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Abstract—There are many communication imperfections in
networked control systems (NCS) such as varying transmission
delays, varying sampling/transmission intervals, packet loss, com-
munication constraints and quantization effects. Most of the
available literature on NCS focuses on only some of these aspects,
while ignoring the others. In this paper we present a general
framework that incorporates both communication constraints,
varying transmission intervals and varying delays. Based on a
newly developed NCS model including all these network phe-
nomena, we will provide an explicit construction of a continuum
of Lyapunov functions. Based on this continuum of Lyapunov
functions we will derive bounds on the maximally allowable
transmission interval (MATI) and the maximally allowable delay
(MAD) that guarantee stability of the NCS in the presence
of communication constraints. The developed theory includes
recently improved results for delay-free NCS as a special case.
After considering stability, we also study semi-global practical
stability (under weaker conditions) and performance of the NCS
in terms of Lp gains from disturbance inputs to controlled
outputs. The developed results lead to tradeoff curves between
MATI, MAD and performance gains that depend on the used
protocol. These tradeoff curves provide quantitative information
that supports the network designer when selecting appropriate
networks and protocols guaranteeing stability and a desirable
level of performance, while being robust to specified variations in
delays and tranmission intervals. The complete design procedure
will be illustrated using a benchmark example.

Index Terms—Networked control systems, Lyapunov functions,
stability, delays, communication constraints, time scheduling,
protocols, Lp gains.

I. INTRODUCTION

Networked control systems (NCS) have received consid-
erable attention in recent years. The interest for NCS is
motivated by many benefits they offer such as the ease of
maintenance and installation, the large flexibility and the
low cost. However, still many issues need to be resolved
before all the advantages of wired and wireless networked
control systems can be harvested. Next to improvements in the
communication infrastructure itself, there is a need for control
algorithms that can deal with communication imperfections
and constraints. This latter aspect is recognized widely in the
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control community, as evidenced by the many publications
appearing recently, see e.g. the overview papers [23], [47],
[54], [56].

Roughly speaking, the networked-induced imperfections
and constraints can be categorized in five types:

(i) Quantization errors in the signals transmitted over the
network due to the finite word length of the packets;

(ii) Packet dropouts caused by the unreliability of the net-
work;

(iii) Variable sampling/transmission intervals;
(iv) Variable communication delays;
(v) Communication constraints caused by the sharing of the

network by multiple nodes and the fact that only one
node is allowed to transmit its packet per transmission.

It is well known that the presence of these network phe-
nomena can degrade the performance of the control loop
significantly and can even lead to instability, see e.g. [10]
for an illustrative example. Therefore, it is of importance
to understand how these phenomena influence the closed-
loop stability and performance properties, preferably in a
quantitative manner. Unfortunately, much of the available
literature on NCS considers only some of above mentioned
types of network phenomena, while ignoring the other types.
There are, for instance, systematic approaches that analyse
stability of NCSs subject to only one of these network-induced
imperfections. Indeed, the effects of quantization are studied
in [3], [12], [20], [22], [28], [36], [45], of packet dropouts in
[41], [42], of time-varying transmission intervals and delays in
[14], [32], and [10], [16], [24], [27], [35], [55], respectively,
and of communication constraints in [2], [11], [26], [40].

Since in any practical communication network all afore-
mentioned network-induced imperfections are present, there
is a need for analysis and synthesis methods including all
these imperfections. This is especially of importance, because
the design of a NCS often requires tradeoffs between the
different types. For instance, reducing quantization errors (and
thus transmitting larger or more packets) typically results in
larger transmission delays. To support the designers in making
these tradeoffs, tools are needed that provide quantitative in-
formation on the consequences of each of the possible choices.
However, less results are available that study combinations of
these imperfections. References that simultaneously consider
two types of network-induced limitations are given in Table
I. Moreover, [37] consider imperfections of type (i), (iii),
(v), [8], [33], [34] study simultaneously type (ii), (iii), (iv),
[38] focusses on type (ii), (iii), (v) and [15] incorporates
type (i), (ii) and (iv). In addition some of the approaches
mentioned in Table I that study varying transmission intervals
and/or varying communication delays can be extended to



include type (ii) phenomena as well by modeling dropouts as
prolongations of the maximal transmission interval or delay
(cf. also Remark II.4 below).

TABLE I
REFERENCES THAT STUDY MULTIPLE NETWORKED INDUCED

IMPERFECTIONS SIMULTANEOUSLY.

& (iv) (v)

(i) [29]
(ii) [9], [18], [31]
(iii) [25], [48] [5], [13], [39], [44], [51], [52]

Another paper that studies three different types of network
imperfections is written by Chaillet and Bicchi [6]. This paper
studies NCS involving both variable delays, variable trans-
mission intervals and communication constraints, and uses
a method for delay compensation. The delay compensation
is based on sending a larger control packet to the plant
containing not just one control value at one particular time
instant, but containing a control signal valid for a given
future time horizon. For this particular control scheme, [6]
provides bounds on the tolerable delays and transmission
intervals such that stability of the NCS is guaranteed. Also
in this paper we will study NCS corrupted by varying delays,
varying transmission intervals and communication constraints,
while packet dropouts can be included as well (in the way
explained in Remark II.4 below). In other words, this paper
considers networked-induced imperfections of type (iii), (iv)
and (v). After developing a novel NCS model incorporating all
these types of network phenomena, we will present allowable
bounds on delays and transmission intervals guaranteeing both
stability and performance of the NCS. However, in contrast
with [6], we consider the more basic emulation approach in
the spirit of [5], [11], [38], [39], [51], [52], which encom-
passes no specific delay compensation schemes. The work
in [6] is of interest, as it aims at allowing larger delays by
including specific delay compensation schemes, at the cost of
sending larger control-packets and requiring time-stamping of
messages. The features of compensation and time-stamping of
messages are not needed in our framework. Another distinction
with [6] is related to the admissible protocols that schedule
which node is allowed to transmit its packet at a transmission
time. Our work applies for all protocols satisfying the UGES
property (see below for an exact definition) and not only for
so-called invariably UGES protocols (cf. [6]), which exclude
the commonly used Round-Robin (RR) protocol.

One of the main contributions of this paper is that we
explicitly construct a continuum of Lyapunov functions based
on the standard delay-free conditions as adopted in [5], [11],
[38], [39], [51], [52]. This continuum of Lyapunov functions
leads to tradeoff curves between the maximally allowable
transmission interval (MATI) and the maximally allowable
delay (MAD) guaranteeing stability of the NCS. These tradeoff
curves will depend on the specific communication protocol
used, so that they even allow for the comparison of different
protocols. In addition to stability, which is only a basic prop-
erty that has to be satisfied by the control loop, there are often
additional requirements with respect to the performance of the

NCS. This paper also studies the performance in terms of Lp
gains between specific exogenous inputs (e.g. disturbances)
and controlled outputs of the system. We will show how Lp
performance of the NCS depends on the MATI, the MAD
and the protocol used, leading to tradeoff curves as well. This
design methodology and the method to compute the tradeoff
curves will be demonstrated on the case study of the batch
reactor that has developed over the years as a benchmark
system for NCS, see e.g. [5], [38], [39]. Next to stability and
Lp performance, also semiglobal practical stability results will
be presented that can be obtained under weaker conditions.

The paper is organized as follows. The current section will
end with introducing some notational conventions and con-
cepts. Next, in Section II we present a general NCS modeling
framework that extends the NCS models in [5], [11], [38],
[39], [51], [52] to include both communication constraints as
well as varying transmission delays and transmission intervals.
In Section III we will transform this new NCS model into the
hybrid system framework as introduced in [17] as this will
facilitate further analysis. Also the stability and performance
concepts as used in this paper are defined in this section.
In Section IV we will derive the Lyapunov-based conditions
that determine both the maximally allowable transmission
interval (MATI) and the maximally allowable delay (MAD)
guaranteeing global asymptotic stability and Lp performance.
We also present the results on semiglobal practical stability
in this section. In section V we show how the Lyapunov
functions can be constructed on the basis of the widely adopted
non-delay conditions in [5], [11], [38], [39], [51], [52] and
show that the non-delay case is a particular case of general
framework. To demonstrate how the developed methods can be
used for explicitly computing MATI and MAD guaranteeing
stability or certain Lp performance, we apply the framework
to the benchmark problem of the batch reactor [5], [38], [39].
Finally, we state the conclusions and our ideas for future work.

The following notational conventions will be used in this
paper. N will denote all nonnegative integers, R denotes the
field of all real numbers and R≥0 denotes all nonnegative reals.
By | · | and 〈·, ·〉 we denote the Euclidean norm and the usual
inner product of real vectors, respectively. For a number of real
vectors (a1, . . . , aM ) with ai ∈ Rni , we denote the column
vector (a>1 , . . . , a

>
M )> obtained by stacking the vectors ai,

i = 1, . . . ,M on top of each other by (a1, . . . , aM ). For a
symmetric matrix A, λmax(A) denotes the largest eigenvalue
of A. By ∨ and ∧ we denote the logical ‘or’ and ‘and,’
respectively. A function α : R≥0 → R≥0 is said to be of class
K if it is continuous, zero at zero and strictly increasing. It is
said to be of class K∞ if it is of class K and it is unbounded.
A function β : R≥0×R≥0 → R≥0 is said to be of class KL if
β(·, t) is of class K for each t ≥ 0 and β(s, ·) is nonincreasing
and satisfies limt→∞ β(s, t) = 0 for each s ≥ 0. A function
β : R≥0 × R≥0 × R≥0 → R≥0 is said to be of class KLL if,
for each r ≥ 0, β(·, r, ·) and β(·, ·, r) belong to class KL. We
write exp(·) for the standard exponential function.

We recall now some definitions given in [17] that will
be used for developing a hybrid model of a NCS later. For
the motivation and more details on these definitions, one can
consult [17].



Definition I.1 A compact hybrid time domain is a set D =⋃J−1
j=0 ([tj , tj+1], j) ⊂ R≥0 × N with J ∈ N>0 and 0 = t0 ≤

t1 · · · ≤ tJ . A hybrid time domain is a set D ⊂ R≥0 × N≥0

such that D ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time
domain for each (T, J) ∈ D. �

Definition I.2 A hybrid trajectory is a pair (dom ξ, ξ)
consisting of hybrid time domain dom ξ and a function ξ
defined on dom ξ that is absolutely continuous in t on (dom
ξ) ∩ (R≥0 × {j}) for each j ∈ N. �

Definition I.3 For the hybrid system H given by the open
state space Rn, an input space Rnw and the data (F,G,C,D),
where F : Rn × Rnw → Rn is continuous, G : Rn → Rn is
locally bounded, and C and D are subsets of Rn, a hybrid
trajectory (dom ξ, ξ) with ξ : dom ξ → Rn is a solution to H
for a locally integrable input function w : R≥0 → Rnw if

1) For all j ∈ N and for almost all t ∈ Ij := {t |
(t, j) ∈ dom ξ}, we have ξ(t, j) ∈ C and ξ̇(t, j) =
F (ξ(t, j), w(t)).

