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Abstract— Most extremum-seeking control approaches focus programming method, extremum seeking can be achieved
solely on the problem of finding the extremum of some ithin a periodic sampled-data framework. This framework
unknown, steady-state performance map. However, many indt  g5y5 the use of a wide class of smooth and nonsmooth

trial applications also have to deal with constraints on opgating timizati lgorith f hievi timizati f
conditions due to, e.g., actuator limitations, limitatiors on design OPUMization algorithms or achieving optimization ot gen

or tunable system parameters, or constraints on measurable €ral nonlinear systems. |r_‘ [15],. C|039d'|00p. stability of
signals. These constraints, which can be unknown a-priorinay ~ the sampled-data scheme is studied from an interconnected
conflict with the otherwise optimal operational condition, and systems’ theory point-of-view, in which stability resutise

should be taken into account in performance optimization. h obtained by imposing stronger conditions on the nonlinear
this work, we propose a sampled-data extremum-seeking ap- . .

proach for optimization of constrained dynamical systems ging programming met_hods than done in [2]. ) .

barrier function methods, where both the objective function and Notable extensions of the framework in [2] are provided
the constraint function are available through measuremenonly.  in [6] and [4]. The work in [6] utilizes a trajectory-based
We show that, under the assumption that initialization doesot  approach to prove semi-global practical asymptoticalibtyab
violate constraints, the interconnection between a constéined  f the proposed sampled-data extremum-seeking schemes as

dynamical system and optimization algorithms that employ .
barrier function methods is stable, the constraints are sasfied, OPPOSed to the Lyapunov-type arguments used in [2]. The

and optimization is achieved. We illustrate the results by reans ~ former exploits the notion of multi-step consistency (see,
of a numerical example. e.g., [7]) while the latter exploits closeness of solutiohs

differential inclusion over a single time step. The framekwo

l. INTRODUCTION in [6] allows to use a broader class of optimization algo-

Optimization of complex nonlinear systems is often a chakithms, such as those which do not admit a state-update re-
lenging task. Namely, most (numerical) optimization techalization and/or Lyapunov function. Subsequently in [4 t
niques usually rely on an accurate model of the process ffamework in [6] was extended to a more generic framework,
be optimized, while such a model can be hard or impossibighich in addition to gradient-based optimization algarit)
to obtain for complex nonlinear systems. Nevertheless, thso encompasses sampling-based methods capable of non-
steady-state input-output behavior of many of such systengsnvex optimization, enabling extremum seeking for an even
possesses optimal performance under particular operatii¢der class of problems. For example, in [5] and [8], two
conditions and we often desire to find such optimal operatingampling-based algorithms are presented that are able to
conditions. Based solely on output measuremenisemum-  achieve (a weaker type of) convergence to a global optimum.
seeking controlis able to optimize such systems in real- Most extremum-seeking approaches, whether it is of the
time by adjusting these operating conditions and drive theontinuous-time type as in [1] or the sampled-data type
system into a vicinity of the optimal steady-state inputpatt ~ as in [2], [6], focus solely on the problem of finding the
behavior [1], [2]. extremum of some unknown steady-state input-output map.

Along with the pioneering work done in [1] on conver-However, many industrial applications also have to deah wit
gence proofs for continuous-time extremum-seeking sceemegonstraints on operating conditions due to, e.g., actuamer
based on sinusoidal perturbations, a notable contribution jtations, limitations on design or tunable system pararsete
the field of extremum-seeking control was made in [2]. Iror constraints on measurable signals. These constraints ma
[2], it was shown that under assumptions on the asymptotinflict with the otherwise optimal operational conditiand
stability of both the system and a discrete-time nonlineahould be taken into account in the optimization procedure.

