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ABSTRACT. A common approach to the implementation of digi-
tal systems is through the emulation of idealized continuous-time
blocks in order to be able to leverage the rich expanse of re-
sults and design tools available in the continuous-time domain.
So called sampled-data systems are now commonplace in prac-
tice and rely upon results that ensure that many properties of
the nominal continuous-time system, including notions of stability,
are preserved under sampling when certain conditions are verified.
In analogy with (fast) sampled-data design, this chapter explores
an emulation-based approach to the analysis and design of net-
worked control systems (NCS). To that end, we survey a selec-
tion of emulation-type NCS results in the literature and highlight
the crucial role that scheduling between disparate components of
the control systems plays, above and beyond sampling. We detail
several different properties that scheduling protocols need to ver-
ify together with appropriate bounds on inter-transmission times
such that various notions of input-output stability of the nominal
“network-free” system are preserved when deployed as an NCS.

1. INTRODUCTION

Control of a system is to influence its behavior to achieve a desired
goal, often, through the use of feedback. Diagrammatically, we are
often concerned with the setup depicted in Figure 1: analysis of plant
P with (vector) output y and design of a controller C' with a (vector)
control u to achieve a desired closed-loop behavior, typically, a notion
of stability.
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F1GURE 1. Conceptual Block diagram of Feedback Control.

The interconnection of physical signals between controller and plant
is seldom as elementary as that depicted in Figure 1. Many properties

of the plant including its physical size, complexity and mobile nature
1
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require the distribution of the control and observation task across mul-
tiple spatially separated nodes, including actuators, sensors and devices
that compute the control law, connected via a network. For example,
the system in Figure 1 may potentially be implemented as in Figure
2, using two output-feedback controllers C7,C5 and two sensors that
transmit output values y1, 12 across a network to both controllers. Note
that this implementation is suggested without specific reference to how
and when and under which constraints this exchange of information
takes place.

Abstractly, any set of communication channels together with a con-
nection topology and constraints on the exchange of information across
the channels that prescribe how and when information can be ex-
changed between nodes can be referred to as a network.
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FIGURE 2. A potential 4 node implementation of the
system in Figure 1 as an NCS.

In this chapter, we restrict our attention to systems with nodes con-
nected via a single shared communication channel or bus as in Figure
3. The control law, plant, nodes, the bus itself and the protocol that
describes how and when information can be exchanged amongst nodes
are collectively referred to as the networked control system (NCS).
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FiGURE 3. Nodes connected with a bus network topology.

Central to the study of NCS is the analysis and design of scheduling
protocols. NCS depart from the use of dedicated point-to-point links
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for connectivity amongst nodes replacing some or all links with a shared
network channel.

As in traditional data networks, the problem of arbitrating multi-
ple access on the network becomes an issue, motivating the discussion
of the scheduling of nodes and the design and analysis of scheduling
protocols suitable for NCS applications. By scheduling, we mean the
transmission of information across a link in the form of a discrete packet
or frame.

Canonical NCS examples include so-called by-wire systems: drive-
by-wire and fly-by-wire with analogues in industrial applications. Here,
the network in NCS is thought of as in the sense of a traditional data
(computer) network but the “network” may exist at a lower level of
abstraction as in, for example, embedded digital control systems:

Example 1.1 (Embedded digital control systems). Transmission of
controller and sensor values to and from the device executing the con-
trol law is governed by protocols of an electrical bus e.q., a PCI bus,
and, typically, the scheduler of an operating system. Even if the under-
lying control system employs point-to-point connections from nodes to
the controller, communication within the controller and its constituent
components are subject to the communication constraints of various
electrical buses and the operating system.

Example 1.1 is one of the strongest motivations for studying NCS as
presented in this chapter. It is perhaps taken for granted that the dig-
ital control systems designed and deployed in industry will continue to
behave like their idealized continuous-time (resp., discrete-time) coun-
terparts, save for the effects of sampling and quantization. As control
systems increase in size and complexity and the levels of component
integration increase, the flow of data between elements of the system
is subject to constraints similar to that of a “real” network. Indeed,
components of systems based around the PCI Express® architecture
communicate via a switched serial network. Regardless of how con-
trollers and sensors are connected, at least internally, every non-trivial
digital control system can be thought of as an NCS.

From designs based around traditional wireless and wireline networks
to the growing internal complexity of “un-networked” control systems,
an increasing number of practical NCS implementations and their re-
spective traffic scheduling protocols now exist. Standards-based com-
ponent connectivity offers lower implementation costs, greater inter-
operability and a wide range of choices in developing control systems.
The price paid for these advantages is the added complexity in the
initial design and analysis of NCS. As alluded to earlier, part of this
complexity comes in the form of issues of arbitration of network access
amongst links, or scheduling, which is of fundamental importance, but
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above and beyond scheduling, NCS also presents the designer with the
limitations of

(a) finite bandwidth of communication channels;

(b) finite precision of encoding and decoding schemes for transmitted
information;

(c) pure (propagation) delays of channels;

(d) and data dropouts from unreliable channels.

These limitations are not mutually exclusive, however. As transmis-
sion rates increase and, with frame and packet sizes well in excess of
machine (CPU) precision, effects of quantization and pure delay play
an increasingly diminishing role in the analysis of most NCS and we
forego their consideration in this chapter. We will, however, examine
models of data dropouts and unreliable channels with Ethernet and
so-called p-persistent collision-sense multiple access (CSMA) as prime
examples of such channels.

2. OVERVIEW OF EMULATION-BASED NCS DESIGN

2.1. Principles of emulation-based NCS design. As stated in the
introduction, scheduling and scheduling protocols are an integral part
of NCS design. A survey of scheduling and various scheduling protocols
is provided in [1] and stability and performance results of NCS have
been examined in [1-6]. An elementary example of a scheduling pro-
tocol, round-robin (RR), grants network access to NCS components in
sequential, round-robin fashion and is used almost exclusively in prac-
tice. The aforementioned works present various alternative protocols
that demonstrate a performance gain over RR in simulations and, in
special cases, demonstrate the superiority of the alternative protocols
analytically. The NCS design approach adopted in [2,3,5-7] and [§],
and this chapter consists of the following steps:

(a) design a stabilizing controller ignoring the network;

(b) choose an appropriate scheduling protocol;

(c) and analyze the robustness of stability with respect to effects that
scheduling within a network introduce.

The principal advantage of this approach is its simplicity — the designer
of the NCS can exploit familiar tools for controller design and select
an appropriate scheduling protocol and transmission rate such that the
desired properties of the network-free system are preserved.

This chapter will introduce and characterize the various classes of
admissible protocols for which stability results are developed but it is
important to note that when the network-free system verifies a nomi-
nal stability property and an admissible protocol is chosen, stability of
the resultant NCS can be achieved through sufficiently high transmis-
sion rates (or equivalently, sufficiently low inter-transmission times).
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Moreover, stability (robustness) properties of the NCS are actually pa-
rameterized by the transmission rate and, hence, step (c) in the design
process can be reinterpreted as:

(ci) choose a transmission rate (above requisite minimum) to achieve
a desired degree of robust stability.

Results will be presented where this design approach is adopted with
various notions of transmission rate (minimum or expected) and robust
stability (uniform global exponential or asymptotic stability, L, or L,
in-expectation or input-to-state stability).

2.2. Results in Perspective. Consider the following LTT control sys-

tem:
(1) tp = Apxp + Bpu to = Acwc + Bey
(2) y = Cpxp u = Cezc,

where zp, v,y and u denote, respectively, plant state, controller state,
plant output and control. In the presence of a network and an associ-
ated scheduling protocol, y and u cannot be continuously transmitted
between the plant and controller. The network introduces the following
limitations:

(a) transmissions occur only at specific transmission instants {t;}°.;
and

(b) only one logical component of the NCS is allowed to transmit
(broadcast) data onto the network at a given transmission instant ¢;
e.g., for a 3-output 2-input system, one component of y = (y1, y2, y3),
u = (up,uz) can be transmitted.

Let ¢ denote the “stand-in” for y available to and maintained by the
device(s) that compute the control law and @ denote the “stand-in” for
u available to and maintained by the device(s) that actuate the plant.
In effect, the NCS for the network-free system is described by

(3) .i?p:Apl'p—f—Bp?l j}C:Acxc+Bcg
(4) Yy = Cpxp u=Ccxc.

In analogy with zero-order hold sampling, ¢ and @ can be held con-
stant between transmission instants and “reset” or updated with com-
ponents of v and y as those become available and transmitted. Figure
4 illustrates the situation for an NCS where two outputs are alter-
nately transmitted in RR fashion across the network to the device(s)'
that computes the control law and actuate the plant at transmission
instants. RR is only one example of a scheduling protocol amongst
several that we consider and one of the primary aims of the chapter

ISince data is presumed to be broadcast across the network, the number of
controller-actuator devices that actuate the plant is immaterial so long as they
adopt identical policies for updating their copies of 3.
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will be to characterize protocol properties that capture the effects of
the protocol on NCS stability.
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F1GURE 4. RR scheduling of 2-outputs with a zero-order
hold g update policy.

