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Hybrid systems are heterogenous dynamical systems charac-control, as illustrated in companion papers in this special
terized by interacting continuous and discrete dynamics. Such jssue. The last decade has seen considerable research effort

mathematical models have proved fruitful in a great diversity of j, 1y5th computer science and control theory directed at the
engineering applications, including air-traffic control, automated

manufacturing, and chemical process control. The high-profile study (_)f mixed d'sfcrete and continuous SySter_n_S [1]-{10].
and safety-critical nature of the application areas has fostered a [N particular, the high-confidence and safety-critical nature
large and growing body of work on formal methods for hybrid of the application areas has fostered a large and growing
systems: mathematical logics, computational models and methodsphody of work on formal methodsfor hybrid systems:

and computer-aided reasoning tools supporting the formal speci- athematical logics, computational models and methods
fication and verification of performance requirements for hybrid ’ '

systems, and the design and synthesis of control programs forand FmeUter'a'ded T,eas,on'”g tools supporting the formal
hybrid systems that are provably correct with respect to formal SPecification and verification of performance requirements
specifications. This paper offers a synthetic overview of, and for hybrid systems, and the design and synthesis of control
original contributions to, the use of logics and formal methods in  structures for hybrid systems that are provably correct with
the analysis of hybrid systems. respect to formal specifications. Broadly stated, formal
Keywords—Automata, computer-aided analysis, com- methods are a meansntathematicizeand thence tmech-
puter-aided software engineering, design automation, formal anizg or render computational, what it means for a system
languages, hybrid control systems, logic, software verification, design to et it right’: to correctly implement or satisfy
temporal logic. ; . A
precisely stated, unambiguous performance specifications.
This paper offers a tutorial survey and a fresh perspective
I. INTRODUCTION on the use of logics and formal methods in the analysis and

A basic hybrid dynamical system is one whose state synthesis of hybrid control systems.

may either evolve continuously for some duration of time

according to one set of differential equations or be abruptly A. Overview: Logics and Formal Methods for Hybrid

reset to a new value from which evolution is governed Systems

by another set of differential equations, with the switches ) )

typically triggered by the occurrence of some discrete event.  1he theory and practice of formal methods in the anal-

The coordinate variables of the state may take their valuesYSiS of computer hardware and software is well established.

in the real numbers or in a discrete (usually finite) set. The The field has been active for over 30 years, and has more

hybrid phenomena captured by such mathematical models is’€cently enjoyed some industrial and commercial success;

manifested in a great diversity of complex engineering ap- e recent survey paper [11] gives an overview. Hardware

plications, including air-traffic control, automotive control, SyStéms and software programs are traditionally modeled as

robotics, automated manufacturing, and chemical processPurely discretesystems: state variables take their values in

discrete (finite or countable) sets, and state transitions are
modeled as occurring in a discrete, step-wise fashion. The
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models and formal logics to deal with real-valued state vari-
ables and state transitions that model evolution according to
differential equations.

Formal methods for the analysis of discrete systems fall
roughly into three overlapping camps, which have carried
over to hybrid discrete+continuous systems:

* logic-basedapproaches [12]-[23];
« automata-theoretiapproaches [18], [20], [24]-[28];
« process algebrapproaches [28], [29];

with the reference lists intended as representative samples.

Our focus is on logic-based approaches, although in the
course of this paper, we will briefly discuss and give some

eneral mathematical
odel(s) of system

mathematical characterization
of system behavior & properties,
..‘.... 0

computational
or formal logic

property specification
language & logic:
specification f¢

system description:
] formal syntactic
representati m

verification: |

pointers to the other two approaches and note some inter-refig. 1. Paradigm framework for logic-based formal methods.

lationships between the three.
Given the tutorial nature of this paper and the breadth of

its intended audience, we adopt the pedagogical course of.ogiscovered under the nam®dular feedback logiby Ra-

making a first pass through the key conceptual and technical
ingredients, in several introductory subsections, with a view
to equipping the reader with a big picture overview of the
enterprise, before embarking on the detailed technical devel-
opment in the body of this paper.

In structuring our exposition, we draw on a paradigm
framework for logic-based formal methods set out in the
influential work of Manna and Pnueli in [12]-[14] and [30]
and widely used in the field; the functional parts of the
framework are illustrated in the lower gray box in Fig. 1.
In [13], the framework is applied first to discrete reactive

madge and Wonham in [39] as a formalism for stating and
solving supervisory control problems fdiscrete event sys-
tems(DESS) [40].

We return to an introductory discussion of the logics and
computationalpproaches to determining whetlgt &= ¢
a little later. At this stage, the essential point is that a system
and its properties afermally representeds models and for-
mulas of a mathematical logic. To be able to demonstrate
the degree ofaithfulnessf such formal representations, we
must first develop “preformal” mathematical models of hy-
brid systems, and then identify and characterize in natural

systems, then to real-time extensions of reactive systemsmathematical language both the trajectories of such systems
and finally to a class of hybrid systems. Each system in and the sorts of properties we would like to reason formally
the classes under consideration is formally representedabout. This elementary point is illustrated in the upper part

as some form otransition system modélt, which is a
generalization of a finite automaton, and behavioral specifi-
cations are formally encoded by formulasof a temporal
logic extending the logic linear temporal logicTL ). The
formal mathematical semantics of these so-calilegar or
sequence-based temporal logics are such that a formisla
true in 9, written 9 |= ¢, exactly when every execution
sequence or trajectory of the system representefiiblyas

the property encoded by. The logicLTL , along with the
so-calledbranchingor state-based temporal logics such as
computation tree logicGTL) or (CTL™*), are discussed

in this special issue [31]. The syntactic primitives and the
corresponding semantic constructs of the latter temporal
logics allow one to express behavioral propertiesame
execution sequences, as well alé execution sequences,
starting from a state, and the formal semantics are such
thatd | ¢ means evergtatein 9 satisfies the property
expressed by.

In this paper, following [23] and [32], we will look to the
larger family ofmodal logics[33]—[35], which includes all
the standard temporal logics, and in particular, to the richly
expressive “parent logic” called th@ropositional modaj:-
calculus(L 1) [33], [36], [37]. Thepu-calculus is well known
in the hybrid system literature, notably from the work of Hen-
zinger and coworkers [20], [21], [38]. In earlier work on the
control theory of purely discrete systems, it was essentially
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of Fig. 1. Note this is a separate issue from whether a partic-
ular mathematical model is an adequate representation of the
concrete physical system it is intended to model. The latter
issue is addressed in several branches of control theory, in-
cluding studies oBystem identificationand studies ofo-
bustnessWe return to robustness issues later in this paper;
the idea there is that one has@minalmodel of a system to-
gether with aruncertainty clasgharacterizing how thgue
model might differ from the nominal one [25].

B. Overview: Mathematical Models

As our basic mathematical model, we take a class of sys-
tems known akybrid automatawhich have gained wide ac-
ceptance since their introduction in [18] and [19]. The same
model or generalizations of it are used in several other papers
in this special issue [31], [41]-[43], and tlssvitched sys-
temsconsidered in [44] are close relatives. A (basic) hybrid
automaton is a closed system with a “built-in” control struc-
ture determining when and how the system switches between
its various discretenodeswhere the continuous behavior in
each discrete mode is governed by a vector differential equa-
tion (or differential inclusion).

In contrast, the supervisory control perspective on hybrid
systems retains a clear separation betw#entandcontrol,
the theory is developed in this special issue [45] and adapts
DES control theory to the hybrid setting. Bybrid control
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systenconsists of a finite control automaton operating in a
closed feedback loop with a continuous plant, with commu-
nication via AD and DA interface maps. This quintessentially
hybrid configuration is closely related to the switching con-
troller architecture in [41] and is the focus of earlier work
by the second author [46], among many others. In Section I,

the rapprochement with control theory” (written by Arbib),
we find:
“One thing an automata theorist must often envy a
control theorist is the use of continuity” (p. 179).
For hybrid automata theorists, it should go beyond envy. De-
veloping ideas in [23], [46] and [49]-[51], we argue that a

we §how hpw the resulting clqsed—loop system gives .rise toacommon ground is to be found by adopting the language
basic hybrid automaton, and is thus amenable to logic-based;ng viewpoint ofgeneral topologyand that natural and im-

formal specification and analysis. As an illustrative example,
to which we return throughout the text, we consider the hy-
brid control of a simple double-integrator plant®%; the
example is well known in the DES-based hybrid systems lit-
erature and appears againin [45]. In the class of control prob-
lems we examine, the task is to construct a hybrid control
systenso thatthe associated hybrid automaton satisfies a pri-
oritized list of performance specifications, the first of which
is safetyproperty.

Safety orinvariance properties have gained the most
attention in studies of hybrid systems. These are prop-
erties of the form: “All state trajectories of a system
H starting from a setinit of initial states remain in a
prescribed setP at all times;” equivalently, in terms of
reachability “The set of statesH-reachable fromInit
is contained inP.” For example, in an air-traffic control
example, the “good” sef’ could be the set of states in
which the distance between any pair of aircraft is greater
than some minimum separation value [42], [43]. Given
this relation between safety and reachability, a good deal
of research effort has focused directly on techniques
for either computing exactly, or else approximating, the
reachable regiondor various classes of hybrid systems,
with diverse approaches drawn from optimal control,
game theory, and computational geometry; see, for
example, [41] and [42]. Other properties investigated
and formalized include qualitative temporal notions of
liveness (non-Zenoness, and switching modes infinitely
often), deadlock freedom, eventuality, and fairness along
infinite trajectories; qualitative ordering of events along
trajectories; and quantitative timing properties of hybrid
or real-time trajectories [12], [13], [15], [16], [20], [21].

From the perspective of control and systems theory, the
classical concerns center on notionsstdbility and ofro-
bustnes®of systems. For example, one basic notiorsta-
bility is the property: “For everg > 0, there is aé >
0 such that everyH -trajectory that starts within distanée
from an H-invariant setP always remains withim of P.”
While a variety of mathematical formulations of these con-
cepts have been proposed for hybrid and switched dynam-
ical systems (stability is surveyed in this issue in [44]), there
has been little work to date on integrating these concerns
within a framework for formal methods [25], [47]. There is
perhaps good reason for this. Coming as they do from com-
puter science, formal methods traditionally lie in the realm
of discrete mathematicswhile these notions from control
theory lie squarely in the realm abntinuous mathematics
Well before hybrid systems, the classic systems theory text
of Kalmanet al.[48] sought commonality between the two
competing realms. In a chapter entitled “Automata theory:
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posed topological and metric structure on the state spaces of
system models, and concepts of continuity with respect to
such topologies, can and should be reflected in one’s formal
models and logics.

C. Overview: Computational Models and Methods

Work on formal methods for hybrid and real-time sys-
tems has produced a large variety of formal or computational
models. The common core is to be found in a very simple
class of structures callddbeled transition systena LTS
modelsfor short. An LTS modeb)t is an abstract structure
consisting simply of atate space of arbitrary cardinality;

a collection ofbinary relations=C S x S; and a collection
of distinguishedsetsP C S of states [33], [52].

An LTS model is best viewed as asbstract dynam-
ical system or anabstract machinewhose mathematical
structure is uniform across the discrete-continuous divide.
When S is a finite set and the collections of relations (cor-
responding to an input alphabet) and of distinguished sub-
sets (output alphabet) are both finite, such9his just a
notational variant of a nondeterministimite automaton
In representing a basic hybrid automatéh as an LTS
model My, the system state space is an uncountable set
S = Q x X where@ is a finite set of control modes
and X C R™. One of the key insights in the hybrid sys-
tems literature, dating back to [12], [13], and [18] and
earlier work on (real-timed automatd53], is that both
sorts of system dynamics—continuous evolution according
to differential equations and discrete switches or resets of
state—can be uniformly and faithfully represented as bi-
nary transition relations over a hybrid state space. The dis-
tinguished state sets include initial states, target or avoid-
ance regions, and structural components of the hybrid au-
tomaton.

Computational or algorithmic problems in formal verifi-
cation take the form:

Generic schema for logic-based formal
verification or analysis problems:

Given a formatmodel 9 of a system design,
together with a specification formula
encoding a system property,

the task is taletermine whether M | ¢,
and if not, produce a counter-example
witnessing how fails to satisfyp.

For a demarcated class of formal models and class of spec-
ification formulas, an algorithmic solution is a “black-box”
computer program, which takes as input a @@k, ¢) in
the given class and returns as output either the angus,
preferably with a transcript of the steps taken to arrive at this
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answer, or else a concrete counter-example @xtracted
from the modebn.

The computational focus brings out the issue offtrenal
descriptionof models, as identified in Fig. 1. In order for
it to be data for a computer program, the components of
the formal modebPn, and the underlying system model out
of which 9t is formed, must be precisely described in the

« (“iff"), together with variousnodalortemporal operators
which reflect the effect of state transitions according to the
relations of a model. Among the basic modal operators are
the (relativizedpoxanddiamondoperators. For relations a
formula[a]e reads All a-successors satisfy’ or “ g-actions
necessarilybring abouty,” while {a)¢ reads ‘Somea-suc-
cessor satisfieg” or “ a-actions camossiblybring abouty.”

syntax of some formalism, such as a programming languageIntuitively, [¢]™ is the set of states that satigfyin 9%, and
a graphical formalism like statecharts, or a more general-pur-9 |= ¢ exactly when[o]™ = S.

pose formalism like first-order logic.