: _ In terms of dealing with constraints in extremum-seeking
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search space. In [17], constraint satisfaction is achidwed wherex € R™= denotes the state of system,c  C R"
employing a projection operator in the extremum-seekindenotes the input of the system,€ R andz € R"= are
scheme. Although not aimed at constrained optimizatiom, troutputs of the system, and e R is time. In the context
sampling-based algorithms in [S] and [8] operate in an af extremum-seeking controb), represents the system to
priori defined compact set, i.e., these allow incorporatibn be optimized, where the inpu can be regarded as a
known (input) constraints to adjust the search space. vector of tunable system parameters. We consider multiple
In [12] and [13], extremum-seeking approaches fooutputs, separated into two output channels. In the context
(strictly) convex optimization problems with unknown butof optimization of constrained dynamical systems, we eclat
measurable constraint functions are considered, albeit ihe outputy to an unknown, but measurable, cost to be
the continuous-time extremum-seeking setting. In [12], aninimized, and the output to unknown, but measurable,
combined barrier/penalty function approach is employed teonstraint functions. We adopt the following assumption on
transform the constrained optimization problem into an urthe system in (1).
constrained problem using an augmented cost. This methgd . . .
. - ) . . Ssumption 1. There exists a continuous map denoted by
does not enforce strict satisfaction of the constraintsstoda " -
SR . : A . x : Q — R™ such thatf(x(u),u) = 0 for all constant
difficulties associated with small violations of consttaiand : -
. - : . . . u € Q). Moreover, there existsx € R~ such that|x(u;) —
to relax the choice of initial, possibly inadmissible input _ .
- . . x(u2)]| < Lg|lu; — uz|| for any uy,us € Q. Let us define
In [13], a combination of the classical extremum-seekin _ . . . .
. : : = x — %(u). There exists a continuously differentiable
approach as in [1] and so-called saddle point algorithms 8 ci n o .
. . - LS unction Vs, : R™ — Rs( which is radially unbounded,
in [9] are used to find the constrained global minimizer. o =
. . such that:
In this work, we focus on sampled-data extremum-seeking’ N R .
schemes as studied in [2] and [15], as opposed to the) V&, (¥) >0 VvxeR x\~{0}, Vs, (0)~: 0.
continuous-time extremum-seeking schemes employed i) 3 7 > 0 suchthatis, (x) = Vs, (X)f(x+%(u), u) <
e.g., [12] and [13]. Sampled-data schemes are compelling —7Vs, (%) for all constantu € Q andx € R"~.
given the potential of including diverse types of optimiaat Raomark 2. Assumption 1 is a common assumption in the

algorithms [2], [4]. We adopt the class of optimizers flfoMegc jiterature on the system exhibiting globally exponen-

[15], where the search vector is more explicit. As argued ifjy)y stable equilibria for constant inputs, see, e.gJ, [L8].
[15], it allows Lyapunov-type arguments to be imposed on

the search vector to study closed-loop stability, whictngur ~ From Assumption 1, it follows that for any constant
out to be especially suitable for optimization problems thave have the following steady-state input-output méps

employ barrier functions. Q—RandG: Q — R

The main contribution of this work can be summarized _ .
as follows. First, we propose a sampled-data extremum- Qu) = h(x(u)) = tliglo h(x(t), (2)
seeking approach for optimization of constrained dynamic nd
systems using barrier function methods, where both the G(u) := g(x(u)) = lim g(x(t)). 3)
objective function and the constraint function are avadab t—o0

through measurement only. Second, under the assumptigfiy) and G (u) are referred to as the objective function and
that initialization does not violate constraints, we provgne constraint function, respectively. The goal is to find th
closed-loop stability of the interconnection between CONhputs u that minimize the objective functio)(u), while
strained dynamical systems and optimization algorithras thsatisfying the constrair@(u) < 0. In the extremum-seeking
employ barrier function methods, and show strict constraiontro| context, we assume thabth the information of
satisfaction. Third, we illustrate the working principlg/ b the objective functiorand the constraint function are only
means of a numerical example. accessible through measurement of the system outputs. We