2) For all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, we
have ξ(t, j) ∈ D and ξ(t, j + 1) = G(ξ(t, j)).

Hence, the hybrid systems that we consider are of the form:

ξ̇(t, j) = F (ξ(t, j), w(t)) ξ(t, j) ∈ C
ξ(tj+1, j + 1) = G(ξ(tj+1, j)) ξ(tj+1, j) ∈ D .

We sometimes omit the time arguments and write:

ξ̇ = F (ξ, w), when ξ ∈ C, ξ+ = G(ξ), when ξ ∈ D,
(1)

where we denoted ξ(tj+1, j + 1) as ξ+. We also note that
typically C ∩ D 6= ∅ and, in this case, if ξ(0, 0) ∈ C ∩ D
we have that either a jump or flow is possible, the latter only
if flowing keeps the state in C. Hence, the hybrid model (1)
may have non-unique solutions.

In addition, for p ∈ N, p ≥ 1, we introduce the Lp norm
of a function ξ defined on a hybrid time domain domξ =⋃J−1
j=0 ([tj , tj+1], j ) with J possibly ∞ and/or tJ =∞, by

‖ξ‖p =



J−1∑

j=0

∫ tj+1

tj

|ξ(t, j)|pdt




1
p

(2)

provided the right-hand side exists and is finite. In case the
‖ξ‖p norm exists and is finite, we say that ξ ∈ Lp. Note that
this definition is essentially identical to the usual Lp norm in
case a function is defined on a subset of R≥0.

II. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model that will be used
to describe NCS including both communication constraints as
well as varying transmission intervals and transmission delays.
This model will form an extension of the NCS models used
before in [38], [39] that were motivated by the work in [52].
All these previous models did not include transmission delays.
We consider the continuous-time plant

ẋp = fp(xp, û, w), y = gp(xp) (3)

that is sampled. Here, xp ∈ Rnp denotes the state of the plant,
û ∈ Rnu denotes the most recent control values available at
the plant, w ∈ Rnw is a disturbance input and y ∈ Rny is the
output of the plant. The controller1 is given by

ẋc = fc(xc, ŷ, w), u = gc(xc), (4)

where the variable xc ∈ Rnc is the state of the controller,
ŷ ∈ Rny is the most recent output measurement of the
plant that is available at the controller and u ∈ Rnu denotes
the control input. The functions fp, fc are assumed to be
continuous and gp and gc are assumed to be continuously
differentiable. At times tsi , i ∈ N, (parts of) the input u at
the controller and/or the output y at the plant are sampled
and sent over the network. The tranmission/sampling times
satisfy 0 ≤ ts0 < ts1 < ts2 < . . . and there exists a
δ > 0 such that the tranmission intervals tsi+1 − tsi satisfy
δ ≤ tsi+1− tsi ≤ τmati for all i ∈ N, where τmati denotes the
maximally allowable transmission interval (MATI). At each
transmission time tsi , i ∈ N, the protocol determines which
of the nodes j ∈ {1, 2, . . . , l} is granted access to the network.
Each node corresponds to a collection of sensors or actuators.
The sensors/actuators corresponding to the node that is granted
access collects their values of the entries in y(tsi) or u(tsi) that
will be sent over the communication network. They will arrive
after a transmission delay of τi time units at the controller or
actuator. This results in updates of the corresponding entries
in ŷ or û at times tsi + τi, i ∈ N. The situation described
above is illustrated for y and ŷ in Fig. 1.

lem.

II. N OTATIONAL CONVENTIONS

N will denote all nonnegative integers,R denotes the field
of all real numbers andR≥0 denotes all nonnegative reals.
By | · | and〈·, ·〉 we denote the Euclidean norm and the usual
inner product of real vectors, respectively. For a number of
real vectors(a1, . . . , aM ) with ai ∈ Rni , we denote the
column vector(a⊤1 . . . a⊤M )⊤ obtained by stacking the vectors
ai, i = 1, . . . ,M on top of each other by(a1, . . . , aM ). For a
symmetric matrixA, λmax(A) denotes the largest eigenvalue
of A. By ∨ and ∧ we denote the logical ‘or’ and ‘and,’
respectively. A functionα : R≥0 → R≥0 is said to be of
classK if it is continuous, zero at zero and strictly increasing.
It is said to be of classK∞ if it is of class K and it is
unbounded. A functionβ : R≥0×R≥0 → R≥0 is said to be
of classKL if β(·, t) is of classK for eacht ≥ 0 andβ(s, ·)
is nonincreasing and satisfieslimt→∞ β(s, t) = 0 for each
s ≥ 0. A function β : R≥0 × R≥0 × R≥0 → R≥0 is said to
be of classKLL if, for each r ≥ 0, β(·, r, ·) and β(·, ·, r)
belong to classKL.

We recall now some definitions given in [5] that will be
used for developing a hybrid model of a NCS later.

Definition II.1 A compact hybrid time domainis a setD =⋃J−1
j=0 ([tj , tj+1], j) ⊂ R≥0×N with J ∈ N≥0 and0 = t0 ≤

t1 · · · ≤ tJ . A hybrid time domainis a setD ⊂ R≥0 ×N≥0

such thatD∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time
domain for each(T, J) ∈ D. �

Definition II.2 A hybrid trajectory is a pair (domξ, ξ)
consisting of hybrid time domain domξ and a functionξ
defined on domξ that is absolutely continuous int on (dom
ξ) ∩ (R≥0 × {j}) for eachj ∈ N. �

Definition II.3 For the hybrid systemH given by the open
state spaceRn and the data(F,G,C,D), whereF : Rn →
Rn is continuous,G : Rn → Rn is locally bounded, andC
andD are subsets ofRn, a hybrid trajectory (domξ, ξ) with
ξ : dom ξ → Rn is a solution toH if

1) For all j ∈ N and for almost allt ∈ Ij := {t | (t, j) ∈
dom ξ}, we haveξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j)).

2) For all (t, j) ∈ dom ξ such that(t, j + 1) ∈ dom ξ, we
haveξ(t, j) ∈ D andξ(t, j + 1) = G(ξ(t, j)).

Hence, the hybrid systems that we consider are of the form:

ξ̇(t, j) = F (ξ(t, j)) ξ(t, j) ∈ C

ξ(tj+1, j + 1) = G(ξ(tj+1, j)) ξ(tj+1, j) ∈ D .

We sometimes omit the time arguments and write:

ξ̇ = F (ξ), whenξ ∈ C, ξ+ = G(ξ), whenξ ∈ D, (1)

where we denotedξ(tj+1, j + 1) asξ+.

Time
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Fig. 1. Illustration of a typical evolution ofy and ŷ.

III. NCS MODEL AND PROBLEM STATEMENT

In this section, we introduce the model that will be used
to describe NCSs including both communication constraints
as well as varying transmission intervals and transmission
delays. This model will form an extension of the NCS models
used before in [10] that were motivated by the work in
[13]. All these previous models did not include transmission
delays. We consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp) (2)

that is sampled. Here,xp ∈ Rnp denotes the state of the
plant, û ∈ Rnu denotes the most recent control values
available at the plant andy ∈ Rny is the output of the plant.
The controller is given by

ẋc = fc(xc, ŷ), u = gc(xc), (3)

where the variablexc ∈ Rnc is the state of the controller,
ŷ ∈ Rny is the most recent output measurement of the plant
that is available at the controller andu ∈ Rnu denotes the
control input. At timestsi

, i ∈ N, (parts of) the inputu at
the controller and/or the outputy at the plant are sampled
and transmitted over the network. The transmission times
satisfy 0 ≤ ts0 < ts1 < ts2 < . . . and there exists a
δ > 0 such that the transmission intervalstsi+1 − tsi

satisfy
δ ≤ tsi+1 − tsi

≤ τmati for all i ∈ N, whereτmati denotes
the maximally allowable transmission interval (MATI). At
each transmission timetsi

, i ∈ N, the protocol determines
which of the nodesj ∈ {1, 2, . . . , l} is granted access to the
network. Each node corresponds to a collection of sensors or
actuators. The sensors/actuators corresponding to the node,
which is granted access, collect their values iny(tsi

) or
u(tsi

) that will be sent over the communication network.
They will arrive after a transmission delay ofτi time units
at the controller or actuator. This results in updates of the
corresponding entries in̂y or û at timestsi

+ τi, i ∈ N. The
situation described above is illustrated fory and ŷ in Fig. 1.

It is assumed that there are bounds on the maximal delay
in the sense thatτi ∈ [0, τmad], i ∈ N, where0 ≤ τmad ≤
τmati is the maximally allowable delay (MAD). To be more
precise, we adopt the following standing assumption.

Standing Assumption III.1 The transmission times satisfy
δ ≤ tsi+1 − tsi

< τmati, i ∈ N and the delays satisfy0 ≤
τi ≤ min{τmad, tsi+1 − tsi

}, i ∈ N, whereδ ∈ (0, τmati] is
arbitrary.

The latter condition implies that each transmitted packet
arrives before the next sample is taken. The updates satisfy

ŷ((tsi
+ τi)+) = y(tsi

) + hy(i, e(tsi
))

û((tsi
+ τi)+) = u(tsi

) + hu(i, e(tsi
))

Fig. 1. Illustration of a typical evolution of y and ŷ.

It is assumed that there are bounds on the maximal delay in
the sense that τi ∈ [0, τmad], i ∈ N, where 0 ≤ τmad ≤ τmati
is the maximally allowable delay (MAD). To be more precise,
we adopt the following standing assumption.

Standing Assumption II.1 The transmission times satisfy
δ ≤ tsi+1 − tsi < τmati, i ∈ N and the delays satisfy
0 ≤ τi ≤ min{τmad, tsi+1 − tsi}, i ∈ N, where δ ∈ (0, τmati]
is arbitrary.