The two main methods for the verification of modal or

Some further introductory discussion of mathematical temporal logic properties armodel checking algorithms

logics is in orderFirst-order logicor predicate logid34] is
just the logic that is used informally in the language of ev-

anddeductive proof system$he essential task of a model
checking algorithm is to recursivegomputethe denotation

eryday mathematics. For example, the standard definition of set[¢]™, and if the complemens — [¢]™ = [—¢]™ is

a functionf: R — R being continuous at a pointe R with
respect to a metri¢ on R is written in “informal” first-order
logic, with variables ranging over the real numbers, as

(Ve > 0)(36 > 0)(¥y): dw, y) < § — d(f(x), f(y)) < e.

This is “informal” since we uséve > 0)--- as an abbre-
viation for (Ve): (¢ > 0) — ---and(36 > 0)--- for
(36): (6 > 0) A ---, and the termg'(x) andd(x, ) would
formally be expanded to expressions built from the primi-

nonempty, these states provide the required counter-exam-
ples. For hybrid systems, this necessarily falls under the
headingsymbolic model checking, since over an infinite
state space, one needs a finitary syntactic or symbolic means
of representing sets of states and operations on them; over
a finite state space, one can resort to explicit enumeration.
When the component state sets and relations of a nigtel
are formally defined in first-order logic, one can seek to use
the same representation (and in particutprantifier-free
first-order formulas) in the course of model checking. As

tive function and constant symbols of the first-order language €xamined in [31] in this special issue, tlecidability,

in use. For examplef(z) could be2z® — exp(z?) + 17 if
the languagel = {<, +, —, -, exp, 0, 1} contained these

or possibility of an algorithmic solution guaranteed to
terminate on all inputs, for model checking of temporal

function symbols, plus constants for the integers and the re-l0gic properties for various classes of hybrid automata,

lation symbol<. In the formula above, the variahteis not
bound by arg or ¥ quantifier, so it is called &ee variable
Writing 6(z) for that formula, the set-theoretical expression
{z € R|6(x)} means the subset of all pointskhat which

f is continuous with respect @, andé(z) is said todefine
this set.

A low-level formal description of an LTS model of a basic
hybrid automaton consists of a finite list of first-order for-
mulas: formula®p(q, x1, -- -, x,) defining the state sets
P C S C @ x R™, where the variable ranges over the fi-
nite set( of discrete states and the variablgsrange over
R (technically, this isnultisortedor typedfirst-order logic),
and formulasp,(q, z1, - -, n, ¢, 27, -+, x},) with two
discrete variables argh real-valued variables, defining the
relations=C S x S. The semantics of high-level hybrid
programming languages such asif§ [54] andHybrid cc

depends crucially on the syntactic complexity and form
of the first-order formulas defining the components of the
systems.

The other approach to formal verification is deductive, and
there are usually several different typesdaductive proof
systemghat can be developed for a logic. The simplest is
called aHilbert-styleor axiomaticproof system, which con-
sists of a collection of formulas designatedeagoms and a
collection ofinference rulesf the form

P(/jl "(/)2 e z/}nl
7¢ .

A Hilbert-style proof systens is said to besoundwith re-
spect to a class of modetsif for each9 in X, each of the
axioms ofS is true in9t and whenever all of the premises of
an inference rule ib are true in9M, then the conclusion of

[55] can be given in terms of hybrid automata, and so admit that rule is also true ift. Deductive verification ofJt |= ¢

a low-level formal description of this kind.

Modal and temporal logicare best viewed as fundamen-
tally second-ordetogics for reasoning abowsets of states
andoperationson sets of statesas distinct from first-order

starts with a list" of formulast such thatht = ¢ is im-
mediate from the formal description 8f, or has otherwise
already been established, and then seeks a formal proof, or
sequence of inference stepsdh demonstrating thap is

logics in which one reasons about elements in the domain ofa deductive consequenoé I'. By soundness, one can then

interpretation and functions and predicates of elements.
The formal semantics of thg-calculus, and its (state-

concludei |= . Hilbert-style axiomatizations are impor-
tant for clarifying and understanding a logic, and are easy

based) modal and temporal sublogics, define the meaning orenough to use manually, but they do not readily lend them-

denotation sefe]™ C S of a formulay in a model9N.
Formulas are built up starting fropropositional constants

selves to automated proof search or to the construction of
counter-examples. Other types of deductive systems such as

p that name the state sets in a model, and compounds ardableaux systemsr Gentzen-styl@roof systems [34], [56],
formed using the standard logical connectives or Boolean op-which produce labeled tree or graph-style proofs, are better

erations- (“not’), A (“and’), v (“or"), — (“if...then..”) and
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A number of the logics developed for hybrid and real-time 1l. M ATHEMATICAL MODELS
systems consist of multisorted first-order logiombined
with some temporal operators to give a single formalism for
both description of system components and specification of ~ For reference, we include a glossary of notation in Table |,
system properties; for examplemporal logics of actions ~ With the right-hand column giving the subsection in which
TLA+ and cTLA [16], [17] andextended duration calculus  the notation is defined.

EDC [15], [28]. For these, deductive verification is the only ~ As identified in the introduction, the elementary mathe-
available approach. matical objects of interest arelationsor set-valued func-

The bulk of the work on logics and formal methods for tions, which are the nondeterministic analog of functions.
hybrid systems, as for discrete systems, has focused on thd-ollowing the useful convention in set-valued analysis [57],
“after-the-fact” verification of a completed system design. the notation: X ~ Y will be used to mean: X — P(Y)

We are interested in ways in which tsametechnical ma-  is a set-valued function, with set-values) C Y for each
chinery of model checking and deductive proof systems can = € X (possiblyr(z) = &), or equivalentlyy € X x Y is
be used for the synthesis or construction of a system from anarelation, sometimes called thgraphof a set-valued func-

A. Preliminaries

incomplete design. tion. For pointsz € X andy € Y, the expressions —— y,
zry, (x,y) € r, andy € r(x) are to be read as synony-

Generic schema for logic-based formal mous; in wordsy is anr-successopf z, or x is anr-pre-

synthesisproblems: decessonf 3. Thedomainof a relationr: X ~ Y is the

Given a performance specification formuta
and anincomplete or under-determined
description of a formal model,

the task is to "fill in the blanks"
andconstruct an9M so that M | ¢

or else determine that no suflii exists.

setdom(r) o {z € X|r(z) # J}. In computer science
and DES theory, a relationis said to beenabledat points
x € dom(r). Unlike single-valued functions, every relation
r: X ~» Y has a naturatonversgor inversg »: ¥ ~» X,
given simply by:(y, z) € #iff (x, y) € r.
Some elementary relations of interest include:itientity
In the example control problem we consider in Section 1I, functionidx: X — X; partial functionstest.A: X ~ X
the blanks to fill in are an AD map and a finite control au- formed by restrictingdx to adomaind C X, sox test-A g
tomaton; together with the given plant model and DA map, iff + € A andz’ = z; andset-valued constamhapsr =
the closed-loop system forms “a” hybrid automaton. We first A x B, which means(x) = B for eachr € A = dom(r).
describe the construction in general terms, then return to it The (sequentialfjompositiorof relationsr: X ~~ Y and
in later sections to show how modal logics can be used nots: Y ~~+ Z will be written o s: X ~~ Z (abbreviated s) in
only to formalize the performance requirements, but also to sequential (word) order, as is usual in computer science, but
formalize lower level decisions and computations required in the reverse of the usual order for functional composition; see
the course of the construction; we generate a list of simpler [57] and [58]. Composition is explicitly defined by >
formulas that are true by construction, and from these we caniff (Jy € Y)[z —— y andy —— 2]. Given relationg: X ~»
deductively derive the desired specification formulas, so es-Y ands: X ~» Y, their relational union(sumor choice
tablishing that the construction is correct. rUs: X ~ Y is just the union of- and s considered as
For comparison, [41] in this special issue considers a classsubsets o x Y. Forr: X ~» X, thek-fold composition-*
of control problems in which one starts with a complete hy- for k € N is defined inductively by® = idx andr*t! =
brid automatorH , and the synthesis task is to find the largest ror*. TheKleene stapperation (reflexive-transitive closure)
subsystent{’ =< H such thatH’ satisfies a safety property. produces the relatiori: X ~~ X by taking the infinite union
While [41] does not use a logic framework, we will briefly  of all ther* for £ € N. A regular expressiomnf relations is
sketch in Section V-C how that type of construction can be one formed using the operations of sequential composition,

formalized in theu-calculus, and its relation to similanax- finite union and Kleene star.
imal invariant subsetonstructions in DES control theory A (nondeterministicfinite automatoris a structure4 =
[39]. (@, %, @, 6, \), where@) # & is the finite set oktates X

The body of this paper is roughly structured around is the finiteinput alphabet® is the finite output alphabet
Fig. 1. In Section I, we examine mathematical models of é: Q x 3 ~» @ is thetransition relation andx: Q ~ ¢ is
hybrid systems and their elementary properties and set upthe output relation Theinput—outputrelation~: 3 ~» ¢ of
our hybrid control example. Section Il covers transition .Ais given by(a, p) € viff (3q, ¢) € Q): ¢ € é(q, a) and
system models, and the formal representation of hybrid p € A(¢’). A finite automatonA is calleddeterministiaf the
automata, plus a brief discussion of automata-theoretic andtransition mag and the output map are both single-valued
process algebra approaches to hybrid systems. The longefunctions (but possibly onlpartial functions).

Section IV introduces and develops modal and temporal We also use some elementary notions from general
logics for the specification of system properties, while Sec- topology; [59] is a useful text, and [58] and [60] develop
tion V surveys model checking and deductive proof systems, the general topology of relations/set-valued maps. Recall
and logic-based approaches to the design and synthesishat atopologyZ on a setS is abstractly defined as a family
of control structures for hybrid systems. The concluding 7 C P(S) of subsets ofS that containsS and<f and is
Section VI discusses related and ongoing work. closed under finite intersections and arbitrary unions. The
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Table 1
GLOSSARY OFNOTATION

laws ¢(x, 0) = x and@(x, t + s) = H(P(x, t), s) for all
x € X andt, s € R, i.e., it respect® as an additive group.

R real numbers A semiflowg: X x RT — X is just a flow defined on the
g‘L “";"“efat“’eb‘eals’ [0, 00) nonnegative time axis.
natural numbers . . .
P(X) power-set of X A more general clas_s of systems is obta!ned b)_/ aI_Iowmg
(#)ier infinite or finite sequence, with the continuous dynamics to be governed liifeerential in-
I=NorI={0,1,..N} clusionx(t) € F(x(t)), whereF: X ~~ R™ is a set-valued
f: XY (?r‘(‘)‘g‘*x"at]:eg) function vector field. As examined in the companion paper [31], there
riX~Y set-valued map or relation ILA is particular interest in dynamics o_f the fork(t) € B,
from X to Y whereB = [aq, b1] X -+ X [an, by] is arectangleor box
test.A idx restricted tolA < )}g e g-g in R™, soay andby, are fixed lower and upper bounds on the
% ﬁ;gﬁ"; Zﬁig"nﬁaﬁzs (OI‘{‘ 5 B rate of change in the coordinatg. The associatesket-valued
n trajectory of a HA ILB floweg: X x R~ X is_ then given by the formula(x, t) =
h H-reachability relation ILB {x +tu|u € B}. While the framework developed here can
m LTS 'I‘Ofiel £ LTS model igﬁ be adapted to deal with differential inclusions, we focus on
(z,2) modal signature o frode : the simpler and conceptually clearer basic case.
L(om) automata language of 91 IIL.A L . . .
(A, ¢) relation of evolution IILB Definition 1: A (basic) hybrid automaton(HA) is a
along flow ¢ within A system
My LTS model of a HA H III.B
B; metric tolerance relation II1.B _ - )
0 PML or Ly formula IV.B H = (Q.FE, X {¢¢. Invg}eeq, { R s Grdg.q },a)cE)
{a)p diamond-a modal operator IV.B )
[ale boz-a modal operator Iv.B where:
Pre’(r) 3-pre-image operator of IV.B « () is a finite set ofdiscrete statesalso calledcontrol
Pre:n(r) V-pre-image o§;{ator of r IV.B modesor control locations
%] denotation [p]™ C S in M IV.B.E . . . .
of PML or Ly sentence « F C @ xQisthediscrete transition relatiomr control
M,sF@ ¢ is satisfied at state s in MM IV.B.E graph
ME @ i is true in M IVBE « X C R is thecontinuous state spagcéhe valuation
B(m) minimal modal algebra vV.B space for a vector of real-valued variables;
for LTS model M1 f h di | ]
HZ.p least fixed-point quantifier IVE * for each discrete cqntro modec Q ) )
vZ.p greatest fixed-point quantifier ~ IV.E —¢q4: X x R — X is aflowon X, giving the contin-
'3 propositional or set-valued IVE uous dynamics in modg
variable assighment _ c . .
[l denotation [¢] C § in M IVE Inv, C X is the set ofnvariant states for mode,

or thedomain of permitted evolutiowithin mode
a;
» for each discrete transition pdig, ¢’) € E:

-R,,: X ~ X is areset relation defining the
possible successoxs € R, ,(x) of apointx € X
upon switching fromy to ¢/;

—Grdy.g o dom(R, ) C X is theguard region
or enabling eventor a switch fromg to ¢'.

