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Abstract— Most extremum-seeking control approaches focus
solely on the problem of finding the extremum of some
unknown, steady-state performance map. However, many indus-
trial applications also have to deal with constraints on operating
conditions due to, e.g., actuator limitations, limitations on design
or tunable system parameters, or constraints on measurable
signals. These constraints, which can be unknown a-priori,may
conflict with the otherwise optimal operational condition, and
should be taken into account in performance optimization. In
this work, we propose a sampled-data extremum-seeking ap-
proach for optimization of constrained dynamical systems using
barrier function methods, where both the objective function and
the constraint function are available through measurementonly.
We show that, under the assumption that initialization doesnot
violate constraints, the interconnection between a constrained
dynamical system and optimization algorithms that employ
barrier function methods is stable, the constraints are satisfied,
and optimization is achieved. We illustrate the results by means
of a numerical example.

I. INTRODUCTION

Optimization of complex nonlinear systems is often a chal-
lenging task. Namely, most (numerical) optimization tech-
niques usually rely on an accurate model of the process to
be optimized, while such a model can be hard or impossible
to obtain for complex nonlinear systems. Nevertheless, the
steady-state input-output behavior of many of such systems
possesses optimal performance under particular operating
conditions and we often desire to find such optimal operating
conditions. Based solely on output measurements,extremum-
seeking controlis able to optimize such systems in real-
time by adjusting these operating conditions and drive the
system into a vicinity of the optimal steady-state input-output
behavior [1], [2].

Along with the pioneering work done in [1] on conver-
gence proofs for continuous-time extremum-seeking schemes
based on sinusoidal perturbations, a notable contributionto
the field of extremum-seeking control was made in [2]. In
[2], it was shown that under assumptions on the asymptotic
stability of both the system and a discrete-time nonlinear
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programming method, extremum seeking can be achieved
within a periodic sampled-data framework. This framework
allows the use of a wide class of smooth and nonsmooth
optimization algorithms for achieving optimization of gen-
eral nonlinear systems. In [15], closed-loop stability of
the sampled-data scheme is studied from an interconnected
systems’ theory point-of-view, in which stability resultsare
obtained by imposing stronger conditions on the nonlinear
programming methods than done in [2].

Notable extensions of the framework in [2] are provided
in [6] and [4]. The work in [6] utilizes a trajectory-based
approach to prove semi-global practical asymptotical stability
of the proposed sampled-data extremum-seeking schemes as
opposed to the Lyapunov-type arguments used in [2]. The
former exploits the notion of multi-step consistency (see,
e.g., [7]) while the latter exploits closeness of solutionsof a
differential inclusion over a single time step. The framework
in [6] allows to use a broader class of optimization algo-
rithms, such as those which do not admit a state-update re-
alization and/or Lyapunov function. Subsequently in [4], the
framework in [6] was extended to a more generic framework,
which in addition to gradient-based optimization algorithms,
also encompasses sampling-based methods capable of non-
convex optimization, enabling extremum seeking for an even
wider class of problems. For example, in [5] and [8], two
sampling-based algorithms are presented that are able to
achieve (a weaker type of) convergence to a global optimum.

Most extremum-seeking approaches, whether it is of the
continuous-time type as in [1] or the sampled-data type
as in [2], [6], focus solely on the problem of finding the
extremum of some unknown steady-state input-output map.
However, many industrial applications also have to deal with
constraints on operating conditions due to, e.g., actuatorlim-
itations, limitations on design or tunable system parameters,
or constraints on measurable signals. These constraints may
conflict with the otherwise optimal operational condition,and
should be taken into account in the optimization procedure.

In terms of dealing with constraints in extremum-seeking
schemes, existing approaches can be divided into two main
categories: i) approaches that assume a-priori knowledge
on constrained operating conditions in the form of ex-
plicit constraint functions, and ii) approaches that deal with
unknownbut measurable constraint functions. Extremum-
seeking approaches that explicitly deal with known constraint
functions are considered in, e.g., [10], [11], [17]. In [10]
and [11], penalty/barrier functions are employed to adapt
the search space so as not to violate the constraints. An-
other approach proposed in [10] employs an anti-windup
scheme to prevent the optimizer from leaving the admissible



search space. In [17], constraint satisfaction is achievedby
employing a projection operator in the extremum-seeking
scheme. Although not aimed at constrained optimization, the
sampling-based algorithms in [5] and [8] operate in an a-
priori defined compact set, i.e., these allow incorporationof
known (input) constraints to adjust the search space.