The latter condition implies that each transmitted packet
arrives before the next sample is taken. This assumption
indicates that we are considering the so-called small delay
case as opposed to the large delay case, where delays can
be larger than the transmission interval. The inequalities
τi ≤ tsi+1 − tsi and τmad ≤ τmati can be taken non-strict
with the understanding that in case the update instant tsi + τi
coincides with the next transmission instant tsi+1 , the update

1Extensions of the theory presented below to the case of time-dependent
systems (3) and time-dependent controllers (4) are straightforward.



is performed before the next sample is taken. The updates at
tsi + τi satisfy

ŷ((tsi + τi)+) = y(tsi) + hy(i, e(tsi))
û((tsi + τi)+) = u(tsi) + hu(i, e(tsi)) (5)

where e denotes the vector (ey, eu) with ey := ŷ − y and
eu := û − u. Hence, e ∈ Rne with ne = ny + nu. If the
NCS has l links, then the error vector e can be partitioned as
e = (e1, e2, . . . , el). The functions hy and hu are now update
functions that are related to the protocol that determines on
the basis of i and the networked error e(tsi) which node is
granted access to the network. Typically when the j-th node
gets access to the network at some transmission time tsi we
have that the corresponding part in the error vector has a jump
at tsi+τi. In most situations, the jump will actually be to zero,
since we assume that the quantization effects are negligible.
For instance, when yj is sampled at time tsi , then we have
that hy,j(i, e(tsi)) = 0. However, we allow for more freedom
in the protocols by allowing general functions h. See [38],
[39] for more details. We will refer to h = (hy, hu) as the
protocol.

In between the updates of the values of ŷ and û, the network
is assumed to operate in a zero order hold (ZOH) fashion,
meaning that the values of ŷ and û remain constant in between
the updating times tsi + τi and tsi+1 + τi+1 for all i ∈ N:

˙̂y = 0, ˙̂u = 0. (6)

To compute the resets of e at the update times {tsi+τi}i∈N,
we proceed as follows:

ey((tsi + τi)
+) = ŷ((tsi + τi)

+)− y(tsi + τi)

= y(tsi ) + hy(i, e(tsi ))− y(tsi + τi)

= hy(i, e(tsi )) + y(tsi )− ŷ(tsi )︸ ︷︷ ︸
−e(tsi )

+ ŷ(tsi + τi)− y(tsi + τi)︸ ︷︷ ︸
e(tsi+τi)

= hy(i, e(tsi ))− e(tsi ) + e(tsi + τi).

In the third equality we used that ŷ(tsi) = ŷ(tsi + τi) due to
the zero order hold character of the network. We also implicitly
employed our Standing Assumption II.1 as we used that there
always occurs an update before the next sample is taken (tsi +
τi ≤ tsi+1 ).

A similar derivation holds for eu, leading to the following
model for the NCS:
ẋ(t) = f(x(t), e(t), w(t))
ė(t) = g(x(t), e(t), w(t))

}
t ∈ [tsi , tsi+1 ]\{tsi+τi}

(7a)
e((tsi + τi)+) = h(i, e(tsi))− e(tsi) + e(tsi + τi), (7b)

where x = (xp, xc) ∈ Rnx with nx = np + nc, f , g are
appropriately defined functions depending on fp, gp, fc and
gc and h = (hy, hu). See [38] for the explicit expressions of
f and g, which also reveal how we use the differentiability
conditions on gc and gp imposed earlier.

Standing Assumption II.2 f and g are continuous and h is
locally bounded. �

Observe that the system

ẋ = f(x, 0, w) (8)

is the closed-loop system (3)-(4) without the network
(i.e. y(t) = ŷ(t) and u(t) = û(t) in (3)-(4)).

The problem that we consider in this paper is formulated
as follows.

Problem II.3 Suppose that the controller (4) was designed for
the plant (3) rendering the closed-loop (3)-(4) (or equivalently,
(8)) stable in some sense. Determine the value of τmati
and τmad so that the NCS given by (7) is stable as well
when the transmission intervals and delays satisfy Standing
Assumption II.1. �

Remark II.4 Of course, there are certain extensions that can
be made to the above setup. The inclusion of packet dropouts
is relatively easy, if one models them as prolongations of the
transmission interval. Indeed, if we assume that there is a
bound δ̄ ∈ N on the maximum number of successive dropouts,
the stability bounds derived below are still valid for the MATI
given by τ ′mati := τmati

δ̄+1
, where τmati is the obtained value for

the dropout-free case. Another extension of the framework in
this paper could be the inclusion of quantization effects. This
step is more involved. It might be based on recent work in
[37] that unifies the areas of networked and quantized control
systems without communication delays. It can be envisioned
that the results presented here can be combined with the
framework in [37] leading to an overall methodology capable
of handling all types of networked phenomena that were
mentioned in the introduction. The specific conditions and
types of quantizers for which this methodology is effective
are subject of future research and some preliminary results
are report in [21]. Another possible extension of interest is
the consideration of the large-delay case (in which the delays
can be larger than the transmission interval). This would
require a more involved NCS model that does not have the
periodicity between transmission and update events as implied
by Standing Assumption II.1. This is a hard problem, which
will be considered in future research. �

III. REFORMULATION IN A HYBRID SYSTEM FRAMEWORK

To facilitate the stability analysis, we transform the above
NCS model into the hybrid system framework as developed in
[17]. This hybrid systems framework was also employed in [5],
where a similar model was obtained without the incorporation
of delays. To do so, we introduce the auxiliary variables s ∈
Rn, κ ∈ N , τ ∈ R≥0 and ` ∈ {0, 1} to reformulate the
model in terms of flow equations and reset equations. The
variable s is an auxiliary variable containing the memory in
(7b) storing the value h(i, e(tsi))−e(tsi) for the update of e at
the update instant tsi + τi, κ is a counter keeping track of the
transmission, τ is a timer to constrain both the transmission
interval as well as the transmission delay2 and ` is a Boolean
keeping track whether the next event is a transmission event
or an update event. To be precise, when ` = 0 the next event
will be related to transmission and when ` = 1 the next event

2We could also have introduced two timers, one corresponding to the
transmission interval and one to the transmission delay. However, it turns out
that the NCS can be described using only one timer, which has the advantage
of resulting in a more compact hybrid model.



will be an update. The Boolean ` will be used to guarantee in
the model below that the transmission and update events are
alternating in the sense that before a next sample is taking the
previous update is implemented in the NCS.

The hybrid system HNCS is now given by the flow equa-
tions

ẋ = f(x, e, w)
ė = g(x, e, w)
ṡ = 0
τ̇ = 1
κ̇ = 0
˙̀ = 0





(` = 0 ∧ τ ∈ [0, τmati])∨
∨(` = 1 ∧ τ ∈ [0, τmad])

(9)

and the reset equations are obtained by combining the “trans-
mission reset relations,” active at the transmission instants
{tsi}i∈N, and the “update reset relations”, active at the update
instants {tsi + τi}i∈N, given by

(x+, e+, s+, τ+, κ+, `+) = G(x, e, s, τ, κ, `), when
(` = 0 ∧ τ ∈ [δ, τmati]) ∨ (` = 1 ∧ τ ∈ [0, τmad]) (10)

with the mapping G given by the transmission resets (when
` = 0)

G(x, e, s, τ, κ, 0) = (x, e, h(κ, e)− e, 0, κ+ 1, 1) (11)

and the update resets (when ` = 1)

G(x, e, s, τ, κ, 1) = (x, s+ e,−s− e, τ, κ, 0). (12)

Two comments on this model are in order. First of all, the
role of δ > 0 is to exclude (instantaneous Zeno) solutions
to HNCS satisfying x(0, j) = x(0, 0), τ(0, j) = τ(0, 0) and
κ(0, j) = κ(0, 0) + p for j = 2p or j = 2p − 1 with p ∈ N,
when `(0, 0) = 0. Also when `(0, 0) = 1 similar solutions
exist that are only resetting (sometimes called ‘livelock’ in
hybrid systems theory [50]). However, δ > 0 can be taken
arbitrarily small to still allow for small transmission intervals.

Secondly, the choice for s+ when ` = 1 is irrelevant from
a modeling point of view. However, it was selected here as
s+ = −s − e, because it will simplify the analysis later. By
taking ξ = (x, e, s, τ, κ, `) the hybrid system HNCS above is
in the form (1).

Definition III.1 For the hybrid system HNCS with w = 0,
the set given by
E := {(x, e, s, τ, κ, `) | x = 0, e = s = 0} is said to be uni-
formly globally asymptotically stable (UGAS) if there exists a
function β ∈ KLL such that, for each 0 < δ ≤ τmati , and any
initial condition x(0, 0) ∈ Rnx , e(0, 0) ∈ Rne , s(0, 0) ∈ Rne ,
τ(0, 0) ∈ R≥0, κ(0, 0) ∈ N, `(0, 0) ∈ {0, 1} with3 (`(0, 0) =
0 ∧ τ(0, 0) ∈ [0, τmati]) ∨ (`(0, 0) = 1 ∧ τ(0, 0) ∈ [0, τmad]),
all corresponding solutions satisfy

|(x(t, j), e(t, j), s(t, j))| ≤ β (|(x(0, 0), e(0, 0), s(0, 0))| , t, δj)
(13)

for all (t, j) in the solution’s domain. The set E is uniformly
globally exponentially stable (UGES) if β can be taken of the

3Note that the next condition is just saying that ξ(0, 0) ∈ C ∪ D in the
terminology of (1).

form β(r, t, k) = Mr exp(−%(t + k)) for some M ≥ 0 and
% > 0. �

Remark III.2 The factor δ multiplying j in the right-hand
side of (13) is motivated by the fact that for small values of
δ > 0 solutions of HNCS exist that have many resets without
t progressing too fast. Actually, the limit case δ = 0 has
‘livelock’ solutions that are only resetting (with t remaining 0
and j −→∞) as discussed above. The δ scales the right-hand
side of (13) for this effect. �

We also introduce the concept of uniform semiglobal prac-
tical asymptotical stability.

