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J.M. Davoren
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Abstract. The notion of a bisimulation relation is of basic impor-
tance in many areas of computation theory and logic. Of late, it has
come to take a particular significance in work on the formal analy-
sis and verification of hybrid control systems, where system properties
are expressible by formulas of the modal µ-calculus or weaker tem-
poral logics. Our purpose here is to give an analysis of the concept
of bisimulation, starting with the observation that the zig-zag condi-
tions are suggestive of some form of continuity. We give a topological
characterization of bisimularity for preorders, and then use the topol-
ogy as a route to examining the algebraic semantics for the µ-calculus,
developed in recent work of Kwiatkowska et al., and its relation to
the standard set-theoretic semantics. In our setting, µ-calculus sen-
tences evaluate as clopen sets of an Alexandroff topology, rather than
as clopens of a (compact, Hausdorff) Stone topology, as arises in the
Stone space representation of Boolean algebras (with operators). The
paper concludes by applying the topological characterization to obtain
the decidability of µ-calculus properties for a class of first-order de-
finable hybrid dynamical systems, slightly extending and considerably
simplifying the proof of a recent result of Lafferriere et al.
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Introduction

The notion of a bisimulation relation is of basic importance in many areas of
computation theory and logic. In the propositional modal µ-calculus, if states x
and y of labeled transition system (LTS) models M and N are bisimilar, then in
their respective models, x and y satisfy all the same sentences of the language of
Lµ. The corresponding notions of bisimulation-invariance for other formalisms are
also well-studied: for example, finitary and infinitary polymodal or temporal logics,
and fragments of first-order, infinitary, and monadic second-order logics; [10] is a
comprehensive study.

This paper is motivated by the use of bisimulations in recent work on the formal
analysis and verification of hybrid control systems; see [1,8,9,13,14] and references
therein. In that work, the computational model is a structure called a hybrid
automaton, which is an enrichment of a (real-valued) timed automaton. Temporal
logic or µ-calculus specifications for such systems are interpreted with respect to
LTS models M over states spaces X ⊆ Q× Rn, where Q is a finite set of control
modes, and the transition relations are of two kinds: continuous evolution for some
duration of time according to the differential equations modeling a given control
mode, and reset relations modeling the effects of discrete jumps between control
modes, which may be controlled or autonomous. The propositional constants
denote sets of initial states, guard conditions on the jump transitions, target or
desired invariant regions of the state space, and other significant regions of the
state space. The systems of interest are those in which each the components
of the associated LTS model M – the state space, the transition relations and
the sets denoted by propositional constants – are first-order definable in some
structure R = (R;<,+,−, ·, 0, 1, ...) over the reals (or a multi-sorted first-order
structure formed from a finite Q and some R). For definiteness, take R to be
an ordered field, so by the Tarski-Seidenberg elimination of quantifiers, the first-
order definable predicates coincide with the semi-algebraic sets defined by Boolean
combinations of polynomial inequalities. More restrictedly, take R to be the reals
with only order, addition and integer constants, which defines rational polyhedra in
Rn; timed automata and so-called linear hybrid automata fall in this class [1,7,8].
More generally, and moving beyond decidability for first-order theories Th(R), take
R to be an order -minimal or o-minimal structure; for example, R as an ordered
field together with the exponential function, or finitely many bounded analytic
functions [13,18].

To date, the main focus in formal methods for hybrid systems has been on
safety/invariance properties of the form “All trajectories of H starting in a given
set I of initial states remain in the set P at all times”, or dually, “The comple-
ment of P is notH-reachable from I”. Various system-specific temporal logics have
been developed for the high-level specification of properties, but for the purposes
of automatic verification, specification formulas are translated into the µ-calculus
since it serves as the common language of model-checking systems. In [6], we
bypass translations from temporal logics and show how to directly use the modal
µ-calculus to quite simply and clearly express a rich array of properties of hybrid
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systems. The modal µ-calculus is particularly suitable as a logic for hybrid sys-
tems because its semantics over abstract transition system models, considered as
generalized dynamical systems, are uniform across the continuous/discrete divide.

In the practice of automatic verification, symbolic model checking tools for
hybrid and real-time systems such as HyTech and Kronos [1, 7, 8] are pro-
grams which take as input a representation of a hybrid system as an LTS model
M, concretely given by explicit first-order definitions in the given language L(R),
together with a µ-calculus specification sentence ϕ, and attempt to compute the
value of the denotation set ‖ϕ‖M as a first-order formula in the language L(R).
For finitary modal sentences, there is the well-known and straightforward modal
translation built from the first-order definitions of the components of M. But for
infinitary fixed-point sentences, to have a guarantee that the denotation ‖µZ.ϕ‖M
is a finite union of approximations, it suffices to ensure that the LTS model M

has a bisimulation equivalence ∼ of finite index. If such is the case, the quotient
transition system M∼ is a fully-discrete, finite truth-preserving simulacrum of the
original system. The proof of the existence of a finite bisimulation quotient is
the common core of the many recent results on the decidability of reachability
properties – and more generally, µ-calculus expressible properties – for a variety
of first-order syntactic classes of hybrid and real-time systems (see [9, 13,14], and
references therein).

In this paper, we re-examine the concept of bisimulation from the viewpoint
of general topology. Our point of departure is the observation that the zig-zag
conditions cry out to be analyzed as some variant on the theme of continuity. In
identifying such topological content, we observe a nice symmetry in subject and
object: a preorder (reflexive and transitive relation) 4 on the state space X is a
bisimulation of an LTS model M, that is, it respects the structural components
of M, exactly when the component transition relations and constant sets respect
it, in the form of its Alexandroff topology T4 on X . In Section 3, we use this
topological characterization as a route to examining algebraic semantics for the
µ-calculus, developed in recent work of Kwiatkowska et al. [2,4], and its relation to
the standard set-theoretic semantics [12,17,19]. In Section 4, we use our character-
ization of bisimulations to clarify and slightly extend a recent result of Lafferriere
et al. [13, 14] on the existence of finite bisimulations for a class of hybrid systems
definable in an o-minimal structure R, and its application to the decidability of
µ-calculus sentences. The final Section 5 is a brief discussion of related and future
work.

1. Preliminaries

1.1. Basic notation and prerequisites

Our notation and terminology is fairly standard; we review some of it here.
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R and N denote, respectively, the sets of real and of natural numbers, and
R+ $ { x ∈ R | x ≥ 0} denotes the non-negative reals, which has the structure of
an ordered additive semigroup.

For any set X , P(X) denotes the family of all subsets of X . We use the term
Boolean algebra of sets to refer to a family A ⊆ P(X) that is a Boolean algebra
under the finitary set-theoretic operations of union, intersection and complement.
The unit or top element of such an A is the whole space X , and the zero or bottom
element is ∅. Such an A is complete as a lattice and Boolean algebra when it is
closed under arbitrary unions.

The notation f : X → Y means f is a (single-valued) function with domain the
set X and range contained in the set Y .

When I ≥ 1 is an integer, we may abuse notation by writing i ∈ I, and identi-
fying I with the index set {1, ..., I}.

We assume the reader is familiar with elementary concepts of general topology,
including the order, subspace and product topologies; connectedness of sets; and
continuity for (single-valued) functions. The handbook article [16] is a good source
for a review.

We also assume a basic familiarity with (classical) first-order logic: first-order
formulas and languages; (model-theoretic) structures for first-order languages; and
satisfaction and truth. Some prior exposure to modal or temporal logics would be
useful, but all necessary concepts and definitions will be developed in the text.

1.2. Relations/set-valued maps

Following Aubin and Frankowska in [3], the notation r : X ; Y will be used
to mean r : X → P(Y ) is a set-valued map, with values r(x) ⊆ Y for x ∈ X , or
equivalently, r ⊆ X × Y is a relation, the graph of a set-valued map. The set of
all points x ∈ X such that r(x) 6= ∅ is called the domain of the relation r. The
expressions:

x
r−→ y, x r y, (x, y) ∈ r and y ∈ r(x)

are to be read as synonymous. The converse (or inverse) relation r̆ : Y ; X is
given simply by (x, y) ∈ r̆ iff (y, x) ∈ r. The composition of relations r : X ; Y
and s : Y ; Z will be written r ◦ s : X ; Z (or simply rs) in sequential (word)
order, as is usual in automata theory (the reverse order of functional composition;
cf. [3]). The relational sum r ∪ s : X ; Y of relations r : X ; Y and s : X ; Y
is just the set-theoretic union.