Thestate spacés Sy def Q) x X . The subset aidmissible

statesis Invy Useo({g} x Invy). A set ofinitial states

Init C Invyg may also be given. HA are usually represented
We take the standard ingredients of the popular hybrid graphically as in Fig. 2.

automaton model [18]-[20], [31], but reformulate them The system is permitted to evolve accordinggponly

slightly, keeping in clear view their subsequent representa- while the state is infnv,. The sets/nv, can arise from

tion in a transition system model. physical modeling considerations or decisions in system de-
A continuous dynamical syste(t) = F(x(t)) on a sign. In general, the reset relations can be arbitrary set-valued

setX C R™ given by a Lipschitz continuous vector field maps, and are operationally thought of as nondeterministic

F: X — R™ has, for each initial state € X, a unique so- assignments triggered by the event of reaching a guard set.

lution (orintegral curve v,: I — X wherel C R contains Particular reset relations of interest include the restriction

0, (d/dt)v(t) = F(v(t)) forall ¢ € I, andy(0) = x. to Grd, , of the identity function (i.e., the partial function

Under additional assumptions—for exampke,is compact  test.Grd, /) [41] or the restriction toGrd, . of a func-

andZ is continuously differentiable—the time domain of the tion that is the identity on some real-valued coordinates and

solutions may be extended to all Bf and the system has a set-valued constant on the remainder [31].

global flow¢: X x R — X with ¢(x, ) = (¢) [61]. Definition 2: A trajectoryof a hybrid automator# is a

For our purposes, it suffices to know that a flgwis con- finite or infinite sequence = (A;, g;, v ):er such that for

tinuous in both arguments separately and satisfiedltlve each: € I

of Ly formula ¢ under £

setsl/ in 7 are calledopen and their complements are
called closed The topological interiorint7(A) of a set
A C S is the largest open set contained Ay while the
dual closure:l7(A) is the smallest closed set containiAg
SetsX C R”™ will be equipped with the standard Euclidean
metric (subspace) topology unless otherwise indicated.

B. Basic Hybrid Automata and Their Trajectories
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Fig. 2. Graphical representation of a basic hybrid automaton.

« the durationd; € RT U {oo}, with A; = oo only if 1
is finite and: = max(1);

« the discrete statg, € Q;

* the curvey; : [0, A;] — X is such that for alt €
[0, Ai], 7i(t) = g, (7:(0), £) and;(t) € Inv,,; ie.,
~; is a continuous curve along the floyy, that lies
entirely insidelnv,, , with interval[0, co) if A; = oo;

* if ¢ < max(!), then(g;,¢:+1) € £ and the adjacent

end-points satisfy;(A;)  —=" 4;41(0).

The cumulative duratiomA(#) of a trajectoryn is the sum
A(p) € .., A A H-trajectoryn will be calledjump-
finite (jump-infinite if I is finite (infinite); time-finite(time-
infinite) if A(n) < oo(A(n) = oo); andfinite if it is so in
both senses.

The H-reachability relationh: Sy ~» Sy is defined by

h
(Q7 X) - (q/7 X/)
& there is afiniteH-trajectoryn = (A;, ¢, vi)o<i<n
such thay = gpandx = ~4(0)

andq’ = gn andx’ = vy (An).

will hit a dead endor becomeblockedat the topological
boundary oflnv,. Also, if R, ,(x) € Inv, for somex €
Grd, . NInv,, then trajectories reachirfg, x) can also be
blocked.

A finite H-trajectory n = (A, gi, vi)o<i<y May
be concatenatedwith another (arbitrary) H-trajectory
n' = (A}, 4}, vj)jes, With the resulting trajectory written
n * 1, providedg), = gy andv,(0) = yn(An). The
collection of all H-trajectories is partially ordered by the
prefix or extensiorrelationC, defined byn C ' iff either
n = 1/ or there is aH -trajectoryr”” such thaty = n = ",
An H-trajectory ismaximalwith respect taZ iff either it is
jump-infinite, or it is jump-finite and time-infinite, with the
flow ¢g, from ~5(0) remaining invariantly infnv,,,, or
else it is finite with the last state;n, v~ (Ax)) a blocked
state.

A jump-infinite livenesgroperty of a HA is the condition
that every maximalH -trajectory starting from a given set
Init is jump-infinite. A distinct liveness property is the
non-Zenocondition: there are nd{-trajectories that are
jump-infinite but time-finite. Such trajectories are mathe-
matically possible but not physically realizable; the Zeno
phenomena is a manifestationabfatteringin classical con-
trol theory. A simple sufficient (but not necessary) condition
for a trajectoryn = (A;, gi, vi)ics t0 be non-Zeno is the
existence of @ > 0 such thath; > dforalli € 1.

For a statelg, x) € Sy, the seth(g, x) is the collection
of all states(¢’, x’) that arereachedby someH -trajectory
starting from (g, x), and the domairdom(h) = Invg
is just the admissible states. For any sét C Sy,
the H-reachable region from A is the direct image
h(A) = U{h(q, x)|(g, x) € A}. WhenInit C Invg is
given, the seh(Init) is often referred to aBeach(H ), the
reachable regiorof H. A setA C Sy is H-invariant if
s € Aimpliesh(s) C A; equivalently, everyH -trajectory
that starts inA always remains withinA. In particular,
postimage setdi(A) (and Reach(H)) are immediately
H-invariant.

C. Closed-Loop Hybrid Control and Hybrid Automata
A quintessentiallyhybrid control configuration is a finite

In the reminder of this subsection, we develop just enough control automaton operating in a closed feedback loop with
of the mathematics of this class of systems to ground our a continuous plant, depicted in Fig. 3. This is the focus of a
subsequent work in stating and solving a control problem, DES approach to the control of hybrid systems, developed in
and formalizing system behavior and properties in formal detail in this issue in [45]. Our purpose here is to show how

model and logics.

Thetime linealong a hybrid trajectory is a lexicographi-
cally ordered subset &f x R*, and aime positioris a pair
(4, t) wheret is the step number ande [0, A;]; the state
of » at time position(¢, t) is (g;, 7:(¢)), and thecumulative
time at position(é, t) ist + >, ;, Ax. Note that the reset
actions are assumed to ocdostantaneouslybetween the
time positions(¢, A;) and (i + 1, 0), which have the same
cumulative time.

For eachi < max(!) in an H-trajectoryn, the defini-
tion entails thaty;(A;) € Grdy, 4., N Inv, andv;11(0) €
Inv,, . This means thatif a flow, can leavelnv, without
first reaching a setird,_ ., any trajectory with that behavior

DAVOREN AND NERODE: LOGICS FOR HYBRID SYSTEMS

such hybrid closed-loop systengéve riseto basic hybrid
automata and to lay the groundwork for the formulation of
a class of synthesis problems.

Under the DES approach, the finite control automaton is
usually taken to beeterministi¢ and both the AD-interface
mapa: X — P (“generator”) and the DA-interface map
B: C — U (“actuator”) are total, single-valuefdinctions
On the DA side, a control action symbele C' is mapped
to a single constant input vect@i{c) € U C R™, which
is fed into the plant equatior = f(x, u) for use until
the next control switch. The functiofi thus determines a
finite family of flows ¢.: X x R — X indexed byc € C.

On the AD side, the function: determines a finit@artition
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y:P~C ((p,0), (p’,)) € E in the hybrid automaton control graph
‘ encode the (zero-delay) switching behavior of closed-loop

trajectories by takingrd, ., := bd(A,) N bd(A,) and
taking the reset relation ds, ; 1= test.Grdg 4.

The two interface maps and3 determinaliscretizations
of the plant state spacE C R™ and the plant input space
U C R™, respectively. A richer class of discretizations is
obtained by allowinget-valuednterface maps, as indicated
in Fig. 3. A set-valued DA map: C ~» [/ associates with
each control action symbel € C a setof input vectors
B(c) C U, the plant is then governed by the differential in-
clusionx € F.(x), whereF.(x) = {f(x, u)|u € 3(c)},
as in the generalized hybrid automata considered in [31].

Developing ideas in [46], our interest here is more in the
other side. A set-valued AD map: X ~» P determines
a family of possibly overlappingplant event regionsi, =
{x € X|p € a(x)} = d(p) indexed byp € P. When«
is total [dorm{«r) = X7, such a family defines &nite cover
of the plant state spacE C R”, with equivalence classes X = UpE p Ap, and conversely, any finite cover of de-
A, = {x € X]a(x) = p} indexed by plant eventg € termines a total AD mapy: X ~~ P. In defining what
P. The discrete plant event signal instantaneously changesve mean by the closed-loop trajectories of a system with
from p to ¢/, and the newy’ sent as input to the control au- a set-valued AD map, the simplest way to do so is directly
tomaton, when the plant state hits (or crosses)ctramon in terms of an associated hybrid automaton, so that the ex-
boundarybd(A,) N bd(A,) of the disjoint plant event re-  tension of Proposition 3 to the set-valued case will become
gionsA, andA,, . (Recall the topological boundary operator true by definition. Assume the cover is nondegenerate, so
satisfieshd(A) = cl(A) — int(A).) A, ¢ A, forp’ # p. Then as before, letl be the hybrid

In [45], a chief object of study is the finitOES plant au- automaton in whicl) := v C P x C, but now simply take
tomaton formed by taking the plant together with the AD  Inv, := A, and¢, := ¢. for ¢ = (p,c) € Q. If itis pos-
and DA interface maps, with a view to adapting and applying sible to evolve under actionfrom a plant state iod, — A,
the Ramadge—Wonham DES theory to the purely discreteinto a state ind, N A, # &J, so causing a change in the set
closed-loop system of DES controller and plant. Their for- of symbols sent byy to the controller, and ifp’, ) € @,
mulation also differs slightly in that it associates plant events then put an edgég, ¢') = ((p,c), (¢’,c)) € E, and take
with n— 1 dimensionahypersurfacesvhich separat& into Grdg ¢ = Ap N Ay and Ry o = test.Grd, . Coming
disjoint regions; any finite collection of hypersurfaces will full circle, the hybrid automaton representation can be used
define a partition ofX, with the common boundary of any to produce aealizationof a finite control automaton with the
two equivalence classes’ lying in one of the hypersurfaces. given 1/O relation = ~ by taking@ itself as the internal
The definition in [45] of the closed-loop trajectories éh states, defining: @ x P ~ Q by (p”, ") € 6((p, c),p’) iff
of their hybrid control systems is also more involved in that p” = p’ and((p, ¢), (p”, ")) € E, and taking\: @ ~~ C as
it allows a fixedtime delaybetween the time a new plant projection ontoC.
event symbol is sent as input to the controller and the time  The focus in [46], followed up in [62], is on thénite
the controller outputs a new control action to the plant. We topologygenerated from a finite coverd, },«» by taking
ignore that complication for now but return to it briefly in  all (finite) unions and intersections. In particular, when each
Section IlI-B. of the cover setsl,, C X is open in the standard topology on

Proposition 3: Given a hybrid control loof. as in Fig. 3, X C R", the resulting finite topology is subtopologyf the
with single-valued AD and DA interface maps, there is a standard topology oX. We briefly return to a discussion of
hybrid automatord such that the trajectories df are in finite topologies in Section IV-H.
one—one correspondence with the closed-loop trajectories of For synthesis, our interest is in general recipegtoiding
L. [ | hybrid automata, from the ground ugo thatthe resulting

In general, there will be many such hybrid automata system is guaranteed to satisfy a list of performance specifi-
For the simplest such system, suppose all we know about thecations. We consider the following class of problems.
finite control automaton is its input—output relation P ~ Problem 4: Given X C R, I/, C R™ and a plant model
C (which in general is set-valued even when the automatonx = f(x, u), together with a finite control action alphabet
is deterministic). A pai(p,c) € ~ can be read as a basic C and a DA map3: C ~ U, the task is tocomplete the

discrete

x = f(x,u)

. input space U c R”
continuous

state space X c R”

Fig. 3. Closed-loop hybrid control system.

instruction of the controller: in the plant regipnapply con- control loop by constructing a finite plant event alphabet
trol action c. So an obvious choice for the sé of con- P, an AD mapa: X ~~ P, and a controller 1/O relation
trol modesof the hybrid automaton i§): = v C P x Q = ~: P ~ (, so that the associated hybrid automaton
C; for eachq = (p,c) € Q, takeg,: = ¢., and take H satisfies a prioritized list of performance specifications of
Invg = cl(A,) as the mode-invariant. Edg€s,¢’) = the following form.
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1) Safety Given a proscribed sdBad C X, no H-tra-
jectory shall ever enter the s8lud; the construction
must produce a s€food C X — Bad that is invariant
under H -trajectories, which will be taken as a set of

!

initial states.
2) Event sequence behavidsiven a finite collection of
setsd; C X,k € K, with A, N Bad = <, and a ¢dn ¢ac ¢up

set-valued mamext: K ~~ K prescribing an order
of traversal through the regiond;, every maximal Fig. 4. Three flows of double integrator plant.

H-trajectory starting iiood shall be such that when-

ever it ever enters ady, it remains thereontinually lying in the openkth quadrant oR? and outside the closed
anduntil it crosses intad,. for somek’ € next(k). unit disk, together with &-overlap into the %k & 1)th quad-

3) Liveness Every maximalH -trajectory starting from rant, wherecol=%F—1ifk > landkol=4if k= 1.

Good shall be jump-infinite and time-infinite (hence For example
nonZeno).

To ensure the problem is well posed, assume that dach
as well asBad and the whole spac¥, are connected sub-
sets ofR™; for eachk’ € next(k), Ap N Ay # & is also
connected; and there is a connected4eD Bad such that
{Ax}recrx U {Ao} coversX. This initial cover will then be
refinedto produce a covefA,},c p that gives an AD map.

Ay = {(z1, 22) € R¥|lw1 <6 Ax2 >0AZE +235 > 1},

The prescribed order of traversal is then givermbyt (k) =
{ke1} (single-valued), and the connected set§AR }rc U
{Ap} form an initial cover ofX with §-overlaps. The syn-
thesis procedure then consists of three stages.