Definition III.3 For the hybrid system HNCS with w = 0,
the set E is said to be uniformly semiglobally practically
asymptotically stable (USPAS) with respect to τmati and τmad,
if there exists β ∈ KLL and for any pair of positive numbers
(ε,∆) such that there exist τmati > 0 and 0 < τmad ≤ τmati
such that for each 0 < δ ≤ τmati, each initial condition
x(0, 0) ∈ Rnx , e(0, 0) ∈ Rne , s(0, 0) ∈ Rne , τ(0, 0) ∈ R≥0,
κ(0, 0) ∈ N, `(0, 0) ∈ {0, 1} with (`(0, 0) = 0 ∧ τ(0, 0) ∈
[0, τmati])∨ (`(0, 0) = 1∧ τ(0, 0) ∈ [0, τmad]), |x(0, 0)| ≤ ∆,
|e(0, 0)| ≤ ∆, |s(0, 0)| ≤ ∆ and each corresponding solution
we have

|(x(t, j), e(t, j), s(t, j))| ≤
max {β (|(x(0, 0), e(0, 0), s(0, 0))| , t, δj) , ε} , (14)

for all (t, j) in the solution’s domain. �

In the presence of disturbance inputs w in HNCS we might
be interested in reducing its influence on a particular controlled
output variable

z = q(x,w) (15)

in terms of the induced Lp gain, as formally defined below.
The hybrid model HNCS expanded with the output equation
(15) is denoted by HzNCS .

Definition III.4 Consider p ∈ N with p ≥ 1 and let θ ≥ 0 be
given. The hybrid system HzNCS is said to be Lp stable with
gain θ, if there is a K∞-function S such that for any 0 < δ ≤
τmati, any input w ∈ Lp and any initial condition x(0, 0) ∈
Rnx , e(0, 0) ∈ Rne , s(0, 0) ∈ Rne , τ(0, 0) ∈ R≥0, κ(0, 0) ∈
N, `(0, 0) ∈ {0, 1} with (`(0, 0) = 0 ∧ τ(0, 0) ∈ [0, τmati]) ∨
(`(0, 0) = 1∧τ(0, 0) ∈ [0, τmad]), each corresponding solution
to HzNCS satisfies

‖z‖p ≤ S (|(x(0, 0), e(0, 0), s(0, 0))|) + θ‖w‖p. (16)

IV. STABILITY AND PERFORMANCE ANALYSIS

In this section we focus on the analysis of UGAS and
UGES, USPAS, and Lp stability.



A. Stability analysis

In order to guarantee UGAS or UGES, we assume the
existence of a Lyapunov function W̃ (κ, `, e, s) for the reset
equations (11) and (12) satisfying

W̃ (κ+ 1, 1, e, h(κ, e)− e) ≤ λW̃ (κ, 0, e, s) (17a)

W̃ (κ, 0, s+ e,−s− e) ≤ W̃ (κ, 1, e, s) (17b)

for all κ ∈ N and all s, e ∈ Rne and the bounds

β
W

(|(e, s)|) ≤ W̃ (κ, `, e, s) ≤ βW (|(e, s)|) (18)

for all κ ∈ N, ` ∈ {0, 1} and s, e ∈ Rne for some functions
β
W

and βW ∈ K∞ and 0 ≤ λ < 1.
In Section V we will show how a function W̃ satisfying

(17)-(18) can be derived from the generally accepted condi-
tions on the protocol h as used for the delay-free case in [5],
[38]. To solve Problem II.3, we extend (17) and (18) to the
following condition.

Condition IV.1 There exist a function W̃ : N×{0, 1}×Rne×
Rne → R≥0 with W̃ (κ, `, ·, ·) locally Lipschitz for all κ ∈ N
and ` ∈ {0, 1}, a locally Lipschitz function Ṽ : Rnx → R≥0,
K∞-functions β

V
, βV , β

W
and βW , continuous functions

Hi : Rnx → R≥0, positive definite functions ρi and σi and
constants Li ≥ 0, γi > 0, for i = 0, 1, and 0 ≤ λ < 1 such
that:
• for all κ ∈ N and all s, e ∈ Rne (17) holds and (18) holds

for all ` ∈ {0, 1};
• for all κ ∈ N, ` ∈ {0, 1}, s ∈ Rne , x ∈ Rnx and almost

all e ∈ Rne it holds that
〈
∂W̃ (κ, `, e, s)

∂e
, g(x, e, 0)

〉
≤ L`W̃ (κ, `, e, s) +H`(x);

(19)
• for all κ ∈ N, ` ∈ {0, 1}, s, e ∈ Rne and almost all
x ∈ Rnx

〈∇Ṽ (x), f(x, e, 0)〉 ≤ −ρ`(|x|)−H2
` (x)

− σ`(W̃ (κ, `, e, s)) + γ2
` W̃

2(κ, `, e, s) (20)

and
β
V

(|x|) ≤ Ṽ (x) ≤ βV (|x|). (21)

The inequalities (19) and (20) are similar in nature to the
delay-free situation as studied in [5] and are directly related
to the L2 gain conditions from W̃ to H` as adopted in [38].
Although these conditions may seem difficult to obtain at
first sight, this is not the case. We will demonstrate this in
Section VI, where the complete computational set-up for de-
termining the parameters in the above conditions is provided.
See also Remark V.2 for a more detailed discussion.

Consider now the differential equations

φ̇0 = −2L0φ0 − γ0(φ2
0 + 1) (22a)

φ̇1 = −2L1φ1 − γ0(φ2
1 +

γ2
1

γ2
0

), (22b)

where L` ≥ 0 and γ` > 0, ` = 0, 1 are the real constants
as given in Condition IV.1. Observe that the solutions to these

differential equations are strictly decreasing as long as φ`(τ) ≥
0, ` = 0, 1.

Theorem IV.2 Consider the system HNCS that satisfies Con-
dition IV.1. Suppose τmati ≥ τmad ≥ 0 satisfy

φ0(τ) ≥ λ2φ1(0) for all 0 ≤ τ ≤ τmati (23a)
φ1(τ) ≥ φ0(τ) for all 0 ≤ τ ≤ τmad (23b)

for solutions φ0 and φ1 of (22) corresponding to certain
chosen initial conditions φ`(0) > 0, ` = 0, 1, with φ1(0) ≥
φ0(0) ≥ λ2φ1(0) ≥ 0, φ0(τmati) > 0 and λ as in Condi-
tion IV.1. Then for the system HNCS with w = 0 the set E is
UGAS. If in addition, there exist strictly positive real numbers
b1, b2, c1, c2 and c3 such that β

W
(r) = b1r, βW (r) = b2r,

β
V

(r) = c1r
2, βV (r) = c2r

2, ρi(r) ≥ c3r2 and σi(r) ≥ c3r2,
i = 0, 1, then this set is UGES. �

Proof: The solutions φ` to the differential equations (22)
are scaled as φ0 = φ̃0 and φ1 = γ1

γ0
φ̃1 for new functions φ̃`,

` = 0, 1. The differential equations (22) and the conditions
(23) transform into

˙̃
φ` = −2L`φ̃` − γ`(φ̃2

` + 1), ` = 0, 1, (24)

and

γ0φ̃0(τ) ≥ λ2γ1φ̃1(0) for all τ ∈ [0, τmati] (25a)

γ1φ̃1(τ) ≥ γ0φ̃0(τ) for all τ ∈ [0, τmad]. (25b)

We consider now the function

U(ξ) = Ṽ (x) + γ`φ̃`(τ)W̃ 2(κ, `, e, s) (26)

and show that this constitutes a suitable Lyapunov function
for the system HNCS , which can be used to conclude UGAS
and UGES under the stated conditions.

Below, by abuse of notation, we consider
the quantity 〈∇U(ξ), F (ξ, w)〉 with F (ξ, w) :=
(f(x, e, w), g(x, e, w), 0, 0, 1, 0) as in (9) even though
W̃ is not differentiable with respect to κ and `. This is
justified since the components in F (ξ, w) corresponding to
κ and ` are zero. We will first show that U(ξ+) ≤ U(ξ)
whenever the system HNCS with w = 0 resets.

When ` = 0 and a jump occurs, we have that τ ∈ [0, τmati]
and obtain, using (11), that

U(ξ+) = Ṽ (x) + γ1φ̃1(0)W̃ 2(κ+ 1, 1, e, h(κ, e)− e)
(17a),(25a)
≤ Ṽ (x) + γ0φ̃0(τ)W̃ 2(κ, 0, e, s) = U(ξ).

Similarly, when ` = 1 we have that τ ∈ [0, τmad] and obtain,
using (12),

U(ξ+) =Ṽ (x) + γ0φ̃0(τ)W̃ 2(κ, 0, s+ e,−s− e)
(17b),(25b)
≤ Ṽ (x) + γ1φ̃1(τ)W̃ 2(κ, 1, e, s) = U(ξ).



We also have, for all (τ, κ, `) and almost all (x, e, s), that

〈∇U(ξ), F (ξ, 0) 〉 ≤ −ρ`(|x|)− σ`(W̃ (κ, `, e, s))−H2
` (x)

+γ2
` W̃

2(κ, `, e, s)
+2γ`φ̃`(τ)W̃ (κ, `, e, s)[L`W̃ (κ, `, e, s) +H`(x)]
−γ`W̃ 2(κ, `, e, s)[2L`φ̃`(τ) + γ`(φ̃2

`(τ) + 1)]
≤ −ρ`(|x|)− σ`(W̃ (κ, `, e, s))−H2

` (x)
+2γ`φ̃`(τ)W̃ (κ, `, e, s)H`(x)− γ2

` W̃
2(κ, `, e, s)φ̃2

`(τ)
≤ −ρ`(|x|)− σ`(W̃ (κ, `, e, s)) .

The above proves that U forms a Lyapunov function for the
system HNCS with w = 0 and UGAS and UGES follows now
using standard Lyapunov arguments as are provided in [5] for
the delay-free case. This completes the proof.

From the above theorem quantitative numbers for τmati and
τmad can be obtained by constructing the solutions to (22)
for certain initial conditions. By computing the τ value of
the intersection of φ0 and the constant line λ2φ1(0) provides
τmati according to (23a), while the intersection of φ0 and
φ1 gives a value for τmad due to (23b). Different values
of the initial conditions φ0(0) and φ1(0) lead, of course, to
different solutions φ0 and φ1 of the differential equations
(22) and thus also to different Lyapunov functions in (26).
Hence, a continuum of Lyapunov functions is obtained by
varying the initial conditions φ0(0) and φ1(0). Moreover,
each different choice of φ0(0) and φ1(0) provides different
τmati and τmad. As a result, tradeoff curves between τmati
and τmad can be obtained that indicate when stability of the
NCS is still guaranteed. This will be illustrated in Section VI,
where the complete analysis framework will be illustrated on
a benchmark example.