A relation r : X ; Y determines two pre-image operators (predicate trans-
formers): the lower or existential pre-image σ(r) : P(Y )→ P(X) given by:

σ(r)(B) $ {x ∈ X | (∃y ∈ Y )[ x r−→ y ∧ y ∈ B]} = {x ∈ X | r(x) ∩B 6= ∅}
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for B ⊆ Y , while the upper or universal pre-image operator τ(r) : P(Y )→ P(X)
is the dual under set-theoretic complement:

τ(r)(B) $ X − σ(r)(Y −B) = {x ∈ X | r(x) ⊆ B}·

In words, x ∈ σ(r)(B) iff some r-successor of x lies in B, while x ∈ τ(r)(B) iff all
r-successors of x lie in B. The pre-image operators give the standard relational
Kripke semantics for labeled modal operators 〈a〉 and [a] for relations a : X ; X .
In analogy with the inverse-image operator of a single-valued function, the pre-
image operators are also used to develop purely topological notions of continuity
for relations/set-valued maps; we return to this in Section 2.2.

In [3], the ∃-pre-image is known simply as the inverse-image, written r−1(B),
and the ∀-pre-image is called the core operator, written r+1(B). In [2], following
earlier work of Sambin and Vaccaro, the ∀-pre-image is written r∗, and abstract
algebraic operators of that type are written τa; our notation is an adaption of the
latter. The existential operator σ(r) distributes over arbitrary unions and sends
the empty set to itself; in the framework of Jónsson and Tarski’s foundational work
on Boolean algebras with operators [11], σ(r) is known as completely additive and
normal with respect to the zero elements of P (Y ) and P (X), τ(r) is completely
multiplicative (over intersections) and normal with respect to the unit elements
of Boolean algebras. What is known as a normal diamond operator in the modal
logic tradition corresponds to a finitely additive and zero-normal operator in [11].

The direct-image or post-image operator mapping a set A ⊆ X to its image in
Y under r is just σ(r̆) : P(X)→ P(Y ); that is, r(A) = σ(r̆)(A), so r(A) is the set
of all points y ∈ Y which are r-reachable from A, or have some r-predecessor in A.
In [11], σ(r) and σ(r̆) are known as conjugate operators on P(X): A∩σ(r)(B) = ∅
iff σ(r̆)(A) ∩B = ∅.

1.3. Transition system models and the modal µ-calculus

Call a pair (Φ,Σ) consisting of a set Φ of propositional constants and a set
Σ of transition (action) labels a modal signature, and let PVar be a fixed set of
propositional variables. The set of formulas Fµ(Φ,Σ) in a signature (Φ,Σ) of the
propositional modal µ-calculus is generated by the grammar:

ϕ ::= p | Z | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ | µZ.ϕ

for p ∈ Φ, Z ∈ PVar, and a ∈ Σ, with the proviso that in µZ.ϕ, the variable
Z occur positively, i.e. each occurrence of Z in ϕ is within the scope of an even
number of negations. Let Sµ(Φ,Σ) denote the set of all sentences of Fµ(Φ,Σ);
i.e. formulas without any free variables. Also let F(Φ,Σ) and S(Φ,Σ) denote,
respectively, the set of all (finitary) modal formulas and sentences in the signature
(Φ,Σ); i.e. without any fixed-point quantifiers. Introduce in the usual way the
defined logical constants tt (true) and ff (false), other propositional connectives
(we use → for implication and ≡ for equivalence), and dual modalities [a] and
greatest fixed-point quantifier: [a]ϕ $ ¬〈a〉¬ϕ and νZ.ϕ $ ¬µZ.¬ϕ[Z := ¬Z].
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For formulas ϕ,ψ ∈ Fµ(Φ,Σ), let ϕ[Z := ψ] denote the result substituting ψ for
all free occurrences of Z. By renaming bound variables in ϕ if necessary, we can
assume such substitutions do not result in the unintended capture of free variables.

Definition 1.1. A labeled transition system (LTS ), or generalized Kripke model,
of signature (Φ,Σ) is a structure:

M =
(
X,
{
aM
}
a∈Σ

,
{
‖p‖M

}
p∈Φ

)
where X 6= ∅ is the state space (set of worlds, configurations) of arbitrary cardi-
nality; for each transition label a ∈ Σ, aM : X ; X is a relation on X ; and for
each atomic proposition (observation or event label) p ∈ Φ, ‖p‖M ⊆ X is a fixed
subset of X .

For a given LTS model M, we write Fµ(M) (Sµ(M)) and F(M) (S(M)) to
mean, respectively, the set of all µ-calculus formulas (sentences) and the set of all
finitary modal formulas (sentences) in the modal signature of M.

In the standard set-theoretic semantics for the µ-calculus [12, 17, 19] over LTS
models M, propositional variables range over the full power-set algebraP(X) of the
state space. In the more general algebraic semantics of Kwiatkowska et al. in [2,4],
formulas are interpreted with respect to modal frames (M,A), where A ⊆ P(X)
is a modal algebra for M: a Boolean algebra of sets which contains each of the
constant sets ‖p‖M and is closed under each of the pre-image operators σ(aM).
We give the standard set-theoretic semantics here, and return to the algebraic
semantics, and the relationship between the two, in Section 3.

Definition 1.2. Given an LTS model M = (X, {aM}a∈Σ, {‖p‖M}p∈Φ) of modal
signature (Φ,Σ), a (propositional, or second-order) variable assignment in M is
any map ξ : PVar → P(X). Each such assignment ξ uniquely extends to a
denotation map ‖·‖Mξ : Fµ(Φ,Σ)→ P(X) inductively defined as follows:

‖p‖Mξ $ ‖p‖M for p ∈ Φ

‖Z‖Mξ $ ξ(Z) for Z ∈ PVar

‖¬ϕ‖Mξ $ X − ‖ϕ‖Mξ
‖ϕ1 ∨ ϕ2‖Mξ $ ‖ϕ1‖Mξ ∪ ‖ϕ2‖Mξ

‖〈a〉ϕ‖Mξ $ σ(aM)
(
‖ϕ‖Mξ

)
for a ∈ Σ

‖µZ.ϕ‖Mξ $
⋂{

A ∈ P(X) | ‖ϕ‖Mξ(A/Z) ⊆ A
}

where for A ∈ P(X), the variant assignment ξ(A/Z) : PVar→ P(X) is given by:
ξ(A/Z)(W ) = ξ(W ) if W 6= Z, and ξ(A/Z)(W ) = A if W = Z.

For formulas ϕ ∈ Fµ(Φ,Σ) and assignments ξ : PVar→ P(X) in M, we say:
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• ϕ is satisfied at state x in (M, ξ), written M, ξ, x � ϕ, iff x ∈ ‖ϕ‖Mξ ;

• ϕ is true in (M, ξ), written M, ξ � ϕ, iff ‖ϕ‖Mξ = X ; i.e. ϕ is satisfied at
all states x in (M, ξ); and
• ϕ is true in M, written M � ϕ, iff ϕ is true in (M, ξ) for all assignments ξ

in M.

