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Abstract

We present results on observer design for sampled-data nonlinear systems using two
approaches: (i) the observer is designed via an approximate discrete-time model of the
plant; (ii) the observer is designed based on the continuous-time plant model and then
discretized for sampled-data implementation (emulation). Since exact discrete-time models
are often unavailable for nonlinear sampled-data systems, a more realistic approach for
observer design is to employ approximate discrete-time models. We investigate under what
conditions, and in what sense, such an approximate design achieves convergence for the
unknown exact discrete-time model. We first present examples which show that designs
via approximate discrete-time models may indeed lead to instability when implemented
on the exact model. We then present conditions for approximate designs that guarantee
robustness for the exact discrete-time model. We finally characterize convergence properties
for emulation designs where the discrete-time observer is derived from a continuous-design
via an approximate discretization.

1 Introduction

The study of discrete-time observers is important for two reasons: First, continuous-time designs
are often implemented digitally and, second, for classes of systems, such as those in [3], observer
design may be easier for discrete-time models than for continuous-time models. The main
drawback of the existing discrete-time observer theory, however, is that the availability of exact
discrete-time models is assumed, which is usually unrealistic. A more practical approach is to
employ approximate discrete-time models for design, and to study how robust such approximate
designs would be when implemented on the exact model.

*The work of the first author was supported in part by NSF, under grant ECS-0238268. Also, the work of
both authors was supported by the Australian Research Council under the Discovery Grants Scheme while the
first author was visiting The University of Melbourne.



The objective of this paper is to give guidelines for sampled-data observer design when only
an approximate model is available. We first present examples which illustrate that observer
design via approximate models may fail to produce a stable observer for the exact discrete-time
model, regardless of the choice of the sampling period. We then derive conditions under which
an approximate observer design guarantees convergence for the exact model in a semiglobal
practical sense. Semiglobal means that the region of attraction of the observer can be rendered
as large as desired by reducing the sampling period. Practical means that the observer error
converges to a a neighborhood of zero, which can be made arbitrarily small either by reducing
the sampling period, or by tuning a “modelling parameter” which improves the accuracy of
the approximate model for a constant sampling period. Finally, we study emulation design of
observers, in which the discrete-time observer is obtained from a continuous-time design via
an approximate discretization. With appropriate conditions on the approximation, and on the
underlying continuous-time observer, we again achieve semiglobal practical convergence. As we
shall see, however, in emulation designs we cannot reduce the residual observer error arbitrarily
by refining the modelling parameter (integration period of the numerical approximation) only.

The study in this paper for sampled-data observers parallels recent results in [5, 4] for
sampled-data control design based on approximate discrete-time models. However, observer
design problems pose additional difficulties which cannot be addressed with a direct application
of results from control design. We also emphasize that our primary goal in this paper is to study
observer convergence properties independently of a feedback design task, because the interest
in observers is not restricted to output-feedback control. Results on output-feedback stabiliza-
tion of nonlinear sampled-data systems include, among others, [1] which studies discrete-time
implementation of high-gain observers, and [2] and [4], which address dynamic sampled-data
controllers, with observer-based control as a special case.

The paper is organized as follows: Section 2 gives the preliminary definitions and the prob-
lem formulation. Section 3 presents examples of non-robust designs, which give clues of why
observers based on approximate models may give rise to instability for the exact model. Follow-
ing these clues, Section 4 derives a set of sufficient conditions for the approximate design, which
ensure its robustness when applied to the exact model. Section 5 presents similar conditions for
robustness of the emulation design. Section 6 presents a robust design example which conforms
to the conditions derived in Section 5, and ensures practical convergence. Throughout the paper
we make use of the following classes of functions, which are now standard in nonlinear control
literature: K is the class of functions IR>q — IR>¢ which are zero at zero, strictly increasing and
continuous. K is the subset of class-XC functions that are unbounded. £ is the set of functions
IR>y — IR>(¢ which are continuous, decreasing and converging to zero as their argument tends
to +o0c. KL is the class of functions IR>q x IR>q — IR>o which are class-K on the first argument
and class-L on the second argument. Given ¢ > 0 we define B, := {z : |z| < c}.