Stage 1—Refining the Initial CovefThe strategy is to
. identify all the subregions ofi;, from which a safety viola-
D. Example Control Problem and Solution tion is possibleunder one of the controls For each: € K

We illustrate a general synthesis construction by way of a andc € C, let 6-Unsafex . be the set of points ial, that
simple example. The same double integrator plant also ap-are within distancé of some point in4; from whiche¢-con-
pears in [45], with different control objectives. The plant dy- trolled evolution carpossiblyleadinto Aq. And letSa fex, .

namics ovetX = R? andU = R are given by be the set of points irl;, from whichc-controlled evolution
alwaysremainsoutside Ay. By construction$-Unsa fex .
(1) = [0 1} x(1) + [0} " and Safe; . overlap with metric widths. The subregions
0 0 1 Ay m Of Ay then consist of the nonempty connected com-
ie., ponents of alkI®! possible combinations of intersections
#1(t) =a(t) (Neec, Safere) N (Nege, -Unsafer.e)
.iig(t) =1UuU.
for subsets’; C C.
The input-parametrized flowt: X x U x R — X is defined Fig. 5 illustrates such a cover. For exampl¢; 4 is
by degree 2 polynomials 6-Unsafes an N Safesac N Safes up, Which (by hand
calculation) is explicitly defined by conjunctions of degree
P(x1, T0, U, t) = (371 + 2ot + %tQ, Ta + ut) . 2 polynomial inequalities
2
For the control action alphabet, we take= {dn, ac, up}, Azs = {(@1, 22) ERY 21 <6 Ao > 146A
and take a single-valued DA mag C — U given by af a5 > (1+6)%A
f(dn) = —b, B(ac) = 0 andpB(up) = b, for some fixed — 2b(1 + 26) < 2bxy — 3 A
control valueb > 2. The resulting three flows are illustrated Wy — 22 < 206 + 6% — (14 26)} .
in Fig. 4.
Our concrete performance specifications are thafthé Similarly, Aso is é-Unsaferan N 6-Unsafes ae N

region is the unit disk and the prescribed event sequence be-Safes up, 423 and A, 5 are the two connected compo-
havior is to proceed with a clockwise motion. Visually, we nents of Safes an N Safesac N Safes up, and Ay 4 is
are steering a point € R? around the disk using sequences 6-Unsafer anNé-Unsafer acNSafer up. A1,4 along with
chosen from three primitive control actions. Ay 5 is too small to draw, so its location in Fig. 5 is indicated
To solve this problem, we start by fixing a marginof by A; .; likewise A5 . for As 4 and As ;. For eachk, let
metric tolerancewith 0 < 6 < 1, and let4y be the open  Danger;, be the allé-unsafe regiom.ccé-Unsafex,.. In
§-ball around the unit disk (using the Euclidean metric on the example Danger;, = A is that part ofA4; in the
R%), so 4y = {(z1, 72) € R%*|z + 23 < 1+ 6} We open annulus of inner and outer radii 1 ahd- 25. Set
strengthen the safety requirement by this tolerance margin,P = {0} U {(k, m) |k € K, m € {1, ---, 6}} to give a
and will look for the invariant seffood within the comple- cover of 25 sets.
mentof Ag. To encode the clockwise motion requirement,  Stage 2—Determining the Control Modes and Controller
for eachk € K := {1, 2, 3, 4}, let A;, be the set of points  1/O Relation: @ C P x C. From the cove{A,},p, the
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Fig. 5. Finite cover ofX = RZ.

first subtask is to determine a control layy C P x C ad-
equate for thesafetyrequirement. Our solution strengthens
the safety condition a little more by using the setoid :=
Ure x Dangery, UAg, which is the open disk of radiust-26;

we will ensure that the complement dfvoid will be in-
variant. Take@; to be the full productP x C minus any
modes((k,m), c) for whiché6-Unsafey . C Ag m. FOr ex-
ample,((2,2),dn), ((2,2),ac), and((2,4),dn) are each
discarded. For the danger regiang ¢ C Awvoid, this will
discardall modes((k,6), ¢), so these need to be separately
considered. In the example, we put back irtpthe modes
((17 6)7 ac), ((27 6)7 up), ((37 6)7 ac), and ((47 6)7 dn)' as-

Stage 3—Determining the Control Grapte C Q x Q.
We put((p,c),(p/,c)) € Eif pf # p, A, NAy # O
and ifp’ # 0 andp’ # (k,m) whereA,; ,,, = Dangery,
thenc-evolution can lead fromi, — A, into A, N Ay (i.e.,
edgesinto regions withinAvoid only require overlap). For
the jump-infinite livenessequirement, the graph must be
further checked to ensure that for egghc) € Q, p # 0,
every point in4, canc-evolve into some overlap switching
regionA4, N A,, for some((p, c), (', )) € E.

Our hybrid automaton solutioH is illustrated in Fig. 6,
with the labels for guards and resets omitted for readability.
The requiredH -invariant set iSFood := X — Awoid, and
we further claim that alH -trajectories starting i7ood re-
main in A; until they cross intaAxs:1, and that all max-
imal H-trajectories starting ii7ood are both jump-infinite
and non-Zeno. Note thdan gery, regions, with their default
control actionsgouldcause pathologieff, a trajectory were
ever to reach them. For example @revolution from a point
in 4; ¢ N A4 would head straight foBad. From points in
As 2N Az ¢, we could produce a Zeno trajectory by switching
between mode&2, 2), up) and((2, 6), up) after successive
time durations\; = 1/(V + )2, for some sufficiently large
N, so the trajectory would always remaini » N As .

We return to this example at various points in the rest of
this paper. In particular, we will show how to succinctly char-
acterize in modal logics theperations on setgsed to con-
struct the set$-Unsa fey . andSafey . from A, and Ay,
and to formalize the decisions required in the course of the
construction, so those decisions could be resolved using a
suitable model checking tool. A more detailed account of this
synthesis procedure is given in a separate paper [32], and an
extension that directly addresses robustness is given in [63].

signing default control actions in these danger zones. For thelll. COMPUTATIONAL AND FORMAL LOGIC MODELS

core failure regioMg, we extend the control alphab@tby
adjoining a special symbdhil, with the associated trivial
flow ¢ean(x,t) = xforallt € R (i.e.x = 0), and put
(O,fail) € Ql-

The second subtask is to further refinh to a subset
(> which is adequate for thevent sequenceequire-
ment. Control mode pair$(k,m),c) must be discarded
if c-evolution on A4, leads directly to A, where
k' ¢ next(k) (for example, discard(2,1),dn)), or if
c-evolution in Ay, never leavesdy, ,, andk ¢ necxt(k)
(for example, discard(1,1),ac) and((1,1),up)). For the
positive content of thisuntil property, Q> must be such
that for each((k,mo),c0) € Qa, there is at least one
sequence(k,m;), ¢; o< j<n IN Qo, With m; # m; for
0 < j < ¢ £ N, that defines a switching sequence (with
no cycles in the sub-regions) that leads freq,,, to Ax
for somek’ € next(k). The absence of such a sequence
is the reason for discarding(1, 3), up) and ((2, 3), dn).
Before setting := @2, we must also check for coverage
of the spaceX: for each regiorp € P, we need at least one
control actionc € C such that(p,c) € Q.. This ensures
that as an I/O relatior() is total, and that in the final hybrid
automatonH, for eachx € X, there is ag € @ such that
(¢,x) € dom(h).

994

A. Labeled Transition Systems

We now turn to a more detailed examination of abstract
transition system models, which provide both a formal
computational modedf system behavior andfarmal logic
modelfor the semantics of modal and temporal logics.

Definition 5: A labeled transition systerfl TS modebr
generalized Kripke modedf signature(X, @) is a structure

m= (9, {am}aeE? {[[P]]Sm}peé)

where

* S # O is the state space, of arbitrary cardinality;
« for eachrelation label(transitionor action labe) « €
¥, a™: S ~ Sis arelation on states;
« for each atomic proposition(state predicate event
label) p € @, [p]™ C S is a fixed subset of states.
Thesignature(3, ) of an LTS modebN is just the pair
of alphabets, possibly infinite, indexing the relations and the
state sets oft. Anticipating the logics in Section IV, where
a € Y andp € ¢ will occur in the formal syntax of the
logic languages, the relatiar?”® and the state sdp]™ are
the semantidenotationdn 9 of the symbols: andp, re-
spectively.
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Fig. 6. Hybrid automaton solution for double integrator problem.

An LTS model is transparently a generalization of a finite

automaton, obtained by merely dropping any assumptions of

finiteness. The system transition relati@nS x > ~» S for

M is the consolidation of the component transition relations:

s € 6(s, a) iff sﬂs’, and for the output map: S ~ @,
definep € \(s) iff s € [p]™; the output oobservatiorat a
states is thus the set of all atomic propositions satisfiedsby

In automata-theoretic approaches to formal verification,
properties of a machin&t are specified by another ma-
chine M. of the same class (and signature). The veri-
fication questiond = ¢qpec iN a logic-based approach
is replaced by a question dehavioral inclusionbetween
M and M;;ec; the basic relation is ofanguage inclusion
L(OM) C L(Mgpec). For some automata-theoretic work,
and for linear temporal logics such as LTL, the definition
of L(SM) is usually restricted to infinite wordsv¢words)

n € I'“ [31], and the trace alphabEtmay be just the ob-
servation/event alphabEt= P(®), or the transition/action
alphabef® = .

B. LTS Models of Hybrid Systems

In representing a hybrid automatdh as an LTS model,
one could, as a first pass, simply take the hybrid reacha-
bility relation h: Sy ~ Sg as the sole transition relation
over the state spacgy. With this relation, properties of the
form “Some (all) H-trajectories starting from ...” can be
reexpressed in terms of relational successors, as “Some (all)
h-successors of. ..,” since ai-successor is any state lying
on anyH-trajectory starting frons. The temporal logic con-
structs “At some time .” and “At all times. . .” can be given
a clean semantics ovéf-trajectories just using thg rela-
tion.

For both computational and conceptual reasons, this will
not suffice. Computationally, thé relation is intractable

The discrete origins of transition system models are em- since it will very rarely have an explicit first-order descrip-

phasized in the notation of [20], [21], [31], and [38], which

tion; conceptually, it is a compound that needs analyzing.

useQ for the state space and write the global transition rela- Going back to the definition of a hybrid trajectory, we

tion as a three-place relatienC @ x X x Q. We modify the

need the notion of control action or flow applied within a

notation because we want to render transparent the generalityprescribed region.
of LTS models as abstract dynamical systems and the way in  Definition 7: For any semiflow$: X x Rt — and set
which trajectories and executions sequences are formed fromA C X, define a relatiore(A, ¢): X ~» X of (positive)

thecompositiorof the component transition relations.
Automata-theoretic approach&s formal methods are in-

timately related to logic-based work using linear temporal

logics [64], [65] and overlap significantly with DES control
theory [40], [66]. The common focus is on thehaviorof an
abstract machineas characterized by an automaton formal
language of finite or infinitewords over an alphabet, with
words encoding the qualitative orderingexfentsand/orac-
tions

Definition 6: An execution sequencEomputation se-
quence, path, run) of an LTS mod#t is a finite or infinite
sequence = (s;, a,;);ey overS x (X U {e}) such that for

m

alli € I, eithers; — s, or elsei = max(I) anda; =
wheree ¢ 3 is the empty word. (This is one way to treat
finite and infinite sequences together.) Thbservational
traceof o is the sequence or word = (o,, a;}ics Over the
alphabet’ = P(®) x (£ U {¢}), where theith observation
0; = M(s;) = {p € ®|s; € [p]™}. For each state € S,
the setL(s) C I'* U I'“ of traces of all execution sequences
starting froms is called thelanguageoverI” generated by
s. When a set of initial states is given, ait € &, the
language generated B§t, written L(97), is the union of all
languaged.(s) for s € [Init]™.
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evolution alongp within A by

e(A,qS) /
X — X

E (3t eRY) ¥ = ¢(x, ) A (Vs € [0, t])¢(x, 5) € 4].

=

Thatis,x’ is ae( A, ¢)-successor of iff x’ is a flow suc-
cessor ofx along¢ and in addition, all intermediate points
along the flow betweer andx’ lie inside A. A pointx thus
has either a continuum of successors urdédr, ¢), namely,
every point on the maximal integral curvegfying inside A
and starting fronx, or it has jusk itself, or it has none ik ¢

A. The (positive, or futuredrbit relation f(¢): X ~» X [58]

is the unconstrained evolution relatiofi(¢) Lt e(X, ¢).

Direct from the flow laws, the relatiofi(¢) is reflexive tran-

sitive andweakly connecte(meaning that ifx @) and

— X3
x 1% x, then either; %% x, orx, 7% x1), ande(4, ¢)

shares the same properties except reflexivity is restricted to
the domainA. The evolution relation can be further decom-
posed via the equatiof( A, ¢) = f(¢) N (A x A) exactly
when the se#d is ¢-convexin the sense that it;, x> € A

andx; 1) X 1) X2, thenx € A [51]. For example, each
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of the cover setsl; ,,, € X in the synthesis problem in Sec-
tion 11-D is convex with respect to each of the flowsg,,,
d)a(n andd)up-

Definition 8: An LTS modelty for a hybrid automaton
H includes the following components:

e state spacé = Sy = Q x X,

» for eachg € @, theevolutionrelatione,: S ~» S

def

1,x) -5, x) &V =1=qrx ey ba) 1

» for each(q, ¢') € F, theresetrelationr, ,: § ~» S

def
R=2

(1, x) =% (I, x') l=q/\l’=q’/\x}iq’—q>,x’

« a finite collection of distinguished subsets §f in-
cluding[Inv,]™# = {q} x Inv, for eachg € Q, and
[Grd, 1™ = {q} x Grd,,, for each(q,q') € E,
plus any other sets of states of interest for the particular
system.