Note that for ϕ,ψ ∈ Fµ(Φ,Σ), we have: M, ξ � ϕ → ψ iff ‖ϕ‖Mξ ⊆ ‖ψ‖
M

ξ , and

for equivalences, M, ξ � ϕ ≡ ψ iff ‖ϕ‖Mξ = ‖ψ‖Mξ . In temporal and modal
logics, satisfaction relations x ∈ ‖ϕ‖Mξ are usually written x �M

ξ ϕ, or in the
forcing notation, x 
M

ξ ϕ.
For sentences ϕ ∈ Sµ(Φ,Σ), the denotation ‖ϕ‖Mξ is independent of variable

assignments ξ, so written ‖ϕ‖M. Thus M � ϕ iff M, ξ � ϕ for any assignment ξ.
The syntactic restriction on formulas µZ.ϕ serves to ensure that the operator

ϕM
ξ,Z : P(X) → P(X) given by

(
ϕM
ξ,Z

)
(A) $ ‖ϕ‖Mξ(A/Z) is ⊆-monotone. In the

definition above, ‖µZ.ϕ‖Mξ is defined to be the least pre-fixed-point of ϕM
ξ,Z . By

the Tarski-Knaster fixed-point theorem for monotone maps on complete lattices,
least pre-fixed-points are the same as least fixed-points; thus the inclusion can be
replaced with equality. The completeness of P(X) as a lattice ensures (by the
Hitchcock-Park fixed-point theorem) that the set ‖µZ.ϕ‖Mξ may also be charac-
terized as a transfinite union of an ⊆-chain of approximation sets ‖µZ.ϕ‖Mξ,α for
ordinals α (of cardinality less than or equal to that of X), beginning with the
empty set, applying the ϕM

ξ,Z operator at successor ordinals and taking unions
at limits. The finite approximation sets are denotations of formulas: for n < ω,
‖µZ.ϕ‖Mξ,n = ‖ϕn‖Mξ , where ϕ0 $ ff and ϕn+1 $ ϕ[Z := ϕn]. When the
semantic operator ϕM

ξ,Z distrubutes over unions of countable ⊆-chains of sets (or
more generally, distributes over unions of ⊆-directed families of sets, i.e. ∪-
continuous w.r.t. the Scott topology on P(X)), the ordinal of convergence for
‖µZ.ϕ‖Mξ is at most ω.

1.4. Hybrid systems and their transition systems

A basic hybrid system is essentially a finite collection of dynamical systems
together with reset relations between them. The definitions given here are the
standard ones from the literature (see, for example [1, 8, 9, 13]), recast from the
viewpoint of general topology.

Definition 1.3. A (basic, evolution time-deterministic) hybrid system is a
structure

H =
(
Q,G, {Xq, φq , Initq, Invq}q∈Q, {rq,q′ , Grdq,q′}(q,q′)∈G

)
where
• Q is a finite set of discrete states or control modes;
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• G ⊆ Q×Q is the control graph of discrete transitions;
• for each q ∈ Q,

– Xq ⊆ Rn is the state space for mode q;
– φq : Xq×R+ → Xq is a continuous semi-flow on Xq (e.g. from a system

of Lipschitz differential equations or vector field on Xq);
– Invq ⊆ Xq is the set of invariant states for mode q, or the domain of

permitted evolution within mode q;
– Initq ⊆ Invq is the set of initial states for mode q (possibly empty);

• for each discrete transition (q, q′) ∈ G,
– Grdq,q′ ⊆ Xq is the guard set for the jump from q to q′;
– rq,q′ : Xq ; Xq′ is a reset relation, modeling the effect on the real-valued

coordinates of jumping from q to q′.
The hybrid state space of the system H is the set XH $ ∪q∈Q {q} ×Xq.

Figure 1. Basic hybrid automaton.

For simplicity, assume a fixed number n of real-valued coordinates; i.e. Xq ⊆ Rn
for each q ∈ Q. The spaces Xq are taken as equipped with the standard topology
as a subspace of Rn, inherited from the order topology on R. By definition, the
semi-flows φq : Xq × R+ → Xq are continuous functions satisfying φq(x, 0) = x
and φq(x, t+ s) = φq(φq(x, t), s) for all x ∈ Xq and t, s ∈ R+.

Definition 1.4. [1,8,13] Given a hybrid systemH, an LTS model MH determined
by H has the following components:
• the state space X = XH;
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• for each discrete state q ∈ Q, the (time-abstract) constrained evolution
relation eq : Xq ; Xq defined by:

x
eq−→ x′

◦⇔ (∃t ∈ R+)[ x′ = φq(x, t) ∧ (∀s ∈ [0, t]) φq(x, s) ∈ Invq ]

• for each discrete transition (q, q′) ∈ G, the controlled jump relation cq,q′ :
Xq ; Xq′ defined by:

x
cq,q′−→ x′

◦⇔ x ∈ Grdq,q′ ∧ x
rq,q′−→ x′

• for each q ∈ Q, a finite collection of constant sets Aq ⊆ Xq, including Xq,
Initq, Invq, and Grdq,q′ for (q, q′) ∈ G.

We adopt the notational convention of identifying, when convenient, sets Aq ⊆ Xq

and {q} × Aq ⊆ X ; the relations eq : Xq ; Xq and cq,q′ : Xq ; Xq′ can be
“lifted” to relations X ; X in the obvious (and unique) way. It is immediate that
the domain of eq is Invq, and cq,q′ is rq,q′ restricted to the domain Grdq,q′ . The
transition alphabet for MH is ΣH = {eq}q∈Q ∪ {cq,q′}(q,q′)∈G, and the alphabet
ΦH of propositional constants include names for each of the sets Aq.

We return to properties of the constrained evolution relations, and their near-
relatives, the orbit relation of a semi-flow, in Section 4.1 below. For now, observe
that each of the relations eq are reflexive on their domains Invq, and are also
transitive.

Definition 1.5. A trajectory of a hybrid system H is a finite or infinite sequence
χ = 〈∆i, qi, γi〉i∈I such that for each i ∈ I:
• the duration ∆i ∈ R+∪{∞}, with ∆i =∞ only if I is finite and max(I) = i;
• the curve γi : [0,∆i] → Xqi is such that (qi, γi(0))

eqi−→ (qi, γi(t)) for all
t ∈ [0,∆i]; and

• (qi, γi(∆i))
cqi,qi+1−→ (qi+1, γi+1(0)).

Over X = XH, the global H-reachability relation h : X ; X is defined by:

(q, x) h−→ (q′, x′) ◦⇔ (∃ H-trajectory χ = 〈∆i, qi, γi〉i∈I with I = {0, 1, ..., n}) :
q = q0, x = γ0(0), q′ = qn and x′ = γn(∆n).

Now let e and c denote, respectively, the relational sum of the relations eq for
q ∈ Q, and of the relations cq,q′ for (q, q′) ∈ G. Then the H-reachability relation
satisfies the regular expression: h = (ec)∗e = e(ce)∗, captured by the dual fixed-
point definable modalities:

〈h〉ϕ $ µZ. 〈e〉ϕ ∨ 〈e〉〈c〉Z and [h]ϕ $ νZ. [e]ϕ ∧ [e][c]Z.

Proposition 1.6. Given a hybrid system H, LTS model M = MH, µ-calculus
formula ϕ ∈ Fµ(ΦH,ΣH), and variable assignment ξ in M, we have:

‖〈h〉ϕ‖Mξ = σ(h)
(
‖ϕ‖Mξ

)
and ‖[h]ϕ‖Mξ = τ(h)

(
‖ϕ‖Mξ

)
.
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In words, [h]ϕ denotes the largest subset of [e]ϕ that is invariant under both
evolution and controlled jump relations. The safety sentence

Init→ [h]ϕ

is true in the model M = MH exactly when every H-trajectory that starts in Init
always remains within ‖ϕ‖M. As an example of a liveness property, the sentence

ϕ→ [h]〈e〉〈c〉 tt

is true in M exactly when every maximalH-trajectory from a state in ‖ϕ‖M makes
infinitely many discrete jumps. This is because 〈c〉 tt denotes the domain of c,
which is the union of the guard sets Grdq,q′ .

1.5. Bisimulation relations

Definition 1.7. Given two LTS models M and N of common modal signature
(Φ,Σ), with state spaces X and Y respectively, a relation 4: X ; Y is called a
bisimulation or zig-zag between M and N iff for x, x′ ∈ X , y, y′ ∈ Y and each
a ∈ Σ and p ∈ Φ,

Ziga: x 4 y and x
aM

−→ x′ ⇒ (∃y′)[ y
aN

−→ y′ and x′ 4 y′ ]

Zaga: x 4 y and y
aN

−→ y′ ⇒ (∃x′)[ x
aM

−→ x′ and x′ 4 y′ ]

Upp: x 4 y and x ∈ ‖p‖M ⇒ y ∈ ‖p‖N

Downp: x 4 y and y ∈ ‖p‖N ⇒ x ∈ ‖p‖M .

By symmetry, the converse <: Y ; X will also be a bisimulation between N and
M. The relational composition of two bisimulations is also a bisimulation.