2 Preliminaries and Problem Statement

We consider the system
z = f(z,u) (1)
y = h(=z), (2)

where z € R",u € R™,y € IRP, and f(z,u) is locally Lipschitz. Given a sampling period
T > 0, we assume that the control u is constant during sampling intervals [kT, (k + 1)T) and



that the output y is measured at sampling instants k7"; that is, y(k) := y(kT"). The family of
exact discrete-time models of (1)-(2) is:

z(k+1) = Fr(z(k),u(k)) 3)
y(k) = h(=z(k)),

where Ff(z,u) is the solution of (1) at time T starting at z, with the constant input w. This
model is well-defined when the continuous model (1) does not exhibit finite-escape time. Even
when there is finite escape time, (3) is valid on compact sets which can be rendered arbitrarily
large by reducing T'.

To compute (3) we need a closed-form solution for the initial value problem

&= f(z,u(k),  zo=ux(k) (4)

over one sampling interval [T, (k+1)T'), which is impossible to obtain in general. It is realistic,
however, to assume that a family of approximate discrete-time models is available:

w(k+1) = Frs(z(k),u(k)) (5)
y(k) = h(z(k)).

This family is parameterized by the sampling period T', and a “modelling parameter” § which
will be used to refine the approximate model when 7' is fixed. It can be interpreted as the
integration period in numerical schemes for solving differential equations. The case where § = T'
is of separate interest because several approximations of this type (such as Euler approximation)
preserve the structure and types of nonlinearities of the continuous-time system and, hence, may
be preferable to the designer. When § = T we use the short-hand notation

Fi(z,u) := Ff p(z,u). (6)

As an example, for the linear system & = Az, the forward Euler numerical scheme z(t + §) =
(I + 6A)z(t) can be used to generate an approximate model by dividing the sampling period
T into N integration periods 6 = T'/N, and by applying the Euler approximation (I + 6A) for
each integration period; that is, Ff 5 = I+ 5A)T/‘5:1:. As 6 — 0, this F7. 5 converges to the
exact model Ff = exp(AT)z. Another way to use the Euler approximation is to assume that
d =T and then we have Ff = (I +TA)z.

Throughout the paper we assume that the approximate model (5) is consistent with the
exact model, as defined in [5, 4] with motivation from numerical analysis literature [6]:

Definition 1
a) When 0 = T the family Fj(z,u) is said to be consistent with Ff.(z,u) if for each compact
set 2 C R" x R™ there exists Ty > 0 such that, for all (z,u) € Q and all T € (0, Tp],

|F7(z,u) — Fi(z,u)] < Tp(T). (7)

b) When § is independent of T', Fy ;(x,u) is said to be consistent with Ff.(z,u) if, for each
compact set Q C R" x R™, there exists a class-K function p(-) and a constant Ty > 0, and for
each fixed T € (0,Tp] there exists dy € (0,7 such that, for all (z,u) € Q2 and § € (0, dy],

|F7 (2, u) = Fr (2, u)| < Tp(0). (8)
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When 6 = T inequality (7) means that the difference between F2 and F7 is to converge to
zero faster than linearly in 7" as T — 0. It is not necessary to know the exact model Fif(z,u)
to verify these consistency properties. Verifiable conditions to check (7) and (8) are given in
[5, 4].

For the approximate model (5), we design a family of observers (depending on 7" and §) of
the form

E(k +1) = Fr, 5(&(k), u(k)) + £r,5(2(k), u(k), y(k)), (9)
and analyze under what conditions, and in what sense, this design guarantees convergence when
applied to the exact model (3). Due to the mismatch of the exact and approximate models,
the observer error system is now driven by the plant trajectories z(¢) and controls u(t), which
act as disturbance inputs. When these inputs are bounded, we want the observer to guarantee
semiglobal practical convergence. “Practical” means that the observer error is to converge to a
small set, the size of which can be assigned to be arbitrarily small by tuning ¢ or 7. Likewise,

“semiglobal” means that its region of attraction can be rendered as large as desired, by reducing
T:

Definition 2

a) When § = T we say that the observer (9) is semiglobal practical in T, if there exists a
class-KL function 3(-,-) such that for any D > d > 0 and compact sets X C R™,U C IR™, we
can find a 7™ > 0 with the property that for all T € (0,7%],

|£(0) —z(0)| < D, and z(k) € X,u(k) eU, VE >0 (10)

imply
|2(k) — (k)| < B(1£(0) — z(0)[, KT') + d. (11)

b) When ¢ is independent of 7" we say that the observer (9) is semiglobal in T and practical
in §, if there exists a class-KL function j3(-,-) such that for any given real number D > 0,
and compact sets X C IR",U C IR™, we can find and a T* > 0, and for any 7" € (0,7*] and
d € (0, D), we can find §* > 0 such that for all § € (0,6*], (10) implies (11).