Although a scheduling protocol determines how the transmission of
plant measurements and control values are arbitrated at transmission
instants, it is useful to think of the scheduling protocol in terms of the
effects on the error that a network induces compared to the network-
free system. Indeed, if we define

g =(o)-(a)

we can rewrite (3)-(4) between transmissions as

jfp:ApIp—i-Bpu—FBpeu I'C:Acﬁc—Fch—i-BCey
y=Cpxp u= Cecxc
and, hence,
T o AH A12 X
® HE I
where
Ap BPCC
(8) Aglz—[Cp O]AH AQQZ_[CP O]Alg.

These equations describe how the state and NCS error evolves between
transmissions and it is clear that components of e are reset or experi-
ence “jumps” at transmissions instants. For example, let e, ; = §; —y;.
Ignoring the effects of quantization and delay, if the jth component of
y is transmitted at the ith transmission instant we have

(9) Ui(ti) «— y;(ti) <= e,;(t;) — 0.
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Hence, the effect of the scheduling protocol is to reset components of the
NCS error? at transmission instants. An NCS model in this fashion is
thus completely prescribed by:

(a) NCS continuous-time dynamics as in (6) and depicted conceptually
in Figure 5;

(b) a sequence of increasing transmission instants {t;}5°,; and

(c) a scheduling protocol, or error reset map that is described via its
effect on the error, e, at transmission instants.

Regarding the NCS continuous-time dynamics as fixed, we would like
to characterize the sequence of transmission instants or, equivalently,
the sequence of inter-transmission intervals and the set of protocols for
which we can conclude that the NCS state (x,e) is stable in an appro-
priate sense. The origins of emulation-based NCS design in this sense
begin with the pioneering work of Walsh et al. in [5] and [3] where
NCS models in the form of (6) and its nonlinear counterpart were
presented, together with conditions on the mazimum allowable trans-
mission interval (MATI) such that the resultant NCS was uniformly
globally asymptotic or exponentially stable (UGES, UGAS) when us-
ing the RR or mazimum-error-first try-once-discard (TOD) scheduling
protocols. We defer a detailed discussion of these and other protocols
until Section 3.2 and outline results in the spirit of those presented
in [3-5].

Let e € R™ and x € R™. The following class of nonlinear systems
was considered in [3]:

T = f(t,z,e)
with the shorthand notation:
(11) z=nh(t,z2),

where z = (27 e)T.

€ i

» Nominal System Network as a

Perturbation

\ 4

FIGURE 5. Interconnection of signals in NCS dynamics.

The Lipschitz constants for f, g and h are denoted respectively as
kf, k, and kp; that is, the right-hand side in (11) is assumed to be

20rdinarily and as in (9), the result of the transmission is to reset a component of
error to zero, though we stress that for many of the results outlined in the chapter,
this assumption is not necessary.
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globally Lipschitz, uniformly in ¢. The class of linear systems (6) with
the obvious shorthand:

(12) Z=Az

was considered in [4,5].
It is supposed in [3] that there exists a continuously differentiable
Lyapunov function V' such that the system (10) satisfies:

(13) alrf <V(t,x) < clz)? for all x € R"",

ov. oV
(14) e + %f(t, z,0) < —csla|? for almost all z € R™,
(15 | <l

where ¢y, ¢, c3, ¢4 are positive constants. A similar condition was used
in [4,5] for the linear system (6). Indeed, it was assumed that for some
positive definite and symmetric matrix () there exists a positive definite
and symmetric matrix P that solves the Lyapunov matrix equation®:

(16) AT P+ PA, = -Q.

It is obvious that (16) implies that (13), (14), (15) are satisfied for the
linear system (6), V(z) = 27 Pz and

(17) 1 = )\mln(P>7 Co = )\max(P); c3 = )\min(Q); Cy = 2>\max(P>7

where Apin(+) and Apin(+) denote the minimum and maximum singular
value of a symmetric matrix, respectively. For linear systems, we can
let

(18) kn = ky = k, = |A|.

A bound on MATTI that guarantees the stability of the linear system
(6) with the RR and TOD protocols was obtained in [4,5]. We denote
bounds computed in [4, 5] respectively as 77 and 7797 for the RR
and TOD protocols. Similar bounds were obtained in [3] for nonlin-
ear systems (10) with the RR and TOD protocols, where* the bounds
obtained are also such that 7/*® = 770P_ The bounds in [3-5] can be
expressed as:

1 RR _ _TOD _ 3 .
(19) E MU+ Dkykyeq

3The results in [5] are only presented for the special case Q = I. The result with
general () is presented in [4].

4Note that we do not use different notation for MATI bounds for linear and
nonlinear systems, although they are different in general. This is because it always
will be always clear from the context which bound we mean.
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where the value of the constant M is different for linear and nonlinear
systems and ¢ denotes the number of nodes that participate in sched-
uling. For nonlinear systems, we have

C 3/2 C
(20) M = My, = 16 (—2) (,/—2+1),
1 C1

established in [3]. Analogously in [4, 5], the following is obtained for
linear systems

)\max(P) )‘max(P>
(21) M =M, = 8\//\min(P) (\/Amm(P) + 1) :
where the meaning of all constants in (19) is explained through (17)
and (18). These MATI bounds obtained in [3-5] do not differentiate
between RR and TOD:; that is 779P = 7RE,

In general, intuition suggests that MATI bounds should be protocol-
dependent. Significant improvements upon these MATI bounds were
made in [2] by efficiently capturing protocols properties through protocol-
specific Lyapunov functions and characterizing the effects of transmis-
sion errors through L, gains. Essentially, UGES and L, input-output
stability is with a MATT of:

1 1-0
(22) 0<T<Zln< >

T+0

where 6 € [0,1) characterizes the the ablhty of the protocol to re-
duce network error at transmission instants while L > 0 describes the
speed of the network-error dynamics, and v > 0 captures the effect of
network-error on the behavior of the ideal system through an L, gain.
In particular, 7 is protocol-dependent through 6 — the better the pro-
tocol is at reducing network-error at transmission instants, the larger
the MATI bound is and, hence, the less frequent transmissions have to
be to guarantee stability of the NCS.

3. MODELING NETWORKED CONTROL SYSTEMS & SCHEDULING
ProToCoOLS

The premise of networked control systems (NCS) is to spatially dis-
tribute a “traditional” control system across a number of nodes that
exchange data subject to the constraints of a shared data channel.
These nodes include sensors, actuators and units that compute various
control laws and the data channel is typically a wireless or wireline
computer network, many examples of which can be found in [9].

Computer networks and communications systems present rich and
sophisticated models of varying degrees of complexity, within stochastic
and deterministic settings, and of various underlying physical commu-
nication media. For the vast majority of computer networks described
in [9], the primary constraint on the exchange of data between nodes
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is that the respective channels are exclusive. This means that the at-
tempt of more than one node to transmit data at a given time will
result in data loss, i.e., a collision. Collisions can be prevented by arbi-
tration of network access through the use of scheduling protocols that
decide which node(s) can transmit and at what times.

The network models presented in this chapter aim to capture the
essential aspects of control over networks in the context of several im-
portant settings:

(a) locally® arbitrated network access without packet dropouts;
(b) arbitrated network access with and without packet dropouts; and
(¢) unarbitrated network access with and without packet dropouts.

Arbitration takes place through the use of a scheduling protocol
adopted by every node in the network. A protocol can be thought
of as a map

(23) heW —{1,.,0}

that selects the node currently being allowed to transmit and an associ-
ated dynamical system that evolves the scheduler state variable w € W.
For spatially separated nodes, this generally means that each node must
maintain a copy of the state w that is evolved identically by the node
(local knowledge with globally-known inputs), or, w is known globally
and updated in a distributed fashion. Such protocols are often referred
to as contentionless protocols. For example, labeling the NCS nodes
{a1, as, ..., a;}, round-robin scheduling would entail apportioning the
channel’s time, [0, 00), into slots {s; := [to,t1), S2 := [t1,t2), ..., } such
that node a; is permitted to transmit during slot s; s, &k = {0,1,... }.
Depending on the context, this scheduling protocol is also known as
time-division multiplexing or Token Ring and relies on each node be-
ing able to count transmissions. In this case,

w = number of transmissions from some initial time.

For networks with a large number of nodes, mobile nodes that are
spatially separated across varying distances or networks with a varying
number of nodes, it may be impractical or impossible to keep w, the
state information, synchronized across all nodes.

The alternative is unarbitrated access in the sense that there is no
global policy to enforce exclusive network access for a given node at
a transmission instant. In particular, collisions may occur, and have
to be detected and recovered from. The number that occur can of-
ten be reduced by employing various heuristics using data available to
each node locally. Concrete and familiar examples of this approach
include the family of carrier-sense multiple access protocols (CSMA)

"By “locally” we mean that the arbitration process takes place without the
exchange of global arbitration information prior to network access e.g., a priority
field.
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exemplified by Ethernet, p-persistent CSMA (Bluetooth, 802.11a/b/g)
and variants of ALOHA. See [9] for an overview of these protocols and
their operational characteristics.

Thus far, the discussion holds true for both computer and control
networks. Where computer networks and control networks differ rad-
ically is in access patterns — ideally, a continuous-time control system
would have nodes constantly transmitting sensors values and constantly
receiving control values, in complete contrast to the usual assumption
of access in short and irregular bursts for nodes in a computer net-
work. Stated explicitly, we assume continuous-time controllers and
plant outputs are such that there will always be data to transmit when
the network channel becomes idle.