The fundamental bisimulation-invariance property for sentences of theµ-calculus
is the following.

Proposition 1.8. ([17] Sect. 5.3). If 4 is a bisimulation between M and N, then
for all x ∈ X and y ∈ Y , and all sentences ϕ ∈ Sµ(Φ,Σ),

x 4 y ⇒
[
x ∈ ‖ϕ‖M ⇔ y ∈ ‖ϕ‖N

]
.

Proof. The conditions Upp and Downp give the base case of the induction, for
atomic p ∈ Φ, and the Ziga and Zaga conditions give the induction step for the
〈a〉 modalities. For µ-sentences µZ.ϕ, one proves x ∈ ‖ϕ‖Mα iff y ∈ ‖ϕ‖Nα by
transfinite induction on ordinals α.

For states x ∈ X , define

SM
µ (x) $

{
ϕ ∈ Sµ(Φ,Σ) | x ∈ ‖ϕ‖M

}
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to be the set of all µ-sentences satisfied by x in M. The relation ≈M,N
Sµ : X ; Y

given by:

x ≈M,N
Sµ y

◦⇔ SM
µ (x) = SN

µ (y)

is that of logical equivalence or indistinguishability under µ-calculus sentences;
replacing Sµ with S gives logical equivalence under modal sentences. Then the
bisimulation invariance property in Proposition 1.8 is the implication:

x 4 y ⇒ x ≈M,N
Sµ y.

When M = N and 4=∼ is also an equivalence relation on X , ∼ is called a
bisimulation equivalence on M. In this case, the (single-valued) quotient map
q : M →M∼ is a bisimulation between M and the quotient LTS model M∼; the
quotient is defined as:

M∼ $
(
X∼,

{
aM∼

}
a∈Σ

,
{
‖p‖M∼

}
p∈Φ

)

where for equivalence classes C,C′ ∈ X∼, we have C aM∼
−→ C′ iff x

aM

−→ x′ for some
x ∈ C and x′ ∈ C′, iff C ∩ σ(∼)(C′) 6= ∅; and for the propositional constants,
‖p‖M∼ $ {C ∈ X∼ | C ∩ ‖p‖M 6= ∅} = σ(∼)(‖p‖M). The bisimulation condi-
tions ensure that the quotient M∼ is well-defined. When ∼ is a bisimulation equiv-
alence on M, it follows by Proposition 1.8 that for each sentence ϕ ∈ Sµ(Φ,Σ),
the denotation set ‖ϕ‖M is a union of ∼ equivalence classes. In particular, if ∼
is a bisimulation equivalence of finite index I, then for each fixed-point sentence
µZ.ϕ ∈ Sµ(Φ,Σ), the denotation ‖µZ.ϕ‖M is a finite union of approximations
‖ϕn‖M over 0 ≤ n ≤ I, where ϕ0 $ ff and ϕn+1 $ ϕ[Z := ϕn] for n < ω. It
follows that for each µ-calculus sentence µZ.ϕ ∈ Sµ(Φ,Σ), there is a finitary modal
sentence ψ ∈ S(Φ,Σ) such that M � µZ.ϕ ≡ ψ.

2. Bisimulations and continuity

2.1. Bisimulation preorders

In our analysis of bisimulation relations, we narrow the focus and consider
relations 4: X ; X on single LTS model M. A bisimulation 4 is a structuring on
the state space X in a manner which preserves the component transition relations
aM : X ; X and constant sets ‖p‖M. In order to manifest this notion of preser-
vation as a continuity property, we seek to recast the relational zig-zag clauses as
conditions on the preservation of families of sets of states.

Definition 2.1. Given a relation r : X ; X , we call a set A ⊆ X :
• up-r-closed iff σ(r̆)(A) ⊆ A iff A ⊆ τ(r)(A);
• down-r-closed iff σ(r)(A) ⊆ A iff A ⊆ τ(r̆)(A).
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Let Up(r), Dn(r) ⊆ P(X) denote, respectively, the families of all up-r-closed and
down-r-closed subsets of X .

In temporal logic or in the topological dynamics of set-valued functions,
up-r-closed sets A ⊆ X are also called positive- or future-invariant under r. When
r =4 is a preorder or partial order, it is usually written ↑A = A. For r = aM

a transition relation of M, a set ‖ϕ‖M is respectively, up-aM-invariant or down-
aM-invariant, exactly when M � ϕ → [a]ϕ or M � 〈a〉ϕ → ϕ. For arbitrary
relations r : X ; X , each of the families Up(r) and Dn(r) are closed under
both arbitrary unions and arbitrary intersections, since the pre-image operators
σ(r) and τ(r) are completely additive and completely multiplicative respectively,
and we can exploit the duality between r and r̆. Moreover, the two families are
duals under complement: A ∈ Up(r) iff −A ∈ Dn(r). Thus the family of sets
UpDn(r) $ Up(r) ∩Dn(r) is a complete Boolean algebra.

We now further narrow the focus to preorders (reflexive and transitive relations)
4: X ; X . In this case: A ∈ UpDn(4) iff σ(<)σ(4)(A) = A iff σ(4)(A)
= A = τ(4)(A) iff A is a (disjoint) union of 4-clusters; that is, sets C ⊆ X such
that for all x, y ∈ C, x 4 y (all pairs of points in C are mutually 4-accessible).

Proposition 2.2. Given an LTS M = (X, {aM}a∈Σ, {‖p‖M}p∈Φ), and a preorder
4 on X, we have for each a ∈ Σ and p ∈ Φ, and all A ∈ P(X),

4 satisfies Ziga iff A ∈ Up(4) ⇒ σ(aM)(A) ∈ Up(4)
4 satisfies Zaga iff A ∈ Dn(4) ⇒ σ(aM)(A) ∈ Dn(4)
4 satisfies Upp iff ‖p‖M ∈ Up(4)

4 satisfies Downp iff ‖p‖M ∈ Dn(4).

Proof. The condition Ziga for 4 is equivalent to the relational inclusion:

< ◦ aM ⊆ aM ◦ <

and this is in turn equivalent to the set-inclusion:

σ(<)σ(aM)(A) ⊆ σ(aM)σ(<)(A)

for all A ∈ P(X). Then using the reflexivity of 4, so A ∈ Up(4) iff A = σ(<)(A),
the stated equivalence follows. For the Zaga condition, replace < by 4. The
equivalence for Upp and Downp is immediate from Definition 1.7.

2.2. Semi-continuity of relations

For relations/set-valued maps, the purely topological notion of continuity was
introduced by Kuratowski and Bouligand in the 1930’s, and generalizes that for
single-valued functions.

Definition 2.3. Given a topological space (X, T ), let O(T ) = T and C(T )
denote, respectively, the open and closed sets of T .
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A relation r : (X, T ) ; (Y,S) is called:

lower semi-continuous (l.s.c.) iff U ∈ O(S) ⇒ σ(r)(U) ∈ O(T )

upper semi-continuous (u.s.c.) iff U ∈ O(S) ⇒ τ(r)(U) ∈ O(T )

iff C ∈ C(S) ⇒ σ(r)(C) ∈ C(T )

continuous iff both l.s.c. and u.s.c.

Let Clop(T ) = O(T ) ∩ C(T ) denote the Boolean algebra (under the finitary
set-theoretic operations) of clopen subsets of (X, T ). The two semi-continuity
properties together imply that for everyA ∈ Clop(S), we have σ(r)(A) ∈ Clop(T ).
In particular, the domain dom(r) $ σ(r)(Y ) ∈ Clop(T ), since Y ∈ Clop(S).

A related notion of continuity for relations is examined in [2] Section 9.1, where
in the context of Stone duality, the interest is in spaces (X,A), where A is a
Boolean algebra of sets that serves as a clopen basis for a topology TA on X ;
the open sets in TA are arbitrary unions of clopens, and dually, the closed sets are
arbitrary intersections. A Boolean algebra of setsA ⊆ P(X) is both perfect (every
ultrafilter of A is determined by a point x ∈ X) and reduced (every pair of distinct
points in X can be separated by sets A,−A ∈ A) exactly when the topology TA
is a Stone space (compact, Hausdorff and totally disconnected). In [2], a relation
r : (X,A) ; (Y,B) is said to be continuous if for all B ∈ B, τ(r)(B) ∈ A.