¢) We say that the observer (9) is semiglobal in T and practical in T and ¢, if there exists a
class-KL function f§(:,-) such that for any D > d; > 0, and compact sets X C R",U C IR™,
we can find and a T* > 0, and for any T € (0,7%] and do € (0, D —d), we can find §* > 0 such
that for all § € (0,6*], (10) implies

12(k) — x(k)| < B(1£(0) — z(0)[,KT) + dy + do. (12)
O

Unlike Definition 2(b) where we can arbitrarily reduce the residual observer error d in (11)
by decreasing ¢, in Definition 2(c) we can only reduce dy with J§, while d; is dictated by the
sampling period T'. As we shall see in Section 5, this situation arises in emulation design where,
decreasing ¢ can reduce the residual observer error, but cannot eliminate it completely if T' is
held constant.

3 Examples of Non-Robust Designs

We first illustrate with examples that, unless the observer design for the approximate model
meets several criteria, it may not ensure semiglobal practical convergence for the exact model.
In the following examples, the observer designs are based on approximate models with § = T"



Example 1 Consider the quadruple chain of integrators

T1 = T9;

where the output

is sampled at times ¢t = kT, k € Z. For the Euler approximate model

where
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we design a family of dead-beat observers

&(k + 1) = A72(k) + Bru(k) — Lrly(k) — Ci(k)],

0
T
1

0

in which the injection matrix

T = T3;

z(k+1)

N oo

y(k)

!
N
|

T3 = T4;

y=1x

ATx(k) + Bju(k)

Cu(k),

T ==l

0
0
0
T

T4 = u,

cC=(100 0),

(15)

places the eigenvalues of A% + LrC at the origin for all T'> 0. However, for the exact model,

S O O =

co N

O = Hl\_’ﬁg

the eigenvalues of A% 4 LrC are, for all T,

, B

e
T

—0.5897 £ 1.68657; 0.5897 £ 0.1334s,

in which the first two are outside the unit circle. This means that, in the observer error e := Z—z

dynamics

e(k+1) = (A% + LrC)e(k) + (AT — A%)z(k) + (B} — BY)u(k),

(16)

the £o-gain from z to e is yze > 1 for all values of T'. (Otherwise, substituting z = —e (Yep = 1)
and u = 0 in (16), we would infer from the small-gain property ve;7vze < 1 that the resulting
system e(k +1) = (A% + L7C)e(k) is asymptotically stable, which contradicts our computation
of eigenvalues above.) Because the £,.-gain cannot be reduced arbitrarily by reducing T, we
cannot assign d arbitrarily small in (11) even when z(k) is bounded. Thus, the approximate
design (15) does not guarantee practical convergence.



The reason why this dead-beat design is non-robust for the exact model is because, when
T is reduced, it attempts to achieve faster convergence at the cost of larger overshoots. The
combination of this “peaking” in the transients, and the mismatch between the exact and
approximate discrete-time models, leads to instability of A% + L7C. In the next example, the
approximate design is non-peaking, but the convergence rate is slower for smaller T, which
again leads to instability of A% + L1C.

Example 2 We consider the system:

1 = x1+ T2
Lo = To+u
y = 1

and, again, design a Luenberger observer based on the Euler approximation
o ([ 1+T T
T 0 14T )"

Lo —2T — 273
T=\ —1(1+71?)?

The injection matrix

places both eigenvalues of A% + L7C at 1 — T3, which is inside the unit circle. However, for

the exact model
4 — el Tel
T — 0 BT )

the eigenvalues of A% 4 LrC are complex and located at

{F —TA+ T} £ {T(Q+T?VeT — 1},

which are outside the unit circle for all 7" > 0. Then, arguments similar to those at the end of
Example 1 show that this design does not ensure practical convergence for the exact model.

4 Observer Design via Approximate Discrete-Time Models

In the examples of Section 3, either the overshoot or the convergence rate of the approximate
design is not uniform in the sampling period T'. We now derive conditions which exclude such
designs, and guarantee semiglobal practical convergence for the exact model. For our analysis
we first note from (3) and (9) that the observer error

e=T—z (17)
satisfies
e(k +1) = Ff 5(&(k),u(k)) + €r,6(2(k), u(k), y(k)) — Ff(z(k), u(k))- (18)
Adding and subtracting the approximate model Ff. ;(z(k), u(k)), we rewrite (18) as
e(k + 1) = Er,s(e(k), 2(k), u(k)) + Fr ;(z(k), u(k)) — Fr(z(k), u(k)), (19)
where
Er (e, z,u) := anw,(;(:f:,u) + Ly, 5(Z,u,y) — anw(a:,u) (20)
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represents the nominal observer error dynamics of the approximate design, and Ff. ;(z(k), u(k))—
Fj.(z(k),u(k)) is the mismatch between the approximate and exact plant models.