This assumption applies to all forms of network access in NCS, the
key difference being that the unarbitrated network access does not
enforce a particular choice of which link to transmit when the channel
becomes idle whereas global arbitration would. We present a unified
approach for the analysis of NCS both for ideal channels and in the
presence of random packet dropouts and random inter-transmission
times — effects that are essentially attributes of non-ideal or stochastic
network channels.

We assume that every link in the NCS contests access to the network
at either predetermined time-slots or at times at which the network is
sensed to be idle. This results in two potential sources of randomness:

(a) At any idle time or transmission slot, either some node j trans-
mits successfully or a collision results or the transmitted packet
is dropped. Denoting the probability that a packet is dropped
or a collision occurs by pg, we will always assume that the prob-
abilities of successful transmission of links is identically equal to
(1 —po)/¢ for a £-link NCS without global arbitration. While this
is not strictly necessary in our analyses, there is no reason to stati-
cally (off-line) favor any one link over another during contention by
adjusting transmission-success probabilities. Contentionless proto-
cols do, however, enforce a particular choice of which link to trans-
mit in a given slot eliminating the possibility of a collision.

(b) Sensing the network as being idle, synchronizing to transmissions
time-slots or else randomly waiting for a period of time after any
of these events to reduce the likelihood of collisions are common
features of network protocols. These uncertainties can be faith-
fully modeled with a stochastic (renewal) process. For the set of
protocols we discuss, it is sufficient to restrict our attention to Pois-
son processes with some intensity A or a class of renewal processes
where inter-transmission times are uniformly bounded i.e., by the

MATL
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3.1. Scheduling and a Hybrid System Model for NCS. We model
the NCS as a so-called jump-continuous (hybrid) system, where jump
times and the associated jump or reset maps are both potentially ran-
dom but not necessarily so. Our NCS model incorporates the effects
of exogenous perturbations w as first presented in [2]. As alluded to
earlier, the model we present is general enough to examine several
scheduling alternatives with and without packet dropouts when inter-
transmission time are either uniformly bounded with a MATI or ran-
dom.

Node data (controller and sensor values) are transmitted at (possi-
bly) random transmission instants {to,?1,...,t;},7 € N and our NCS
model is prescribed by the following dynamical and jump equations.
In particular, for all ¢ € [t;_1,t;]:

(24) Ip = fp(t,l’p,ﬂ,w)
(25) To = fC(taxCWy?w)
(26) u=go(t,zc) y=gp(t,xp)
(27) g=0 a=0°% é=0
and at each transmission instant ¢;,
(28) (1) = Qile(t)elt) T or,
e(ty) = Qi(é(t))e(t:)
(28b) etr) = AG, (1 — Qile(t:))et:), et:)

The effect of the protocol on the error is such that if the mth to
nth nodes are successfully transmitted at transmission instant t; the
corresponding components of error, e,,...,¢,,, experience a “jump”.
It may be the case that a single logical node (a “link”) consists of
several sensors or several actuators or both with the transmission of
that link having the effect of setting multiple components of e to zero.
It may also be the case that the network allows the transmission of more
than one node at each transmission and our model allows for this extra
degree of freedom. For transmission of nodes mth to nth nodes, we will
always assume that e, (t]), ..., en(t]) = 0 and, hence, Q;(-)e = [az;]e,
where ai; = 0 for k = j € [n,m]U{k # j} and 1 elsewhere. We group
the nodes that are transmitted together into logical links, associating
a partition of size s;, denoted by e; = (e, €i,...,€;s,), of the error
vector e such that we can write e = (eq,...,e,). We say that the NCS
has ¢ links and Zle [; nodes. Note that this is purely a notational

"The assumption that g) and @ are zero simplifies the presentation and is not
strictly necessary. Non-zero choices correspond to schemes that predict y and
between transmissions in an open-loop sense.

8Given t € R and a piecewise continuous function f : R — R", we use the
notation f(tT) = lims_¢ s>t f(5).
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convenience and simplifies the description of scheduling protocols and

the NCS itself.

The two alternative forms of the error jump-map (28a) and (28b)
refer to two different situations with respect to the scheduler state w
in the abstract description of a scheduling protocol given in (23):

(a) w = (i,e) in (28a), where Q;(-) may be a random jump map — in
particular, ); may be the identity in the case where nothing was
transmitted or a collision or dropout occurred.

(b) w = (i,¢é) in (28b), where Q;(+) is an ordinary map and é is a state
variable synchronously maintained and updated by all nodes.

In both cases, we refer to () as the scheduling function and A as the
decision-update function in (28b). The key difference between these
two alternatives is the decision-vector é. Special cases of é-based sched-
uling were first considered in [7]. The model we introduced in [8] and
described here formalizes the é-based scheduling that was considered
in [7] and it generalizes the NCS models considered in [2].

With respect to the available state-information, there are several al-
ternatives as to what information the scheduler has available in making
scheduling decisions prior to transmissions:

(a) (z,e, i) is known by all nodes;

(b) (e, i) is known by all nodes;

(¢) i is known and any broadcast data becomes known after transmis-
sions;”

(d) only 7 is known globally; or

(e) only local policies are adopted and no global information is used in
scheduling.

These correspond to the following NCS scenarios:

(a) “Classical” control, that is, if (z,e,4) is known to all nodes prior
to transmissions, transmissions would not be necessary as any of
x,1y,u could be recovered.

(b) Each node can encode e into an arbitration field and participate
in what is, in effect, a distributed scheduling decision e.g., through
binary countdown.

(c¢) Nodes only have ¢ and local information available to make a sched-
uling decision and, once a transmission (broadcast) has taken place,
are free to update their local information (é) with the broadcast
data!®. To ensure that the nodes arrive at a unanimous decision,
the update rule, and hence the local data is updated in the same
fashion across all nodes.

9This data can be used to evolve locally maintained state e.g., é.

10For reasons that shall become apparent, there is no loss of generality in as-
suming that the broadcast data is given by (I — Q;(é(¢;)))e(t;) — the component of
error that was reset to zero at the ith transmission instant and, hence, appears as
the only input in (28b).
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(d) For situations (b)-(c) it is assumed that nodes can count the num-
ber of transmissions that have passed from some reference time and
hence 7 is known. In this NCS scenario, no other data is known or
maintained by nodes for scheduling purposes.

(e) Network access is, in effect, unarbitrated and access patterns are
determined by local policy.

The maps prescribed by (28a) and (28b) are sufficiently general to
capture the scenarios (b)-(e). We combine the controller and plant
states into a vector x = (zp,x¢) and, assuming gp, go are continuous
and a.e. O, for example, we can rewrite (24)-(31b) in a form more
amenable to analysis:

(29) = f(t,r,e,w) tE [ti1,t]
(30) e=g(t,x,e,w) te€ltiq,t]
and

(31a) e(t{) = Qie(ti))e(ti), or
(31b) e(tf) = Qi(é(t))e(t;)

e(ty) = A(i, (I — Qu(e(t:)))e(ts), é(t:)) ,
where x € R™, e € R", w € R", ¢ € R".

Implicit in this definition is that there are no (pure) propagation
delays. Transmission at time ¢; results in the instant reset of the rele-
vant error component to zero. We appeal to the robustness properties
verified by the class of systems considered to assert that the results in
this chapter remain true for sufficiently small delays.

With respect to (24)-(28b) and (29)-(31b), we further assume that
the sequence of (attempted) transmission times {t;};en is such that
tit1 —t; is exponentially distributed for all ¢ or satisfy e < t;41 —t; <7
for all j > 0 where 7 > 0 and € > 0.!! The constant 7 is the mazimum
allowable transmission interval (MATT).

3.2. NCS Scheduling Protocol Properties. We have previously
described protocols in a general setting as maps that effect errors at
transmission instants. We now aim to identify general protocol prop-
erties that appropriately characterize protocol behaviors and that are
able to parametrize NCS stability under appropriate conditions. Re-
call that by “protocol” we are referring to both the maps of the form
(31a) and (31b) as well as an associated sequence of transmission times
{t:}22, where t;1 —t; is either uniformly bounded or exponentially dis-
tributed.

We introduce several protocol properties that are phrased in terms
of membership in the class of Lyapunov UGES (uniformly globally

HThis ensures that Zeno solutions cannot occur. Zeno behavior occurs in hybrid
systems when there are an infinite number of discrete transitions in a finite period
of time.
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exponentially stable) protocols, the class of PEr (persistently exciting)
protocols, the class of almost surely Lyapunov UGES protocols and the
class of almost surely (a.s.) covering protocols.

3.3. Lyapunov UGES and a.s. UGES Scheduling Protocols.
Let E[|,P{-} denote the expectation and probability operators and
let X ~ Exp(A) denote that X is an exponentially-distributed random
variable with E[X] = 1/\. For purely deterministic maps and ignoring
the dynamics introduced by (30), we can regard (3la) as a discrete-
time system that captures the behavior of the scheduling protocol.
The system is given by:

(32) et = Qilee.