The paper is organized as follows. Section Il presents thgjopt the following assumption on these functions.
problem formulation. Section Ill presents a barrier fuoiti

method for static, constrained optimization problems. Th&ssumption 3. There exists a nonempty, compact, possibly
sampled-data extremum-seeking framework and class of &lisconnectedunknownset7" C ) defined as7 := {u €
gorithms are stated in Section IV. In Section V, a closegloof? | G(u) < 0}. We call this set the admissible set. If the
stability analysis is provided. Section VI presents a niicagr admissible sef is a disconnected set, it can be decomposed

example. Section VII closes with conclusions. into p nonempty, compact, and connected s#&fssuch
that (J!_, 7. = 7. On each set];, Q takes its (global)

. PROBLEM FORMULATION FOR constrained minimum value in a nonempty, compact set
CONSTRAINED DYNAMICAL SYSTEMS Cr. C T, i.e., for eachi = 1,...,p, there exists a1*! € T;

Such that for allu € 7;, Q(u) > Q(u*"). Moreover, there
exists an admissible initialization setwhich is a nonempty,
known compact (and possibly disconnected) sulget 7.

We consider multi-input multi-output dynamical system
of the following form:

Remark 4. Assumption 3 states that we have some limited
t)) (1) knowledge about the admissible sEt such that we can
t)), initialize within V C 7. This is a reasonable assumption



since we usually know where we can initialize our system = “;’lgzlt“gal
.

without violating the constraints immediately. “

In the next section, we present a barrier function method ~ 20H sampler
to solve static constrained optimization proplems. Sedhio c EfT, (k+1)T) . gg:g
presents a sampled-data extremum-seeking approach that
employs the barrier function method to minimi@gu) while
satisfyingG(u) < 0, solely based on output measurements.

. Yk
uy extremum-seeking

algorithm ¥

zj,

Ill. BARRIER FUNCTION METHODS FOR Fig. 1 Sampled-data extremum-seeking control with migltiputput
CONSTRAINED OPTIMIZATION PROBLEMS ool P 9 putp

In this section, we will present the classical barrier
function method to solvestatic constrained optimization
problems, see, e.g., [14] and [16]. Consider the following
constrained optimization problem:

IV. CONSTRAINED SAMPLED-DATA
EXTREMUM-SEEKING

) i In this work, we focus on finding the optimal inpui$ for
min Q(u) subject toG(u) <0, (4) the problem described in Section Il by means of a sampled-
data extremum-seeking control approach, based on the work
where G(u) = [G1(u),...,Gy,(u)]". The admissible set o unconstrainedsampled-data extremum seeking in [2],
is defined as7 := {u € @ C R™ | Gi(u) < 0, i = [4], and [15]. In Section IV-A, we discuss the sampled-data
1,2,...,ns}, and is a nonempty, compact (and possiblyaxtremum-seeking framework. In Section IV-B, we elaborate
disconnected) set, see Assumption 3. The barrier functigfh a class of optimization algorithms employed within the
method is a well-known approach to solve (4); it approxsampled-data extremum-seeking framework. In Section V, a

imates the constrained optimization problem by an uncortapility analysis of the resulting constrained samplatid
strained problem. It works by establishing a barrier on thgytremum-seeking scheme is provided.

boundary of the admissible set that prevents a properlydtune

optimization algorithm from leaving that region, as longtas A- Extremum-seeking framework

starts well inside the admissible set. We employ the foll@yvi  Figure 1 depicts the sampled-data extremum-seeking con-
definition. trol framework, i.e., the interconnection of a dynamical
systemX,,, a T-periodic sampler, a discrete-time extremum-
{ueT|Gi(u)<0,i=12... n,}, which is the inte- ieeking ellogoril';hnﬁ, and a zero-(;rder—hold _(éOH) eleme(;lt.
rior of the admissible seT. The boundary of the admissible bet éuk}k:o ©a sel?_uencle o hvecéors d genTlrate d
set 7, denoted bydT, is defined as07 = T \ T°. For y the extremum-seeking algoritht based on collecte i
each (sufficiently small) barrier parameter 0, a barrier measurements, and define the ZOH operation as follows:

function B(u, i) : 7° x Rso — R is defined on the interior u(t):=u, forallte[kT, (k+1)T), (6)
of 7 such that