The transition alphabet i for My includes symbole,,
for g € @ andr, - for (¢,¢') € E. It follows from the
definition thatdom(e,) = [Inv,]™# anddom(r, ) =
[Grdg, ]

The definition here is equivalent to that in [19], [21], and
[31]. Close relatives of these LTS models includeittiegra-
tion graphsof [67]; thegeneralized Kripke structures [26];
and thephase transition systenad [12]-[14]. The latter in-
clude a distinguished real-valued varialéor global time
with the coordinate dynamicd = 1 within any evolution,
and the identity constrailt’ = 7" in any reset relation.

We can now simply characterize the hybrid reachability
relation.

Proposition 9: Given a hybrid automato®/ over state
spaceS = Sy, lete, r: S ~» S be the finite uniong =
Ugegeq andr = U, )cETq,¢ Of the component evolution
and reset relations &1 5. Then theH -reachability relation
h: S ~~ Sis such that
(er)ke

iff (3k € N)(¢, x) — (q/, x/) .
Hence, as a regular expressians (er)*e = e(re)*. ]

The proof just appeals to the definition of the sequen-
tial composition (and union) of relations. For eaBhtra-

jectoryn = (A;, g, vi)icr, there is a correspondirtt

execution sequencéyo, 70(0)) — (go, 70(20))
(g1, 71(0)) L in alternating form. And conversely,
for each9t; execution sequence with alternating evolutions
and resets, of the formy, —2 s 2% ., there is
a uniqueH -trajectory which realizes this sequence.

The constrained evolution relations are called “time-ab-
stract” (or better, “time-indeterminate”), since the time
duration along the integral curve is “quantified out” [20].

(2, %) == (¢, x')

Tag, a1
5

€q1
§1 —

tively, for some constanmh € R*, and arexact-timevariant
drops(3t € R™) and substitutes := A in the body. The
trajectories of systems with time delays between switching
flows, as in [45], may be characterized using more complex
regular expressions involving these time-bounded relations.

In our synthesis procedure in Section II-D, the initial data
of the problem all live in the continuous world C R™, and
discrete state§ have to be constructed. This naturally leads
to a “purely continuous” LTS model, calléfit., with S :=
X the plant state space and atomic propositions haming the
initial cover setq Ay }xe k andBad. One can then work with
evolution relationses . := ¢(Ax, ¢.) and, once the final
cover is constructed, reset relationst.(Ax m N Arr ).

The example also illustrates how the very generic structure
of an LTS model can be used to repressaticor structural
relations on a space, as well as dynamic transition relations.
Recall our use of enetric tolerancgparametet > 0. Define
a relationBs: X -~ X by: x 25 x/ iff d(x, x') < 6.

So the set imag#;(x) is just thed-ball aroundx, and the
relation B; is reflexive and symmetric, but not transitive. A
point x lies in the se-Unsafey . iff x € A and there
is anx’ € Bad that is a result of applying the composite
relation Bs o ¢ . o Bs to x. We resume this discussion in
Section IV-D.

The notion of continuity for automata developed by Arbib
in[48, § 6.4], is based on an abstrtalerance spacesX, ¢),
for £ any reflexive and transitive relation, rather than topolog-
ical spaces. Our source for the notion of a tolerance relation,
as was Arbib’s, was work of the topologist Zeeman from the
early 1960s.

C. Richer Formal Models of Hybrid Systems

Process algebrapproaches to formal methods focus on
the algebraic character of operations used in the formation
of complex systems out of simpler ones, parallel composition
being one such constructor. The work on HCSP in [28] ex-
tends Hoare’s formalism afommunicating sequential pro-
cesseqCSPs) to include continuous evolution as a primi-
tive process, in addition to discrete actions and asynchronous
communication, and the process constructors include quanti-
tative timing constructs. To make the connection with transi-
tion systems, the HCSP process expressions could be given
a semantics as relations in an LTS model over a valuation
space of continuous and discrete variables plus communi-
cation channels. The work in [29] uses Dijkstraiedicate
transformerg68] to reason about the effect of actions or pro-
cesses; these are essentially the same as the basic operators
of modal logic, as discussed in Section IV below.

In work on discrete systems, there is a huge and well-es-
tablished literature on the use pétri nets(in their many
variations) for modeling systems consisting of a network of
interacting subsystems in which the state is distributed; more

This indeterminacy is exactly what is needed to capture the recently, some of this work has been extended to timed and

event drivennature of hybrid trajectories. Variations can
be obtained by modifying the time quantificationpper
time-boundedor lower time-boundedrariants ofe(A, ¢)
replace(dt € R™) by (3t € [0, A]) or (It > A), respec-
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hybrid systems. The recent dissertation by Cook [69]is a sub-
stantial resource. In that work hgbrid netmodel is given a
formal representation as an LTS model, and property speci-
fication is given in the modak-calculus.
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Other formal models obpenor reactivehybrid systems, propositional

whose behavior is influenced by that of an external environ- modal logics
ment, arehybrid I/O automata(HIOA), introduced in [27]
and used in this issue in [43], amybrid reactive modules v
[70]. The state space for both these models is essentially of branching | g | tincar
the formS = X x U x V, whereX, U andV are the valu- temporal logics] = | temporal logics
ation spaces dhternal or privatevariablesjnput or control rodal logics of | dynamic log ‘j _____ Y .
interfacevariables, aneutputor externalvariables, respec- owledge oare log !ﬂ::;:g%;r::
tively, andactionsof such systems can represented as transi- P -
tion relationsa: S ~~ S on the product state space. % v X v
_ propositional - real-time
oMkl «—| riodal/femporal ! el
p—calculus temporal logics }
IV. PROPERTYSPECIFICATION LANGUAGES AND LOGICS eeeed e
A. Overview of Modal and Temporal Logics Fig. 7. Family of propositional modal and temporal logics.

The well-known temporal logics such &3L or CTL,
first formulated for program and hardware verification in the one-step successor satisfigs where the one-step relation
late 1970s and early 1980s in landmark papers [71], [72], be-is %, — U, ;™ and the component relations are abstracted
long to a larger and older family ofiodal logicsModal logic away. Behavior along execution sequences is captured by
was originally the province of philosophers interested in an- taking the Kleene star of the one-step relation, andaihe
alyzing the concepts afecessityand possibility. Symbolic  waysformula vV C¢ has the semantics: “Alongll execu-
modal logics first appeared in 1912 in the work of Lewis, tjon sequencesll states satisfys.” The key point is that
and modern approaches derive from the work of Kripke [73] in temporal logics, one can reason directly about execution
in the early 1960s, who gave a formal semantics over modelssequences of a single system, but there is no facility within
with a single “accessibility” relation between states referred their formal languages to talk about how the behavior of any
to as “possible worlds;” these structures are knowirgske one system isomposedrom its internal parts, or toompare
modelsand LTS models are their generalization to multiple the behavior of two or more systems.
relations. The survey articles [33], [37], [56], and [65], and  The endogenous approach is in contrast with éxe
the textbooks [30], [34], [35], and [74], are good resources ogenousor “external” approach, exemplified by the poly-
for modal and temporal logics. modal logicPDL [75], [76], in which the component tran-

Fig. 7 is a schematic diagram of the family of logics with  sition relations of LTS models are “first-class objects,” ex-
semantics over transition system models. The solid arrowsplicitly named in the syntax of the logic. IRPDL, one
indicate relations of inclusion or subsumption between reasons directly about the primitive relations of a model,
logics, in the sense that everything expressible in the first and compound relations formed from them using the reg-

can also be expressed in the second. Among logics withular expression constructors of composition, finite union
semantics over LTS models, indicated by boxes with solid and Kleene star, and others such as thg constructor.

outlines, the propositiongk-calculusL 11 [33], [36], [37] While the exogenous approach has been highly successful
is the most expressive. Among the “nontemporal” modal for purely discrete systems, where the component transi-
logics, there ispropositional dynamic logiqPDL) [75], tion relations have a homogeneous character, it is worthy

[76], and modal logics for reasoning about tkieowledge  of reexamination in the case bf/brid systems, where the
of an agent or process in a distributed system [74]. Boxes internal components are necessatilgterogenousn na-
with broken outlines indicate logics that require some ture.
extension or adaption of LTS models. These are topological e start with an exposition of the base logioypositional
modal logics [23], real-time extensions of temporal logics poly-modal logidPML ), which can be taken as the common
[20], [21], [53], [77], interval temporal logics [15], [28],  core of all modal and temporal logics over LTS models, and
[78], [79], and alternating temporal logic(ATL) over illustrate how to use it to express finitary properties of re-
game models [80]; the latter logic has an extension to an |ations, and in particular, various steps in our synthesis pro-
alternatingp-calculus indicated by the broken line arrow. cedure from Section 1I-D. We then turn tq:, which adds
Since virtually all the work on logic-based specification of to PML the power to reason about infinitary constructions
hybrid systems, and discrete systems before them, has beenf relations such as the Kleene star (so subsurRiDy), as
within the narrower subfamily of temporal logics, our break well as all the operators of temporal logics, and illustrate how

with tradition needs some further explanation. it can be used to cleanly and simply express a wide variety of
In Pnueli’'s landmark paper [71], he identified the then properties of hybrid automata. We also survey the literature
new temporal logics as falling under andogenousr “in- on temporal and modal logics for hybrid and timed systems,

ternal” approach to property specification. In branching tem- with a focus on quantitative real-time properties beyond what
poral logics such a€TL or CTL * (reviewed in thisissue in  is expressible it 1, and on topological extensions BML
[31], next-stegdormulas3 O ¢ have the semanticsSome andL p.
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B. Propositional Poly-Modal Logic defined by induction on the structure of formulas. For the
Definition 10: The setS(X, @) of formulas of PML in base case of € @, the denotation sefp]™ are given as
the signaturéy, @) is inductively defined by the grammar ~ ComMponents ofit, and for compound formulas
[~¢]™ = 5 - [¢]™
[o1 V @2]™ = [ 1™ U [e2]™
[(a)e]™ < pre? (a™) ([¢]™) forae 3.

@ u=p|oe e Ve |(a)e

for atomic propositiong € ¢ and relation labels € 3.
The other propositional connectives can be defined in a

standard way: conjunctiop; A 2 = =(—p1 V ), For formulasy € S(X, ®), we say:y is satisfiedat states
implication 1 — 2 et (-1 V ¢2), and equivalence  in 90, written M, s = o, if s € [p]™", andy is truein M,
01 = 02 = (o1 — ©2) A gz — @1). In addition, we  written I = o, if [¢]™ = S.
introducett (“true”) as an abbreviation for any fixed propo- Let B(9M) Lt {[el™ € P(S)|le € S(E, ®)} be the
sitional tautology, such ag v —p for somep € &, and family of all sets of states if)t denoted by PML formulas.
“false’ ff % —tt. The modal operator&) are pronounced ~ ThenB(90) forms aBoolean algebraf sets, which is gen-
“diamonda,” and the dual boxa” operators are defined by ~ erated from the atomic state SM”" forp € ®. The “top”
[a]e % —(a)=p. In the syntax of the branching temporal €lement of the Boolean algebrafist]™ = S, the “bottom”
logic CTL [31], the singlenext-stepoperatord() replaces  element is[ff[”" = <, and it is partially ordered by inclu-
all the separate modal operatdts for o € ¥, and a single ~ Sion C, which corresponds tp the implication connective in
VO replaces all the operatofa). the sense thal (= (o — ) iff []™ € [y

Semantically, a formula will denote a sef¢]™ C S of The algebraic theqry of relations and their _operators on
states. The Boolean operations of negation and disjunctionSets was developed in the 1940s and 1950s in the work of
clearly correspond to the set-theoretic operations of comple- 1arski and Jénsson [81], [82]. In terms of that work, the
ment and union. For modal formulés)¢ and[a]y, we need ~ @lgebra(M) is aBoolean algebra with operatorsvhich

operators built from the relationg®: S - S. is closed undePre”(a™) [and hence als®re”(a™)] for

Analogous to the inverse-image operator of a €aCha € ¥.In more modern termg3(90) is amodal al-
single-valued function, any relation: X ~» Y deter- gebra[33], [51], the smallest of all modal algebras of sets
mines a dual pair opreimage operator®re(r), Pre” (r): B C P(S) for 9, and we refer to it as thminimal modal
P(Y) — P(X) mapping sets to sets, defined by algebrafor 9.

C. Finitary Relational Properties in PML

e ] The axioms for a Hilbert-style proof system felML con-
Pre”(r)(A) = {a: e X|(VyeY) [x S y=ye€ A} } . sist of the axioms of (classical) propositional logit (see
[34]) plus the following:

Pre3(r)(A) & {x € X|(FyeY) [x yAyE A}}

In words,z € Pre?(r)(A) iff there issomer-successor of 4 )

that lies inA, while z € Pre”(r)(A) iff all 7-successors of w-(a) V: {a) 01V p2) © ((a)g1 V (a)p2)

x lie in A. Note that the latter still holds when¢ dom(r), Az (a)ff: (a)ff < fF.

so there areno r-successors af, henceX — dom(r) C

Pre”(r)(A) for any setA. The duality between the oper-

ators is with respect to set complement, and is given by: ) .