Remark IV.3 The existence of strictly positive τmati and
τmad such that (23) holds follows from 0 ≤ λ < 1 in
(17) as this implies the existence of φ`(0) > 0, ` = 0, 1
with φ1(0) > φ0(0) > λ2φ1(0). Moreover, when using
φ0(0) = φ1(0) = λ−1 in case λ 6= 0, we recover the explicit
formula for the MATI obtained in [5] (which improved earlier
results in [38], [39]) in the sense that we have

τmati =





1
L0r

arctan( r(1−λ)

2 λ
1+λ (

γ0
L0

)+1+λ
), γ0 > L0

1−λ
L0(1+λ) , γ0 = L0

1
L0r

arctanh( r(1−λ)

2 λ
1+λ (

γ0
L0

)+1+λ
), γ0 < L0,

(27)

where r =
√
|( γ0L0

)2 − 1|. Hence, for the delay-free case
(τmad = 0) we recover the results in [5] as a special case.

B. Uniform semiglobal practical stability

Under a version of Condition IV.1, which is weaker at var-
ious points, we can obtain semi-global practical asymptotical
stability results with respect to τmati and τmad for the zero-
input system of HNCS (w = 0).

Condition IV.4 There are a function W̃ : N×{0, 1}×Rne ×
Rne → R≥0 with W̃ (κ, `, ·, ·) locally Lipschitz for all κ ∈ N
and ` ∈ {0, 1}, K∞-functions β

W
, βW , α̃, and 0 ≤ λ < 1 s.t.

• for all κ ∈ N and all s, e ∈ Rne (17) holds and (18) holds
for all ` ∈ {0, 1};

• for all κ ∈ N, ` ∈ {0, 1}, all s ∈ Rne and almost all
e ∈ Rne it holds that∣∣∣∣∣

∂W̃ (κ, `, e, s)
∂e

∣∣∣∣∣ ≤ α̃(|(e, s)|). (28)

• The origin of the networked-free and zero-input system
ẋ = f(x, 0, 0) is globally asymptotically stable.

Theorem IV.5 Consider the system HNCS with w = 0 that
satisfies Condition IV.4. The set E is USPAS with respect to
τmati and τmad. �

Proof: We will prove the USPAS property with respect
to τmad and τmati considering τmad = τmati. Since ẋ =
f(x, 0, 0) is globally asymptotically stable and f is contin-
uous, we can apply a converse Lyapunov theorem [7] that
yields the existence of a continuously differentiable function
V : Rnx → R≥0 and a %V ∈ K∞ such that

〈∇V (x), f(x, 0, 0)〉 ≤ −%V (|x|). (29)

We consider now the Lyapunov function

U(ξ) = V (x) + exp(− στ

τmati
)W̃ (κ, `, e, s) (30)

using ξ and F (ξ, w) as in the proof of Theorem IV.2 and
taking the constant σ > 0 such that e−σ = λ with λ as in
(17). Now exploiting (17), yields that in case of ` = 0 and
0 ≤ τ ≤ τmati

U(ξ+) = V (x) + W̃ (κ+ 1, 1, e, h(κ, e)− e)
≤ V (x) + exp(−σ)W̃ (κ, 0, e, s)

≤ V (x) + exp(
−στ
τmati

)W̃ (κ, 0, e, s) = U(ξ).

In case of ` = 1 and 0 ≤ τ ≤ τmad = τmati, we have

U(ξ+) = V (x) + exp(
−στ
τmati

)W̃ (κ+ 1, 0, s+ e,−s− e)

≤ V (x) + exp(
−στ
τmati

)W̃ (κ, 1, e, s) = U(ξ).

Finally, considering the evolution of U along the flow of
HNCS with w = 0 gives using (18) and (28) for 0 ≤ τ ≤
τmati = τmad, all x, s, κ, ` and almost all e

〈∇U(ξ), F (ξ, 0)〉 =
〈∇V (x), f(x, 0, 0)〉+ 〈∇V (x), f(x, e, 0)− f(x, 0, 0)〉
+ exp( −σττmati

)
〈
∂W̃ (κ,`,e,s)

∂e , g(x, e, 0)
〉

− σ
τmati

exp( −σττmati
)W̃ (κ, `, e, s)

≤ −%V (|x|)− σ
τmati

exp(−σ)β
W

(|(e, s)|)ϕ(x, e, s),

where

ϕ(x, e, s) :=
〈∇V (x), f(x, e, 0)− f(x, 0, 0)〉+ α̃(|(e, s)|)|g(x, e, 0)|.

Note that ϕ is a continuous function due to the continuous
differentiability of V and the continuity of f and g.
Moreover, ϕ(x, 0, 0) = 0 for all x ∈ Rnx . Using



now Lemma 2.1 in [46] guarantees, for each pair of
strictly positive numbers 0 < δ̄ < ∆̄, the existence
of τmati = τmad > 0 such that for almost all ξ in{
ξ | δ̄ ≤ |(x, e, s)| ≤ ∆̄, τ ∈ [0, τmati], κ ∈ N, ` ∈ {0, 1}

}
it

holds that 〈∇U(ξ), F (ξ, 0)〉 ≤ −0.5%V (|x|)−0.5β
W

(|(e, s)|).
In a similar way as in the proof of Theorem IV.2, the USPAS
property can now be derived by straightforward reasoning.

C. Lp stability analysis

For the Lp stability analysis, we replace Condition IV.1 by
the following.

Condition IV.6 There exist a function W̃ : N×{0, 1}×Rne×
Rne → R≥0 with W̃ (κ, `, ·, ·) locally Lipschitz for all κ ∈ N
and ` ∈ {0, 1}, a locally Lipschitz function Ṽ : Rnx → R≥0,
K∞-functions β

V
, βV , β

W
and βW , continuous functions

Hi : Rnx × Rnw → R≥0, and constants Li ≥ 0, γi > 0,
for i = 0, 1, and 0 ≤ λ < 1 such that:
• for all κ ∈ N and all s, e ∈ Rne (17) holds and (18) holds

for all ` ∈ {0, 1};
• for all κ ∈ N, ` ∈ {0, 1}, s ∈ Rne , x ∈ Rnx , w ∈ Rnw

and almost all e ∈ Rne it holds that
〈
∂W̃ (κ, `, e, s)

∂e
, g(x, e, w)

〉
≤ L`W̃ (κ, `, e, s)+H`(x,w);

(31)
• for all κ ∈ N, ` ∈ {0, 1}, s, e ∈ Rne , w ∈W and almost

all x ∈ Rnx

〈∇Ṽ (x), f(x, e, w)〉 ≤
−H2

` (x,w)γ2
` W̃

2(κ, `, e, s) + µ̃(θp|w|p − |q(x,w)|p)
(32)

for some µ̃ > 0 and θ ≥ 0, and

β
V

(|x|) ≤ Ṽ (x) ≤ βV (|x|). (33)

The main difference between Condition IV.6 and Condi-
tion IV.1 is the presence of the disturbance input w and the
dependence of H` on both w and x instead of on x only.
Moreover, comparing (20) and (32), we observe the additional
term µ̃(θp|w|p − |q(x,w)|p) in the right-hand side of (32),
which is needed to obtain a bound θ on the Lp gain between
w and z.

Theorem IV.7 Consider the system HzNCS that satisfies Con-
dition IV.6. Suppose τmati ≥ τmad ≥ 0 satisfy (23) for
solutions φ0 and φ1 of (22) corresponding to certain initial
conditions φ`(0) > 0, ` = 0, 1, with φ1(0) ≥ φ0(0) ≥
λ2φ1(0) ≥ 0, φ0(τmati) > 0 and λ as in Condition IV.6.
Then the system HzNCS is Lp stable with gain θ. �

Proof: In a similar manner as in the proof of Theo-
rem IV.2, we obtain that the function U in (26) satisfies

U(ξ+) ≤ U(ξ) (34)

whenever there is a reset and

〈∇U(ξ), F (ξ, w) 〉 ≤ µ̃(θp|w|p − |q(x,w)|p) (35)

during the flow of the hybrid system HzNCS . Since µ̃ > 0
we can without loss of generality assume that µ̃ = 1 by
scaling U(ξ) to 1

µ̃U(ξ). Let ξ be a solution to HzNCS with
corresponding output z for initial condition ξ(0, 0) and input
w ∈ Lp. Denote the hybrid time domain of ξ by dom
ξ =

⋃J−1
j=0 ([tj , tj+1], j ) with t = tJ and J possibly ∞ and/or

tJ =∞. Let z be the corresponding output also considered on
dom ξ. Reformulating (34) by using the hybrid time domain
dom ξ gives that for each j = 0, . . . , J − 1 we have

U(ξ(tj+1, j + 1)) ≤ U(ξ(tj+1, j)) (36)

and integrating (35) yields for each (t′, j) ∈ dom ξ and
(t′′, j) ∈ dom ξ with t′ ≤ t′′ that
∫ t′′

t′
|z(t)|pdt ≤ −U(ξ(t′′, j))+U(ξ(t′, j))+θp

∫ t′′

t′
|w(t)|pdt.

(37)
Computing now the Lp norm of z gives

‖z‖pp =
J−1∑

j=0

∫ tj+1

tj

|z(t, j)|pdt

(37)
≤

J−1∑

j=0

[−U(ξ(tj+1, j)) + U(ξ(tj , j))

+ θp
∫ tj+1

tj

|w(t)|pdt
]

= U(ξ(0, 0))− U(ξ(tJ , J − 1)) + θp‖w‖pp

+
J−2∑

j=0

[U(ξ(tj+1, j + 1))− U(ξ(tj+1, j))]

(36)
≤ U(ξ(0, 0)) + θp‖w‖pp ≤ (U(ξ(0, 0))

1
p + θ‖w‖p)p.

As a consequence, we have that ‖z‖p ≤ U(ξ(0, 0))
1
p +θ‖w‖p.

Due to the bounds (33) and (18) on Ṽ and W̃ , respectively, we
can bound U as U(ξ) ≤ αU (|(x, e, s)|) for a suitable αU ∈
K∞. This proves that the system HzNCS is Lp stable with
gain θ, where the K∞ function S in (16) can be taken as
S(r) = (αU (r))

1
p .

Remark IV.8 Essentially, in the above proof we constructed
a so-called storage function [53] given by U as in (26) for
the system HzNCS with supply rate µ̃(θp|w|p − |z|p) during
the flow phases and supply equal to 0 during the resets. In
the analysis of passivity and Lp stability these concepts are
exploited for various classes of systems in, for instance, [4],
[19], [49], [53].