In Theorem 1 below, we study the case § = T', and prove semiglobal practical convergence
in T' under conditions (i)-(iii). In particular, condition (iii) guarantees that we can find T-
independent estimates for the overshoot and convergence rate in the approximate design and,
thus, rules out the non-robust designs of the previous section:

Theorem 1 (6 =T) The observer (9) is semiglobal practical in T" as in Definition 2(a) if the
following conditions hold:

(i)o6=T.

(ii) Ff is consistent with Ff as in Definition 1(a).

(iii) There exists a family of Lyapunov functions Vr(z, &), class-K functions a;(+), as(-), as(-),
po(+), and nondecreasing functions yo(-), v1(-), ¥2(:), with the following property:

For any compact sets X C IR", X C IR"™, U C IR™, there exist constants 7% > 0 and M > 0,
such that, for all z, z1, z0 € X, 2 € X, u €U, and T € (0,T*],

\Vr(z1,2) — Vr(z2,2)| < M|z1 — 29| (21)

ar(fe) < Vir(e,&) < ax(e] (22)

V(e ). P& ) + (@0 “ V0D (e + pofm) o (lel) + 1 (lal) + (]
(23)

Od

The proof of Theorem 1 relies on the following Proposition, which is proved separately in
the Appendix:

Proposition 1 Suppose all conditions of Theorem 1 hold. Then, for any quadruple of strictly
positive numbers (Ag, Az, Ay, v), there exists T* > 0 such that for all z, &, v and T satisfying
|‘T‘ S Al" |§:| S Aia ’U,| S A’IM T € (OaT*]a

VT(FTQ(‘T’U)’FTG’(iau) + eT(iay,u)) — VT(mafﬁ)
T

< —as(le]) + v. (24)

Proof of Theorem 1: We let X and U be as in Definition 2(a) and claim that, given any pair
of numbers 0 < r < R, we can find T* > 0 such that, for all T’ € (0,T*],

r<VeGe(k),a) <r = PAEXDIEED ZVEBIE) Lo 0w, (25)

To see this, let (Ag, Az, Ay, ) be numbers such that

1
Ay >sup|z| Ay >suplul Az >suplz|+a; H(R) v < —az(a, (r)). (26)
zeEX ueU TeEX 2

It then follows that |z(k)| < Ag, |u(k)| < Ay, and, from (40) and Vr(z(k), 2(k)) < R,

2 (k)| = |z(k) + e(k)] < |z(k)| + le(k)| < e(k)| + oy (Vr) < jlelglwl +a;'(R) < Ap (27)



Thus, if we choose T* as in Proposition 1, then we guarantee, for all T € (0,77],

Vi(z(k+1),8(k + 1)) — Vi (z(k), £(k))
T

< —as(le(k)]) +v. (28)

Moreover, Vr(z(k),#(k)) > r and (22) together imply |e(k)| > s ' (r) and, hence, (25) follows
from the choice of v in (26). Having proven (25) we next note from (28) that

Vr(z(k),z(k)) <r = Vp(z(k+1),z(k+1)) <r+vT. (29)
This means that, if we choose 7" such that r + vT < R, then, from (25) and (29),

Vr(z(0),2(0)) <R = Vp(z(k),z(k)) < max{s (Vr(z(0),£(0)),kT),r +vT} Vk >0
(30)
for some class-CL function Si(-,-), which can be calculated from (25) as in the proof of [5,
Theorem 2]. We thus conclude from (22) that

e(0) <oz (R) = le(k)] < B(le(0)], kT) + a7 ' (r +vT), (31)

where
Bls,7) == a;  (Bi(aa(s), 7). (32)

Thus, given any real numbers D > d > 0 as in Definition 2(a), we can select R = (D),
r = Lai(d), and T* small enough that vT* < 1a;(d), and verify from (31) that the observer
(9) is semiglobal practical in T'. O

Theorem 1 established semiglobal practical convergence by reducing the sampling period 7.
When T is fixed and cannot be reduced, it is still possible to achieve practical convergence by,
instead, refining the accuracy of the approximate models with the parameter §:

Theorem 2 (§ independent of 7') The observer (9) is semiglobal in 7" and practical in ¢ as
in Definition 2(b) if the following conditions hold:

(i) § can be adjusted independently of T'.
(ii) F} 5(z,u) is consistent with the exact model Ff(x,u) as in Definition 1(b).