2.3. Preorders and Alexandroff topologies

Given a preorder 4 on X , the Alexandroff topology T4 on X determined by 4
is simply T4 = O(T4) = Up(4) and C(T4) = Dn(4). Thus T4 is closed under
arbitrary intersections as well as unions, and for all A ⊆ X ,

intT4(A) = τ(4)(A) and clT4(A) = σ(4)(A).

In particular, Clop(T4) = UpDn(4) is a complete Boolean algebra. The topology
T4 has as a basis the collection of all sets B4(x) $ σ(<)({x}) = {y ∈ X | x 4 y},
and B4(x) is the intersection of all open sets in T4 containing x.

More generally, a topology T on X is called Alexandroff if it has the property
that for every point x ∈ X , there is a smallest open set containing x. In particular,
every finite topology on a (arbitrary) set X is Alexandroff. For a preorder 4 on
X , the topology T4 is of course Alexandroff. Going the other way, any topology
T on X determines a relation 4T on X , called the specialization preorder of T ,
given by:

x 4T y iff (∀U ∈ T )[ x ∈ U ⇒ y ∈ U ].

Note that 4T is a partial order exactly when T is T0, and is trivial (the identity
relation) when T is T1. Alexandroff topologies are those that can be completely
recovered from their specialization preorder: for any preorder 4 on X , 4T4=4,
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and if T is Alexandroff, then T4T = T . The Alexandroff topology on a preordered
space can also be seen as a crude cousin of the Scott topology Tv on a dcpo (X,v),
which satisfies 4Tv=v; see [16], Section 2.4.

In the modal logic tradition, preorders give the relational Kripke semantics for
S4 modalities, with σ(4) interpreting 3 and τ(4) interpreting �. From work
of McKinsey and Tarski in the 1940’s, S4 also admits a more general topological
semantics in addition to the (historically later) relational Kripke semantics using
preorders. The axioms for � correspond to those of an arbitrary topological inte-
rior operator intT , and dually, 3 corresponds to topological closure. Alexandroff
topologies arise when one correlates the two semantics (see [5], where they go by the
name D-topology, for “digital”). In earlier work on hybrid systems [15], Alexan-
droff spaces arising from finite sub-topologies of standard topologies on X ⊆ Rn
(by the name “small” or AD-topologies) are used to model the conversion of sensor
data into an input signal to a finite control automaton ([15], Sect. 5).

2.4. Topological characterization of bisimulation preorders

It follows immediately from Proposition 2.2 and Definition 2.3 that if (X, T )
is an Alexandroff space, then aM : (X, T ) ; (X, T ) is l.s.c. with respect to
T iff 4T satisfies Ziga, and aM is u.s.c. with respect to T iff 4T satisfies
Zaga. The Alexandroff hypothesis is essential for this characterization of lower
semi-continuity, but for arbitrary topological spaces (X, T ), upper semi-continuity
implies 4T satisfies Zaga (in longer words, aM is upper-4T -monotonic); see [16],
Section 4.4.

We now have our topological characterization of bisimulation preorders.

Proposition 2.4. Let M = (X, {aM}a∈Σ, {‖p‖M}p∈Φ) be an LTS model and let
T be an Alexandroff topology X. Then:

4T is a bisimulation preorder on M

iff for each a ∈ Σ, aM : (X, T ) ; (X, T ) is continuous, and
for each p ∈ Φ, ‖p‖M ∈ Clop(T ).

Moreover, the preorder

x 4Clop(T ) y iff (∀A ∈ Clop(T ))[ x ∈ A ⇒ y ∈ A ]

includes 4T and is symmetric, thus an equivalence relation ∼Clop(T ). When 4T
is a bisimulation preorder on M, ∼Clop(T ) is a bisimulation equivalence.

The last statement also follows from Proposition 2.2 and Definition 2.3, using
the fact that Clop(T ) = Up(∼Clop(T )) = Dn(∼Clop(T )). Note that although 4T
and <T are both bisimulations if either is such, the topological equivalence (Stone
T0 quotient) ∼T = (4T ∩ <T ) can fail to be a bisimulation. If BT (x) = B4T (x)
and CT (x) = clT ({x}) are, respectively, the smallest open and the smallest closed
sets containing a point x, then under ∼T , the equivalence classes are ET (x) =
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BT (x) ∩ CT (x). In contrast, the equivalence class DClop(T )(x), is the smallest
clopen or 4T -cluster containing both BT (x) and CT (x).

More generally, if ∼ is any equivalence relation on X , and T∼ is the Alexandroff
topology of ∼, then the basic open sets are just the equivalence classes under
∼, and T∼ = Clop(T∼) = Up(∼) = Dn(∼) is the complete Boolean algebra of
all unions of equivalence classes. The bisimulation equivalence conditions UpDnp
and ZigZaga and reduce, respectively, to the requirement that ‖p‖M ∈ UpDn(∼),
and that UpDn(∼) be closed under σ(aM).

In the light of our excursion into general topology, we restate the basic truth-
preservation property of bisimulations from Proposition 1.8.

Proposition 2.5. Let M = (X, {aM}a∈Σ, {‖p‖M}p∈Φ) be an LTS model and let
4 be a bisimulation preorder on M.

Then for every sentence ϕ ∈ Sµ(Φ,Σ),

σ(4)
(
‖ϕ‖M

)
= ‖ϕ‖M = τ(4)

(
‖ϕ‖M

)
hence ‖ϕ‖M ∈ Clop(T4) = UpDn(4).

Proof. The truth-preservation property is: σ(4)(‖ϕ‖M) ⊆ ‖ϕ‖M ⊆ τ(4)(‖ϕ‖M),
and the reflexivity of 4 gives the rest of the inclusions.

3. Algebraic approaches to the modal µ-calculus

3.1. Modal algebras and modal frames

For bisimulation preorders on M, the algebras of sets Clop(T4) are clearly of
interest since they contain the denotations in M of all µ-calculus sentences. An
algebraic approach to the semantics of the µ-calculus is taken up in the recent
work of Kwiatkowska et al. in [2, 4]. The enterprise in those papers is to ex-
tend the framework of Stone duality for Boolean algebras to modal algebras with
fixed-points, and in the process, give an algebraic completeness proof for Kozen’s
axiomatization Lµ of the µ-calculus, using a Henkin-style canonical model con-
struction over the space of ultrafilters of the Lindenbaum algebra of the logic Lµ.
Their language for the µ-calculus contains logical constants ff and tt, but no
alphabet Φ of propositional constants. We make the obvious extension.

Definition 3.1. A structure (A, {σAa }a∈Σ, {‖p‖A}p∈Φ) is called a modal algebra
of signature (Φ,Σ), with carrier A, iff

(1) (A;∨,∧,¬, 0, 1) is a Boolean algebra, with lattice order 6;
(2) for each p ∈ Φ, ‖p‖A ∈ A;
(3) for each a ∈ Σ, σAa : A → A is a finitely additive and normal operator with

values in A: σAa (A ∨B) = σAa (A) ∨ σAa (B) and σAa (0) = 0.
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For modal formulas ϕ, the denotation ‖ϕ‖Aξ in A with respect to variable
assignments ξ : PVar → A is defined as usual by induction on formulas, parallel
to Definition 1.2.

Such a structure is called a modal µ-algebra if for each formula µZ.ϕ ∈ Fµ(Φ,Σ),
the 6-monotone operator A 7→ ‖ϕ‖Aξ(A/Z) has a least pre-fixed-point in A, in which
case:

‖µZ.ϕ‖Aξ $
∧
{A ∈ A | ‖ϕ‖Aξ(A/Z) 6 A}

=
∧
{A ∈ A | ‖ϕ‖Aξ(A/Z) = A}·

Definition 3.2. A modal frame of signature (Φ,Σ) is a pair (M,A) consisting of
an LTS model M = (X, {aM}a∈Σ, {‖p‖M}p∈Φ) and a modal algebra A for M, by
which we mean:

(1) A is a Boolean algebra under the finitary set-theoretic operations;
(2) A contains each of the sets ‖p‖M for p ∈ Φ; and
(3) A is closed under each of the pre-image operators σ(aM) for a ∈ Σ.