In [12] and [13], extremum-seeking approaches for
(strictly) convex optimization problems with unknown but
measurable constraint functions are considered, albeit in
the continuous-time extremum-seeking setting. In [12], a
combined barrier/penalty function approach is employed to
transform the constrained optimization problem into an un-
constrained problem using an augmented cost. This method
does not enforce strict satisfaction of the constraints to avoid
difficulties associated with small violations of constraints and
to relax the choice of initial, possibly inadmissible inputs.
In [13], a combination of the classical extremum-seeking
approach as in [1] and so-called saddle point algorithms as
in [9] are used to find the constrained global minimizer.

In this work, we focus on sampled-data extremum-seeking
schemes as studied in [2] and [15], as opposed to the
continuous-time extremum-seeking schemes employed in,
e.g., [12] and [13]. Sampled-data schemes are compelling
given the potential of including diverse types of optimization
algorithms [2], [4]. We adopt the class of optimizers from
[15], where the search vector is more explicit. As argued in
[15], it allows Lyapunov-type arguments to be imposed on
the search vector to study closed-loop stability, which turns
out to be especially suitable for optimization problems that
employ barrier functions.

The main contribution of this work can be summarized
as follows. First, we propose a sampled-data extremum-
seeking approach for optimization of constrained dynamical
systems using barrier function methods, where both the
objective function and the constraint function are available
through measurement only. Second, under the assumption
that initialization does not violate constraints, we prove
closed-loop stability of the interconnection between con-
strained dynamical systems and optimization algorithms that
employ barrier function methods, and show strict constraint
satisfaction. Third, we illustrate the working principle by
means of a numerical example.

The paper is organized as follows. Section II presents the
problem formulation. Section III presents a barrier function
method for static, constrained optimization problems. The
sampled-data extremum-seeking framework and class of al-
gorithms are stated in Section IV. In Section V, a closed-loop
stability analysis is provided. Section VI presents a numerical
example. Section VII closes with conclusions.

II. PROBLEM FORMULATION FOR
CONSTRAINED DYNAMICAL SYSTEMS

We consider multi-input multi-output dynamical systems
of the following form:

Σp :











ẋ(t) = f(x(t),u(t))

y(t) = h(x(t))

z(t) = g(x(t)),

(1)

wherex ∈ R
nx denotes the state of system,u ∈ Ω ⊆ R

nu

denotes the input of the system,y ∈ R and z ∈ R
nz are

outputs of the system, andt ∈ R is time. In the context
of extremum-seeking control,Σp represents the system to
be optimized, where the inputu can be regarded as a
vector of tunable system parameters. We consider multiple
outputs, separated into two output channels. In the context
of optimization of constrained dynamical systems, we relate
the outputy to an unknown, but measurable, cost to be
minimized, and the outputz to unknown, but measurable,
constraint functions. We adopt the following assumption on
the system in (1).

Assumption 1. There exists a continuous map denoted by
x̄ : Ω → R

nx such thatf(x̄(u),u) = 0 for all constant
u ∈ Ω. Moreover, there existsLx̄ ∈ R>0 such that‖x̄(u1)−
x̄(u2)‖ ≤ Lx̄‖u1 − u2‖ for any u1,u2 ∈ Ω. Let us define
x̃ = x − x̄(u). There exists a continuously differentiable
function VΣp

: Rnx → R≥0 which is radially unbounded,
such that:

i) VΣp
(x̃) > 0 ∀x̃ ∈ R

nx\{0}, VΣp
(0) = 0.

ii) ∃ γ > 0 such thatV̇Σp
(x̃) = ∇VΣp

(x̃)f(x̃+x̄(u),u) ≤
−γVΣp

(x̃) for all constantu ∈ Ω and x̃ ∈ R
nx .

Remark 2. Assumption 1 is a common assumption in the
ESC literature on the system exhibiting globally exponen-
tially stable equilibria for constant inputs, see, e.g., [1], [18].

From Assumption 1, it follows that for any constantu ∈ Ω
we have the following steady-state input-output mapsQ :
Ω → R andG : Ω → R

nz :

Q(u) := h(x̄(u)) = lim
t→∞

h(x(t)), (2)

and
G(u) := g(x̄(u)) = lim

t→∞
g(x(t)). (3)

Q(u) andG(u) are referred to as the objective function and
the constraint function, respectively. The goal is to find the
inputsu that minimize the objective functionQ(u), while
satisfying the constraintG(u) ≤ 0. In the extremum-seeking
control context, we assume thatboth the information of
the objective functionand the constraint function are only
accessible through measurement of the system outputs. We
adopt the following assumption on these functions.