(i) B(u, p) is continuous,

(i) B(u,p) =0 forall ueTe,

Definition 5. We define the strict admissible set a8 :=

with £k = 0,1,2,..., and sampling period” > 0. Let us
define the ideal periodic sampling operatiorg::= x(kT'):

(iii) B(u, ) — oo asu approached7T. yr :=y(kT) Vk=1,2,..., (7)
By exploiting barrier functions as defined in Definition 5,and
we can approximate the constrained optimization problem in z, = z(kT) Yk=1,2,...., (8)
(4) by the following unconstrained problem:
_ wherey;, andz; are the collected measurements as used by
lfIEHTHO Q(u, p), (5) the extremum-seeking algorithi.

with the modified objective functionQ(u, 1) = Q(u) + B. Class of algorithms ,

B(u, ). In case the admissible séf is disconnected, _ We consider algorithms for finding a minimizar-(;) €
the strict admissible seT™ is disconnected as well, and C7; of Q(u, ) for somei = 1,....p andp > 0. In the
we can decompose it intp nonempty, connected sefs’  remainder of this work, we omit the superscripfor nota-

for which hold thatJ?_, 7 = T°, see Assumption 3. tional clarity. In particular, we consider a class of algums
Minimizers of the unconstrained problem in (5), denotedhat can be described as follows:

by u**(u), are calledapproximate constrained minimizers . .

01¥the é/é%strained prol?lgm in (4). Dependent on where the Bt = e s(ug), VEER, ©)
optimization procedure starts, i.e., in which connected sevheres(u) denotes the search vector. The structure in (9)
T2 the initial point is chosen, the optimization algorithmis adopted from [15], and is common to many numerical
should find an approximate constrained minimizer belongingptimization methods, such as, e.g., gradient-descent; Ne
to the set of approximate minimizers denoted®y, where ton's method, etc., see, e.g., [16]. We adopt the following
i=1,...,p. assumption on the algorithms in (9).



Assumption 6. For the class of algorithms i®), there exist Assumption 8. There exists &y, > 0 such that|§(x)[|* <
a twice continuously differentiable functidry, : 7° — R>¢ sy, Vy, (%) for all x € R™, with Vx  satisfying Assump-
such that for any > 0 we have the following: tion 1.

) Ve(u) > 0 vVu € T\{u* ()}, Va(u™(u)) = 0, and  Remark 9. s(uy) is the ideal search vector (available when
Vs (u) is radially unbounded on a compact set, i.e.the steady-state cost and its gradient would be availabiel) a

Ve = oolf flullor := infeor [lu —2t|| — 0. 3(uy) is a perturbed version of that search vector. We can
ii) there existsly, € R such that| V*Vs(u)|| < Ly for  view the perturbations(x) as a perturbation caused by the
allue 7. system dynamics ifL), i.e., the measuremeny(¢) andz(t)

iii) there existsm% > 0 such thatVVs(u)'s(u) <  which involve transients) only provide perturbed measure-
kv [VVs@)[® va € T°\{u"(w)}, and ments of the steady-state mapéu) and G (u), respectively.

VVs(u* () Ts(u*(n)) = 0. This perturbation and its effect on the extremum-seeking
iv) there exist a functiony(-) € Ku' such that controlled system can be made small by taking the sampling

[VVz(u)[]? > v(Vs(u)) Yu e T°. time 7' long enough such that transients are sufficiently
v) there exists ks > 0 such that [[s(u)|* < decayed. Considering, e.g., gradient-based algoriths, t

—ksVVz(u)s(u), Vu e 7°. perturbation §, can be viewed as a mismatch between

Remark 7. Similar to the work in [15], the assumption on € approximation of the gradient, based on, e.g., finite

the algorithms of the type it9) is motivated by Lyapunov- differences, and~the actual gradient, \_/vhich is typicallynho
type arguments used to prove convergence of optimizatiGf™ €ven whex = 0. The perturbationd, can be made
schemes in the literature. In particular, shared condition STall by taking a small step size for the gradient estimation
(iif) and (v) on the functionVs: and the search vectos(:) For the purpose of stability analysis let us now define the
of the sort in Assumption 6 naturally arise in the scope ofollowing function V (%, k) == Vs, (Xk) + Vi (uy), which
optimization (see, e.g., [16, Chapter 9], in which similarwill be used as a Lyapunov-like function in Theorem 10
conditions are used to show convergence for decent methagislow. Moreover, we define\Vs, (%x) = Vi, (Xpt1) —