A modal µ-frame is a modal frame (M,A) such that A is a modal µ-algebra. An
LTS model M is identified with the modal µ-frame (M,P(X)).

So by definition, modal algebras A for M are subalgebras of the full power-set
algebra P(X), considered as a Boolean algebra under the finitary set-theoretic op-
erations, and a modal algebra with respect to the operators σ(aM). The definition
also entails that for each purely modal sentence ϕ ∈ S(Φ,Σ), the denotation set
‖ϕ‖M ∈ A. Define

SM $ {‖ϕ‖M | ϕ ∈ S(Φ,Σ)}

to be the family of all denotations in M of modal sentences S(Φ,Σ), and likewise
define SM

µ by the denotations of µ-calculus sentences in M. Then SM and SM
µ

are both modal algebras for M, and SM
µ is a modal µ-algebra: an assignment ξ

in SM
µ maps variables Vi to sets ‖ψi‖M, so for any formula µZ.ϕ ∈ Fµ(Φ,Σ), we

have ‖µZ.ϕ‖Mξ = ‖µZ.ϕ[Vi := ψi]‖M ∈ SM
µ . Thus SM (SM

µ ) is the intersection of
all modal algebras (modal µ-algebras) for M.

In the Stone duality algebraic approach of [2, 4], one takes a modal algebra A
and generates a topology TA by taking A as a clopen basis. Here, we take an
(Alexandroff) topology T , and consider the algebra Clop(T ). In both cases, the
algebras of clopens provide the denotations of modal formulas, but we switch the
dynamic between the algebra and the topology.

3.2. Semantic agreement and bisimulations

In this section, we examine the relationship between the standard set-theoretic
semantics in LTS models [12,17,19], and the algebraic semantics over modal frames
or µ-frames. For purely modal formulas ϕ ∈ F(Φ,Σ), the semantics in (M,P(X))
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and in any modal frame (M,A) are in agreement: ‖ϕ‖Mξ = ‖ϕ‖Aξ for all variable
assignments ξ : PVar → A. But in general, they part company on µ-formulas,
since the smallest set in A such that some condition holds will in general be larger
than the smallest of all subsets of X such that the same condition holds. This
motivates the following definition.

Definition 3.3. Given an LTS model M and a modal µ-algebraA ⊆ P(X) for M,
we say the frame (M,A) is in semantic agreement with the underlying model M if
for all formulas ϕ ∈ Fµ(Φ,Σ) and all assignments ξ in A, we have: ‖ϕ‖Aξ = ‖ϕ‖Mξ .

In other words, such algebras A yield the “true” denotation of formulas, as
determined by the standard set-theoretic semantics in M. In establishing semantic
agreement, the task is to show that for assignments ξ in A, each set ‖µZ.ϕ‖Mξ is
in A; it then follows readily that ‖µZ.ϕ‖Mξ is the least pre-fixed-point of A 7→
‖ϕ‖Aξ(A/Z) = ‖ϕ‖Mξ(A/Z), with induction on the complexity of formulas. The

available means to prove ‖µZ.ϕ‖Mξ ∈ A is by transfinite induction that each of the

α-approximations ‖µZ.ϕ‖Mξ,α ∈ A. If A is a complete, then closure under unions
at limit ordinals is immediate; the task then reduces to proving closure under the
ϕM
ξ,Z operator.
In particular, the algebra of standard denotations of µ-calculus sentences SM

µ

is always in semantic agreement with M, thus it is the smallest modal µ-algebra
for M in semantic agreement with M.

Our analysis of bisimulation preorders leads to a simple condition for semantic
agreement.

Proposition 3.4. If 4 is a bisimulation preorder on an LTS model M, then
(M, Clop(T4)) is in semantic agreement with M.

Proof. From Proposition 2.4, Clop(T4) is a modal algebra for M, since it contains
each ‖p‖M and is closed under σ(aM). The completeness of Clop(T4) as a Boolean
algebra ensures that it is also a µ-algebra, since the relevant pre-fixed-points exist
in Clop(T4). From Proposition 2.5, for all sentences ϕ ∈ Sµ(Φ,Σ), we have
‖ϕ‖M ∈ Clop(T4). To prove that ‖ϕ‖Mξ ∈ Clop(T4) for all formulas ϕ ∈ Fµ(Φ,Σ)
and any assignment ξ in Clop(T4), use transfinite induction as above.

Corollary 3.5. If A is any complete modal algebra for an LTS model M, then
(M,A) is in semantic agreement with M.

Proof. Consider the equivalence relation ∼A on X defined by:

x ∼A y iff (∀A ∈ A)[ x ∈ A ⇔ y ∈ A ].

In virtue of the closure conditions on A as a modal algebra for M, ∼A is a
bisimulation equivalence on M, and by the completeness of A as a Boolean al-
gebra, A = Clop(T∼A). The result then follows from Proposition 3.4.
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4. Finite bisimulations of hybrid systems

4.1. Semi-flows and their orbit relations

In the definition of an LTS model of a hybrid system, the continuous evolution
relations eq are defined in terms of the semi-flows φq, but in a non-elementary way.
We start by investigating a more primitive relation determined by a semi-flow.

Definition 4.1. Given a semi-flow φ : X × R+ → X on a topological space X ,
define the (positive) orbit relation f : X ; X of φ by:

x
f−→ x′

◦⇔ (∃t ∈ R+) x′ = φ(x, t).

For each point x ∈ X , the set f(x) ◦= {φ(x, t) | t ∈ R+} is the positive orbit of x
under φ.

The pre-image operators of the orbit relation are such that x ∈ σ(f)(A) iff the
flow from x reaches A at some time t ∈ R+, while x ∈ τ(f)(A) iff the flow from x
remains inside A for all time t ∈ R+, for A ∈ P(X).

Observe that by the semi-group properties of a semi-flow φ, the orbit relation
f is both reflexive and transitive. It is also (weakly) connected in the sense that

x
f−→ x1 and x

f−→ x2 ⇒
[
x1

f−→ x2 or x2
f−→ x1

]
.

Equivalently, the postive orbit f(x) of any point x is linearly pre-ordered by f ,
i.e. linearly ordered modulo cycles. The conjunction of reflexivity, transitivity
and connectedness entails that f is (weakly) n-fold connected : if x

f−→ xi for
i = 1, ..., n, then there exists a permutation π on the letters {1, ..., n} such that

x
f−→ xπ(1)

f−→ xπ(2)
f−→ · · · f−→ xπ(n).

When a semi-flow φ : X × R+ → X is in fact a flow, which means each of
the functions φt : X → X for t ∈ R+ is invertible, then the relational converse f̆
coincides with the orbit relation of the reverse flow φ−1 : X × R+ → X given by
φ−1(x, t) $ (φt)−1(x).

Implicit in the definition of continuous transitions eq as evolution constrained
within Invq is the idea that the domains Invq be convex with respect to their flows
φq, in the sense that any integral curve of φq connecting two points in Invq should
remain within Invq at all intermediate points; wandering outside Invq and then
returning is to be ruled out. The general form of this notion of “in-between-ness”
is captured in the following definition.

Definition 4.2. Given a relation r : X ; X , we call a set A ⊆ X r-convex if for
all x, y, z ∈ X ,

if x, y ∈ A and x
r−→ z

r−→ y, then z ∈ A.

Equivalently, σ(
`
r)(A) ∩ σ(r)(A) ⊆ A.
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For f : X ; X the orbit relation of a semi-flow φ, a set A ⊆ X is f -convex iff for
all x ∈ A and all t ∈ R+, if φ(x, t) ∈ A then for all s ∈ [0, t], φ(x, s) ∈ A. Moreover,
when A is f -convex, then the relation e : X ; X of evolution constrained within
A given by:

x
e−→ x′

◦⇔ (∃t ∈ R+)[x′ = φ(x, t) ∧ (∀s ∈ [0, t]) φ(x, s) ∈ A]

(as in the definition of an LTS model of a hybrid system) admits the decomposition
e = f∩(A×A), hence the pre-image operators satisfy: σ(e)(Z) = A∩σ(f)(Z∩A).
In concrete examples of hybrid systems in the literature, the domains of evolution
Invq are invariably fq-convex.

