiting time or
sampling period of T'= 1s, L = 2 and § = 0.02, it takes
33s to locate u = 0.0031 as an estimate of the global
minimum.

3.5

y,0

Fig. 5. Extremum seeking based on modified DIRECT

Now the extremum seeking controller based on the gra-
dient descent method is employed with a fixed step size
of 1, as described in Section 5.3. The smooth low noise
differentiator with a filter length 5 from Holoborodko

(2008) is used as the derivative estimator:

~ 20Q1 —Q 1)+ Q2 — Qo

Q' 0

(44)

where Q; = Q(u +ih) for i = —2,—1,1,2 and h :=
0.5 denotes the estimation step size. The algorithm is
terminated when an input |u| < 0.05 is found. With a
sampling period T := 1s and an initial guess of —5, it
takes 412s to locate an input u = —0.049; see Figure 6 for
an output response of the dynamical system. The time
is mainly spent on taking output measurements of the
system to make good derivative estimates; (44) requires
4 points to be collected in order to produce one estimate.

¥,
&

i i i i i i i i
0 50 100 150 200 250 300 350 400 450
Time (s)

Fig. 6. Extremum seeking based on the gradient method

8.2 Double units

Suppose now there exists a second similar dynamical
system at disposal:

Ba(t) = =20z (t) — 53 (t) 4+ 20(1.01u(t))? sin(20t);

with initial condition z(0) = [3, —1]T and u(t) € [-5, 10]
for all t > 0. By implementing the multi-unit extremum
seeking scheme in Figure 4 with the modified DIRECT
method as delineated in Remark 35, one yields the sys-
tem output responses in Figure 7. In particular, it takes
13s to locate u = 0.083.

On the other hand, with a multi-unit extremum seeking
scheme based on the gradient method with a fixed step
size of 0.5, it takes 186s to find an estimate u = —0.029.
The output responses of the systems are shown in Fig-
ure 8.

Table 1 summarises the simulation results. Note that
the DIRECT method based extremum seeking controller
significantly outperforms the gradient method one in
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Fig. 7. Multi-unit extremum seeking based on the DIRECT
method
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Fig. 8. Multi-unit extremum seeking based on the gradient
method

terms of speed of convergence for this particular exam-
ple and the parameters and derivative estimation scheme
chosen. Convergence can be accelerated at the expense
of accuracy by decreasing the sampling period.

Alg. ‘ Unit H Duration ‘ Estimate ‘
ingl 2 .031
DIRECT Single 3s 0.03
Multiple 13s 0.083
Singl 412 —0.049
Gradient e i
Multiple 186s —0.029

Table 1
Extremum seeking with the DIRECT and gradient methods.

9 Conclusions

Two unified periodic sampled-data frameworks for ex-
tremum seeking have been proposed for nonlinear sys-
tems with possibly infinite dimension and compact at-
tractors. The first is based on the notion of attractivity

towards an extremum of the steady-state input-output
mapping of a system. This accommodates a whole range
of sampling type optimisation algorithms, which are typ-
ically efficient for global, nonconvex, and nonsmooth op-
timisation. The second is based on asymptotic stability,
for which the proof provided is simpler and uses easier-
to-verify trajectory-based assumptions than those in the
literature (Teel and Popovié, 2001; Popovié, 2004). Sev-
eral gradient based methods are known to belong to the
class of extremum seeking algorithms considered within
this framework. Multi-unit extremum seeking is also in-
vestigated as a means to expedite the speed of conver-
gence.
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