(iii) There exists a family of Lyapunov functions Vr 5(z, ), class-K functions ai(:), aa(-),
a3(+), po(-), and nondecreasing functions ~y(-), vy1(-), 72(-), with the following property:

For any compact sets X C IR", X C IR", U C IR™, there exists a constant 7* > 0, and for
any fixed T' € (0,7*] there exists 6* > 0, and for any €; > 0 there exists ¢ > 0, such that, for
allz, 11, 20 € X, 2 € X, u €U, and § € (0, %],

|z1 — 22| <c¢ = |Vps(z1,2) — Vi s(z2,2)| < &1 (33)

ay(le]) < Vi,s(z,2) < as(lel) (34)

VT,(S(FJQ',J(:Eau)aF’]q',J(i'au) +€T,5(:i'7y7u)) - VT,(5($"i)
T

< —az(lel) (35)
+po(8)[yo(lel) + i (lz]) + ya(jul)]-

a



We will use the following Proposition, proved in the Appendix:

Proposition 2 Suppose that all conditions of Theorem 2 hold. Then, for any triple of strictly
positive real numbers (A, Az, A,) there exists 7* > 0 such that, for any fixed T' € (0,7*] and
v > 0, there exists 0* > 0 such that |z| < Ay, |2] < Ay, |u| < Ay and § € (0,6%] imply:

VT,J(FQQ’,J(LE’U)’FJQ,J(L%,U) +£T,5(:%ay,u)) - VT,J(wa',i')
T

<-aslle)+v.  (36)
Od

Proof of Theorem 2: We first let A;, A; and A, be as in (26), and determine 7™ from
Proposition 2. Next, we fix T' € (0,7*], and choose v > 0 to satisfy both (26) and

vT < %al(d). (37)

Finally, using Proposition 2 and arguments similar to those in the proof of Theorem 1, we can
find 6* > 0 such that for all § € (0,9*] the estimate (31) holds. Note that, unlike Theorem 1
where we tune T to reduce 7+ vT in (31), here we ensure r + VT < a;(d) by further restricting
the choice of v by (37). Using the resulting ¢* obtained from Proposition 2, we conclude from
(31) that the observer (9) is semiglobal in 7" and practical in § as in Definition 2(b). O

5 Observer Design via Emulation

A common method for digital implementation of controllers and observers, known as “emula-
tion”, is to discretize continuous-time designs using approximate techniques. In this section we
assume that a continuous-time observer of the form

&= g(&,y,u) (38)
is available, and implement it with the approximate discrete-time equation:
Z(k +1) = G, 5(&(k), y(k), u(k)). (39)

We assume in this section that functions f(-,-) and g(-, h(-),-) are locally Lipschitz in all their
arguments.

When § = T we establish semiglobal practical convergence in T under a Lyapunov con-
dition on the continuous-time observer (38), and a consistency property of the approximate
discretization in (39):

Theorem 3 (J = T') The observer (39) is semiglobal practical in 7" as in Definition 2(a) if the
following conditions hold:

(i)o6=T.
(ii) G% is consistent with G5 as in Definition 1(a), with (y,u) interpreted as constant inputs
during sampling intervals.

(iii) The continuous-time observer (38) ensures convergence with a C! function V (z, ) satis-
fying, for all z,2 € IR™ and for all u € IR™,

an(lel) < V(2,2) < as(le) (10)
o F(mu) + Sgldyu) < —as(le]). (a)
a



The proof follows the same steps as the proof of Theorem 1, and is not repeated here.
Instead of Vp(z, %) in Theorem 1, in this proof we use the Lyapunov function V(z, ) in (40)-
(41) above. Likewise, Proposition 1 is to be replaced by the following result adapted from [2,
Theorem 3.1]:

Proposition 3 Let all conditions of Theorem 3 hold. Then, given any strictly positive numbers
(Ag, Az, Ay, v), there exists T* > 0 such that, for all |z| < Ay, |2] < Az, |u] < Ay, and
T € (0,7*], the following inequality holds:

V(Fje“(x’u)’ G%(-ia Y, u)) — V(.I,.’f))
T

< —as(le]) + v. (42)

a

Finally we study the situation where ¢ can be tuned independently of T'. Unlike the design in
Theorem 2 where practical convergence is achieved by reducing § when T is fixed, in emulation
design ¢ cannot reduce the parameter d in (11) arbitrarily. Even if the exact zero-order-hold
equivalent G%(Z,y,u) of the observer (38) is available (with y and u considered as inputs),
perfect observer convergence would not be achievable with fixed T" because the sampling of y is
ignored in the emulation design. The following theorem shows that by tuning § we can reduce
d in (11) not arbitrarily, but to a level dictated by T

Theorem 4 (§ independent of T) The observer (39) is semiglobal in 7', and practical in T
and ¢ as in Definition 2(c), if the following conditions hold:

(i) § can be adjusted independently of T
(ii) G, 5 is consistent with G%. as in Definition 1(b), with (y,u) interpreted as constant inputs
during sampling intervals.