The property of f -convexity is identified by Lafferriere et al. in [13] under the
name property (P), and is of fundamental importance in their construction of a
finite bisimulation for classes of hybrid systems, to which we now turn.

4.2. Finite bisimulations of o-minimal flows

Definition 4.3. [18], Chap. 1. Let R = (R;<, ...) be a (model-theoretic)
structure over the reals R equipped with at least a dense linear order without
endpoints, and let L(R) be the first-order language of R. The structure R is said
to be o-minimal if every set A ⊆ R definable in L(R) is a finite union of (open)
intervals and points.

The term o-minimal structure is also used to refer to any sequence (Sn)n∈N of
Boolean algebras Sn ⊆ P(Rn) of R-definable sets such that for each n ∈ N:

(1) the sets {(x1, ..., xn) ∈ Rn | xi = xj} ∈ Sn;
(2) if A ∈ Sn then A× R ∈ Sn+1 and R×A ∈ Sn+1;
(3) if A ∈ Sn+1 then π(A) ∈ Sn, where π is the projection onto the first n

coordinates;
(O1)

{
(x1, x2) ∈ R2 | x1 < x2

}
∈ S2;

(O2) the sets in S1 are exactly the finite unions of open intervals and points.

Van den Dries’ monograph [18] is a comprehensive and highly readable study
of spaces and maps definable in o-minimal structures, and their “tameness” as
manifested in a cell-decomposition property: any definable set A ⊆ Rn has only
finitely many connected components (with respect to the standard topology on Rn
inherited from the order on R). For our purposes, all we need is one consequence
of cell-decomposition: a uniform bound result for definable relations r : X ; Y ,
which in [18] go by the name definable families (rx)x∈X .

Lemma 4.4. Fix an o-minimal structure R. Given an R-definable space X ⊆ Rn,
an R-definable relation r : X ; X and an R-definable set A ⊆ X, there is a
positive integer N(r,A) such that the number of connected components of the set
r(x) ∩A is bounded by N(r,A), independent of x ∈ X.

Proof. Apply [18], Corollary 3.3.6.
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The following result and its proof are the product of a close analysis of the
construction of a finite bisimulation in [13]. Our reformulation of the task as the
construction of a finite topology yields a conceptual clarification of that work.

Theorem 4.5. [13] Let R = (R;<,+, 0, ...) be an o-minimal structure expanding
the reals as an ordered Abelian group. Suppose M = (X, f, {Pk}k∈K) is a LTS
model that is first-order definable in R, with X ⊆ Rn, f : X ; X the positive
orbit relation of an invertible flow φ : X ×R+ → X, and K finite. Then M has a
bisimulation equivalence of finite index, which is also first-order definable in R.

Proof. By Proposition 2.4, it suffices to produce a finite topology T on X such
that each Pk ∈ Clop(T ) and f is both u.s.c. and l.s.c. with respect to T .

Stage 1: Let {Aj}j∈J be a list of the (non-empty) atoms of the finite Boolean
algebra generated by the sets Pk. EachAj is a finite Boolean combination of literals
over {Pk}k∈K , and hence R-definable. Without loss of generality, we may assume
for convenience that the modal signature of M includes for each j a propositional
constant Aj denoting Aj .

Stage 2: By Lemma 4.4, for each j ∈ J , there is an integer Nj such that for
all x ∈ X , the number of connected components of the set f(x) ∩ Aj is bounded
by Nj .

Now consider the modal operator defined by

((f))Z $ Z ∧ [f ](¬Z → [f ]¬Z) ≡ Z ∧ [f ](〈f〉Z → Z).

Thus ((f))Z denotes the set of points in Z from which if the flow ever leaves Z, it
never returns. Now for each j ∈ J , consider the further partition of Aj into sets
Anj recursively defined by the modal formulas:

A0
j $ Aj ∧ [f ]Aj

An+1
j $ ((f))

(
Aj ∧ ¬

∨n
k=0 Ak

j

)
.

Thus A0
j is the “f -sink” of Aj : that part of Aj from which the flow never leaves

(possibly empty), and An+1
j is the result of applying ((f)) to the n-th remainder

Aj −
⋃n
k=0 A

k
j . Hence each of the sets Anj is R-definable. The finiteness of this

subpartition process is established by the lemma:

Lemma 4.6. For each j ∈ J , each n ≥ 2, and each x ∈ Anj , the set f(x)∩Aj has
at least n connected components. Hence Anj = ∅ for all n > Nj.

The proof of Lemma 4.6 depends on four claims:

Claim 4.7. For each j ∈ J , and each n ≥ 0, the set Anj is f -convex.

Claim 4.8. For each j ∈ J , each n ≥ 2 and for each x ∈ Anj , there exists
yn−1, ..., y1, xn−1, ..., x1 ∈ X such that

x = xn
f−→ yn−1

f−→ xn−1
f−→ yn−2

f−→ · · · f−→ y1
f−→ x1
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and for 1 ≤ k < n, xk ∈ f(x) ∩Akj and yk ∈ f(x)−Aj .

Claim 4.9. For any set A ⊆ X , and x ∈ X ,

if A is f -convex, then the set f(x) ∩A is connected.

Claim 4.10. ([13], Lem. 5.3) For R-definable sets A,C ⊆ X , and x ∈ X ,

if C is a connected component of f(x) ∩A, then C is f -convex.

Proof of Lemma 4.6. Fix n ≥ 2 and x ∈ Anj . By Claims 4.7 and 4.9, for each
k, 0 ≤ k ≤ n, the set fq(x) ∩ Akj is (path) connected, and thus contained in a
connected component of f(x) ∩ Aj . Now fix k, 1 ≤ k ≤ n, and let Ck be the
connected component of f(x)∩Aj that contains f(x)∩Akj . By Claim 4.10, the set
Ck = f(x)∩Ck is f -convex. Now suppose, for a contradiction, that Ck ∩Amj 6= ∅
for some m 6= k, 1 ≤ m ≤ n; w.l.o.g., assume k < m. Then by Claim 4.8, starting
from xm ∈ Ck ∩ Amj ⊆ f(x) ∩ Amj , the relation leaves Aj (and hence Ck) at
least once before returning to f(x) ∩ Akj ⊆ Ck, contradicting the f -convexity of
Ck. Thus Ck ∩ Amj = ∅ for all m 6= k, 1 ≤ m ≤ n, hence Ck = f(x) ∩ Akj is
a connected component of f(x) ∩ Aj . Hence f(x) ∩ Aj has at least n connected
components.

Claims 4.7 and 4.8 can be proved using only the transitivity of f , together
with the definition of the partition sequence Akj . Claim 4.9 is immediate from the
definition of a semi-flow, its positive orbit relation, and f -convexity. Claim 4.10
is a reformulation of Lemma 5.3 of [13]; the proof given there makes essential
use of the assumption that the semi-flow is invertible, together with o-minimal
definability.

Let {Si}i∈I be a list of all the non-empty sets Akj , for j ∈ J and k ≤ Nj , and
again for convenience, assume the modal signature of M includes a propositional
constant Si denoting Si, for each i. Now {Si}i∈I forms an f -convex partition of
the state space X . This means that any curve of the flow φ will pass through a
partition set Si at most once, since by f -convexity, if the flow passes through Si
and leaves, it never returns to Si, and if the flow enters Si from some other Sj ,
then it has never passed through Si before.

Stage 3: We now build a finite topology T on X such that each Si ∈ Clop(T )
and f is both u.s.c. and l.s.c. with respect to T .

Let Sg $ {+,−}, and for modal formulas ϕ ∈ F(M), define +ϕ $ ϕ and
−ϕ $ ¬ϕ. Consider the collection of modal sentences G generated by the gram-
mar:

ψ ::= Si | Si ∧ η 〈f〉ψ

where i ∈ I and η ∈ Sg. Thus each sentence ψ ∈ G is uniquely characterized by
an alternating sequence α = (i, η1, j1, ..., ηn, jn) ∈ I × (Sg × I)n, for some n ≥ 0,
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where we define

ψ(α) $ Si ∧ η1〈f〉(Sj1 ∧ η2〈f〉(Sj2 ∧ η3〈f〉(... ∧ ηn−1〈f〉(Sjn−1 ∧ ηn〈f〉Sjn)...))).