in combination with (strongly) convex functions). Similarvzp (%x), and AVx(uy) := Vs (ugs1) — Ve (ug). The next
conditions as in Assumption 6 can be exploited in the case afsult states conditions on initial conditions and paramset
modified cost functions with a barrier function approach insych that the trajectoriek,, u) converge to a neighbor-
combination with descent methods. For example, the condiood of (0, u*), while steady-state constraint satisfaction is
tions onVx (u), in particular Vs (u*(n)) = 0 and Ve (u) —  guaranteed.

oo if |lula7 — 0, are such thatQ(u, ) > Q(u*(u), i) for

all u e 7?2 and Q(u, ) — oo if [[ullo7 — 0. Theorem 10. Let the admissible initialization set be

V = {u € R™||V(u)| < fB=} C T°, for some
V. STABILITY ANALYSIS By, € Rsg. Under Assumptionsf 1 6, and 8, there exist
nf;,m*zp7T*,sz € R0, and sufficiently smalby € R>o,
The class of algorithms in (9) and its properties as assumedch that for anyrx, < &%, sz, < n*zp, waiting time
in Assumption 6 are geared towards the minimization of’ > 7*, and initial inputug € V, there exist a set of initial
the modified objective functior)(u, ). However, in the conditionsX, = {x e R |V, (x) < fBx,}, such that for
extremum-seeking context, we do not have direct access day x, € Xy we have thaii, € 7° for all £ € N, implying
the modified objective functior@(u, 1), and we can only constraint satisfaction. In addition, there exigt € R,
approximate the search vector in (9) based on the measurablg||dy]|) : R>o — Rso, and a functiony(:) € Ko,
outputsy andz. Note that, due to the dynamics in (1), thesuch that the solutiona; andx; of the closed-loop system
measured cosjy and measured constraint functioagliffer  consisting of the plant irf1), a T-periodic sampler in(7),
from the (steady-state) objective functiGhand the (steady- (8), the discrete-time extremum-seeking algorithm(10),
state) constraint functiof, respectively. and the ZOH operator in6) converge to a neighborhood
To study the closed-loop behavior of the interconnection aff the optimum characterized by the spt, = {u €
the system in (1) and a discrete-time algorithm of the fornyo | Va(u) <51 W)}, and a neighborhood of the
"2_ ) Via a ZOH .zlement ?ndb a;-peno_dlc S?mplerl, Se'teh steady-state equilibria of the system characterized byséte
ir:g(l;;eas,f(\;\{ﬁ)vig:ng er a perturbed version of the algori n}x —(ReX |V, (R) <5 éa(;oﬂ))}, respectively.
Swp = up+8(w),  VkeEN (10) 5;‘2‘3,;?”“’” fhe functiontix ) = ¥, ()
Let us first derive a bound oAV (Xx) := Vs, (Xp41) —
Vs, (Xi). From Assumption 1 we have thaf, (x(t)) <
e Vs (%(tg)) V t > to and fixedu € Q. Given the
T-periodic samplingsy, := x(kT'), we obtain the following
inequality:

where§(uy) := s(ug) + 8(Xx) + 8o, and withx, = xj, —
x(ug), 6(-) : R™ — R™ a state dependent perturbation
term, andd, € R>( a non-vanishing perturbation term. We
adopt the following assumption on the perturbatii).