Assumption 3. There exists a nonempty, compact, possibly
disconnected,unknownset T ⊆ Ω defined asT := {u ∈
Ω | G(u) ≤ 0}. We call this set the admissible set. If the
admissible setT is a disconnected set, it can be decomposed
into p nonempty, compact, and connected setsTi such
that

⋃p
i=1 Ti = T . On each setTi, Q takes its (global)

constrained minimum value in a nonempty, compact set
CTi

⊂ Ti, i.e., for eachi = 1, . . . , p, there exists au∗,i ∈ Ti
such that for allu ∈ Ti, Q(u) ≥ Q(u∗,i). Moreover, there
exists an admissible initialization setV which is a nonempty,
known compact (and possibly disconnected) subsetV ⊂ T .

Remark 4. Assumption 3 states that we have some limited
knowledge about the admissible setT , such that we can
initialize within V ⊂ T . This is a reasonable assumption



since we usually know where we can initialize our system
without violating the constraints immediately.

In the next section, we present a barrier function method
to solve static constrained optimization problems. Section IV
presents a sampled-data extremum-seeking approach that
employs the barrier function method to minimizeQ(u) while
satisfyingG(u) ≤ 0, solely based on output measurements.

III. BARRIER FUNCTION METHODS FOR
CONSTRAINED OPTIMIZATION PROBLEMS

In this section, we will present the classical barrier
function method to solvestatic constrained optimization
problems, see, e.g., [14] and [16]. Consider the following
constrained optimization problem:

min
u∈Ω

Q(u) subject toG(u) ≤ 0, (4)

whereG(u) = [G1(u), . . . , Gnz
(u)]⊤. The admissible set

is defined asT := {u ∈ Ω ⊆ R
nu | Gi(u) ≤ 0, i =

1, 2, . . . , nz}, and is a nonempty, compact (and possibly
disconnected) set, see Assumption 3. The barrier function
method is a well-known approach to solve (4); it approx-
imates the constrained optimization problem by an uncon-
strained problem. It works by establishing a barrier on the
boundary of the admissible set that prevents a properly tuned
optimization algorithm from leaving that region, as long asit
starts well inside the admissible set. We employ the following
definition.

Definition 5. We define the strict admissible set asT o :=
{u ∈ T | Gi(u) < 0, i = 1, 2, . . . , nz}, which is the inte-
rior of the admissible setT . The boundary of the admissible
set T , denoted by∂T , is defined as∂T = T \ T o. For
each (sufficiently small) barrier parameterµ > 0, a barrier
functionB(u, µ) : T o ×R>0 → R is defined on the interior
of T such that

(i) B(u, µ) is continuous,
(ii) B(u, µ) ≈ 0 for all u ∈ T o,
(iii) B(u, µ) → ∞ asu approaches∂T .

By exploiting barrier functions as defined in Definition 5,
we can approximate the constrained optimization problem in
(4) by the following unconstrained problem:

min
u∈T o

Q̃(u, µ), (5)

with the modified objective functionQ̃(u, µ) := Q(u) +
B(u, µ). In case the admissible setT is disconnected,
the strict admissible setT o is disconnected as well, and
we can decompose it intop nonempty, connected setsT o

i

for which hold that
⋃p

i=i T
o
i = T o, see Assumption 3.

Minimizers of the unconstrained problem in (5), denoted
by u∗,i(µ), are calledapproximate constrained minimizers
of the constrained problem in (4). Dependent on where the
optimization procedure starts, i.e., in which connected set
T o
i the initial point is chosen, the optimization algorithm

should find an approximate constrained minimizer belonging
to the set of approximate minimizers denoted byC̃Ti

, where
i = 1, . . . , p.

sampler
yk = y(kT )
zk = z(kT )

ZOH
u(t) = uk

t 2 [kT; (k + 1)T )

dynamical
plant Σp

extremum-seeking
algorithm Σ

u
y

z

zk

yk
uk

Fig. 1. Sampled-data extremum-seeking control with multiple output
channels.

IV. CONSTRAINED SAMPLED-DATA
EXTREMUM-SEEKING

In this work, we focus on finding the optimal inputsu∗ for
the problem described in Section II by means of a sampled-
data extremum-seeking control approach, based on the work
on unconstrainedsampled-data extremum seeking in [2],
[4], and [15]. In Section IV-A, we discuss the sampled-data
extremum-seeking framework. In Section IV-B, we elaborate
on a class of optimization algorithms employed within the
sampled-data extremum-seeking framework. In Section V, a
stability analysis of the resulting constrained sampled-data
extremum-seeking scheme is provided.

A. Extremum-seeking framework

Figure 1 depicts the sampled-data extremum-seeking con-
trol framework, i.e., the interconnection of a dynamical
systemΣp, aT -periodic sampler, a discrete-time extremum-
seeking algorithmΣ, and a zero-order-hold (ZOH) element.
Let {uk}

∞
k=0 be a sequence of vectors inΩ, generated

by the extremum-seeking algorithmΣ based on collected
measurements, and define the ZOH operation as follows:

u(t) := uk for all t ∈ [kT, (k + 1)T ), (6)

with k = 0, 1, 2, . . . , and sampling periodT > 0. Let us
define the ideal periodic sampling operations:xk := x(kT ):

yk := y(kT ) ∀k = 1, 2, . . . , (7)

and
zk := z(kT ) ∀k = 1, 2, . . . ., (8)

whereyk andzk are the collected measurements as used by
the extremum-seeking algorithmΣ.