Define the degree of such an alternating sequence α to be n, which is just the modal
degree (depth of nesting of modal operators) of the sentence ψ(α). Let G(I) denote
the finite subcollection of sentences ψ(α) ∈ G such that α ∈

⋃
0≤n≤I I× (Sg×I)n,

and for each i ∈ I, let G(I, i) denote the subcollection of all ψ(α) ∈ G(I) such that
α begins with i. So for ψ ∈ G(I), the sentence ψ → Si is true in M iff ψ ∈ G(I, i).

We now take T to be the finite topology generated from the sets ‖ψ‖M for
ψ ∈ G(I) by closing under finite unions and intersections.

Lemma 4.11. T is closed under complement, hence T = Clop(T ) and for each
i ∈ I, Si ∈ Clop(T ).

Proof. The sets in T are modally defined by disjunctions and conjunctions of
sentences in G(I), so it suffices to show that ‖¬ψ‖M ∈ T for each ψ ∈ G(I).
Proceed by induction on the modal degree of ψ, using the equivalence in M:

¬ ( Si ∧ η 〈f〉ψ(α) ) ≡

 ∨
j 6=i, j∈I

Sj

 ∨ ( Si ∧ ¬ η 〈f〉ψ(α)) .

Lemma 4.12. The flow relation f is both u.s.c. and l.s.c. with respect to T .

Proof. By Lemma 4.11, it suffices to show that the Boolean algebra T = Clop(T )
is closed under σ(f), so f is l.s.c.; the u.s.c. property will then follow by Boolean
duality. For each of the generating formulas ψ ∈ G(I), it is immediate that
‖〈f〉ψ‖M ∈ T , since in M,

〈f〉ψ(α) ≡
∨
i∈I

( Si ∧ 〈f〉ψ(α) ) ≡
∨
i∈I

ψ((i,+)aα).

And since 〈f〉 distributes over disjunctions, we have
∥∥∥〈f〉 (∨j∈J ϕj)∥∥∥M

∈ T
whenever ‖ϕj‖M ∈ T for each j ∈ J .

To conclude the proof, observe that every atom of the algebra T = Clop(T ) is
modally defined by a conjunction

∧
k∈K ψk, where each conjunct ψk ∈ G(I, i) for

some one i ∈ I. Since each set in T is modally representable as a finite disjunction
of atoms, the required closure under 〈f〉 follows from two further claims.

Claim 4.13. For each i ∈ I and ψ ∈ G(I, i), the following sentence is true in M:

ψ → [f ] ( Si → ψ) .
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Claim 4.13 is proved by induction on modal degree, using the connectedness and
transitivity of f together with the f -convexity of the sets Si. The sentence asserts
that whenever x ∈ ‖ψ‖M, then every flow successor of x that is in Si is in fact in
‖ψ‖M.

Claim 4.14. For each i ∈ I and each finite family ψk ∈ G(I, i) for k ∈ K, the
following equivalence is true in M:

〈f〉
( ∧
k∈K

ψk

)
≡

∧
k∈K
〈f〉ψk.

For Claim 4.14, the left-to-right implication is always true. For the converse,
fix x ∈

∥∥∧
k∈K 〈f〉ψk

∥∥M, where each ψk ∈ G(I, i). So for each k ∈ K, there

is an xk ∈ ‖ψk‖M such that x
f−→ xk. Thus each xk ∈ Si. Then since f is

K-fold connected, there exists a permutation π on the letters {1, ...,K} such that

x
f−→ xπ(1)

f−→ xπ(2)
f−→ · · · f−→ xπ(K) . Set x∗ = xπ(K). Then x∗ ∈ Si and

x
f−→ xk

f−→ x∗ for each k ∈ K. By Claim 4.13, since x∗ ∈ Si is an f -successor of
each of the points xk ∈ ‖ψk‖M, we must have x∗ ∈ ‖ψk‖M for each k ∈ K. Hence
x ∈

∥∥〈f〉 (∧k∈K ψk
)∥∥M, as required.

This concludes the proof of Theorem 4.5.

4.3. Finite topologies for hybrid systems

Theorem 4.5 yields a finite topology for an o-minimal LTS model equipped with
a single flow relation. In applying this to an LTS model of a hybrid system, we
can separately produce for each discrete control mode q ∈ Q, a finite topology Tq
on the space Xq ⊆ Rn such that the flow relation fq : Xq ; Xq is continuous
w.r.t. Tq, and for any finite number of constant sets Aq ⊆ Xq, we can ensure
Aq ∈ Clop(Tq) = Tq. When the domains of evolution Invq are fq-convex, the
equation σ(eq)(Z) = Invq ∩σ(fq)(Z ∩ Invq) entails that eq will also be continuous
w.r.t. Tq.

The difficulty comes in dealing with the reset relations rq,q′ . The required
compatibility property between the topologies Tq and Tq′ is the continuity of the
relation rq,q′ : (Xq, Tq) ; (Xq′ , Tq′). However, in the absence of special assump-
tions on the reset relations, we have no reason to believe that the appropriate
continuity properties would hold.

The solution in [13] is to make the radical restriction to reset relations which are
set-valued constant, which means r = A×B, so r(x) = B for all x ∈ A = dom(r).
The existential pre-image of a constant set-valued r : X ; Y satisfies σ(r)(Z) = A
if Z ∩ B 6= ∅ and σ(r)(Z) = ∅ otherwise. Hence for any topologies T on X and
S on Y , r : (X, T ) ; (Y,S) is continuous exactly when the domain A ∈ Clop(T ).

We consider a slightly more general class of relations: we say r : X ; Y is
piecewise set-valued constant when r is the relational sum of a finite family of
set-valued constant relations rk = Ak × Bk, so r =

⋃
k∈K (Ak × Bk). Then for
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any topologies T on X and S on Y , r : (X, T ) ; (Y,S) is continuous exactly
when Ak ∈ Clop(T ) for each k ∈ K. Note that the sets Ak may overlap, and if
x ∈ Ak1 ∩Ak2 then r(x) = Bk1 ∪Bk2 .

Theorem 4.15. Let R = (R;<,+, 0, ...) be an o-minimal structure expanding the
reals as an ordered Abelian group. Suppose H = (Q,G, {Xq, φq, Initq, Invq}q∈Q,
{rq,q′ , Grdq,q′}(q,q′)∈G) is a hybrid system each of whose components are first-order
definable in R, and where each of the reset relations rq,q′ are piecewise set-valued
constant, and let MH be an LTS model for H which includes among its constant
sets each of the pieces that form the domains of the reset relations. Then MH has
a finite bisimulation equivalence of finite index.

When the structure R is such that the first-order theory Th(R) is decidable, then
under the hypotheses of Theorem 4.15, for any µ-calculus sentence ϕ ∈ S(MH),
we can effectively decide whether MH � ϕ. To derive µ-calculus decidability
from Theorem 4.15 for more general o-minimal structures, we need to examine the
decidability of the relevant modal fragments of the first-order language L(R), and
identify decidable modal algebras of first-order formulas. The work of Lafferriere
et al. in [14] on the decidability of hybrid systems whose flows are defined using
the exponential function (arising from linear vector fields ẋ = Ax where the matrix
A is nilpotent, diagonalizable or has purely imaginary eigenvalues) can be recast
in this light.

5. Discussion and conclusion

Our investigation of topological content in the notion of a bisimulation relation
has shed some new light on the nature of the structure-preservation conditions,
and in application to hybrid systems, our characterization as a continuity property
is put to useful service.

For the µ-calculus, topics of further research include a deeper examination of
the Henkin-style canonical model construction in [2,4] and its semantic agreement
with the standard set-theoretic semantics, in order to properly relate the algebraic
completeness result in that work with Walukiewicz’s completeness result in [19].

Regarding the construction of finite bisimulations for hybrid systems, several
lines of inquiry present themselves. In the proof of Theorem 4.5, it would be more
satisfying to produce a finite topology T for which T 6= Clop(T ); one approach
is to consider only formulas encoding positive accessibility information between
f -convex partition blocks. There is a clear need to identify more general reset
relations for which the required continuity properties can be established. And
moving beyond time-determinism in the continuous dynamics requires a deeper
study of set-valued and parametrized semi-flows and their orbit relations.
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