) ) Vs (x —x(u < e Vs (%, — %(u
1A function ~ : R>o —+ Rxq is of classKC if it is continuous, strictly Ep( k1 ( k+1)) - ET’( k ( k+1))

11
increasing, andy(0) = 0. If ~ is also unbounded, then € Koo < ef'YTVgp (xr — x(ug) + x(ug) — x(Wg41))- (1)



Let us consider an arbitrarily large compact getc R™=.
Since Vx, is continuously differentiable by Assumption 1,
there exists dvy, € Ryosuchthat|Vs, (x1)— Vs, (x2)]| <
LVEP||x1 — xo| for all x1,x3 € X. Using this property,

Assumption 1, and (10) we obtain the following inequality:

Ve, (Xit1) < eV, (R + X(ug) — X(ugi1))

< e (Vi (50) + L, Llstun) +8(5) + 8ol
(12)
for some

2

From Young's inequality, i.e.ab < - + #
€1 > 0, it follows that

- _ . 1
AVs, (k) < —(1— e Vs (Xi) + 7€ " (Lys, Lx)?

€1
+ e Is(w) + 8(%x) + ol

(13)
From the Cauchy-Schwarz inequality, i.gla + b||? <

2||al|? + 2||b||?, Assumption 6(v), and Assumption 8, WeThen if T > T* = Ln (45
€3

obtain the following inequality:

[Is(ur) + (k) + dol|* < 2[|s(uy)|?
+4)8(xi)II* + 4] 8o
< 2k, V4] (up)s(uy) + 4k5, Vs, (R5) + 4Ii50|i2( )
14
In combination with (13) and; = 2, this yields

AVEP (ik) < —(1 — ei'yT(l + 4’1217))‘/217 (ik)

1
+ Zei’yT(LVEp Li)z + 4677T||(50||2

— 2k5e TV (ug)s(uy,).

(15)

Next, let us derive a bound oAV (ug) := Va(ukt1) —
Vs (ug). SinceVs(+) is twice continuously differentiable on
T° (Assumption 6), it follows from Taylor's Theorem that 7

Ve(ug +u2) = Va(w) + VVET(ul)ug

1
+ U—2T /(1 - U)VQVzT(ul + ouy)dous.
0

(16)

From Assumption 6(ii), (10), and (16), we obtain the follow-

ing inequality:

AVg(uk) S VVET(uk)(S(uk) + 6()~Ck) + 50)

17
2 s(uk)+6(5ck)+60||2. (7

Using (14), applying Young's inequality again with =

for any k, < m, we obtain from Assumption 6(iii)

the following mequality

AV (X, up) < =51 VVs(wp)||> = B2V, (X) (19)
+ az([|do]1),

with as([|do]]) := B3| d0||* + B4, and

B = ﬁvz(§ — ks(Lys +2e777)),

B =1 — sy, (2L, + ) —e (1 +4ks,),

2I€VE

Bs == 2Ly, +4e T + o ,54 —e T (L, Ls)*.

For any ks < k! := W, it follows that 5; > 0. To

show thatB, > 0, letez := 1 — k5, (2Lvy, + 57— ). For any
p3}
, it follows thates € (0,1).

*
0 <rkp, <Ky = vy

1
v
, thenBy > 0. Note that
from the positive constants defined in Assumptions 1, 6, 8,
for any T > 0 it follows that 35, 54 > 0.

From Assumption 6(iv) and (19), we obtain the following
inequality:

AV (Xg,ur) < =B1y(Ve(ug)) — B2V, (Xk) + as([[do]).
(20)
Define a functiony(V') := min{~(V), V}, with 3(:) € K
This implies thaty(V) < v(V), and%(V) < V. Moreover,
defines := min{f, 82 }. From this, we obtain the following

inequality:

AV (i, ui) < =B (F(Ve(wk)) +3(Vs, (K1) +as(]|do)).
(21)
Moreover, given the fact that € K., we define a function
3(-) € Koo such thaty(Vs + Vy,) = 3(5(Vs + Vk,)) <
¥(Ve) +7(Vy,) for all Vy, Vs, 2 0 [19] This yields the
following inequality:
AV (xg, ug) < =7 (Va(ur) + Vs, (Xk)) + as((|ol])

=B (V (%k, ur)) + az(([dol])-
(22)

Finally, from (22) it follows that AV (xx,u;) < 0 for
all Vixe,up) > 371 (22Uxl) et vy == {xu) €
X xT°|V(x,u) < Qy} with Qy € Ry be the largest
sublevel set ofV(x,u) contained inX x 7°. Define the
sety = {(Ru) € X x 7% | V(x,u) < 51 (2ellelb)y
with sufficiently smalld, and chooseX sufficiently large
such thaty C V. The set) is a positively invariant

—L_and Assumption 8, we can write the following inequal-Sét to which all solutions starting at initial conditions in
KVyy

ity:

AVs(ug) < (1= Lyyks) VA (ug)s ( k)
A% 2 2
+ 5 [VVs(ug)|* + (2Lvy, + —%VE)H%H

(18)

+ kg, (2Lvy + o Ve, (Xk).