Maps of this form were used to capture the behavior of the protocol
in [2] on an ideal network. Describing the protocol in this fashion
allows one to speak of uniformly globally asymptotically and expo-
nentially stable (UGAS and UGES) scheduling protocols whenever the
associated discrete-time system (32) is UGAS or UGES. Beyond tax-
onomy, the notion of UGES and UGAS protocols and the construction
of smooth Lyapunov functions for the associated UGAS and UGES
discrete-time systems is central to the stability analysis approach de-
veloped in [6] and [2].

NCS employing UGES and UGAS protocols on non-ideal network
channels are still subject to packet losses and varying inter-transmission
times. By assigning a probability, pg, to the event that the channel
drops a packet, we model the behavior of the protocol on non-ideal
channels in this section with jump maps of the form

(33) Qi(e)e = ¢:Qi(e) + (1 — gi)e,
where ¢; is an iid'? sequence of Bernoulli random variables that model
the dropout process of channel with P {¢; = 1} = 1—p,. Depending on
the specific system, the sequence of arrival times (transmission instants)
{t;}ien are either random and defined inductively by:

to = 7o,
where 79 ~ Exp(\) and for each i > 0,

li=ti1+ 7,

7; ~ Exp(A), where the sequence {7;} is iid or, inter-transmission times
are uniformly (deterministically) bounded by a MATTI.

As in (32), it becomes natural to define the associated auxiliary
discrete-time system for (33):

(34) e =qQi(e)e+ (1 —gqle i€N,

where the sequence {¢;} is defined as in (33).
We introduce the following definition with respect to system (34):

12Independently identically distributed.
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Definition 3.1 (Almost surely Lyapunov UGES protocols). Let W :
NxR"™ — R be given and suppose that k; is a sequence of nonnegative
itd random variables and ay,as > 0 such that the following conditions
hold for the discrete-time system (34) for alli € N and all e € R":

(35) arle| < W( i,e) < aslel
(36) W(i+1,Qie)e) < wiW(ie)

Then we say that (34) (equivalently, the contentionless protocol) is al-
most surely uniformly globally exponentially stable (a.s. UGES) with
Lyapunov function W.

Before discussing implications of this definition, we present a moti-
vating example:

Example 3.2 (Try-Once-Discard). The TOD protocol was introduced
in [5] and can be expressed with a model of the form (34) where

Qi(e) = (I = U(e))

and V(e) = diag{y1(e)ly,,...,ve(e)L;, }, with I, identity matrices of
dimension l; and

) 1, if j = min(arg max; |e;])
(38) vile) = { 0, otherwise.

That is, TOD picks out the node with the largest magnitude of error for
transmission. It was shown that TOD preserves stability properties of
the network-free system in (linear systems) [3] and (nonlinear systems
with disturbance) [2] for sufficiently small MATI. As in [2, Proposition
51, we set W(i,e) = |e| and claim that TOD is a.s. Lyapunov UGES
whenever the probability of a dropout, py is such that

(39) pot (1—po)y/ <L

The inequality (39) is a particular example of a more general condi-
tion that ensures that any Lyapunov UGES protocol in the sense of [2]
is an a.s. Lyapunov UGES for sufficiently low probability of dropout.
We first recall the definition of a Lyapunov UGES protocol:

Definition 3.3 (Lyapunov UGES protocols). A protocol (34) on an
ideal channel (pp = 0 = ¢q; = 1) is said to be Lyapunov UGES in
the sense of [2] if there exists W : N x R™ — R, ai,as > 0, and
0 <60 <1 such that for all i € N and all e € R":

(40) aile] < W(i,e) < asle
(41) W(i+1,Q;:(e)e) < OW(i,e).

This definition admits the following proposition:
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Proposition 3.4. Suppose that the protocol (34) on an ideal channel
(po = 0 = ¢q; = 1) is Lyapunov UGES. Then (34) is a.s. Lyapunov
UGES on a non-ideal channel (py > 0) if

(42) po+ (1 —po)f < 1.

Remark 1. The rationale for the introduction of the class of a.s. Lya-
punov UGES protocols is to provide an analysis framework for Lya-
punov UGES protocols capable of handling random packet dropouts —
any Lyapunov UGES protocol is automatically an a.s. Lyapunov UGES
protocol for sufficiently low py. In the case where inter-transmission
times are uniformly bounded by a MATI and py = 0, we recover the the
usual definition of Lyapunov UGES protocols as in Definition 3.3. <

Remark 2. The definition of Lyapunov UGAS and, hence, a.s. Lya-
punov UGAS protocols is analogous and we refer to the reader to [6]
for details and results.

3.4. PEr Scheduling Protocols. Intuition suggests that schemes
such as TOD should perform better than RR, as the node with the
greatest error is transmitted at each transmission instant. TOD is cer-
tainly implementable in variants of CAN'® as the error can be encoded
into an arbitration field'* in a frame but no such arbitration is possible
for wireless channels and, indeed, many wireline channels and, hence,
it is often unreasonable to assume knowledge of the entire error vector
e in these contexts.

Several variants of TOD were introduced in [7] that “estimate” the
error vector and were shown to outperform RR in simulations. Stabil-
ity results are also provided for linear systems that lead to conservative
estimates on performance bounds. One model of NCS that accom-
modates these variants was proposed in [8] that is a special case of
(29)-(31b).

The variants of TOD presented in [7] as well as the RR scheduling
protocol satisfy the following property: there is a fized (finite) number
of transmissions T" such that all nodes of the NCS have transmitted
within T' transmissions. This T is related to the notion of a node’s
“silent-time” in [7]. This property is the point of departure of this sec-
tion and, for reasons that will become apparent, we call protocols that
satisfy this property uniformly persistently exciting scheduling proto-
cols, or simply, PE protocols. Whenever T' is known, we say that the
protocol is PEr. Round-robin is the first example of a PFE7 protocol:

Example 3.5 (Round-robin). Round-robin scheduling is employed in
the Token Ring and Token Bus network protocols as well as (once)
being the ubiquitous scheduling protocol of time-sharing operating sys-
tems. FEach link of the network is assigned a unique index and links

13Control Area Network.
HSpecifically, through binary countdown in- see [9] and [1] for details.
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are ‘“visited” in order of indexr. Consider an (-link NCS. In terms of
NCS scheduling, the discrete-time system is a linear time-varying sys-
tem where the protocol map has no dependence on state:

(43) et = (I —A))e,
where A(Z) = diag{51 (7:)]517 s 7(5N(2.)Isg}> and

~ J 1 ifk—=1=14¢ mod/?
(44) Ok (i) = { 0 otherwise.

It was established in [2] that RR is a Lyapunov UGES protocol and
that it preserves stability properties of the network-free system for high
enough transmission rates. As the protocol does not depend on NCS
state it makes RR easily implementable and is PEp with T = /.

PE in the sense we have described is verified by many network tech-
nologies. Ethernet and 802.11 are examples of CSMA/CD protocols
where it is known (see [10], for instance) that for a finite number of
users (links), the expected waiting time for a link is finite. We pursue
a stochastic analogue of PE for such protocols in Section 3.5.

For a more formal characterization of the PE property, it can be
shown that if we integrate the equations (30) and é = 0 on the interval
[t ,,t;] and then apply the jump map (31b) at ¢;, the NCS induces the
following discrete-time system:

(45) et = (I —U(4,é))(e+d)
(46) et = A4, (i, é)(e + d), é) ,

where d captures the inter-sample behavior of e(-). This idea of exam-
ining an induced discrete-time system to evaluate protocol properties
was first used in [2] as outlined in Section 3.3 though used here with
a key difference: for specific initializations (k,e(k), é(k)) and specific
(bounded) values of d(j),7 > k the solution of the system (45)-(46)
coincides with that of (29)-(31b) at time instants ¢, > k which is
not the case for (34). As we think of the inter-sample behavior d as a
perturbation, our formal definition of PE will be stated as a property
that is robust to bounded perturbations:

Definition 3.6. The protocol (45)-(46) is said to be (robustly) persis-
tently exciting in T or PEr if there exists T € (0,00) such that

(47) [T @uew) =o.

holds for every k € N and any initial condition e(1), é(i) where we have
written ¢e(k) in place of ¢pe(k,i,e(i),é(i), dpq) and all d € Lo, where
Ge() == (i, e, €, dp ) is the é component of the solution of the system
(45)-(46). That is, the T-fold product of the jump map evaluated along
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any set of trajectories that can be generated by (45)-(46) from any set
of initial condition is the zero matriz.

The protocols below are typical of what has been proposed in NCS
literature and what is used in practice. In what follows, we will always
assume an f-link NCS with the ith linking consisting of /; nodes and
an error vector e;. Two PFEp protocols are presented next though we
note that the simplest example of a PE protocol is RR (Example 3.5).

Example 3.7 (Hybrid RR-TOD Scheduling Protocol). The hybrid
RR-TOD scheduling protocol enforces PE in a time-periodic manner.
For a prescribed M € N, the protocol takes the form:

(48) et = (I—Q(i,&))(e +d)
(49) et = (I—Q(i,e)é + Qi,é)(e +d)

Q(i.¢) — diag{p: (i) L, ..., pn(i) Ly}, mod (i, M) =0
| diag{ui(é)1s,, ..., Un (€)1, }, otherwise,

where, p, (i) = 1 when mod (i/M,N) =n—1 and p,(i) = 0 otherwise
with ; defined in (38). The hybrid RR-TOD protocol is PEr with
T = MN. In particular, when M = 1, we obtain the simplest PFEr
protocol: “classical” RR.