V. CONSTRUCTING LYAPUNOV AND STORAGE FUNCTIONS

In this section we will construct Lyapunov and storage
functions Ṽ and W̃ as in Condition IV.1, Condition IV.6 and
Condition IV.4 from the commonly adopted assumptions in
[5], [38], [39], [51], [52] for the delay-free case. We will
start with constructing Lyapunov and storage functions as in
Condition IV.1 and Condition IV.6, respectively. For the delay-
free case, one considers in [5], [38] protocols satisfying the
following condition:



Condition V.1 The protocol given by h is UGES (uniformly
globally exponentially stable), meaning that there exists a
function W : N × Rne → R≥0 that is locally Lipschitz in
its second argument such that

αW |e| ≤W (κ, e) ≤ αW |e| (38a)
W (κ+ 1, h(κ, e)) ≤ λW (κ, e) (38b)

for constants 0 < αW ≤ αW and 0 < λ < 1. �

Additionally we assume here that

W (κ+ 1, e) ≤ λWW (κ, e) (39)

for some constant4 λW ≥ 1 and that for almost all e ∈ Rne
and all κ ∈ N ∣∣∣∣

∂W

∂e
(κ, e)

∣∣∣∣ ≤M1 (40)

for some constant M1 > 0. For all protocols discussed in
[5], [38], [39], [51], [52] such constants exist. In Lemma V.4
below, we specify appropriate values for these constants in
case of the often used Round Robin (RR) and the Try-Once-
Discard (TOD) protocols (see [38], [52] for their definitions).
We also assume the growth condition on the NCS model (7)

|g(x, e, 0)| ≤ mx(x) +Me|e|, (41)

where mx : Rnx → R≥0, if we are looking for a Lyapunov
function establishing UGAS, and

|g(x, e, w)| ≤ m(x,w) +Me|e|, (42)

where m : Rnx×Rnw → R≥0, if we are looking for a storage
function establishing Lp stability. In both cases Me ≥ 0 is a
constant. Building upon slightly modified conditions as used
for the delay-free case in [5] given by the existence of a locally
Lipschitz continuous function V : Rnx → R≥0 satisfying the
bounds

αV (|x|) ≤ V (x) ≤ αV (|x|) (43)

for some K∞-functions αV and αV , and, in case of construct-
ing a Lyapunov function, the condition

〈∇V (x), f(x, e, 0)〉 ≤ −m2
x(x)−ρ(|x|)+(γ2−ε)W 2(κ, e)

(44)

for almost all x ∈ Rnx and all e ∈ Rne with ρ ∈ K∞, and, in
case of constructing a storage function, the condition

〈∇V (x), f(x, e, w)〉 ≤ −m2(x,w)+

+ γ2W 2(κ, e) + µ(θp|w|p − |q(x,w)|p) (45)

for almost all x ∈ Rnx and all e ∈ Rne and all w ∈ Rnw ,
we can derive functions Ṽ and W̃ satisfying Condition IV.1
and Condition IV.6, respectively. The constants in (44) satisfy
0 < ε < max{γ2, 1}, where ε > 0 is sufficiently small.

Remark V.2 Condition V.1 and inequality (44) are essentially
the same as in [5] with H(x) = mx(x). The constant ε > 0
is selected small to sacrifice only a little of the L2 gain

4In principle this constant can be taken non-negative. However, as all
protocols available in the literature satisfy λW ≥ 1, we take λW ≥ 1 to
reduce some notational burden later.

from W to mx. In [38, Thm. 4] the inequality (44) was
actually formulated in terms of an L2 gain, while we use a
Lyapunov-based formulation here. As L2 gains are established
often using Lyapunov functions, this seems to be a natural
reformulation (see also [5, Rem. 2]). The only additional
condition we add here is (39), which holds for all protocols
considered in [5], [11], [38], [39], [51], [52] as is demonstrated
in Lemma V.4 below for the RR and TOD protocols. �

Theorem V.3 Consider the systems HNCS and HzNCS , re-
spectively, such that

• Condition V.1, (39) with λW ≥ 1 and (40) with constant
M1 > 0 hold;

• (41) is satisfied for some function mx : Rnx → R≥0

(and (42) for some function m : Rnx × Rnw → R≥0,
respectively) and Me ≥ 0.

• there exists a locally Lipschitz continuous function V :
Rnx → R≥0 satisfying the bounds (43) for some K∞-
functions αV , αV , and (44) with γ > 0 and 0 < ε <
max{γ2, 1} (and (45) with µ > 0, θ ≥ 0 and γ > 0,
respectively).

Then, the functions given by

W̃ (κ, `, e, s) :=

{
max{W (κ, e),W (κ, e+ s)}, ` = 0,
max{ λ

λW
W (κ, e),W (κ, e+ s)}, ` = 1,

(46)

Ṽ (x) = M2
1V (x) (47)

satisfy Condition IV.1 (and Condition IV.6, respectively) with
β
W

(r) = β
W
r, βW (r) = βW r, β

V
= M2

1αV , βV = M2
1αV ,

σ0(r) = εM2
1 r

2, σ1(r) = εM2
1
λ2
W

λ2 and ρ`(r) = M2
1 ρ(r),

H`(x) = M1mx(x) (and H`(x,w) = M1m(x,w), resp.), ` =
0, 1, with λ as in Condition V.1,

L0 =
M1Me

αW
; L1 =

M1MeλW
λαW

; γ0 = M1γ; γ1 =
M1γλW

λ
,

(48)
and some positive constants β

W
, βW (and µ̃ = M1µ,

respectively). �

Proof: We only prove the theorem for establishing Con-
dition IV.1, as the case for Condition IV.6 is analogous. The
condition (17a) with W̃ of the form (46) is equivalent to

max
{

λ

λW
W (κ+ 1, e),W (κ+ 1, h(κ, e))

}

≤ λmax{W (κ, e),W (κ, e+ s)}.

Using (38b) and (39), this follows trivially. The condition
(17b) is identical to

max{W (κ, s+ e),W (κ, 0)}

≤ max
{

λ

λW
W (κ, e),W (κ, e+ s)

}
,

which is true as W (κ, 0) = 0. Based on (46) we obtain four
cases for (19):



• Case 1: ` = 0 and W (κ, e) ≥W (κ, e+ s)
〈
∂W̃ (κ,0,e,s)

∂e , g(x, e, 0)
〉

=
〈
∂W (κ,e)

∂e , g(x, e, 0)
〉

(40),(41)
≤ M1(mx(x) +Me|e|)

(38a)
≤ M1mx(x) +M1

Me

αW
W (κ, e)

= M1mx(x) +M1
Me

αW
W̃ (κ, 0, e, s).

(49)
• Case 2: ` = 0 and W (κ, e) ≤W (κ, e+ s)

〈
∂W̃ (κ,0,e,s)

∂e , g(x, e, 0)
〉

=
〈
∂W (κ,e+s)

∂e , g(x, e, 0)
〉

(40),(41),(38a)
≤ M1mx(x) +M1

Me

αW
W (κ, e)

≤M1mx(x) +M1
Me

αW
W̃ (κ, 0, e, s).

(50)
• Case 3: ` = 1 and λ

λW
W (κ, e) ≥W (κ, e+ s)

〈
∂W̃ (κ,1,e,s)

∂e , g(x, e, 0)
〉

= λ
λW

〈
∂W (κ,e)

∂e , g(x, e, 0)
〉

(40),(41),(38a)
≤ λ

λW
M1mx(x) +M1

Me

αW

λ
λW

W (κ, e)

= λ
λW

M1mx(x) +M1
Me

αW
W̃ (κ, 1, e, s).

(51)
• Case 4: ` = 1 and λ

λW
W (κ, e) ≤W (κ, e+ s)

〈
∂W̃ (κ,1,e,s)

∂e , g(x, e, 0)
〉

=
〈
∂W (κ,e+s)

∂e , g(x, e, 0)
〉

(40),(41),(38a)
≤ M1mx(x) +M1

Me

αW
W (κ, e)

≤M1mx(x) +M1
MeλW
αWλ

W̃ (κ, 1, e, s).
(52)

Hence, (19) holds for ` = 0, 1 with H0(x) = H1(x) =
M1mx(x) and L0, L1 as in (48). Here we used that λW

λ ≥ 1
as 0 < λ < 1 ≤ λW .

Finally, to obtain (20) observe that for the case ` = 0, we
have due to (44)

〈∇V (x), f(x, e, 0)〉 ≤ −ρ(|x|)−m2
x(x)+(γ2−ε)W 2(κ, e)

≤ −ρ(|x|)−m2
x(x) + (γ2 − ε)W̃ 2(κ, 0, e, s)

= −ρ(|x|)−εW̃ 2(κ, 0, e, s)−M−2
1 H2

0 (x)+γ2W̃ 2(κ, 0, e, s).
(53)

Similarly, for ` = 1 we obtain

〈∇V (x), f(x, e, 0)〉 ≤ −ρ(|x|)−m2
x(x) + (γ2 − ε)W 2(κ, e)

≤ −ρ(|x|)−m2
x(x) + (γ2 − ε)λ

2
W

λ2 W̃
2(κ, 1, e, s)

= −ρ(|x|)− ελ
2
W

λ2 W̃
2(κ, 1, e, s)

−M−2
1 H2

1 (x) + γ2 λ
2
W

λ2 W̃
2(κ, 1, e, s).

(54)
Take Ṽ (x) = M2

1V (x) and multiply the inequalities (53)
and (54) by M2

1 , which give for ` = 0

〈∇Ṽ (x), f(x, e, 0)〉 ≤ −M2
1 ρ(|x|)− εM2

1 W̃
2(κ, 0, e, s)

−H2
0 (x) + γ2M2

1 W̃
2(κ, 0, e, s)

and for ` = 1

〈∇Ṽ (x), f(x, e, 0)〉 ≤ −M2
1 ρ(|x|)−ελ

2
W

λ2
M2

1 W̃
2(κ, 1, e, s)

−H2
1 (x) + γ2λ

2
W

λ2
M2

1 W̃
2(κ, 1, e, s).

Note that the bounds on W̃ as in (18) with linear bounding
functions β

W
and βW can be easily obtained from the fact

that W satisfies (38a) with linear functions. This completes
the proof.

To apply the above theorem for a given protocol we need to
establish the values λ, M1, λW , αW and αW . The following
lemma determines these constants for the well-known RR and
TOD protocols. See [38], [52] for the exact definitions of these
protocols.