Vg converge. Moreover, aB (x,u) is always positive and
remains bounded itt’ x 7°, Vx(u) is bounded as well in
X x T°. In addition, Vg (u) < V(x,u) for any (x,u) in
Va. This implies boundedness &f; and hence constraint
satisfaction is guaranteed. The same holdsigr(xy), i.e.,
Ve, (%) < V(x,u) for any (x,u) in Vo. LetV = {u €
T° | Vu(u) < B} be the admissible initialization set with
some Sy € (0,Qy). Then, for anyu, € V and initial

Let us now analyze the sum of the two incrementsconditionsxy € Ay with &y = {x € & | Vg, (X) < fBs, }

AV (X, ux) = AVx, (X)) +AVx(ug). Using (15) and (18),

and gz, < Qy — Bs > 0, such that fork: — 00 aII



solutionsu,, converge to the sef, = {u e 7° | Vs(ui) <
i‘%%)}, and all solutionsx;, converge to the set

Ve = {x e X | Vs, (&) < 771 (=), 0

VI. NUMERICAL EXAMPLE

A. Constrained system with equilibria solutions

Consider the following dynamical system:

S 2 2 . - )
&y = —3w2 +uy +up Fig. 2. Contour plots of the objective functio®(u) (bottom) and the
1 (23) constraint functionG(u) (top). From the figures it is evident that the
s 2 4 2 . LTy - S - :
To =1 — 69 — = + 6u1 — U] — ULU2 — 2u2, unconstrained minimizer of)(u) is not a minimizer in the constrained
2 case. £ -) shows the convergence of the ESC scheme to the unconstraine
minimizer of Q(u) with initial input up = [-1 — %}T.

with performance outpuy = 3z,, and constrained output
z = xp, and inputsu; and u,. For any constanui’ =
[u1 uz], the equilibrium solutiong " = [z, ] are globally
exponentially stable (GES) (the system is LTI and the syste 05
matrix is Hurwitz). The steady-state input-output maps a

as follows: o

Q(u1,uz) = uf + u3, (24)

1

and

1
G(ui,u2) = 3~ 4u% + u% + uius + 4u§. (25)

. . Fig. 3. Contour plots of the modified objective functip(u, 1) with
Figure 2 depicts contour plots @(u) (bottom) andG/(u) w = 0.05 (top) andy = 0.25 (bottom). In both plots, £=) and ¢-)

(top), and shows that the unconstrained minimizer)¢fi)  depict the convergence of the ESC scheme to the ap{Jrgxima’ﬁrained
is not a minimizer in the constrained caggu) < 0. Mminimizers of Q(w) with initial input wo = [—1 — 3] anduo =
Figure 3 depicts contour plots of the modified cost function ' 21 - respectively.

Q(u, 1) := Q(u) + B(u, y) for = 0.25 (bottom) andu =

0.05 (top), whereB(u, p) = —plog(—G(u)). Moreover, the

approximate constrained minimizers in both cases are shoWfhere thejth element is equal to one, and all other elements
by a blue dot. are zerom = modk, p + 1) € N, initial input ug, and

B. Gradient-descent extremum-seeking algorithm ~ Q= 12 Q(uki(pﬂbu)
VQUg—(pi1), 4) = = :
Here we show that we can find an approximate constrained T Q(u ) — Q(u )
minimizer based on the extremum-seeking method presented k1o k=(pt1)) K (78

in Section IV. In particular, we assume no knowledge ofqte that the case — 0 in (27) implements an update of
Q(u) andG(u), and we obtain information on performanceihe control signau.