Example 3.8 (Constant-Penalty TOD). Constant-penalty TOD (CP-
TOD) [7] uses the mechanism of “silent-time” to ensure that every link
15 eventually visited within a finite window of time: each link j has a
counter r; that is incremented at every transmission instant that it is
not scheduled and reset to zero when it is scheduled. Irrespective of the
underlying scheduling protocol, when a link’s counter reaches a prede-
termined threshold, say M, it will be scheduled. This ensures that every
link is scheduled within ¢ + M transmission instants'>. The protocols
in [7] use the mechanism of “silent-time” to enforce PE: each link j
has a counter r; that is incremented at every transmission instant that
it is not scheduled and reset to zero when it is scheduled. Irrespective
of the underlying scheduling protocol, when a link’s counter reaches a
predetermined threshold, say M, it will be transmitted. This ensures
that every link is scheduled within M + ¢ — 1 transmission instants,
hence, T'= M + ¢ — 1.

15The silent-time protocols described in [7] have the links measure continuous
time as opposed to counting the number of transmission instants elapsed (discrete-
time) and set the silent-time threshold in terms of an integer multiple of MATI, say
M. Since, for all i € N, M7 > M(ts,,, —ts,,,), our silent-time threshold will be
smaller for the same M but the protocol will behave in precisely the same manner
as when using the verbatim definition of silent-time given in [7].
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The underlying scheduler in this example is TOD and corresponds to
the constant-penalty TOD scheme in [7] with a penalty (vector) of O:

(50) et = —®(r,)(e+d)
(51) ("= —=(r,))(C+O)+d(r,¢)(e +d)
(52) rt =1 —®(r,()(r+1),

where 1 = [1 ... 1]T, the scheduling function ® is given by ®(r,() =
ding{y(r, ()1, }.d € [L.. ... £] and

1 if [n=min{m:r, > M})
B V (n = min (arg max;<j<¢ ||
(53) Pn(r,C) = /\((Vm € {1,(. . .,N}f(rf# J]W))]
0 otherwise,

where a Vb and a A\ b denote the mazimum and minimum of two real
numbers a and b, respectively. The role of estimating e is played by
and through the term ®(r,()e, ¢ is updated with e; whenever the jth
link is transmitted. For those links that are not transmitted, the esti-
mated error is incremented by a fixed penalty © that might capture the
worst-case growth of error (in the absence of disturbance) for a given
MATI. In addition to performing this ad hoc estimation, the sched-
uling protocol counts the number of transmission instants that a link
has not been visited for, the link’s silent time, and schedules links that
have exceeded a predetermined threshold for silent-time. In this way,
if C 1s degenerating into an arbitrarily bad estimate of e, all links wll
continue to be wvisited in within a fized-length, finite window of trans-
mission instants through the mechanism of forcing a finite silent-time
for each link. In a loose sense, the protocol’s behavior will “often” be
qualitatively similar to that of RR, a protocol that has been shown to
lead to L, stability of the NCS with appropriate conditions.

3.5. a.s. Covering Protocols. By a random protocol, we mean a se-
quence of random transmission times together with iid random jump
maps (); that are e-independent with reference to (31a). That is,
Q; are iid random matrices taking values in the finite set M, =
{My, My, ..., My}, where My = I, and M; is such that

Mje = Mj(el,...,ej,...,eg)
= (e17 s 7ej—l>07ej+17 SR >e€)‘

We make this definition more precise shortly. The intuition behind this
model is that at a transmission time t;, either some link 5 will acquire
the channel and have its component of e set to zero, that is,

ej(t]) =0, ei(t]) = e(ti),i # j
hence ); = M, or else more than one node attempted to transmit
resulting in a collision with e remaining unchanged (Q; = M;). Due
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to random “back-off” times, and wait times inserted into medium ac-
cess protocols, transmission times are potentially random. Collectively,
these issues are the same issues presented in multi-user access in com-
puter and mobile voice networks though the network access patterns
are somewhat different. See [9] for an overview.

Definition 3.9. For an (-link NCS, abstractly, we define a random
protocol as a discrete Markov chain QQ; subordinated by a renewal pro-
cess'® N(t) such that

(1) Q; € M,, are iid random n. X n, with associated link and
colliston probabilities given by

P{Q; = M} =p;.
(2) The sequence of arrival times {t;}ien is defined inductively by:
to = To,
where 19 ~ Exp(A\) and for each i > 0,
ti =t + 7,
7; ~ Exp(\), where the sequence {7;} is iid. We set

0 tel0,t
N(t) = { k te Lfk—l?tk),

hence, N(t) is a Poisson process with intensity \.

Essentially, the 7;s denote the wait time after the arrival of a packet
(before a new transmission begins). Where not otherwise stated, we
will henceforth assume that P{Q; = M} = P{Q,=M,} = (1 —
p0)/l, k.5 # 0 ie., each link is equally likely to be transmitted suc-
cessfully. This assumption is not strictly necessary for our analyses,
however, any other distribution of probabilities results in a static choice
of priorities amongst links where one link may be favored over another
during contention. There may be examples of NCS that would benefit
from such an adjustment of relative link priorities offline in terms of re-
quired transmission rates or greater robustness of stability but as these
choices are made offline and not in response to the evolution of the
NCS state online, we believe that the scope of exploiting this degree of
freedom is limited.

We pursue here a stochastic analogue of the P Er property described
in Section 3.4:

Definition 3.10 (Cover Time). Consider a random protocol in the
sense of Definition 3.9 for an (-link protocol and define

To=min{j > 1: {My,..., M} C{Qo,...,Q;-1}}

16\ ore precisely, the process of interest is in fact a marked point process. See [11]
for an exposition.
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and, inductively for i > 0,
E = mln{j Z 0: {Ml, ceey Me} C {QTi—l’ e 7QTi—1+j—1}}’

We refer to T; as the ith cover time and, collectively the cover time
process. It is clear from our definition of Q; that T; is a stationary
process.

Definition 3.11 (Covering sequence). Let 7; = t;11 — t;, as in Defini-
tion 3.9, that is, ; are inter-arrival times. We say that

C k) ={(Q4:75) - (Qrs )}, k> j
is a covering sequence iff {M, ..., M} C Cy(j, k).'" It is easy to see
that cover times are simply the lengths of consecutive disjoint covering
sequences.

Remark 3. From our definition of random protocols, the distribution
of T,, is given by the solution to the (weighted) coupon collectors prob-
lem. When p; = pj, i,7 # 0, we have the closed form expression for
the expectation:

(54) E[T] = (H,/(1 = po),

where Hy is the {th harmonic number and we have dropped the time
index n since T, is stationary. We also have the bound for the distri-
bution, P{T,, > B¢Inl/(1 —po)} < £=6B=Y/(1 — py), for any B > 1.
Intuitively, T,, = E[T] “most of the time” and P {T,, < oo} = 1. N

Our abstract definition of a contention protocol is a model for the
contention protocols discussed earlier and to that end we present two
natural examples in this setting.

Definition 3.12 (Almost Surely Finite Cover Time). We say that a
protocol is a.s. covering or has an a.s. finite cover time if in Definition
3.10

(VieN) P{T, <o} =1.
Note that from the preceding discussion, this property is verified by all
contention protocols in the sense of Definition 3.9.

3.6. Slotted p-Persistent CSMA. What has been referred to as
“scheduling” and the associated scheduling protocols by [12] is gen-
erally known as medium access in the communications literature. Car-
rier sense multiple access with collision detection (CSMA/CD) is by
far the most widely used medium access protocol by virtue of the sheer
volume of Ethernet and Ethernet-like networking devices shipped and
manufactured each year.

CSMA/CD is a simple protocol: Links listen for transmissions on
the channel. A link wanting to transmit acquires the channel when

"The notation C)(J, k) refers to the covering sequence of matrices @; with no
reference to inter-transmission times 7; i.e., {Q;,..., Qr}.
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it senses that the channel is idle. When more than one link senses
that the channel is idle and begins transmission, a collision occurs.
At this point, all transmissions are immediately aborted. There are
several variants of CSMA/CD that prescribe how transmissions are
rescheduled and how links initially acquire the channel.

With slotted p-persistent CSMA, rather than have links transmit
whenever the channel is idle, links are only permitted to transmit at
prescribed transmission slots that occur every ¢; > 0 seconds in slotted
protocols. At the start of slot sg, links S = {i,..,j} intending to
transmit acquire the channel with a probability of p. If a collision
occurs, links S¢ are permitted to transmit in the next slot and links S°¢
reschedule their transmissions at slots {Sg+d,, .- -, Sk+d, }-

As alluded to earlier, the primary reason that CSMA protocols and,
indeed, all contention protocols work in practice is that the access pat-
terns of computer and voice networks are “bursty” in nature. The as-
sumption is that a link will occasionally transmit a burst of information
and remain otherwise idle. Transmissions are expected to eventually
succeed as links are “infrequently” contending for the channel.