Lemma V.4 Let l denote the number of nodes in the network.
For the RR protocol there is a WRR : N×Rne → R≥0 that is
locally Lipschitz in its second argument satisfying (38), (39)
and (40) with λRR =

√
l−1
l , αW,RR = 1, αW,RR =

√
l,

λW,RR =
√
l and M1,RR =

√
l. For the TOD protocol there

is a WTOD : N × Rne → R≥0 that is locally Lipschitz
in its second argument satisfying (38), (39) and (40) with
λTOD =

√
l−1
l , αW,TOD = αW,TOD = 1, λW,TOD = 1

and M1,TOD = 1. �

Proof: The constants λ, αW , αW are derived for both
protocols in [38] and corresponding Lyapunov functions W .
For the RR protocol W 2

RR(i, e) can be taken
∑ne
j=1 ai(j)e

2
j

with ai(j) ∈ {1, . . . , l}, j = 1, . . . , n, i = 1, 2, . . . and l is
the number of nodes in the network, see Example 3 in [38].
This implies that

W 2
RR(i+ 1, e) =

ne∑

j=1

ai+1(j)e2
j ≤

ne∑

j=1

ai+1(j)
ai(j)

a2
i (j)e

2
j

≤ l

ne∑

j=1

ai(j)e2
j = l︸︷︷︸

=(λW,RR)2

W 2(i, e).

Using ∂W 2
RR(i,e)
∂e = 2WRR(i, e)∂WRR(i,e)

∂e and the identity
∂W 2

RR(i,e)
∂e = 2(a2

i (1)e1, . . . , a
2
i (ne)ene)

>, we obtain that∣∣∣∂WRR(i,e)
∂e

∣∣∣ =
√∑

j a
2
i (j)e

2
j√∑

j ai(j)e
2
j

≤
√

maxj ai(j) =
√
l = M1,RR.

Since WTOD(i, e) = |e| for the TOD protocol, λW,TOD =
M1,TOD = 1 follows from the above by taking ai(j) = 1 for
all i, j.

In the next theorem, we show how to obtain Condition IV.4,
used for establishing USPAS in Theorem IV.5, from the
commonly adopted conditions in the delay-free case. As the
proof is similar in nature as the proof of Theorem V.3, it is
omitted.

Theorem V.5 Consider the system HNCS . Assume that Con-
dition V.1 and (39) with λW ≥ 1 hold. Moreover, assume that
there exists a K∞-function α such that

∣∣∣∣
∂W (κ, e)

∂e

∣∣∣∣ ≤ α(|e|) (55)

for almost all e ∈ Rne and all κ ∈ N. Assume that the origin
of the networked-free and zero-input system ẋ = f(x, 0, 0)
is globally asymptotically stable. Then, the function W̃ given
by (46) satisfies Condition IV.4 with α̃ = α, β

W
(r) = β

W
r,

βW (r) = βW r for some positive constants β
W

and βW and
λ as in Condition V.1. �



The conditions in Theorem V.5 are precisely those used
in the delay-free case for obtaining USPAS as adopted in
[5, Thm. 2]. To obtain the constants λ, λW , αW and αW
for the RR or TOD protocol again Lemma V.4 above can be
employed.

VI. CASE STUDY OF THE BATCH REACTOR

In this section we will illustrate how the derived conditions
can be verified and how this leads to quantitative tradeoff
curves between τmati, τmad and L2 performance for the case
study of the batch reactor. This case study has developed
over the years as a benchmark example in NCS, see e.g. [5],
[11], [38], [52]. The functions in the NCS (7) for the batch
reactor are given by the linear functions f(x, e, w) = A11x+
A12e + A13w and g(x, e, w) = A21x + A22e + A23w. The
batch reactor, which is open-loop unstable, has nu = 2 inputs,
ny = 2 outputs, np = 4 plant states and nc = 2 controller
states and l = 2 nodes (only the outputs are assumed to be
sent over the network). See [38], [52] for more details on this
example. We included here also a disturbance input w that
takes values in R2 and a controlled output z, taking values in
R2, given by z = q(x,w) = Cx+Dw. The numerical values
for Aij , i, j = 1, 2, as provided in [38], [52], are given in
(56) In [38], [52] z and w were absent, as they considered the
disturbance-free case. We selected for the remaining matrices
A13, A23, C and D in this case study the numerical values as
in (56).

This means that the disturbance w is such that w1 affects the
first and third state of the reactor and, w2 affects the second
and fourth state. The controlled output z is chosen to be equal
to the measured output y, see [38], [52].

A. Stability analysis

To apply the developed framework for stability analysis,
we first ignore the controlled output z and set w = 0.
Moreover, we take Me = |A22| :=

√
λmax(A>22A22) and

mx(x) = |A21x| in (41). To verify (44) we take ρ(r) = εr2

and consider a quadratic Lyapunov function V (x) = x>Px
to compute the L2 gain from |e| = WTOD(κ, e) to mx(x)
(or actually a value close to the L2 gain by selecting ε > 0
small) by minimizing γ subject to the linear matrix inequalities
(LMIs)
(
A>11P + PA11 + εI +A>21A21 PA12

A>12P (ε− γ2)I

)
� 0, (57a)

P = P> � 0. (57b)

Minimizing γ subject to the LMI (57) with ε = 0.01 using
the SEDUMI solver [43] with the YALMIP interface [30]
provides the minimal value of γ = 15.9165. This value of
γ applies for both the TOD as well as the RR protocol
in (44) since WRR(k, e) ≥ |e| and WTOD(k, e) = |e|
due to Lemma V.4. From Lemma V.4 also the values for
the constants λ, αW , αW and λW can be obtained. Then
Theorem V.3 can be applied to construct suitable Lyapunov
functions for the closed-loop NCS system. This results for the
TOD protocol in the values L0 = 15.7300, L1 = 22.2456,
γ0 = 15.9165 and γ1 = 22.5093. Note that L0 and γ0 are

the same as found in [5] and [38] for the delay-free case (up
to some small numerical differences). In case we now take
φ0(0) = φ1(0) = λ−1

TOD =
√

2 as λTOD =
√

l−1
l =

√
1
2 , we

recover exactly the results in [5], see Fig. 2. Indeed, checking
the conditions (23) gives τmad = 0 and τmati = 0.0108, as
also found in [5].
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Fig. 2. Batch reactor functions φ`, ` = 0, 1 with φ0(0) = φ1(0) = 1
λTOD

.

Besides this delay-free limit case, the above numerical
values provide much more combinations of (τmati, τmad) that
yield stability of the NCS by varying the initial conditions
φ0(0) and φ1(0). Actually, each pair of initial conditions
provides a different Lyapunov function U(ξ) as in (26) and
different values for (τmati, τmad) as discussed after the proof
of Theorem IV.2. To illustrate this, consider Fig. 3, which
displays the solutions φ`, ` = 0, 1, to (22) for initial con-
ditions φ0(0) = 1.4142 and φ1(0) = 1.6142. The solutions
φ`, ` = 0, 1 are determined using Matlab/Simulink (using
zero crossing detections to determine the values of τmati
and τmad accurately according to (23)). The condition (23a)
indicates that τmati is determined by the intersection of φ0

and the constant line with value λ2φ1(0) and condition (23b)
states that τmad is determined by the intersection of φ0 and
φ1 (as long as φ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 3 this would result in τmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed for
transmission intervals up to 0.008794 and transmission delays
up to 0.005062. Interestingly, the initial conditions of both
functions φ0 and φ1 can be used to make design tradeoffs. For
instance, by taking φ1(0) larger, the allowable delays become
larger (as the solid line indicated by ‘o’ shifts upwards),
while the maximum transmission interval becomes smaller as
the dashed line indicated by ‘•’ will shift upwards as well
causing its intersection with φ0 (dotted line indicated by ‘+’)
to occur for a lower value of τ . Hence, once the hypotheses of
Theorem IV.2 are satisfied, a continuum of Lyapunov functions
is available leading to different combinations of MATI and
MAD. This shows that tradeoff curves between τmad and
τmati can indeed be constructed. Following this procedure
for various increasing values of φ1(0), while keeping φ0(0)
equal to λ−1

TOD =
√

2, provides the graph in Fig. 4, where



A11 =




1.3800 −0.2077 6.7150 −5.6760 0 0
−0.5814 −15.6480 0 0.6750 −11.3580 0
−14.6630 2.0010 −22.3840 21.6230 −2.2720 −25.1680
0.0480 2.0010 1.3430 −2.1040 −2.2720 0

0 1.0000 0 0 0 0
1.0000 0 1.0000 −1.0000 0 0




; A12 =




0 0
0 −11.3580

−15.7300 −2.2720
0 −2.2720
0 1.0000

1.0000 0




;

A21 =

(
13.3310 0.2077 17.0120 −18.0510 0 25.1680
0.5814 15.6480 0 −0.6750 11.3580 0

)
; A22 =

(
15.7300 0

0 11.3580

)
;

A13 =

(
10 0 10 0 0 0
0 5 0 5 0 0

)>
; A23 =

(
0 0
0 0

)
; C =

(
1 0 1 −1 0 0
0 1 0 0 0 0

)
; D =

(
0 0
0 0

)
. (56)

the particular point τmati = 0.008794 and τmad = 0.005062
corresponding to Fig. 3 is highlighted. Note that the graph
ends where τmati = τmad as the developed model does not
include delays larger than the transmission interval.
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Fig. 2. Batch reactor functionsφℓ, ℓ = 0, 1 with φ0(0) = 1.4142 and
φ1(0) = 1.6142.

the solutionsφℓ, ℓ = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφℓ, ℓ =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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Fig. 3. Tradeoff curves between MATI and MAD.

VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.
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In case of the RR protocol we obtain the values L0 =
22.2456, L1 = 44.4912, γ0 = 22.5093 and γ1 = 45.0185 if
we invoke Theorem V.3 directly. However, improved values for
L0 and L1 can be obtained by exploiting the special structure
in the matrix A22 as was also done in [38, Ex. 3]. This is
achieved by deriving directly the condition (19) instead of
following the general approach based on (49)-(52) using (40)
and (41) in the proof of Theorem V.3. Indeed, using that
W (i, e) = |D(i)e| for a diagonal matrix D(i) (with the values
ai(j) as in the proof of Lemma V.4 on the diagonal), we can
derive directly for almost all e and s
〈
∂W (i,e+s)

∂e , g(x, e, 0)
〉
≤ |D(i)ė|

= |D(i)A22e|+ |D(i)A21x|
≤ |A22D(i)e|+

√
l|A21x| ≤ |A22|W (i, e) +

√
l|A21x|︸ ︷︷ ︸

=H0(x)=H1(x)

,

where we used that A22D(i) = D(i)A22 as both matrices
are diagonal. Using this sharper result in (49)-(52) instead of
(40) and (41), we obtain the improved values L0 = 15.7300,

L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185, similar to [5]
and [38], which leads for the delay-free case to τmati = 0.0090
(recovering the result in [5], which outperforms the values
found in [38], [39], [51]). The tradeoff curve between MATI
and MAD is also given in Fig. 4. In this figure also the delay-
free case with τmad = 0 and τmati = 0.0090 is visualized.
These tradeoff curves can be used to impose conditions or
select a suitable network with certain communication delay
and bandwidth requirements (note that MATI is inversely
proportional to the bandwidth).