(iii) The continuous-time observer (38) satisfies condition (iii) of Theorem 3 with a C* function
Vi, ). O

Rather than giving a separate proof for Theorem 4, we refer to the proof of Theorem 2, and
use Proposition 4 below instead of Proposition 2 used in Theorem 2. We note that the term
r+ vT in (31) is now 7 + 11T + v»T in which the first component r + 14T determines d; in
Definition 2(c). The second component, 15T, determines dy because, for fixed T, we can assign
vy in Proposition 4 arbitrarily small by tuning 4.

Proposition 4 Suppose all conditions of Theorem 4 hold. Then, given any strictly positive
numbers (Az, Az, Ay, 1), there exists 7% > 0, and for any fixed T' € (0,7*] and vo > 0, there
exists 6* > 0 such that for all § € (0,0%], |z| < Az, |2] < Az, |u| < A, we have

V(Fje“(l'a u)a G%,J(‘%ayau)) - V(iL‘, 'ﬁ)
T

< —as(le]) +v1 +va. (43)

6 Design Example

Theorems 1-4 are also applicable to reduced-order observers, when e is interpreted as the
difference between the unmeasured components of z, and their observer estimates. For the
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Dulffing oscillator

L'El = T2
iy = —mz— b (44)
y = T,
a reduced-order continuous-time observer is
o = x+vy
X = —x-2y-y" (45)
Because the observer error e := %9 — x5 satisfies ¢ = —e, condition (iii) of Theorems 3 and 4
holds with the Lyapunov function
1 1
V(z,#) = 5(3:2 —29)? = 562. (46)
To discretize (45) we first use an Euler approximation with § = T'; that is,
x(k +1) = x(k) + T[-x(k) — 2y(k) — y(k)’]. (47)

As predicted by Theorem 3, simulation results in Figure 1 show that the residual error between
the solid trajectories of (44) and the dashed observer estimates of (47) becomes smaller as the
sampling period T is decreased.

We next study the situation where T is fixed as in Theorem 4. Instead, we refine the
discretization for (45) by dividing the sampling period into N steps of size 6 = T'/N, and by
applying an Euler approximation for each step. As N — oo, this approximation converges to
the exact zero-order-hold equivalent of the continuous-time observer (45):

x(k +1) = exp(=T)x(k) + (1 — exp(=T))[-2y(k) — v’ (k)] (48)

which is computable in this example because the only nonlinearity in (45) is in the output-
injection term [—2y — ¢?®]. Simulation results in Figure 2 show that the residual observer error
is smaller for N = 3 in the middle plot, than for N =1 (6 = T') in the top plot. However, as
predicted by Theorem 4, increasing N (that is, decreasing §) does not reduce this residual error
arbitrarily. Even with the exact zero-order-hold equivalent (48), we note in the bottom plot of
Figure 2 that an observer error remains because the sampling period T is fixed.

7 Conclusions

We have given a framework for semiglobal practical asymptotic observer design for sampled-
data nonlinear systems using two methods: (i) the observer design is carried out via an ap-
proximate discrete-time plant model; (ii) the observer is designed for the continuous-time plant
model and then discretized (emulation). We specified conditions on the approximate model,
continuous-time model, and the observer, guaranteeing that the observer that performs well on
an approximate discrete-time model will also perform well on the exact discrete-time model.
We have further discussed the effect of refining the approximate models with a modelling pa-
rameter §, independently of the sampling period T. For emulation design, however, we have
shown that this approach does not guarantee practical convergence if T is fixed, and leads to
a residual observer error. Because emulation designs using pre-specified sampling periods are
commonly practiced in engineering applications, an important research direction would be to
pursue re-design methods that remove this residual error without decreasing 7'
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Figure 1: Simulation results for z5(t) (solid) from the Duffing oscillator (44), and &2 (t) (dashed)
from the observer (47). The sampling period is T' = 0.4 sec. for the top plot, 7" = 0.1 sec.
for the middle plot, and T' = 0.04 sec. for the bottom plot. As predicted by Theorem 3, the
residual observer error diminishes as T' is decreased.