The situation is quite different for control networks with the impli-
cation that medium access patterns are constant rather than bursty
and for slotted p-persistent CSMA, we assume that every slot will be
in contention. Another key difference between computer networks and
NCS is in the treatment of collisions and dropouts. NCS should not
buffer failed transmissions of controller or sensor values but, rather,
attempt to transmit the latest values when a slot is free. As the maxi-
mum number of links contending slots is constant for every slot, there
is no reason for a link to delay transmission for any more than one slot
after a collision.

With these assumptions, consider an ¢-link NCS with the p-persistent
CSMA protocol. The probability P {Q; = M,} that a particular link j
transmits successfully during the ith slot is given by

P{Q;=M;} =p(1—p)~"

It is clear that P {Q; = M;} is maximized when p = 1/¢. We will
henceforth set p = 1/¢ and have that

-1 _1\—1
P{Qi:Mj}:%(l—%) :%'

Notice that in this “optimal” case, P{Q; = M;} = P{Q; = My} =
(¢ — 1)1 /¢ for i,k # 0 and the probability of a collision is given by
P{Q; = My} =1—(£—1)*"1/¢*1. Finally, we assume that slots occur
every t, > 0 seconds and, hence, p-persistent CSMA is a contention
protocol in the sense of Definition 3.9 where inter-arrival times 7; are
deterministic.
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3.7. CSMA with Random Waits. Whereas the use of fixed slots
tends to improve throughput and reduce collisions with computer net-
works e.g., slotted versus pure ALOHA, the contention by every link
at every slot forces transmissions to happen in lock-step with NCS
network access patterns with the potential for a collision at every slot.

Suppose that instead of immediately acquiring the channel with
probability p after sensing the channel to be idle or after a new slot
arrives, links instead wait a random amount of time before transmit-
ting. In particular, if a particular link j waits for a random time
n; ~ Exp(A/€) then, P{Q; = M;} = (1—po)/{,j # 0. The actual wait
time before any particular transmission will be given

7 =min{n, ..., 7}

that is, the link that waits the least gets to transmit first, hence,
7 ~ Exp()). Assuming the wait times are iid for each link, this
is the prototypical example of what we mean by a stochastic protocol
and a stochastic channel.

In the presence of transmission errors, pg is generally nonzero and,
conceptually, p-persistent CSMA and CSMA with random waits are
essentially the same save for the fact that the transmission process is
truly random with the latter. While CSMA with random waits can be
thought of as a protocol in its own right when the random waits are
enforced explicitly in the implementation, it can also be thought of as
a model of medium access with NCS access patterns while using a class
of CSMA wireless protocols. Delays in signal detection, multi-path ef-
fects and varying processor loads mean that links are only prepared to
transmit after some delay upon sensing the channel being idle and al-
though the cumulative effects of these delays may not be exponentially
distributed, the principle remains the same.

4. NCS STABILITY

The notion of robustness of various stability properties plays a funda-
mental role in practical design and implementation of control systems
as evidenced by the extensive literature discussing, for example, input-
to-state stability (ISS), Hy, Hy design and variants of robust stability.
To that end, [2] and [6] have examined L, and input-to-state stability
of NCS, respectively and it was shown in [12] that persistently exciting
scheduling protocols lead to L,, stable NCS when appropriate conditions
are imposed on transmission rates and the nominal system and similar
results were provided for UGES and UGAS protocols in [2] and [6],
respectively. While the proof techniques and settings are substantially
different, the novel use of various small-gain theorems is a unifying
theme throughout these results and a powerful tool for quantifying ro-
bustness. See [13, Chapter 5.4] for an introduction to the notion of
input/output stability gain and [14] for general ISS small-gain results.
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We outline several NCS stability results in the ensuing sections and
refer to the reader to [2], [6] and [12] for where the results are stated and
proved in greater generality. Finally, while these results are ISS/IOS
type results, whenever exogeneous perturbations are removed, UGES
and UGAS can be recovered under additional mild technical assump-
tions. See [2, Section II-B], for instance.

We first recall the definition of L, stability and detectability for a
system Y, with jumps:

(55) Zz 1z = f(t, Z,’UJ) t € [tz, ti+1] s
output y(t) = g(t, z) and with jump equation
(56) 2(t) = h(i, z(t:)),

Let f : R — R™ be a (Lebesgue) measurable function and de-

fine || f|l, = (fR|f(s)|pds)l/p for 1 < p < oo and define ||f|l =
ess. supycp | f(t)|. We say that f € L, for p € [1,00] whenever ||f|, <
oo. Let f:R — R" and let [a,b] C R. We use the notation

1 £[a, bl = (/[a’b] |f(8)|pds) 1p

to denote the L, norm of f when restricted to the interval [a, b].

Definition 4.1. Let p € [1,00] and v > 0 be given. We say that
¥, is L, stable from w to y with gain v if 3K > 0 : ||ylte, t]ll, <
K| 20| +7llwlto, ][l,-

Definition 4.2. Let p,q € [1,00] and v > 0 be given. The state z
of X, s said to be L, to L, detectable from output y with gain vy if
FK >0 [Jz[to, t]llg < K20] +llylto, t]llp + yllwlto, ]l

An exposition of these ideas as they pertain to NCS can be found
in [2, Section II-B].

4.1. L, Stability of NCS with Lyapunov UGES Protocols. A
more general version of the following result was first presented in [2] and
asserts that Lyapunov UGES scheduling protocols preserve L,, stability

of the network-free system under appropriate conditions and for small
enough values of MATI.

Theorem 4.3. Consider NCS (29)-(31b) and suppose that:

(i) That the NCS scheduling protocol (31a) is Lyapunov UGES with
Lyapunov function W that is locally Lipschitz in e, uniformly in
i and there exists L > 0 such that:

(57 (P gt ) < LW G +

for almost all e € R, for all (x,w) € R™ xR™  allt € (t;,ti11),
for alli € N, where g : R™ x R™ — R is a continuous function

Of (:C, /LU);
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(11) system (29) is L, stable from (W,w) to § with gain 7 for some
p € [1,00]; (x,w) is L, to L, detectable from y; (e,w) is L, to L,
detectable from W;

(111) and MATI satisfies T € (e,7%), € € (0,7%), where

1 L+~
=1
(58) T LH(GL—i—’y)’

where 6 comes from (41).
Then, the NCS is Ly-stable from w to (x,e) with linear gain.

Remark 4. Within the framework of hybrid systems presented in [15],
results analogous to Theorem 4.3 are developed in [16] where T* is given

by

7':
4
1 r(1—6)
— arctan > L
Lr (2%(%—1)“%) !
11-46
59 - =L
(59) L1106 i
1 1-6
— arctanh 7 :( ) v<L,
where

(60) r= ‘(%)2—1‘ .

This bound is shown improve upon (58) in [16] when verifying UGES,
the results therein are stated for UGAS, UGES and semi-global practical
ISS and can, in principle, be extended to apply to L, 10S.

4.2. L, Stability of NCS with PE; Protocols. The following the-
orem asserts that PE protocols lead to L, stability of the NCS for
sufficiently small MATI. While we do not provide a closed-form ex-
pression for MATI bounds, the bounds are readily obtained in exam-
ples by numerically solving for 7* in (62). Note that we only consider
stability of e and z. The decision-vector, if used in the protocol being
analyzed, may fail to verify any stability properties but as é has no
physical significance as a state vector whose evolution is governed by
the protocol, this is generally not an issue. Let A, denote the set of
all n x n matrices and let A} denote the subset of all matrices that are
positive semi-definite, symmetric and have positive entries and let R’}
denote the nonnegative orthant.

Theorem 4.4. Consider NCS (29)-(31b) and suppose that:

(i) The NCS scheduling protocol (31b) is uniformly persistently ex-
citing in time T and there exists A € Al and a continuous
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§:R"™ x R™ — R so that the error dynamics (30) satisfy™
(61) 9(t,z, e, w) X A€+ j(z, w)

for all (x,e,w) € R"™ x R™ x R™ allt € (t;,t;11), for all 1 € N.
hold with § = G(z) + H(w);

(11) system (29) is L, stable from (e, w) to G(x) with gain ~ for some
p € [1,00]; (x,w) is L, to L, detectable from y;

(i1i) and MATI satisfies T € (€,7"), € € (0,7%), where 7 = 1‘2‘(‘;) and z

solves
(62) YRT 2T 4 2(JA| — ykT) — 2|A| = 0,
where k = exp(—1) and |A| comes from (61).
Then, the NCS is L,-stable from w to (x,e) with linear gain.

Remark 5. Suppose that g(t,z,e,w) = Bx+Ce+Dw and let A = [a;],
where a;; = max{|c;|, |c;i|} and §(xr,w) = Bz + Dw. We immedi-
ately have that A and g(x,w) satisfy condition 2 of Theorem 4.4 and
lg(z, w)|, = ||Bx + Dwl|, < ||Bz||, + [|[Dw||,. Whenever g satisfies a
linear growth bound of the form |g(t,x,e,w)| < L(|z| + le| + |w]), it is
straightforward to construct an appropriate A and . <

Remark 6. Suppose that the network-free system is L, stable from
w to x with gain v and the NCS satisfies the hypotheses of Theorem
4.4. Then for any ~v* > =, it is possible to show that there exists a
MATI 7 such that the NCS is L, stable from w to x with gain v*.
This corollary of Theorem 4.4 is particularly useful in the design of
optimal/robust controllers. <

4.3. L, stability of NCS with Random Protocols. This following
result analyzes the input-output L, stability (I0S) of NCS (in expecta-
tion), the essence of which is that outputs (or state) of an NCS verify a
robustness property with respect to exogenous disturbances. We stress
that it is only the network protocol and channel that induces random-
ness in our models and that the exogenous disturbances are L, signals
as in [2] and [12].