B. Class of algorithms

We consider algorithms for finding a minimizeru∗,i(µ) ∈
C̃Ti

of Q̃(u, µ) for some i = 1, . . . , p and µ > 0. In the
remainder of this work, we omit the superscripti for nota-
tional clarity. In particular, we consider a class of algorithms
that can be described as follows:

Σ : uk+1 = uk + s(uk), ∀ k ∈ N, (9)

wheres(uk) denotes the search vector. The structure in (9)
is adopted from [15], and is common to many numerical
optimization methods, such as, e.g., gradient-descent, New-
ton’s method, etc., see, e.g., [16]. We adopt the following
assumption on the algorithms in (9).



Assumption 6. For the class of algorithms in(9), there exist
a twice continuously differentiable functionVΣ : T o → R≥0

such that for anyµ > 0 we have the following:

i) VΣ(u) > 0 ∀u ∈ T o\{u∗(µ)}, VΣ(u
∗(µ)) = 0, and

VΣ(u) is radially unbounded on a compact set, i.e.,
VΣ → ∞ if ‖u‖∂T := inft∈∂T ‖u− t‖ → 0.

ii) there existsLΣ ∈ R>0 such that‖∇2VΣ(u)‖ ≤ LΣ for
all u ∈ T o.

iii) there existsκVΣ
> 0 such that ∇VΣ(u)

⊤s(u) ≤
−κVΣ

‖∇VΣ(u)‖
2 ∀u ∈ T o\{u∗(µ)}, and

∇VΣ(u
∗(µ))⊤s(u∗(µ)) = 0.

iv) there exist a functionγ(·) ∈ K∞
1 such that

‖∇VΣ(u)‖
2 ≥ γ(VΣ(u)) ∀u ∈ T o.

v) there exists κs > 0 such that ‖s(u)‖2 ≤
−κs∇VΣ(u)

⊤s(u), ∀u ∈ T o.

Remark 7. Similar to the work in [15], the assumption on
the algorithms of the type in(9) is motivated by Lyapunov-
type arguments used to prove convergence of optimization
schemes in the literature. In particular, shared conditions
(iii) and (v) on the functionVΣ and the search vectors(·)
of the sort in Assumption 6 naturally arise in the scope of
optimization (see, e.g., [16, Chapter 9], in which similar
conditions are used to show convergence for decent methods
in combination with (strongly) convex functions). Similar
conditions as in Assumption 6 can be exploited in the case of
modified cost functions with a barrier function approach in
combination with descent methods. For example, the condi-
tions onVΣ(u), in particular VΣ(u

∗(µ)) = 0 andVΣ(u) →
∞ if ‖u‖∂T → 0, are such thatQ̃(u, µ) ≥ Q̃(u∗(µ), µ) for
all u ∈ T o and Q̃(u, µ) → ∞ if ‖u‖∂T → 0.

V. STABILITY ANALYSIS

The class of algorithms in (9) and its properties as assumed
in Assumption 6 are geared towards the minimization of
the modified objective functioñQ(u, µ). However, in the
extremum-seeking context, we do not have direct access to
the modified objective functioñQ(u, µ), and we can only
approximate the search vector in (9) based on the measurable
outputsy andz. Note that, due to the dynamics in (1), the
measured costy and measured constraint functionsz differ
from the (steady-state) objective functionQ and the (steady-
state) constraint functionG, respectively.

To study the closed-loop behavior of the interconnection of
the system in (1) and a discrete-time algorithm of the form
in (9) via a ZOH element and aT -periodic sampler, see
Figure 1, we consider a perturbed version of the algorithm
in (9) as follows:

Σ̂ : uk+1 = uk + ŝ(uk), ∀k ∈ N (10)

where ŝ(uk) := s(uk) + δ(x̃k) + δ0, and with x̃k = xk −
x̄(uk), δ(·) : R

nx → R
nu a state dependent perturbation

term, andδ0 ∈ R≥0 a non-vanishing perturbation term. We
adopt the following assumption on the perturbationδ(x̃).

1A function γ : R≥0 → R≥0 is of classK if it is continuous, strictly
increasing, andγ(0) = 0. If γ is also unbounded, thenγ ∈ K∞

Assumption 8. There exists aκΣp
> 0 such that‖δ(x̃)‖2 ≤

κΣp
VΣp

(x̃) for all x̃ ∈ R
nx , with VΣp

satisfying Assump-
tion 1.