Pre” (r)(A) = XFiPrea(T)(Y B 5 g y consist of the classicamodus ponensRule.MP: from
The preimage operators have appeared under various’. ¥ andt, infer ¢, and the rule omodal necessitatign

names and notations, and in diverse settings, throughour&l‘le'Necz.ffron;,f'_'n;e:h[“]‘p' (Themsolmgne_?rs]af the latter
mathematics and computer science. From Dijkstra’s rule says iff]™ = en[alp]™ = 5.) These axioms

famous text [68], they are known agredicate trans- and.rules charactgri;eormal modal opergtor; [35]. A
formers In that work, the sePre”(r)(A) is referred to dominant theme within general modal logic is the s_tudy
as wlp,.(A), the weakest liberal preconditiomf A under OT the corr_espondence between eIemenFary properties of
a relation»: X ~~ X, while the weakest precondition binary relations and f_ormulas (_)f_modal I(.)g'? [35], [56]. For

. def v example, the properties oéflexivity, transitivity, andweak

is taken aswp,(4) = Pre’(r)(4) N dom(r), where o0 e jnesas possessed by the orbit relatipfs) of a

The corresponding axiomdzx.[a]A and Az.[a]tt are ob-
tained by Boolean duality. The inference rules fovL

dom(r) = Pre®(r)(X). Aderrelatecgjl transformer is the 40, "are characterized by the formula scherfizst, andL

postimage operatoPosE(r) = Pre (), also called the (the names being historical within modal logic)

direct-imager(A). For Dijkstra, this isip,.(A), thestrongest

postconditionof A underr. In general topology, the purely (a)T: ¢ — {a)yp

topological notions ofcontinuity for relations/set-valued (a)4: (a){a)p — (a)p

maps: X ~ Y are defined using the operatdtse” (r)and L

Pre”(r) [57], [60]; we return to point this in Section IV-H. (@)Ls {a)pr Ala)pr = ({a) (91 A p2) v
Definition 11: For formulasy € S(2, ), thedenotation (a) (1 Aa)p2) V

set[¢]™ C S in an LTS modebN of signature(s:, @) is (a) (p2 A{a)pr)).
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Together with the normality axioms, these three formula (ey )¢ := e(Ay, ¢.) and(8)™¢ := Bs. Then the sets

schemes axiomatize the modal logé.3 6-Unsafey . andSafe . have the modal characterizations
The preimage operators are well behaved with respect to der

the regular expression constructorssaefgquential composi- 6-Unsafey, . = Ay A (6){ex ) (6)Bad

tion andfinite unions justifying the definitional extension of Safey, . défAk A er.c] ~(8)Bad.

PML by (ab)e < (a)(b)p and(aUb)e = (a)p Vv (b)p. We

can also conservatively exteRL with defined modalities ~ This is becaus€s)e denotes the set of points withinof
for compound relation symbolg?) formed from formulas ~ some-state, so the-“closure,” while the duals]e de-
¢, with the semantic&y)?)™ = test.[1]™. In the syntax of ~ notes theS-“interior,” meaning the set of points all of whose
PML, define (7)o def VA Q. §-neighbors are stilp-states. The “fattening” with the outer

The expressiveness &ML can be properly increased ~(6) Operator inb-Unsafey, . creates the overlaps. The sub-
by adjoining modalities/) and [4] for the converse rela- regionsAy ., are then modally defined by conjunctions of
tions, interpreted by the postimage operators; the temporald-Unsafey, .'s andSafe; .'s. The nominated invariant set
logic analogs are referred to pastoperators. The additional ~ Good is characterized by
axiom schemes are def

Good = —(6)(6)Bad
Azx.{a) —1: a
. <Cf> <pv—> [al{a)e The fact that each of the cover sets ,,, € X are convex
Az fa) =2 (@)ale — . with respect to each of the flows. is expressed by the for-

In work on deductive verification using temporal logic, mula

such as [12]-[14], and [30], it is standard practice to supple- Asm — [E] (£ A% e — A )

ment the syntax of temporal logic with additional notation ’ ’ ’

to expressafety verificatioror correctness conditiondhe where(£.)™ := f(¢.), and likewise for the initial quadrant
so-calledHoare triplenotation{«'}a{,} is transcribed into  regionsAy. This in turn implies

the language d?ML by the formula) — [a]y, which reads:

“If + holds, then alla-successors satisfy;” in particular, (e(,m),c) P = Apm A (o) (0 A Agm)
¢ — [a]p asserts that the set pfstates is (futureivariant [e(,m).c] © < Arm — [Fo] (Arm — @)
under the relation™. _
Working in an LTS modePlt = 9y of a hybrid au- The safety control lawp; € P x C'is constructed so as
tomaton H, we have(e,)tt « Invg and (rq o )tt < to ensure that for eadtik, m), c) € Q1

Grdg . The formulaGrd, , — [r, o]Inv, asserts that

. . 1 d , d
H meets the sensible design condition that resets under Good = [em) ] Goo

always lead tdnv, . Extending the signature 8y by ad- s true in9c. In refiningQ; to deal with the event sequence

joining relationsf, for the unconstrainedlow or orbit re- requirement, the reason for discardiifg, 1), up) is because

lations onS = @ x X (replacinge(Inv,, ¢4) with f(¢,) Ay — [fup]Ai is true inMc, which meansd, ; is fu-

in the definition ofe, in Definition 8), the formuldnv, — ture-invariant under the flow,,. The mode((2, 1), dn)

(fy)—Inv, asserts that the flow, cannot stay innv, for- is discarded because the e, ; A <e(2,1),dn>A3]|mC is

ever. nonempty. For the positive content of the event sequence re-
Within PML, we are limited to the expression of proper- quirement, we have to produce a sub@etC ; such that

ties of H-trajectories with dinite number of jumps. Lee for each((k, mo),co) € Q», there is at least one switching

andr denote the relational uniorsandr, respectively, of sequencé(k, m;), ;o< <N Starting from4,, ., in control
the component evolution and reset relations. Then for a fixed «, and leading throught;, and into A1, with no cycles in

k € N, the modal formuld(er)*e)¢ denotes the set of states  the subregions. For example, for eacte {dn, ac, up},

(¢, ) € Sfromwhich there isomeH -trajectory withk dis- e keep((2, 5), ¢) because
crete jumps that reachesgastate, while[(er)*e]y denotes
the set of state§;, =) € S from which every H-trajectory Az — [6(2,5),c] (e(2,5),e) A1

with & discrete jumps reaches the sepeftates, and remains
there throughout ts final evolution interval. In order to reason
aboutarbitrary H-trajectories, and to define modalitiéls)

is true inMM¢; this saysc-evolution in A, 5 inevitablyleads
to A;. Then we can keef(2, 4), ac) because

and[h], WhI.C.h corre'spond to tr:e preimage operators of the Agy— [6(274)7“] (€(2.4).00) (A1 V Ag ).
H-reachability relatiorh = (er)*e, we have to move to the
p-calculus. Each quadranfi; can be systematically searched, starting

with the subregionsi,, ,, that overlap withAc; .
D. Example Control Problem Revisited

Before making the infinitary move, we return to the ex- E- Propositional Moda:-CalculusLy.

ample synthesis problem in Section II-D. As discussed atthe  Thepropositional modaj:-calculusL ;. [36] is a logic ex-
end of Section IlI-B, we can work in an LTS mod®gt¢ with tendingPML by adjoining leasty) and greatest.) fixed-
S := X = R2. Define the semantics of relation symbols by point quantifiers Semantically, this adds the mathematically
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common and highly useful construct “theastset A such
thatOp(A) = A” or “the greatesisetA such thaDp(A) =

A,” where Op: P(S) — P(S) is an inclusion-monotone
function mapping sets to sets. This fixed-point construct is
the essence of the notion imiductive definabilityincluding

the iteration construct of the Kleene-stérof regular expres-
sions. Theu-calculus occupies a paramount place in formal
methods: the expressive power of the fixed-point quantifiers
are such that it subsumes virtually all modal and temporal
logics over LTS models, and formal verification lnyodel
checkingfor all such logics is essentially based on a transla-
tion into theu-calculus [37]. In DES control theory, tieod-
ular feedback logidn [39] consists of propositional logic,
Dijkstra’s predicate transformers, and least and greatest fixed
points.

Definition 12: Let PVar be a set ofpropositional
variables (second-orderor set-valuedvariables). The set
Fu(E, @) of formulas ofLy in the signature(:, @) is
inductively defined by the grammar

¢ u=plZ|~p o1V [{a)p|nZp
for atomic propositiong € ®, propositional variableg €
PVar, and relation labels, € 3, with a further syntactic
restriction thatuZ.¢ is in F,,(X, ®) only if everyfree oc-
currence ofZ in ¢ is within the scope of an even number of
negations. Analogous with first-order quantification, a vari-
able Z in the scope of.Z or vZ is said to bebound and
free otherwise. A formulay € F,.(X, ) will be called a
sentencef it contains no free variables, and the set of all
sentences will be denote), (3, ®).

Propositional variableg € PVar are our means to talk
aboutany or all subsets of stated € P(5), in addition
to particular constant setp]™ C S. The fixed-point
constructors give a special kind afuantification over
subsets of states. Formulag.¢ are informally read “The
smallestset Z such thatZ ©(Z),” while the dual
vZ.p def —uZ.—p[Z = —Z]is read “Thelargestset Z
such thatZ = ¢(Z).” The expressiornp[Z := ] means
the formula resulting frompy by substitutingy for all free
occurrences of,, with a side condition to avoid unintended
clashes of variable names.

Definition 13: A variable assignmentin an LTS
model 9 = (S, {a™}ucs, {[P]™}pca), is any function
& PVar — P(S). For formulasy € F,(3, ®) and variable
assignmentg, the denotation sel{[<p]|ém C Sinan LTS
model 9 of signature(%, @) is defined by induction on
the structure of formulas. For the propositional connectives
and modal operators by, the semantic clauses are as for
PML, with the addition of a subscrigt

P12 = [p]™
21 € ¢(2)
127 ({4 € PS)eIZ2) € 4}

where{(A/Z) is the assignment that is the same &xcept
for assigning the set to the variableZ. For formulasy &
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F.(X, @) and assignments PVar — P(S) in 9, we say:
¢ is satisfiedat states in (9, &), written 9N, £, s | o, If
s € [¢]?", andyp istruein M, written M |= o, if [¢] 7 = S
for all assignmentg in 901.

For sentencep € S, (X, ®), their denotation is indepen-
dent of any variable assignment, and so wrifigf™*. Model
checking forL ;. applies only to sentences since the denota-
tion []™ has to be computed. Note tHaML formulas are
all L i sentences; i.e§(%, ¢) C S,.(X, ©).

The formal semantics say the s[@tZ.cp]lg" is the least
prefixed point(the intersectionof all such prefixed points)
of the operator on sets(Z )9": P(S) — P(S) given by

(¢(Z)§")(A) €« [e] > (4/z)- The syntactic restriction on
p-formulas ensures t at t?ns operatordsmonotone. The
Tarski—Knaster theorem for monotone operators on complete
lattices [such a$P(S)] guarantees that the least pre-fixed
point exists and is equal to the least fixed point.

In order to try tocomputethe denotation of a fixed-point
formula, as is required for model checking, one appeals to the
Hitchcock—Park fixed-point theorem. This result says the set
[[uZ.(p]lém may be characterized asaionof anC-increasing
chain ofapproximationsstarting with, and formed by it-
erating th&p(Z)ém operator until a fixed-point set is reached.
The finite stages of the approximation sequence are explic-
itly described by the denotations of formul[h,sk]]ém, where
the “unwinding” sequence is recursively defined by

fal . f
O oand L

@7 = "] for k € N.

The approximation up to stage(the ordinal numberof N)

is the union overk € N, but in general, the approxima-
tion sequence may proceed pastind throughtransfinite
ordinals, of cardinality less than or equal to that 8f be-
fore convergence occurs. There is a well-developed theory
of approximations of fixed points; for our purposes, it suf-
fices to know that when the semantic operaﬁQZ)}gm dis-
tributes over unions of countabfe-increasing chains of sets
(a property also calledU-continuous [33], [52]), the or-
dinal of convergence fonZ.p is at worstw. In particular,
for the Kleene star constructor on relations, which is defin-

able in theu-calculus by{a*)¢ et uZ.pV {a)Z, one has

U Ie*

keN

<P]]g @]]5 .

The notion of aisimulation relationon or between LTS
models is of fundamental importance, and a central concern
of [31] in this special issue. A bisimulation equivalence is
a type ofcongruencehat respects the component relations
and distinguished subsets of an LTS model. The fundamental
property of truth preservation is the following.

Proposition 14 ([33]): Given an LTS modeit of signa-
ture (32, @), if & is a bisimulation equivalence dht, then
for all sentencey € S, (X, ¢) and all states, s € S

s%s’:>[s€[[<p]|m<:>s’€[[<p]]m]. [

A corollary is that if ) has a bisimulation equivalence
of finite index IV, then for each sentengeZ., its approx-
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imation sequence is guaranteed to converge at some stage, will eventually leavel nv,, and all resets from that part of

k< N,so

[1Z.2]™ = [ "] = [«* 1]

Grd, - that is H-reachable from) must lead tdlnw, .

5) Inevitability: ¢ — [h](h)¢ says that from every state
H-reachable from a&-state, there is & -trajectory leading
to a-state.

This is because Proposition 14 entails that the denotation set 6) Eventuality: ¢y — [h](¢; — (h)¢2) says that for
of eachL ;. sentence must be a union of equivalence classes.every H-trajectory from aw-state, if it ever reaches a

The quotient LTS modeMt,, is then a fully discrete finite
automatorsimulacrunof the original®)t, which satisfies and
makes true all the samecalculus sentences.

F. Formalizing Properties of Hybrid Automata Xy

The modali:-calculus provides a very rich formalism in
which to formally express properties of hybrid automata.
With the use of defined modalities froRDL, the formulas

@1-state, then it has a further extension that eventually
reaches a»-state.