Appendix

Proof of Proposition 1

Let (Az, Az, Ay, v) be given. Let T > 0 be such that Ff(z,u) is well-defined for all z, v and
T such that |z| < Az, |u] < Ay and T € (0,77]. Let Q := Ba, x Ba, generate Ty > 0 and
p € K via consistency (item (ii) of Theorem 1) of Ff. and F{. Let

M, = sup max{|Ff|,|Fz| + ||, Az, Az }. (49)
TEAg, UEA, ZEA;

Let X = X = By, and U = Ba, generate T3 and M > 0 via item (iii) of Theorem 1, and let

* -1 v
= (2[70(2AM1)+71(AM1)+72(Aun> (50)
T: = p! (ﬁ) (51)
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Figure 2: Simulation results for z2(t) (solid) from the Duffing oscillator (44), and &2 (t) (dashed)
from the Euler approximation of the continuous-time observer (47), when the sampling period
is held constant at T' = 0.67 sec. and the integration period § is reduced. For § = T'/3 (middle
plot) the residual observer error is smaller than for § = T" (top plot). As predicted by Theorem
4, however, the residual error does not vanish (bottom plot) even with the exact zero-order-hold
equivalent (48), which would be recovered in the limit as § — 0.

Defining T* = min{T},T5, Ty, T/, T} and letting € Ba,, & € Ba, , u € Ba, we can write
from item (iii),

Vo (FS, F + br) — Vr(z, )

T < —as(le]) + po(T) o (lel) + yillz]) +v2(|ul)]
| VilF5 P + tr) - Vir(F%, F& + 07)
< —as(le]) + po(T) [0 (2A0m;) + 71(Any) + 12 (A)] + p(T*) M
< —as(le]) + % + g (52)

Proof of Proposition 2

Let (Agz, Az, Ay, v) be given. Let T > 0 be such that Ff.(z,u) is well defined for all |z] < A,
lu| <Ay, and T € (0,T7]. Let Q := Ba, xBa, generate p € K and T > 0 using the consistency
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between Ff and Ff. ;. Let T := min{77}, 75} and consider arbitrary fixed 7" € (0,7"]. Let

M= sup max{|F7|, [F7s| + |0r,5], Az, Az} (53)
TE€EBA, LEBA; UEBA,,,0€(0,T]

Let X = X = By and U = Ba, generate 6 > 0, and let ) := 5T generate ¢ > 0 via item (iii)
of Theorem 2. Thus, for all 71,29 € X, 2 € X, u €U, and § € (0, 67], we have

\Vrs(z1,2) — Vrs(ze,2)| < e .

Let T' and 2 generate 05 > 0 using the consistency assumption, so that for all (z,u) € ©Q and
d € (0,45] we have:
|F7 (2, u) — Fr(z,u)| < Tp(d) -

Let 63 := -1 (%) and

0y = py (2(,),0(2AM)—|—’)/1(AM)+7(Au))> '

Defining ¢* := min{d7], d5,03, 0} }, and using item (iii) of Theorem 2 and the definition of §* we
can write for all x € Ba,,, u € Ba,,, & € Ba, and § € (0,6%] that the following holds:
Vrs(Ff, Ff s+ br,5) — Vrs(z, )
7 < —as(le]) + po(d) (vo(lel) + i ([z]) + 2 (lul))
+VT15(F72’ Ff s +Lr,s) — Vrs(Ff, Ff s + br,5)
T
x €

—az(le]) + po(h*) (70 (2Am) + 11 (Am) +7(Ay)) + %

< —as(le) + 2+ =
~ agl|e 2 27

IA

which completes the proof.
Proof of Proposition 3: See [2, Theorem 3.1].