Remark 9. s(uk) is the ideal search vector (available when
the steady-state cost and its gradient would be available) and
ŝ(uk) is a perturbed version of that search vector. We can
view the perturbationδ(x̃) as a perturbation caused by the
system dynamics in(1), i.e., the measurement (y(t) andz(t)
which involve transients) only provide perturbed measure-
ments of the steady-state mapsQ(u) andG(u), respectively.
This perturbation and its effect on the extremum-seeking
controlled system can be made small by taking the sampling
time T long enough such that transients are sufficiently
decayed. Considering, e.g., gradient-based algorithms, the
perturbation δ0 can be viewed as a mismatch between
the approximation of the gradient, based on, e.g., finite
differences, and the actual gradient, which is typically non-
zero even wheñx = 0. The perturbationδ0 can be made
small by taking a small step size for the gradient estimation.

For the purpose of stability analysis let us now define the
following functionV (x̃k,uk) := VΣp

(x̃k) + VΣ(uk), which
will be used as a Lyapunov-like function in Theorem 10
below. Moreover, we define∆VΣp

(x̃k) := VΣp
(x̃k+1) −

VΣp
(x̃k), and∆VΣ(uk) := VΣ(uk+1) − VΣ(uk). The next

result states conditions on initial conditions and parameters
such that the trajectories(x̃k,uk) converge to a neighbor-
hood of (0,u∗), while steady-state constraint satisfaction is
guaranteed.

Theorem 10. Let the admissible initialization set be
V = {u ∈ R

nu | ‖VΣ(u)‖ ≤ βΣ} ⊂ T o, for some
βΣ ∈ R>0. Under Assumptions 1, 6, and 8, there exist
κ∗
s, κ

∗
Σp

, T ∗, βΣp
∈ R>0, and sufficiently smallδ0 ∈ R≥0,

such that for anyκs < κ∗
s, κΣp

< κ∗
Σp

, waiting time
T > T ∗, and initial inputu0 ∈ V , there exist a set of initial
conditionsX0 = {x ∈ R

nx |VΣp
(x̃) ≤ βΣp

}, such that for
anyx0 ∈ X0 we have thatuk ∈ T o for all k ∈ N, implying
constraint satisfaction. In addition, there existβ ∈ R>0,
α3(‖δ0‖) : R≥0 → R>0, and a functionγ̃(·) ∈ K∞,
such that the solutionsuk and x̃k of the closed-loop system
consisting of the plant in(1), a T -periodic sampler in(7),
(8), the discrete-time extremum-seeking algorithm in(10),
and the ZOH operator in(6) converge to a neighborhood
of the optimum characterized by the setYu = {u ∈

T o | VΣ(u) ≤ γ̃−1
(

α3(‖δ0‖)
β

)

}, and a neighborhood of the
steady-state equilibria of the system characterized by theset
Yx̃ = {x̃ ∈ X | VΣp

(x̃) ≤ γ̃−1
(

α3(‖δ0‖)
β

)

}, respectively.

Proof. Consider the functionV (x̃k,uk) = VΣp
(x̃k) +

VΣ(uk).
Let us first derive a bound on∆VΣp

(x̃k) := VΣp
(x̃k+1)−

VΣp
(x̃k). From Assumption 1 we have thatVΣp

(x̃(t)) ≤
e−γ(t−t0)VΣp

(x̃(t0)) ∀ t ≥ t0 and fixedu ∈ Ω. Given the
T -periodic samplingxk := x(kT ), we obtain the following
inequality:

VΣp
(xk+1 − x̄(uk+1)) ≤ e−γTVΣp

(xk − x̄(uk+1))

≤ e−γTVΣp
(xk − x̄(uk) + x̄(uk)− x̄(uk+1)).

(11)



Let us consider an arbitrarily large compact setX ⊂ R
nx .

SinceVΣp
is continuously differentiable by Assumption 1,

there exists aLVΣp
∈ R>0 such that‖VΣp

(x1)−VΣp
(x2)‖ ≤

LVΣp
‖x1 − x2‖ for all x1,x2 ∈ X . Using this property,

Assumption 1, and (10) we obtain the following inequality:

VΣp
(x̃k+1) ≤ e−γTVΣp

(x̃k + x̄(uk)− x̄(uk+1))

≤ e−γT
(

VΣp
(x̃k) + LVΣp

Lx̄‖s(uk) + δ(x̃k) + δ0‖
)

.

(12)
From Young’s inequality, i.e.,ab ≤ a2

2ǫ1
+ ǫ1b

2

2 for some
ǫ1 > 0, it follows that

∆VΣp
(x̃k) ≤ −(1− e−γT )VΣp

(x̃k) +
1

2ǫ1
e−γT (LVΣp

Lx̄)
2

+
ǫ1

2
e−γT‖s(uk) + δ(x̃k) + δ0‖

2.