7) Non-Zeno LivenessA sufficient, but not necessary,
condition for the non-Zenoness of &#l-trajectories starting
in a1-state is the existence of&a > 0 such that

A

(Grdq,,,q A <f1>¢) -

can be rendered “human readable,” circumventing a standard (¢/-9€F

critique of the inscrutability of:-calculus notation.

Let9t, be an LTS model of a hybrid automatéh Since
the H-reachability relation satisfigs = (er)* ¢, the diamond
and box modalities foh can be defined by

def

(hye = pZ.le)pV{e)r)Z
[hle o vZ.[elg Ale|r]Z
and thus
[(h)e]™ = | [(er)*e)e]™
kCN
[hle]™ = (1) [i(er)*ele]™.
keEN

1) Invariance: [h]e denotes the largedt -invariant set
contained in the set af-states, provide¢g — Inv (where
Inv < (e)tt < (h)tt) and hencdh]y — ¢; in general,
[h]e denotes the larged#f -invariant set contained in the set
of [e]¢-states, the latter also including all eInv.

2) Safety:¢) — [h]p is true in M iff every H-tra-
jectory that starts in a-state always remains in the set of
-states.

3) Reachability: (E)z/; denotes the regiort{ -reachable
from the set ofj-states, wheréh)y o uZA&)p V(Y Z.
Applying the axiomsAz.{a)-1 and Az.{a)-2, the formulas
(h)y) — ¢ andy — [h] are equivalent.

4) Jump-Infinite LivenessEvery maximalH -trajectory
starting in auy-state makes infinitely many discrete jumps,
iff the sentence

4 — [](e)Grd

A /\ (Invy — (f;)—Inv,)
q€Q

A

q':(q,9)EE

(Grdq,q’ A <ﬁ>¢) = [rg, [ Invy

is true iInMty. The first conjunct says that from all states
H-reachable from)-states, it is possible to evolve into one
of the guard sets, and the second says that forgabke flow
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A

q':(g,9)EE

[ty 4] ((eq> Grdg,y — <eq<A> Grdq,q’)

whereeq<A is the (strict)A-upper-bounded evolution rela-
tion.

8) Instances of StabilityFor fixede < 0 andé > 0,
define(§)™# = {((q, %), (¢, X)|¢ = qgnd(x, x') < 6}
and likewise for(e)™#. Then the sentence

¢ — [hle A (8)p — [h]{e)e

says thatp is a H-invariant set, and that eveiy-trajectory
that starts withird of ¢ always remains withima of ¢.

With propositional variables ranging over all subsets of the
state space, we have the machinergdamparerelations. The
relational inclusior:™ C 5™ holds iff M |= (a)Z — (b)Z
iff M = [b]Z — [«]Z, i.e., for all possible assignments of a
setA C S to the free variableZ.

Comparison of relations allows us to formalize questions
of approximate verification L ;.. Suppose we wish to verify
a safety sentence in a systdfmwith complex nonlinear dy-
namics, for which model checking is not possible (discussed
in Section V-A). One then seeks out a simpler systdm
that is anoverapproximationof H, and for which model
checking is possible. For examplH, could be chosen so
that each of the component evolution relations satigfyC
ejl, and the reset relations are the saméi $0h/, and hence
[h']Z — [h]Z. Then the approximate safety sentegce~
[h’]¢ entails the desired safety sentente— [h]y. How-
ever, if model checking returned the answer that [h']¢
is not true, sy A (h')=p]™ # @, then the implication
(h)Z — (h'}Z does not allow us to conclude anything about
3 A (h)—p. The metric tolerance relations can also be used
to formalize notions ofightnessof approximations.

The high-level idea ofobustnesss that for a givemom-
inal model H, and anuncertainty classf of models H’
that are possibleariationsof H in some well-quantified re-
spects, one wants to ascertain whether each of the models
H’ possess the same qualitative or quantitative properties
as H [25]. As one approach to formalizing robustness, con-
sider a class) consisting of hybrid automatd’ that differ
from H in at most their evolution relations; for some fixed
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e > 0, suppose the evolution relations satisgyg €4 © B:
for eachg € Q. This says that ify’ is an integral curve of

¢, Witnessing an evolution N y in a variantHd’, then
there is an integral curve of ¢, starting fromz, witnessing

z —% y in the nominal systen#f, such thaty’ lies within a
e-tubearoundy (see [25] and [47], which considertubes

around time sequences). Translating this relational inclusion

into modal formulas, we have

[e][e]Z — [¢]Z
and hence
] Z — W)z

where

h.] Z <o W.le][e] Z A [e][e][r] W
'] Z €W [ Z A [e] [r]W.

So for the verification of aobust safetyproperty, it would
suffice to prove) — [h.]y, since this entailg) — [h'] for

any such varianH’. One can also work with the finitary ver-

to regionsof the state space through which a trajectory may
pass. We reformulate this idea in our modal framework.

Any subsetd C Sy = S of hybrid states has a unique
decompositiond = |J_-,({g} x Ag). Then for each con-
trol modeq € @, define the relativizedi-evolutionrelation
eqg(A): § ~ S by

(7, x) o I, x)E I'=l=qnrx Aanye; o) o
and for each discrete transitidn, ¢') € E, define the rela-
tivized A-resetrelationr, ,(A): S ~» S by

) rq.q’ () def

R, o
(', xYSl=qgnl'=¢d Ax 5 X

!
AXEA NX €A,

(1, x

For any p-calculus sentencey € S, (Xgy, $y), de-
fine relations e(p)™ X U coe,([¢]™) and
Ug, greere, o ([¥]77). So e(tt) is just

(o)™ =
e and likewiser(tt) is justr. Then define

o1 (Th) oy X pZ.( e (01))pa V (e (01))r (1)) Z.

Hence,(h)¢ < tt(Jhif)y, as one would expect. The char-

sions of the hybrid reachability relations restricted to some acterization of 34) in [20] and [21] replaces; with ¢ Ve,

bounded finite number of resets.

G. Temporal Logics for Hybrid and Timed Systems

in the body of theu-calculus formula because they want
to retain the implicationpy — 1 (3U)yo; for the defini-
tion here, we have instedgh; A ¢2) — ©1(IFhif) ¢, and

There are numerous proposals in the literature for the ex- ¥1(3hif)pa — (h)(p1 A @),

tension to hybrid and timed systems of temporal logics de-

The hybridall-until construct, which expresses notions of

veloped for discrete systems. Our focus here is on exten-inevitability, is a yet more complicated creature, and we do
sions of temporal logics, which specifically address issues N0t give a detailed treatment here. Intuitively,(Vhi/)e; is
that arise from working with real time, including the expres- Salisfied at a state € .Sy if along every maximak -trajec-

sion of quantitativetemporal requirements.

1) Branching Temporal LogicsReal-time extensions
of branching temporal logics includEmedCTL (TCTL)
[53], IntegratorCTL (ICTL) , and Timedu-calculus TL )

tory i starting froms, there isann-successos’ at whichys

is satisfied, ang, is satisfied at alh-intermediate states be-
tweens ands’. For example, thevent sequence requirement
in our example control problem in Section II-D is formalized

[20], [21]. These logics were developed for reasoning about Y the sentence

quite restricted classes of hybrid automdiaed automata
in which all real-valued coordinates aotocks with dy-

namics#; = 1, and (so-called)inear hybrid automata
with straight line flows¢,(x, t) = x + tu for some slope

N (Ax A Good) — A(Vhif)Ase:.
kC K

In [21], an(V U{) operator for hybrid trajectories is shown to

or rate vectoru € R™; for both classes, all reset relations be p-calculus definable, usingdif) and time-bounded all-
and distinguished subsets are restricted to those definableuntil operatorgvif) <.

by Boolean combinations of inequalities + ¢ < z; + d,

Quantitative time-bounded properties can be formalized

for constantse, d € N. However, their semantics can be by extending the branching-time languages véfiecifica-
cleanly extended to arbitrary hybrid automata in the manner tion clocks which are additional real-valued variables dis-

developed here.

tinct from system coordinate variables.Hf is a hybrid au-

The first issue addressed is the appropriate semantics fotomata over state space C @ x R", then formulas in

theuntil operators. Intuitively, we would like a statec Sy
to satisfye, (3hif )¢ iff there issomeH -trajectoryn from
s along which there is ap-successor stat€ at whichy,
is satisfied, ang; is continuously satisfied at alFinterme-
diate states betweenands’. In standardCTL, 1 ()2
is characterized by the-calculus translatiop 7.2 V (¢1 A
3O Z), with iteration of the “next-step” operatdi). Over
LTS models of hybrid automata, whesé) is (e U r}, this
fails to capture the intended meaningafholding continu-

the enriched language containingspecification clock vari-
ables are interpreted in an expanded LV&; model over

S x (RT)™. Specification clocks have the continuous dy-
namicsz = 1 in all control modes;, and remain constant
under reset relations. The additional constructs of the lan-
guage are atomic clock constraints, of the forpH ¢ <

7z + d with constants, d € N, which can be treated as
extra atomic propositions, and th&e®ezé& or “ clock-reset
constructz.o, which corresponds to the action of starting a

ously. The key to the solution in [20], [21] is a means to refer timer from zero. The formula. is satisfied at all extended
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statess € S x (RT)™ such thats(z := 0) satisfiesyp. For
example, th& CTL formulaV¥ Oz.(¢p = VO(p Az < 17))
asserts that along all trajectoriesy astate is followed by a
-state within 17 time units.

2) Linear Temporal Logics:Formulas of linear temporal
logics are interpreted with respectdrecution sequences
tracesof transition system models (Definition 6). ATL
formula in true inN if it is satisfied by all infinite execution

formalize some notions of stability and robustness. In [23]
and [50], we show how modal logic also provides a means to
represent aopologyon the state space of an LTS or Kripke
model.

Formally, we extend the syntax BIML or L to include
an additional “plain” or “unlabeled” box modalityd, and
its dual diamond>, with $o ef —O—¢. A topological
LTS modeblt = (S, 7, {a™ }aes, {[P]™ }pes) is an LTS

sequences starting from the designated set of initial statesmodel in which(S, 7') is atopological spaceFrom Tarski
of 9. This semantics can be related to the state-based seand McKinsey [84], the axioms for the box modalifyof the

mantics by working in a derived LTS mod#®t~ whose state
space is a suitable set aflength execution sequences or
traces of91t [33].

Much of the work on timed and hybrid extensions of linear
temporal logics has concentrated on the theontimied
w-words extending the rich relationship between (untimed)
w-languages, formulas dfTL , and Bichi automata over
w-words [65], [77]. Over an arbitrary LTS mod®X, atimed
execution sequends a pair(o, 7), whereo = (s;, a;)ice
is an infinite execution sequence B, andr = (¢;)ic. IS
an infinite sequence of positive redls € R, interpreted
as thedelaybetween the successive statesands;; under

m

the transitions; —— si+1. A timed trace(r, 7) is defined
similarly. Logics such asnetric temporal logidMTL [13]
are obtained by extendingTL with (integer endpoint)
interval-bounded versions of thantil, always,and some-
timestemporal operators, and formulas are interpreted over
timed execution sequences or timed traces. For example
013, 17192 is read %, holds untile, does, and that hap-
pens in between 3 and 17 time units.” A similar extension of
LTL with time-bounded temporal operators is developed in
[83]. The survey paper [77] examines the decidability and
complexity of model checking for several variantshéTL
with respect to LTS models of timed automata.

3) Interval Temporal Logics: Hybrid temporal logic
(HTL) [78], [79] extended duration calcul(&DC) of [15]
and [28] are both first-order temporal logics that replace

well-studied modal logi&4 correspond exactly to the Kura-
towski axioms for the topological interior operatart+, and
dually theS4 diamond corresponds to the topological clo-
surecly. The additional semantic clauses for the extended
language interpreted in topological LTS models are then

gn def

[[<><P]]5
[Oe]

cr ([[<P]]ém)
def intr ([[(p]lém) .

Call the resulting logic§opPML andTopL 1 (the prefixT
already being used fdimedextensions of temporal logics).
The S4axioms for] are as follows:

’

Az OA: OZAW) < (OZA0OW)
Az Ott: [ttt — tt

A0 02— Z

Az.04: [O7 — OOZ.

In the enriched language, we can simply express topolog-
ical properties of sets of states. A sentepaenotes anpen
(closed setin(S, T) iff o — L (O — ) is true inN.

The sentencé ¢ A -y denotes the topologickloundary
bz ([¢]™).

We now have the resources with which to formalize
notions of continuity In purely topological terms, a

states as instantaneous valuations of variables, with statesingle-valued functiorf: (X, 7) — (Y, U) is continuous

functionsover an interval of time. In [78] and [79], the basic
semantic objects agghaseg I, f), wherel = [c, d] C Rt

(or I = [¢, d)) is a time interval, andf is a vector of
type-consistent functions of timg,: I — Randf,: I — @
that are piece-wise continuous (or smooth) if variablis
real-valued, and piecewise-constant for discreteBoth
HTL andEDC have a thog operator, from which thentil,
always andsometimesemporal operators are definable and
include a means to refer to the duration for which a formula
has been satisfied.

H. Expressing Topological and Continuity Properties

Work on temporal logics for hybrid systems has focussed
on the metric aspects afal time Here, we turn our attention
to the metric and more genetalpologicalstructure ofreal
space We have already seen how within the framework of
(plain) modal logicPML , we can reason about some metric
structure using modalitig$) and[é] for concrete$-tolerance
relationsBs: S ~~ S on metric spaces$, and use these to
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if for every open set in (Y, ), the inverse-imag¢—1(U)
is open in(X, 7). The corresponding notions for set-valued
maps were introduced by Kuratowski and Bouligand in the
1930s and use the preimage operators instead of the inverse
image [57], [58], [60].