Also different protocols can be compared with respect to
each other. In Fig. 4, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms the
RR protocol in the sense that it can allow for larger delays and
larger transmission intervals. The difference between the trade-
off curves for different protocols is caused by different values
for the parameters λ, αW , M1 and λW (see Lemma V.4),
which in turn induce different values for the parameters L0,
L1, γ0 and γ1 (see Theorem V.3) and thus different solutions
to the differential equations (22). This results in different
combinations of τmad and τmati that guarantee stability due
to Theorem IV.2.
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Fig. 2. Batch reactor functionsφℓ, ℓ = 0, 1 with φ0(0) = 1.4142 and
φ1(0) = 1.6142.

the solutionsφℓ, ℓ = 0, 1, to (16) for initial conditions
φ0(0) = 1.4142 andφ1(0) = 1.6142. The solutionsφℓ, ℓ =
0, 1 are determined using Matlab/Simulink. The condition
(17a) indicates thatτmati is determined by the intersection
of φ0 and the constant line with valueλ2φ1(0) and condition
(17b) states thatτmad is determined by the intersection ofφ0

andφ1 (as long asφ0(0) ≤ φ1(0)). For the specific situation
depicted in Fig. 2 this would result inτmati = 0.008794
and τmad = 0.005062, meaning that UGES is guaranteed
for transmission intervals up to0.008794 and transmission
delays up to0.005062. Interestingly, the initial conditions
of both functionsφ0 and φ1 can be used to make design
tradeoffs. For instance, by takingφ1(0) larger, the allowable
delays become larger (as the solid line indicated by ‘o’ shifts
upwards), while the maximum transmission interval becomes
smaller as the dashed line indicated by ‘•’ will shift upwards
as well causing its intersection withφ0 (dotted line indicated
by ‘+’) to occur for a lower value ofτ . For instance,
by taking φ0(0) = φ1(0) = λ−1

TOD =
√

2, we recover
exactly the delay-free results in [1] withτmad = 0 and
τmati = 0.0108. Hence, once the hypotheses of Theorem V.2
are satisfied, different combinations of MATI and MAD can
be obtained leading to tradeoff curves. Repeating step 5
for various increasing values ofφ1(0), while keepingφ0(0)
equal toλ−1

TOD =
√

2, provides the graph in Fig. 3, where
the particular pointτmati = 0.008794 andτmad = 0.005062
corresponding to Fig. 2 is highlighted. A similar reasoning
can be used for the RR protocol. This leads toL0 = 15.7300,
L1 = 31.4600, γ0 = 22.5093 and γ1 = 45.0185 with the
tradeoff curve between MATI and MAD as in Fig. 3. These
tradeoff curves can be used to impose conditions or select
a suitable network with certain communication delay and
bandwidth requirements.

Also different protocols can be compared with respect to
each other. In Fig. 3, it is seen that for the task of stabilization
of the unstable batch reactor the TOD protocol outperforms
the RR protocol in the sense that it can allow for larger
delays and larger transmission intervals.
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VIII. C ONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which involves communication con-
straints (only one node accessing the network per transmis-
sion), varying transmission intervals and varying transmis-
sion delays. Based on a newly developed model, an ex-
plicit procedure was presented for computing bounds on the
maximally allowable transmission interval and delay (MATI
and MAD) such that the NCS is guaranteed to be globally
asymptotically stable. The application of the results on a
benchmark example showed how tradeoff curves between
MATI and MAD can be computed providing designers of
NCSs with proper tools to support their design choices.
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Fig. 4. Tradeoff curves between MATI and MAD.

B. L2 gain analysis

To apply the developed framework for L2 gain analysis, the
effect of the additional disturbance input w on the controlled
variable z is studied.

We take Me = |A22| :=
√
λmax(A>22A22) and m(x,w) =

|A21x + A23w| in (41). To verify (45) we compute simul-
taneously an upper bound on the L2 gain from W (κ, e) =
WTOD(κ, e) = |e| to m(x,w) and on the L2 gain from w
to z by finding Pareto minimal values for γ and θ subject to



the matrix inequalities in the matrix P and multiplier µ > 0
as given in (58). These matrix inequalities above demonstrate
that there will be a tradeoff between performance in terms
of the L2 gain from w to z reflected in θ on the one hand
and the size of τmati and τmad on the other as reflected in
γ. Recall that γ directly influences MATI and MAD through
γ0 and γ1 in (48). The tradeoff between τmati and τmad can
still be made by varying φ0(0) and φ1(0) whilst guaranteeing
a certain L2 gain θ for the NCS.

To make these observations quantitative, we fix θ at various
values and search for the smallest value of γ such that there
exist P and µ > 0 satisfying (58). Note that (58) is an LMI
when θ is fixed and hence, can be solved efficiently. As a
lower bound on θ we take the L2 gain θ∗ from w to z of the
system without the network (e = 0). This value is found by
solving the standard L2-gain /H∞ LMI for linear systems (see
e.g. [1]) using, again, the SEDUMI solver and the YALMIP
interface. This yields θ∗ = 1.9597. Using this as a lower
bound on the considered values of the desirable performance
level in terms of the L2 gain θ, we search minimal values
for γ (corresponding to the selected value of θ) under the
feasibility of the LMI (57). These minimal values yield the
“Pareto optimal curves” for (γ, θ) as shown in Fig. 5. This
figure demonstrates that the minimal value of γ approaches
15.9165 for large values of θ, which was the L2 gain from
|e| = WTOD(κ, e) to mx(x) = |A21x| as computed in
Section VI-A for the stability analysis. This is expected as
the value 15.9165 corresponds to the smallest value of γ
found in Section VI-A if only stability is required (without
any additional L2 performance conditions, so the L2 gain θ
approaches infinity). The other extreme, when γ approaches
infinity, recovers the situation where the θ values approach the
asymptotic value of θ∗ = 1.9597 being the optimal network-
free L2 gain from w to z.
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Fig. 5. Pareto optimal curves for (γ, θ) for the TOD protocol.

As we can see, a smaller L2 gain θ requires a larger value
of γ, which will in turn result in smaller values for τmati and
τmad. We will demonstrate this for the TOD protocol. The
results for the RR protocol can be obtained using the same
approach. The computed values of (γ, θ) are now used in (45)
and the values for the constants λ, αW , αW and λW can be
obtained from Lemma V.4, as in the stability analysis above.
Then Theorem V.3 can be applied to construct a continuum
of suitable storage functions for the closed-loop NCS system

choosing a certain combination of (γ, θ) in a similar manner
as for the stability analysis. This leads to combinations of
(τmati, τmad, θ) such that the NCS has an L2 gain from w to
z smaller than θ for transmission intervals smaller than τmati
and communication delays smaller than τmad. The tradeoff
curves for various levels of the L2 performance θ are provided
in Fig. 6. For the value of θ = 200 we (almost) recover
the tradeoff plot as in Fig. 4 for the TOD protocol, because,
loosely speaking, the L2 gain requirement is very mild as
θ = 200 is a relatively large value that practically approaches
the condition that the NCS should be UGES only. In the other
extreme, if very high requirements are given with respect
to robustness to disturbances w (in the sense of a very low
L2 gain from w to z approaching the network-free L2 gain
θ∗ = 1.9597), the values for MATI and MAD that guarantee
this L2 gain are approaching 0. This is clearly shown in
Fig. 6 as the tradeoff curve for the value θ = 2 ≈ θ∗

corresponds to values of τmati and τmad close to zero. The
limit case θ → θ∗ would actually correspond to τmati → 0 and
τmad → 0. Hence, the control and network engineers have to
make clear design tradeoffs between MATI, MAD, robustness
in terms of L2 performance and the choice of the protocol.
The provided framework supports the engineers to make these
design choices in a quantified manner.
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Fig. 6. Tradeoff curves between MATI and MAD for various levels of the
L2 gain of the NCS with the TOD protocol.

VII. CONCLUSIONS

In this paper we presented a framework for studying
the stability of a NCS, which both involves communica-
tion constraints (only one node accessing the network per
transmission) and varying transmission intervals and varying
transmission delays. Based on a newly developed model, a
Lyapunov-based characterization of stability was provided and
explicit bounds on the MATI and MAD were obtained. We
explicitly showed how a continuum of Lyapunov functions can
be constructed from the commonly adopted conditions for the
delay-free case. The application of the results on a benchmark
example showed how these tradeoff curves between MATI
and MAD can be computed providing designers of NCS with
proper tools to support their design choices. Interestingly,
recently developed improvements in [5] leading to sharper
bounds for the MATI (the non-delay case) are included as a





A>11P + PA11 +A>21A21 + µC>C PA12 A>21A23 + PA13 + µC>D

A>12P −γ2I 0
A>13P +A>23A21 + µD>C 0 µD>D +A>23A23 − µθ2I


 � 0, P = P> � 0. (58)

special case in this more general framework. Additionally, we
have analyzed the Lp performance of NCS and provided the
theoretical framework that shows how MATI, MAD and Lp
can be traded quantitatively against each other. Under weaker
conditions, we provided also semiglobal practical stability
results for the NCS.

Future work will involve the consideration of the large
delay case (delays larger than the transmission interval) and
the development of an analysis framework that also includes
quantization effects. Extending the current framework so as
to include quantization effects would provide the means to
study NCS incorporating all the types of network phenomena
mentioned in the introduction (as packet dropouts can be
modeled using a prolongation of the MATI as discussed in
Remark II.4). We foresee that such an extension would be
extremely valuable to network and control system design-
ers, provided that the extended framework leads to quanti-
tative tradeoff curves between the various network parameters
(MATI, MAD, quantization error, bandwidth, etc.) and the
performance of the overall control loop. Some preliminary
results in this direction can be found in [21].
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