(13)
From the Cauchy-Schwarz inequality, i.e.,‖a + b‖2 ≤
2‖a‖2 + 2‖b‖2, Assumption 6(v), and Assumption 8, we
obtain the following inequality:

‖s(uk) + δ(x̃k) + δ0‖
2 ≤ 2‖s(uk)‖

2

+ 4‖δ(x̃k)‖
2 + 4‖δ0‖

2

≤ −2κs∇V ⊤
Σ (uk)s(uk) + 4κΣp

VΣp
(x̃k) + 4‖δ0‖

2.
(14)

In combination with (13) andǫ1 = 2, this yields

∆VΣp
(x̃k) ≤ −(1− e−γT (1 + 4κΣp

))VΣp
(x̃k)

+
1

4
e−γT (LVΣp

Lx̄)
2 + 4e−γT‖δ0‖

2

− 2κse
−γT∇V ⊤

Σ (uk)s(uk).

(15)

Next, let us derive a bound on∆VΣ(uk) := VΣ(uk+1) −
VΣ(uk). SinceVΣ(·) is twice continuously differentiable on
T o (Assumption 6), it follows from Taylor’s Theorem that

VΣ(u1 + u2) = VΣ(u1) +∇V ⊤
Σ (u1)u2

+ u⊤
2

1
∫

0

(1− σ)∇2V ⊤
Σ (u1 + σu2)dσu2.

(16)

From Assumption 6(ii), (10), and (16), we obtain the follow-
ing inequality:

∆VΣ(uk) ≤ ∇V ⊤
Σ (uk)(s(uk) + δ(x̃k) + δ0)

+
LVΣ

2
‖s(uk) + δ(x̃k) + δ0‖

2.
(17)

Using (14), applying Young’s inequality again withǫ1 =
1

κVΣ

, and Assumption 8, we can write the following inequal-
ity:

∆VΣ(uk) ≤ (1− LVΣ
κs)∇V ⊤

Σ (uk)s(uk)

+
κVΣ

2
‖∇VΣ(uk)‖

2 + (2LVΣ
+

1

2κVΣ

)‖δ0‖
2

+ κΣp
(2LVΣ

+
1

2κVΣ

)VΣp
(x̃k).

(18)

Let us now analyze the sum of the two increments:
∆V (x̃k,uk) = ∆VΣp

(x̃k)+∆VΣ(uk). Using (15) and (18),

for anyκs <
1

LVΣ
+2e−γT , we obtain from Assumption 6(iii)

the following inequality:

∆V (x̃k,uk) ≤ −β1‖∇VΣ(uk)‖
2 − β2VΣp

(x̃k)

+ α3(‖δ0‖),
(19)

with α3(‖δ0‖) := β3‖δ0‖
2 + β4, and

β1 := κVΣ
(
1

2
− κs(LVΣ

+ 2e−γT )),

β2 := 1− κΣp
(2LVΣ

+
1

2κVΣ

)− e−γT (1 + 4κΣp
),

β3 := 2LVΣ
+ 4e−γT +

1

2κVΣ

, β4 :=
1

4
e−γT (LVΣp

Lx̄)
2.

For anyκs < κ∗
s := 1

2LVΣ
+4 , it follows that β1 > 0. To

show thatβ2 > 0, let ǫ3 := 1− κΣp
(2LVΣ

+ 1
2κVΣ

). For any

0 < κΣp
< κ∗

Σp
:= 1

2LVΣ
+ 1

2κVΣ

, it follows that ǫ3 ∈ (0, 1).

Then, if T > T ∗ := 1
γ

ln
(

1+4κΣp

ǫ3

)

, thenβ2 > 0. Note that
from the positive constants defined in Assumptions 1, 6, 8,
for anyT > 0 it follows that β3, β4 > 0.

From Assumption 6(iv) and (19), we obtain the following
inequality:

∆V (x̃k,uk) ≤ −β1γ(VΣ(uk))− β2VΣp
(x̃k) + α3(‖δ0‖).