Although link cover times and inter-transmission are now random
and, hence, not uniform, if the network-free system is L, stable, the
NCS remains so with any contention protocol, in the sense of our def-
inition, whenever attempted transmissions occur “fast enough”. By
“fast enough” we mean that there exists a choice of intensity A of the
transmission process parameterized by properties of the protocol and

Blet # = (z1,...,20),y = (W1,...,yn) € R™. The vector partial order < is
given by <y <= (r1 < y1)A--A(xp, < y,) and € and g are given by
e := (ler],...,|en, )T and t ¥ g(t), respectively. That is, € is the vector that
results from taking the absolute value of each scalar component of e and g does
operates analogously on the image of g.



28 MOHAMMAD TABBARA, DRAGAN NESIC AND ANDREW R. TEEL

the NCS dynamics such that the NCS is L,, stable-in-expectation from
disturbance to NCS state with a finite expected gain.

Intuitively, and despite the presence of collisions, random packet
dropouts and random inter-arrival times, it seems natural to expect
that the stability of the NCS (24)-(28a) for high enough “average”
transmission rates and in light of the a.s. cover times of contention
protocols and in analogy with persistently exciting scheduling proto-
cols, this stability ought to be robust in an L, sense. In fact, if we
relax our notion of “L, stability” to “L, stability-in-expectation”, we
can prove a positive result in that direction. The definition of these
properties is obtained, essentially, by using expected norms E|| - || in
lieu of || - || in Definition 4.1 and Definition 4.2. We stress that, as
developed in this chapter, these notions only apply to hybrid systems
of the form (55)-(56), i.e., we insist that w is “essentially” an L, signal
and not a Levy process (c.f. [17]) specifically because we are concerned
with robustness of stability in the sense of e.g., [18], whereas a Levy
process characterization of disturbances may be more appropriate in
modeling sensor noise and quantization phenomena.

While the following results are stated for the delay and inter-arrival
processes presented in Definition 3.9, it is straightforward to extend
them to a more general class of processes.

Theorem 4.5. Consider an {-link NCS (29)-(31b) and suppose that:
(i) the NCS employs a contention scheduling protocol with iid cover
times T; and the inter-arrival process is Poisson with intensity A

and also suppose that the NCS error dynamics satisfy

(63) g(t,z,e,w) < Ae + gz, w)

for all (z,e,w) € R"™ x R™ x R™ and almost all t, where A is
a nonnegative symmetric n, X n, matriz with nonnegative entries
and § = G(z) + H(w);

(11) system (29) is L, stable-in-expectation from (e,w) to G(x) with
expected gain y for some p € [1,00]; (30) is L, to L, detectable-
in-expectation from y;

Then, there ezists A < oo depending on (¢, |Al,~v,E[T],po) such that
the NCS is L, stable-in-expectation from w to (x,e) with a finite linear
expected gain 1/(1 —~y*). Specifically, \ solves v*y < 1 with
. _E[T)(1+p)
O — AN — )

where,
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Remark 7. While no bounds for \ are given, the requisite intensity
can be found numerically. <

4.4. L, stability of NCS with a.s. Lyapunov Protocols. The
following result is a natural extension to Theorem 4.3 for channels that
have a non-zero probability of packet dropout and is intended to be
used in much the same way as the latter result. While [2] presents
sufficient conditions for L, stability in the presence of deterministically
characterized packet dropouts for Lyapunov UGES protocols, we be-
lieve the following result is a more natural treatment of dropouts and
the conditions are directly verifiable.

Theorem 4.6. Consider NCS (29)-(31b) and suppose that:
(i) The NCS scheduling protocol (31a) is a.e. Lyapunov UGES with

Lyapunov function W that s locally Lipschitz in e, uniformly in
i and there exists L > 0 such that:

(64 (P gttaew) ) < LG ) + I
for almost all e € R™, for all (x,w) € R™ xR™  allt € (t;,ti11),
for all i € N, where g : R" x R™ — R s a continuous function
of (z,w);

(11) system (29) is L, stable from (W, w) to y with finite expected gain
v for some p € [1,00]; (z,w) is L, to L, detectable from § with
finite expected gain; e is L, detectable from W with finite expected
gain;

(iii) the channel packet dropout probability is given by po > 0 and (36)
is satisfied with an iid sequence {k;} such that the intensity of the
inter-transmission process \ satisfies

o+l

1—E[x|

Then, the NCS is Ly,-stable from w to (z,e) with finite expected linear
gain:

(65) A >

M1 —-E[xk]) - L

A1 -E[s]) - L—~

Remark 8. As the motivation for studying a.s. Lyapunov UGES
comes from the use of Lyapunov UGES protocols on non-ideal chan-
nels, we can restate several of the conditions of Theorem 4.6 in light
of Proposition 3.4. Let 0 be as in (41) and let the probability of packet
dropout po satisfy (42). The requisite intensity in (65) becomes

v+ L
(1 —po)(1—0)

and the resultant gain (66) can be re-expressed in a similar manner.

(66)

(67) A >
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Remark 9. As in [2] and [12], in both this and the preceding section,
several gemeralizations and specializations of the stability results are
possible. With additional technical assumptions on the NCS dynamics,
one can conclude uniform global exponential stability (in expectation)
and the assumptions on the various reset maps can be relared so as
to infer ISS-like properties in lieu of L, stability as discussed [6]. If
we forgo the detectability assumptions in the hypotheses of Theorem
4.5 and Theorem 4.6 we can only infer input-to-output stability-in-
expectation. <

5. CASE STUDIES & COMPARISONS

The aim of this section is to examine the various results presented
in this chapter and compare and contrast them to results presented in
the literature. For simplicity will focus on the following linear time-
invariant systems where the simplified equations for an ¢-link NCS are
given by (6) together with jump equations (31a) or (31b):

Example 5.1 (Batch Reactor). The linearized model of an unstable
batch reactor is a two-input-two-output NCS that can be written as:

j?p:APZEP+BpU y:Cpl'p
—[101-1
where Cp =374 ']
38 —0.2077 6.715 —5.676

1. 0 0

A _ | —0.5814 —4.29 0 0.675 By = 5.679 0
P — 1.067 4.273 —6.654 5.893 P — | 1.136 —3.146 | -

0.048 4.273 1.343 —2.104 1.136 0

The system is controlled by a PI controller with a state-space realization
prescribed by

tc = Acxe + Bey u= Cexc+ Dey

0 0 01
o= [0 0] o= {10
20 0 2
af:_{o 8} DC:‘[-@ 0}
Assuming that only the outputs are transmitted via the network, we

have a two link NCS ({ = 2,1, = ly = 1) with error and state equations
prescribed by (6) where

A — Ap+ BpDcCp BpCe
e BcChp Ac

A21:_[CP O]An A22:_[CP O]Am-
The error equation is given by

(68) e = A22€ + Agll‘.

and
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This example is used as the benchmark in comparing the inter-
transmission bounds with the stability analysis frameworks outlined
in this chapter and in [4,5,7].

5.1. Analytical Inter-transmission Bounds Comparison. Prior
to making numerical comparisons with respect to the bounds obtained
for Example 5.1, we provide a brief summary of the analytical bounds
in Table 1 as they apply in general. The various constants used are
defined and explained in the respective referenced sections and details
can be found in the respective sources cited in the table. These are
bounds at the boundary of stability. For all bounds presented, stability
is in the sense of L, (in-expectation) except for those derived in [4,5,7],
where UGES is the applicable notion of stability.

Table 2 compares a selection of these MATT bounds as they apply to
TOD and RR. It is shown in [12][Section VI-C] that for LTI systems
employing RR scheduling, MATI bounds obtained within the frame-
work outlined in Section 4.2 are asymptotically larger by a factor of
O(¢*?) than the MATTI obtained in [2] which are, in turn, shown to
be analytically superior to the bounds in [3] for both TOD and RR.
As indicated in Remark 4, for protocols that are Lyapunov UGES or
UGAS, [16] may offer improved MATI bounds over [2] and, for the
batch reactor example, these were demonstrated to be an improvement
of approximately 10%.

5.2. Numerical Inter-transmission Bounds Comparison (p, =
0). For simplicity, and since L, stability results are not provided in [7],
we will largely restrict our discussion absence of exogenous disturbances
and examine bounds that verify UGES and related properties. Much of
the focus will be on RR scheduling as it is the only scheduling protocol
that can been mutually treated by the analysis frameworks in this
chapter, [2] and [7] but several other protocols will be examined as
well.

We present and compare various results for the batch reactor exam-
ple, Example 5.1, following [2], [3] and [12]. The comparison results
are summarized below:

(a) The MATT bounds are shown in Table 3 with the bounds computed
via the PE framework larger than those obtained using the results
of [7] by a factor of 107 and larger than the bound obtained by the
results of [2] by factor of 1.5. The bounds 77F and 7,5 apply to
any P Er protocol for the original two-link system. The bound THR
only applies to RR (T = ¢ = 2).