and constraint satisfaction only through measurementg of

andz. In particular, the approximation of the modified costC. Simulation results

function is obtained byQ(ug, 1) := yr — plog(—zx) with

k = 1,2,.... We employ the following gradient descent
algorithm to optimize the vectau:

We have performed three simulations with different set-
tings of the barrier parameter: jj = 0.25, ii) p© = 0.05,
and iii) 4 = 0. The case whernu = 0 boils down to
(26) minimizing the costy ~ Q(u) without taking into account

any constraints. For all simulations, we have used a step siz

with X the optimizer gain. Sincé is unknown, its gradient 7 = 1-10~* and an optimizer gain = 10 for the extremum-
V@ is unknown. As such, the gradient&fwill be estimated S€€king algorithm in (27), and we employed a waiting time

U = Ug—1 — )\VQ(ukflnu)a

based on finite differences. In particular, the gradienteles 1 = 10. We choose the initial input vectar; = ['_% %]
algorithm in (26) is implemented through the f0||OWinga.nd to simulate the dynamics in (23) we used the initial state
extremum-seeking algorithm: asxg =x(0)" = [-3 1]. _
Figure 2 (bottom) shows the trajectory afin a 2D plane
Ug_pn + 7d, if n#£0 for 4 = 0. In the absence of constraints, the optimizer state
Uk = { W (pr1) — AVQ(We—(p11), 1) ifn=0 " converges towards a neighborhood of the input vector that
(27) minimizes Q(u), i.e., u* = [00]". Figure 3 shows the
forall £k = 1,2,..., with 7 the step size of the gradient trajectories ofu in a 2D plane in case. = 0.05 (top) and

estimatord; with j = 1,..., p are dither signals, i.e., vectors 4 = 0.25 (bottom). In both cases, convergence towards a
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Fig. 4. Time-domain convergence of the inputs (solid) andus (dashed) 5
towards a neighborhood of the approximate constrained nnigers of 5]
Q(u, p) for that particularp, and the corresponding cost and constraint
values.

(6]

neighborhood of inputax that minimize@(u,u) for that
particulary is achieved.

Similar conclusions can be drawn from Figure 4, which
shows the evolution of;; and us, and the corresponding
measurements af and z, in time, for the caseg = 0.25,

u = 0.05 andpu = 0. In caseu = 0, the optimizer
state converge towards a neighborhood of the unconstraind®l
optimumu* = [0 0]". This however yields a violation of
the constraint (see bottom figure). In caseuoE 0.25 and  [10]
© = 0.05, we satisfy the constraint and the optimizer states
converge towards a neighborhood of inputghat minimize [11]
Q(u, p) for that particularu.

(7]

Remark 11. For even smaller values gf, the optimizer state [12]
will tend more closely to the actual constrained minimizer.
As mentioned in Section Ill, we can also employ a decreasirﬂgs
sequence of: such that the approximate constrained mini-
mizers, i.e., minimizers of the problem (), approach the

L . . . [14]
minimizers of the actual problem if@#). This may require a
different tuning of the parameters of the extremum-seekings)
algorithm.

Remark 12. If we would have initialized differently, for [i6]
3 _1

exampleuj = [3 -3], then the state converges towards the
optimum in the other admissible region, as we can only fin !
the minimum in a subset of the admissible set in which we

initialize, see, e.g., the trajectories depicted by the lieds  [18]
in Figure 3.

[19]
VIl. CONCLUSION

We have proposed a sampled-data extremum-seeking ap-

proach for optimization of constrained dynamical systems

AT ¥ YT oYY v using barrier function methods, where both the objective
= function and the constraint function are available for mea-
. surement only. We have shown that, under appropriate con-
ditions, the interconnection between a constrained dycami
system and a class of optimization algorithms that employ
barrier function methods is stable, strict constraintstat-

tion is guaranteed, and optimization is achieved. A nunaéric
example is provided that illustrates the working principfe

the sampled-data extremum-seeking approach using barrier
functions.
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