(20)
Define a function̄γ(V ) := min{γ(V ), V }, with γ̄(·) ∈ K∞.
This implies that̄γ(V ) ≤ γ(V ), and γ̄(V ) ≤ V . Moreover,
defineβ := min{β1, β2}. From this, we obtain the following
inequality:

∆V (x̃k,uk) ≤ −β
(

γ̄(VΣ(uk)) + γ̄(VΣp
(x̃k))

)

+α3(‖δ0‖).
(21)

Moreover, given the fact that̄γ ∈ K∞, we define a function
γ̃(·) ∈ K∞ such thatγ̃(VΣ + VΣp

) := γ̄(12 (VΣ + VΣp
)) ≤

γ̄(VΣ) + γ̄(VΣp
) for all VΣ, VΣp

≥ 0 [19]. This yields the
following inequality:

∆V (x̃k,uk) ≤ −βγ̃(VΣ(uk) + VΣp
(x̃k)) + α3(‖δ0‖)

= −βγ̃(V (x̃k,uk)) + α3(‖δ0‖).
(22)

Finally, from (22) it follows that∆V (x̃k,uk) ≤ 0 for

all V (x̃k,uk) ≥ γ̃−1
(

α3(‖δ0‖)
β

)

. Let VΩ := {(x̃,u) ∈

X × T o | V (x̃,u) ≤ ΩV } with ΩV ∈ R>0 be the largest
sublevel set ofV (x̃,u) contained inX × T o. Define the

set Y = {(x̃,u) ∈ X × T o | V (x̃,u) ≤ γ̃−1
(

α3(‖δ0‖)
β

)

}

with sufficiently smallδ0 and chooseX sufficiently large
such thatY ⊂ VΩ. The setY is a positively invariant
set to which all solutions starting at initial conditions in
VΩ converge. Moreover, asV (x̃,u) is always positive and
remains bounded inX × T o, VΣ(u) is bounded as well in
X × T o. In addition,VΣ(u) ≤ V (x̃,u) for any (x̃,u) in
VΩ. This implies boundedness ofVΣ and hence constraint
satisfaction is guaranteed. The same holds forVΣp

(x̃k), i.e.,
VΣp

(x̃) ≤ V (x̃,u) for any (x̃,u) in VΩ. Let V = {u ∈
T o | VΣ(u) ≤ βΣ} be the admissible initialization set with
some βΣ ∈ (0,ΩV ). Then, for anyu0 ∈ V and initial
conditionsx0 ∈ X0 with X0 = {x ∈ X | VΣp

(x̃) ≤ βΣp
}

and βΣp
≤ ΩV − βΣ > 0, such that fork → ∞ all



solutionsuk converge to the setYu = {u ∈ T o | VΣ(uk) ≤

γ̃−1(α3(‖δ0‖)
β

)}, and all solutionsx̃k converge to the set

Yx̃ = {x̃ ∈ X | VΣp
(x̃k) ≤ γ̃−1(α3(‖δ0‖)

β
)}.

VI. NUMERICAL EXAMPLE

A. Constrained system with equilibria solutions

Consider the following dynamical system:

ẋ1 = −3x2 + u2
1 + u2

2

ẋ2 = x1 − 6x2 −
1

2
+ 6u2

1 − u4
1 − u1u2 − 2u2

2,
(23)

with performance outputy = 3x2, and constrained output
z = x1, and inputsu1 and u2. For any constantu⊤ =
[u1 u2], the equilibrium solutions̄x⊤ = [x̄1 x̄2] are globally
exponentially stable (GES) (the system is LTI and the system
matrix is Hurwitz). The steady-state input-output maps are
as follows:

Q(u1, u2) = u2
1 + u2

2, (24)

and

G(u1, u2) =
1

2
− 4u2

1 + u4
1 + u1u2 + 4u2

2. (25)

Figure 2 depicts contour plots ofQ(u) (bottom) andG(u)
(top), and shows that the unconstrained minimizer ofQ(u)
is not a minimizer in the constrained caseG(u) ≤ 0.
Figure 3 depicts contour plots of the modified cost function
Q̃(u, µ) := Q(u) +B(u, µ) for µ = 0.25 (bottom) andµ =
0.05 (top), whereB(u, µ) = −µ log(−G(u)). Moreover, the
approximate constrained minimizers in both cases are shown
by a blue dot.

B. Gradient-descent extremum-seeking algorithm

Here we show that we can find an approximate constrained
minimizer based on the extremum-seeking method presented
in Section IV. In particular, we assume no knowledge of
Q(u) andG(u), and we obtain information on performance
and constraint satisfaction only through measurements ofy

andz. In particular, the approximation of the modified cost
function is obtained byQ̃(uk, µ) := yk − µ log(−zk) with
k = 1, 2, . . .. We employ the following gradient descent
algorithm to optimize the vectoru:

uk = uk−1 − λ∇Q̃(uk−1, µ), (26)

with λ the optimizer gain. SincẽQ is unknown, its gradient
∇Q̃ is unknown. As such, the gradient ofQ̃ will be estimated
based on finite differences. In particular, the gradient descent
algorithm in (26) is implemented through the following
extremum-seeking algorithm:

uk =

{

uk−n + τdn if n 6= 0

uk−(p+1) − λ∇Q̃(uk−(p+1), µ) if n = 0
,

(27)
for all k = 1, 2, . . ., with τ the step size of the gradient
estimator,dj with j = 1, . . . , p are dither signals, i.e., vectors
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Fig. 2. Contour plots of the objective functionQ(u) (bottom) and the
constraint functionG(u) (top). From the figures it is evident that the
unconstrained minimizer ofQ(u) is not a minimizer in the constrained
case. ( ) shows the convergence of the ESC scheme to the unconstrained
minimizer ofQ(u) with initial input u0 = [−1 −