Proof of Proposition 4: We first state and prove a fact that is instrumental in proving
Proposition 4. For this purpose we consider two different initial value problems:

#(t) = f(z),u©) 20)=z (54)

z(t) = g(2(@),h(z(?),uw(0)  2(0)=2, (55)
and

21(t) = f@(®),u(0)  @:(0) =z (56)

1(t) = g(£1(8),h(2(0)),u(0))  2:(0) =2, (57)

where u := 4(0) and y := y(0) = h(z(0)). We denote solutions of the initial value problem
(54), (55) at time ¢ as z(t) and Z(t). Solutions of the initial value problem (56), (57) at time
t are denoted as z1(t) and Z;(¢). Note that by definition we have that z,(T) = Ff(z,u) and
21(T) = G%(z,y,u). Now we can state the following fact:
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Fact 1: Let conditions of Proposition 4 hold. Then, for any strictly positive numbers
(Az, Az, A,) there exist T* > 0 and B > 0 such that for all T € [0,T%], |z| < Ay, |2] < Az
and |u| < A, the following holds:

o(T) = Fi(z,u) (58)
|2(T) - G¢(2,y,u)| < BT?. (59)

Proof of Fact 1: Let (Ag, Az, Ay) be given. Let T > 0 be such that for all |z| < A4,
|Z| < Az and |u| < A, the solutions of the initial value problems (54), (55) and (56), (57)
exist for all ¢ € [0,7%]. The proof of (58) is trivial since z(-) and z1(-) are solutions of the
same system with the same input and from the same initial condition. Introduce the following
numbers:

My = max{ sup |z(¢)|, sup |2(t)|, sup |z1(¢)], sup [2:1(¢)[} (60)
te[0,7] te[0,7] te[0,7] te[0,7]
M, = max max{| f(z,v)l,|9(Z, h(z),u)[} . (61)

|‘7"|SM17|£|SM17‘U|SA’AL

Let L > 0 be the Lipschitz constant for functions f(-,-) and g(-,h(-),-) on the set (z,%,u) €

B, X Bar, X Ba,,. Introduce
3MsL

2
Note first that for any s € [0,7*] we can write the following:

B =

(62)

|Z(s) — Z1(s)| < /05 lg(&(7), h(2(7)),u(0)) — g(£1(7), h(x(0)),u(0))| dr (63)
< /s 2ModTr = 2M>ss
o(s) —2(0)] < /\f 0)) dr = /Mng ~ Mys .

Then, using the inequalities (63), (64), the Lipschitz property of f(-,-) and g(-,h(-),-) and
differentiability of u(-) we can write:

T
|2(T) — G7(z,y,u)| < /0 |lg(2(s), h(x(s)), u(0)) — g(£1(s), h(2(0)), u(0))] ds
T
< /0 L(|2(s) — 21(s)| + |2(s) — z(0)[) ds

T
< / L(2M; + My)sds
0

which completes the proof of the fact.

We complete now the proof of Proposition 4. Let (Ag, Az, Ay, v1) be given. Let T} > 0,
My, Ms and B come from the proof of Fact 1. Recall that e := ¢ — Z. From continuity of
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solutions of the initial value problems (54), (55) and (56), (57) and continuity of a3(-) it follows
that there exists Ty > 0 such that for all |z| = |z(0)| < Ay, |2] = |2(0)| < Ag, |u| = |u(0)] < A,
we can write:

laz(le(s)]) — as(le(0))] < % Vs €[0,13] .
We define

M3 = max{Mg, Az}

M, = max{My, max |G (2, h(z),u)|, Az}
T €[0,1],6 € [0,T]

Let Ly > 0 denote the Lipschitz constant of V(z, %) on the set (z,%) € B, X Ba,. Introduce
T3 = 551, and T* := min{T7, 13,75, 1}. Let T € (0,7"] be arbitrary but fixed and let v, > 0

be given. Let p(-) come from consistency. Introduce h} := p~! (f—é) and let h* := min{T, hi}.

By integrating the second inequality in (41) along the solutions of the continuous time
system with the constant input u(¢) = u(0) = u (the notation is the same as in the proof of
Fact 1, with e := e(0) = z(0) — £(0)), we can write using our choice of T3 that:

z z -Vi(z,2 ’
VEWHIN V@D < gy + L [ o)) - as(elas

< —aglle) + 5 - (64)

e e V(Fs,GS . . .
By adding and subtracting w and w to (64), we can write using Fact 1, Lips-

chitzness of V, consistency of G% and G%, s and our choice of T* and h* (we omit arguments of
all functions for simplicity):

V(Ff,Gt4) — V(z,2) < n V(Fg,GS) — V(x(T), #(T)) N V(Ff,G% ) — V(Ff, GT)

T —os(lel) + 5 T T

L T) — F&| + |2(T) — G& Ly|GS — G4
< —053(|6|)—|-%+ V(|.’E( ) T|T' ‘.’L’( ) T|)+ ‘ TT T,5|
LyBT? LyTp(h

2 T T
141 141

< 2

< —as(le]) + 2 + 5 + v,

which completes the proof of Proposition 4.
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