(b) When using RR, 71F that achieves UGES is equivalent to a network
throughput of 84 kbps (assuming 128 byte frames), achlevable on
current 802.11g and 802.11b wireless networks and 7% requires an
effective network throughput of approximately 125 kbps.
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MATT — Section 2.2, [4,5,7] (Worst-Case Analysis)

silent-time T’

wC _
RR & TOD Protocol Too = WH;—:)W
. e ST _ . In(2) S S
Silent-Time Protocols Ty = min { BT 8 TooJerTosin }, where

S = [kn\/c1/co Zf:l(i +T -0

MATT — Section 4.1, [2] (Lyapunov UGES Analysis)

RR Protocol TRR = 11 (Lﬁ/%ﬁée)
TOD Protocol +TOD _ 11 ( LVl+y )

MAT

I — Section 4.2, [12] (PEr Analysis)

PFE+ Protocols
(incuding RR)

PE _ In(2)
Tia = A where 2 solves

yexp(—1)T2HVT 4 2(|A] — yexp(—1)T) — 2|A| =0

Reciprocal-Intensi

ty — Section 4.3, [19] (a.s. Cover Time Analysis)

Stochastic Protocols
P {dropout} = pg

STO _ (1=po)
T43 < [A]

solved numerically via Theorem 4.5

Reciprocal-Intensity

— Section 4.4, [19] (a.s. Lyapunov UGES Analysis)

RR Protocol

(1—po) (VE—/1=1)

RR _
T (- LV/0)

4.4

TOD Protocol

~TOD _ (1—po) (VE—/1-1)
/I CRS )

TABLE 1. Summary of inter-transmission bounds for

various classes of

(c¢) We formally fix the c

protocols.

onstants used to compute the respective bounds

and plot 71F and 71! with T' = ¢ € [1,1000] in Figure 6 to examine
the behavior of the bounds as the number of links grow. We also
fix £ = 2 and allow T > 2 to vary for 754 and 7. Despite the

relatively modest improvements for the nominal two-link system
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Linear Systems

RR Protocol T4 1 > 9+l \/E < o )
:‘% > O(0Y?) as £ — oo
4.1
TOD Protocol T;vaf >2(0+1),/2 ( @y 1)
2.2

3
RR Protocol :24%1; > 8% <2> 2 ( i—f . 1>

7'4 1

TOD Protocol

>8(€+1)< )( g—j+1)

TABLE 2. Summary of
without dropouts for an
(13)-(15).

using RR, the differences a

analytic comparisons for NCS
(-link NCS with constants as in

)

re significant on the log,,(7") x logy,(

scale used in Figure 6 when we formally increase T" or, equivalently,

the number of links.

log,o (%

lo T

125 15 175 225 25 275 3 €101
-2

M'Nﬁ‘\ o Tis

6 T T e A TRR

-8 4.1
- 10

T V;\\\:{Qﬂ\\;\\‘ =0 T2 2 7€ - 2 T > 2
14 T 722 T'o=

F1GURE 6. Batch Reactor MATI bounds comparison for
PEr protocols, T' € [1,1000].

Simulations and alternative techniques for calculating MATI are a
key test of the practicality of the MATI bounds and stability results
produced in this chapter and in the literature. For linear systems with
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T=2 T=6 T =50
it 0.0123 0.004 4.75 x 10~4
ik 0.0082 N/A N/A
¢ 1.05 x 1079 [ 2.86 x 10710 | 3.18 x 10~ 11
T 0.01 N/A N/A
mPE /o3¢ | 118 x 107 | 1.40 x 107 1.49 x 107
TFE |rRE 1.50 N/A N/A
L E | rIOP 1.23 N/A N/A

TABLE 3. MATI bounds achieving UGES for Example
5.1 with PE7 and Lyapunov UGES protocols.

equidistant transmission times employing RR scheduling, an actual an-
alytic MATT bound can be computed as discussed in [2, Section VII-A].
For general protocols, however, simulations are the only resort and, as
such, no firm conclusions can be drawn vis-a-vis the theoretical bounds
for arbitrary NCS.

5.3. Numerical Inter-transmission Bounds Comparison (p, >
0). Finally, we examine Example 5.1 for channels where py > 0. In
particular, we look at the CSMA protocol described in Section 3.7
and, hence,

(69) E[T]=2-Hy/(1—po) =3/(1—py).

By Theorem 4.5, the batch reactor system will be L,, stable-in-expectation
from w to x if

E[T](1 + p)
(A= 1ADA = p)

where v is the L, gain of x subsystem from the input e to an “auxiliary”
output y = Ao x.

By solving for A\ numerically in (70), subject to the constraint A >
|A|/(1—po), we are able to establish expected transmission rate bounds
as a function of py that ensure L, stability of the batch reactor system
The batch reactor system with the CSMA protocol was also simulated
using expected transmission rates of [1, 00) transmissions per second for
po € [0.1,0.8]. A bisection heuristic was used to find the intensities that
resulted in stability with the ensemble average of multiple simulations
with fixed initial conditions to yield the simulation-derived intensity
bound.

(70) v <1,
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The expected transmission rate bounds and expected inter-transmission

times are shown in Table 4 as a function of dropout/collision proba-
bility pp and plotted in Figure 7. Simulation-derived bounds are also
listed in Table 4.

For the initial condition used, the bounds obtained via Theorem 4.5
are within a factor of 4 of simulation-based bounds and, for example,
demonstrate that with a 50% probability of dropout/collision, the net-
work must deliver approximately 922 kbps (116 x 8 bits) of network
throughput to maintain L, stability. This is well within the realm of
ordinary Ethernet and 802.11 wireless technology.

A
800 ¢

600
400 |

200 |

‘ ‘ ‘ ‘ ~ Do
0.2 0.4 0.6 0.8 1
FiGURE 7. Batch Reactor expected transmission rate
bounds for stochastic protocols as a function of
dropout/collision probability py with identical initial
conditions.

We can also consider the example within the context of a.s. Lya-
punov UGES. Suppose that the TOD scheduling is employed. From
Table 1, the requisite intensity for the conditions of Theorem 4.6 to be
verified is

For an ideal channel (py = 0), this corresponds to a transmission at
least once every 9.25 msecs compared to a MATI of 0.01 secs for the
deterministic results presented in [2]- a factor of 1.08 improvement in
favor of the deterministic results. The notion of MATI implies that ev-
ery inter-transmission time is uniformly bounded whereas the intensity
(or reciprocal) is an “average MATI” — individual inter-transmission
times can individually exceed or fall short of the average. Notably,
both values fall short of the figure obtained for the CSMA protocol
of 0.02 secs. As the characterization of dropouts in [2] is markedly
different from that presented here, we do not pursue a comparison for
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p| A [B0=1ne ] x [0 =1 ()
0 50.19 0.02 14.77 0.0677

0.1 | 57.46 0.017 16.05 0.0623

0.2 | 66.52 0.015 18.38 0.0544

0.3 | 78.15 0.013 21.37 0.0468

0.4 93.63 0.011 25.00 0.0400

0.5 | 115.27 0.0087 31.65 0.0316

0.6 | 147.71 0.0068 37.74 0.0265

0.7 | 201.74 0.0049 61.35 0.0163

0.8 | 309.74 0.0032 145.77 0.00686

TABLE 4. Transmission rate and inter-transmission time
bounds A and 7779 = 1/ are derived via Theorem 4.5;

A and 7719% = 1/\* are derived via simulation.

po > 0. We can, however, compare CSMA and TOD in the presence
of dropouts as presented in this section and we see that the trend is
continued for py > 0 e.g., the requisite intensity for pg = 0.5 is over 216
for TOD and less than 116 for CSMA.

6. CONCLUSION

This chapter presented several general frameworks for emulation-
based design of a general nonlinear control systems with disturbances
that rely upon properties of the network-free system and various prop-
erties of the scheduling protocol used. Our guiding philosophy in the
approach is the following qualitative statement that intuition suggests:
for high enough transmission rates, a scheduling protocol that is guar-
anteed to reduce the network-induced error within a finite amount of
time ought to preserve stability properties of the network-free system.
In particular, this is the case for (a.s.) Lyapunov UGES and UGAS
protocols as well as PEr and a.s. covering protocols.

Quantitatively, the results outlined provide the sharpest bounds for
MATT and expected transmission rate currently known in the literature
for the classes of systems and protocols analyzed and, in some cases,
are the only known results for certain classes of systems and scheduling
protocols.

We qualify this observation by noting that the various protocol prop-
erties, namely, PFEr, Lyapunov UGES and UGES and their stochastic
analogues are not necessarily the finest characterization possible of any
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particular protocol. This is reflected in the disparity between theoret-
ical MATI and transmission rate values and those obtained by simu-
lations. For example, it is known that for LTI systems employing RR
with equidistant inter-transmission times, analytic MATI bounds that
achieve UGES can be computed and, indeed, are as sharp or sharper
than those obtained by any result in this chapter. The aim of this
chapter, however, was to present emulation-type results and design
procedures for the largest class of systems for which results are cur-
rently known and which are useful in practice. To that end, we believe
that this work serves as a useful starting point from which there is still
much scope for improvement.
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