1

2
]⊤.
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Fig. 3. Contour plots of the modified objective functioñQ(u, µ) with
µ = 0.05 (top) andµ = 0.25 (bottom). In both plots, ( ) and ( )
depict the convergence of the ESC scheme to the approximate constrained
minimizers of Q(u) with initial input u0 = [−1 −

1

2
]⊤ and u0 =

[−1 1

2
]⊤, respectively.

where thejth element is equal to one, and all other elements
are zero,n = mod(k, p+ 1) ∈ N, initial input u0, and

∇Q̃(uk−(p+1), µ) =
1

τ







Q̃(uk−p, µ)− Q̃(uk−(p+1), µ)
...

Q̃(uk−1, µ)− Q̃(uk−(p+1), µ)






.

(28)
Note that the casen = 0 in (27) implements an update of
the control signalu.

C. Simulation results

We have performed three simulations with different set-
tings of the barrier parameter: i)µ = 0.25, ii) µ = 0.05,
and iii) µ = 0. The case whenµ = 0 boils down to
minimizing the costy ≈ Q(u) without taking into account
any constraints. For all simulations, we have used a step size
τ = 1·10−2 and an optimizer gainλ = 10 for the extremum-
seeking algorithm in (27), and we employed a waiting time
T = 10. We choose the initial input vectoru⊤

0 = [-32 -12 ],
and to simulate the dynamics in (23) we used the initial state
asx⊤

0 := x(0)⊤ = [-3 1].
Figure 2 (bottom) shows the trajectory ofu in a 2D plane

for µ = 0. In the absence of constraints, the optimizer state
converges towards a neighborhood of the input vector that
minimizes Q(u), i.e., u∗ = [0 0]⊤. Figure 3 shows the
trajectories ofu in a 2D plane in caseµ = 0.05 (top) and
µ = 0.25 (bottom). In both cases, convergence towards a
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towards a neighborhood of the approximate constrained minimizers of
Q̃(u, µ) for that particularµ, and the corresponding cost and constraint
values.

neighborhood of inputsu that minimize Q̃(u, µ) for that
particularµ is achieved.

Similar conclusions can be drawn from Figure 4, which
shows the evolution ofu1 and u2, and the corresponding
measurements ofy and z, in time, for the casesµ = 0.25,
µ = 0.05, and µ = 0. In caseµ = 0, the optimizer
state converge towards a neighborhood of the unconstrained
optimum u∗ = [0 0]⊤. This however yields a violation of
the constraint (see bottom figure). In case ofµ = 0.25 and
µ = 0.05, we satisfy the constraint and the optimizer states
converge towards a neighborhood of inputsu that minimize
Q̃(u, µ) for that particularµ.

Remark 11. For even smaller values ofµ, the optimizer state
will tend more closely to the actual constrained minimizer.
As mentioned in Section III, we can also employ a decreasing
sequence ofµ such that the approximate constrained mini-
mizers, i.e., minimizers of the problem in(5), approach the
minimizers of the actual problem in(4). This may require a
different tuning of the parameters of the extremum-seeking
algorithm.

Remark 12. If we would have initialized differently, for
example,u⊤

0 = [ 32 - 12 ], then the state converges towards the
optimum in the other admissible region, as we can only find
the minimum in a subset of the admissible set in which we
initialize, see, e.g., the trajectories depicted by the redlines
in Figure 3.

VII. CONCLUSION

We have proposed a sampled-data extremum-seeking ap-
proach for optimization of constrained dynamical systems

using barrier function methods, where both the objective
function and the constraint function are available for mea-
surement only. We have shown that, under appropriate con-
ditions, the interconnection between a constrained dynamical
system and a class of optimization algorithms that employ
barrier function methods is stable, strict constraint satisfac-
tion is guaranteed, and optimization is achieved. A numerical
example is provided that illustrates the working principleof
the sampled-data extremum-seeking approach using barrier
functions.
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for stabilization of sampled-data nonlinear systems via discrete-time
approximations,Systems & Control Letters, Vol. 38, pp 259–270,
1999.

[8] D. Nešić and T. Nguyen and Y. Tan and C. Manzie, A non-gradient
approach to global extremum seeking: An adaptation of the Shubert
algorithm,Automatica, Vol. 49(3), pp 709–815, 2013.
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