Definition 15: A relationr: (X, 7) ~ (Y, U) is said
to belower semicontinuou@sc) if for every open set/ in
(Y, U), the preimagePre?(r)(U) is open in(X, T); r is
said to beupper semicontinuou@isg if for every open set
U in (Y, U), the preimagePre” (+)(U) is open in(X, T),
or equivalently, for every closed sét in (Y, U/), the set
Pre?(r)(C) is closed in( X, 7); andr is calledcontinuous
if it is both usc and Isc.

For a relationa™: S ~ S in a topological LTS model
M, the semicontinuity properties are simply expressed by
the formulas

Isc-a:

(a)OZ — H{a)Z
[]0Z — O[a]Z.

usc-a:
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Thelsc-a formula asserts that for every subge S, the in- T Sy ; S
clusionPre® (a™)(int1(A)) C intr(Pre*(a™)(A)) holds, e «
and this is equivalent to the Isc property t0F; likewise for LW N ST
the usc property. From these simple modal characterizations, radius® N
we can give a purely formal proof within the axiomatic proof ~~ N .
system that each of the semicontinuity properties is inherited T
under finite compositions and finite unions of relations. For Fig. 8. The usc property in the compact metric setting.
the infinitary Kleene star operation,dfis Isc thena* is Isc,
but the corresponding result for usc relations does nothold in - o 5 hybrid automator, consider the bounded-jump
general (basically because the infinite intersection of afamily yersionshy: Sy ~ Sy of the H-reachability relatiom
of open sets need not be open). given byhy = Jp<y(er)¥e. Sohn(g,x) is the set of all
We briefly mention two lines of enquiry opened up by con- - gates lying on som -trajectory from(q, x) that has at most
sideration of semi-continuity properties of relations. The first 5 giscrete jumps. Lehf,: X ~ X andh#®: X — X be
confirms our interest irfinite topologiesas combinatorial e projections ohy andh onto X C R™. Then under the
structures, which shed some light discretizationsof con- hypotheses required for the metsi@ characterizations, the
tinuous and hybrid spaces, and notionstfbility for such semicontinuity properties fok?% and 7# express elemen-
discretizations. From [51], an LTS mod#k has abisim- tary notions of stability of hybrid trajectories. A preliminary

ulation equivalencef finite index exactly when there is a  gyqy of the usc property for hybrid reachability relations is
finite topologyZ on S such that each of the transition rela- given in [23].

tionsa™: S ~ S arecontinuouswith respectZ’, and each
. om
Pf the atomic ??tﬁp]l IS glopen(both cloged and open.) V. METHODS AND TOOLS FORFORMAL VERIFICATION AND
in 7. The partition determined by an equivalence relation SYNTHESIS
gives the extreme case where all open sets are also closed, so

T = Clop(T) is actually a Boolean algebra. A. Symbolic Model Checking
Returning to the example in Section II-D, the cover  Model checking for all standard propositional modal and
{Akmtx,mer U {40} generates a finite topologyp temporal logics proceeds by first giving a translation into the

on X := R?. As it stands, this is not aubtopologyof the p-calculus. The task is to compute the §e]™ C S, and
standard topology oft* (c.f. [46]), sinceSafex . will be so determine whethé¥t |= . The high-level algorithm for
open-intersect-closed, but with an exfrhoperator in the computing[¢]™ for a u-calculus sentence is just the induc-
modal characterization, it could be made so. As noted in tive definition of the formal semantics in Definitions 11 and
[46], violations in continuity conditions fdinite topologies 13, recursively breaking a sentence into its subsentences. For
can be finitarily detected. Looking at Fig. 5, we can see fixed-point sentencegZ.¢, one calls a recursive subproce-
that for the seffAs 4 A Ay o]™ in 7p, its 3-pre-image  dure that computes the approximation sequdgéd™ and
[(e2,4,c) (A2.a A A1)]™, which cuts acrossda s, i returns the answdiZ.o]™ = [¢*]™ if the sequence con-
not in 7p. One can iteratively construct a finer topology verges at stagé.
7 2 7p with respect to which each of the relationg ,,,),. The question then becomes: For which classes of LTS
for ((k,m),c) € @ are both Isc and usc by adding more modelsX is it the case that the high-level algorithm for
preimage sets. model checkind. ;: sentences is &ffectively implementable
The second line of enquiry looks at the semicontinuity and b) guaranteed terminatein a finite number of steps on
properties with respect to the standard topology as primitive g| inputs (9M, ¢)?
forms of metric stability From [57] and [58], under the hy- The question would not be asked if one were only inter-
potheses thak is a compact metric space and the setimage ested irfinite LTS models. Indeed, a good measure of the suc-
r(x) is a closed for each € X, the semicontinuity proper-  cess of formal methods for discrete systems can be attributed

ties have an a-é characterization: a relation X ~» X is to the tractability of model checking over finite LTS models.
usc iff for allz € X and alle > 0, there is & > 0 such that For examp|e’ fo€TL and the small fragment d)-fﬂ needed
forall 2/, v € X to captureCTL , there are model-checking algorithms of time
and space complexit@(||90|| - |¢|); for the full z-calculus,
dx (z, #') < § andz’ —— 3/ the time complexity isV P N co-NV P [37]. Binary decision

diagrams(BDDs) provide an efficient means to represent fi-
nite sets of states, and the Boolean and modal operations on
them, and have been successfully used for model checking
In words, if2’ is close tar then the setimage(z’) is nearly systems with upwards d0*“° states [37].

=(Jy e X) [x s yanddy (v, y') < 5} .

contained inr(x), in the sense that(«’) is contained in the For general classes of LTS models, a primary means of
e-ball or tube aroundr(x), as illustrated in Fig. 8 for set- addressing the issue b) of finite termination is via Proposi-
imagesr(z) that are curves from. Similarly, : X ~» X tion 14. It suffices to identify classés of LTS models, all

is Isc iff wheneverz’ is close taz then the set-image(z’) of which have a finite bisimulation quotient. As surveyed in
nearly contains(z), in the sense that(x) is contained in  [31], finite bisimulation results have been established, on the
the e-ball aroundr(2"). one hand, for the restricted classtiofied automat§24] and
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some extensions, and on the other, for the mathematically lo|[v1 := v, -+, vp = 0)])
richer class ob-minimal hybrid automatg85], whose com- \uZ.| = |*| for the least: such that
ponent flows¢,, sets/nv, andGrd, ./, and resetsz, ./ in RCF E | k| o k+1|

X C R™ are all first-order definable in asrminimal(model- - @ @ ’

theoretig structureR = (R; <, +, —, 0, 1, - --) expanding

the realt as an ordered Abelian group, but subject to the fur- Note that termination is not problematic fBML sentences.
ther restriction that the reset mafts - areset-valued con-  Applying the best available algorithm by Basti al. [87]
stant(see also [51]). O-minimality is statable as a syntactic (which significantly improves the version of Collins’ cylin-
condition on first-order definability, but its core contentis a drical algebraic decomposition currently implemented in the
topological finiteness propertgvery setd C R™ first-order computer algebra toatepLOG [88]), the number of arith-
definable in an o-minimal structure has only finitely many metical operations required to perform this QElim procedure
connected components [86]. The class of o-minimal struc- js bounded bw(n+1)2d(n+l)0(n), when the body of the ar-

tures overR is quite rich. It includes the structu®C.F = gument formula is defined by a total sfpolynomials inn

(R; <, 4+, —, -, 0, 1) of R as areal closed fieldthe quan-  variables, each of at most degréeChecking equivalence or
tifier-free first-order formulas in the languagdRCF) = emptiness (unsatisfiability) of formulas @F(RCF) has a
{<, +, —, -, 0, 1} are Boolean combinations of equalities bound ofs**t1d°(™ . The translation also extends to topolog-
and inequalities gbolynomialsP(z1, -- -, z,,), andthe sets  jcal LTS models and sentences of topological extensions of

A C R™ so definable are callesemialgebraicsets. The ~ PML andL y, where the topology is the standard metric
class of o-minimal structures also includes the richer struc- topology fromR"; this is becausént(A4) is semialgebraic
ture RC Fex;, Obtained by adding the exponential function; whenever4 is semialgebraic, with a computable description
the structureRCF, , obtained by adding finitely many an-  in QF(RCF) [86].
alytic functions restricted to a bounded rectangle; theircom-  |n our synthesis procedure illustrated by the example
binationRC Fexp, ».a.; @nd yet further expansions [85], [86].  in Section II-D, each of the computations and decisions
Proof of finite termination is only half the question. Forthe ' required in the course of the construction can be formulated
issue a) of an effective implementation, one needs a finitary as a model checking task for finitaBML sentences [32)].
syntactic means of representing sets of states that is closedrhe procedure can thus be effectively implemented for
under the Boolean and preimage operators, and furthermorejnstances of Problem 4 where the input data of the flows
that representation must decidablein the sense that it can $. for ¢ € C and the specification set8ad and A;, are
be determined by finite computation whether distinct rep- ajl semialgebraic. Our explicit semialgebraic description
resentations are semantically equal. This requires that therepf the setA, 4 is an example of the output of quantifier
be aneffectively representablnddecidablemodal algebra  elimination. By applying [89], this sort of procedure can
B € P(5) for M such that3(M) C 5 (see [20] and [38]).  also be used when the continuous dynamics are given by
Of the o-minimal structures ovek, the richest known  certain classes of linear differential equations whose flows
to have the required effectiveness and decidabilitRdsF. contain some exponential terms but for which the flow
By the famous Tarski-Seidenberg results, there is an algo-preimage [(f)¢]™ is semialgebraic whenevefo]™ is
rithm that transforms any first-order formula in the language semi-algebraic. Note that the presence of the exact reset
L(RCF) into a quantifier-free formula i F(RCF) that  mapsR, , = test.Grd, , as well as the metric tolerance
is equivalent oveRCF, so proving that all sets first-order relations B; mean that the LTS model of the final hybrid
definable inRCF are semialgebraic, and furthermore, the automaton is unlikely to have a finite quotient that meets
semialgebraic sets are decidable. In contrast, the richer structhe bisimulation conditions foall of the relations of the

ture RCF o, does not have the quantifier elimination prop-  model, but this does not pose a problem if one is not model
erty (although it does have the weaker but significant prop- checking infinitary fixed-point sentences.

erty calledmodel completenegsand the decidability of its The model checking tool HTECH[90] is designed for the
first-order theory is still an open question. restricted class of linear or polyhedral hybrid automata, all of
For LTS models of hybrid automata, it suffices to con- whose real components are first-order definable by Boolean
sider the underlying LTS model ovét := X C R™. Let combinations of equalities and inequalities of linear terms
Os(v, -5 vn)y {palve, - ++5 vny v, -0, vy ) aes, and co + c1x1 + - - + cmTm. Rather than use quantifier elim-
{6p(v1, -+, vn)}pea be a list of formulas INQF(RCF) ination, a later version of HTECH represents state sets in
defining the components . The following recursive R as finite unions ofonvex polyhedragiven a vertex rep-
translation map takes as inputlap sentence € S,(%, ®), resentation, and the Boolean operations and preimage oper-
and if it terminates, it returnigp| € QF(RCF) ator are implemented using a library of standard polyhedral
operations [21]. The work in [41] in this special issue de-
Ip| =6, (ve, -+, vn) scribes an algorithm faipproximateeachability and safety
|| =05 (w1, -, vn) A gl analysis of hybrid automata with linear differential equa-

o1V 0o = [o1] V |0 tions, where the state sets are represented as special kinds
PLY P21 = 191] VP2 / / of convex polyhedra, and applies this technology to a class
[{a)e| = QE lim ((Fvf) - - - (Fvy,) : of synthesis problems. The model checking tookokos

/

Pa (UL, =y U, VL, e V) A [91], CosPAN [92], and WPPAAL [93], all for the restricted
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class of timed automata, represent convex data regid®’s in
by integer-valued matrices, with operations performed using
standard matrix operations.

B. Deductive Proof Systems

Deductive methods for verification and analysis differ
from model checking in their methodology, their scope,
and their degree of automation. Whereas model checking
seeks to translate a specification formula into the lower
level system description logic, or some other symbolic
representation, deductive methods work by directly ma-
nipulating formulas in the high-level temporal or modal
specification logic. Model checking can be implemented
as a completely automated analysis tool, but its scope is
restricted tosentence®f the p-calculus (or its sublogics

or extensions) and to LTS models whose components have

a sufficiently tractable first-order description. In contrast,

deductive methods have a broader scope. They are appli-

cable to allformulasof the specification logic, including
suchL » andTopL i formulas with freeZ € PVar as those
expressing relational comparison and continuity properties.
Moreover, the inferences of a proof system are valid over
the largest class of formal models for which that system is
sound often the universal class @l models. Deductive
methods can be used not just for the verification of single
properties, considered one at a time, but also for the larger
enterprise of building up deductive theorpr knowledge
base of formulas true in a model. The flip side is that
implementations of deductive verification methods tend to
only be semiautomated, typically combining some degree of
automated proof search, user-interactive proof construction,
and automated proof checking.

The Hilbert-style proof system fat ;. is due to Kozen
[36]. On top of the axioms and rules f&MML, this proof
system forL . has the fixed-point axiom

Az.p-fp: @[Z = puZ.¢| — pZp

and the inference rules

¥
Rule.Subst. ————
olZ =]
L GlZz=y—y
Rule.p-f.p: o

For formulasey € F,(X, ®), we writeFr,, ¢ if there is a
formal proof of¢y in this proof system fok i and sayy is a
theoremof L x.. Thesoundnessf this proof system is quite
straightforward. This says, of all formulgs € F,,(X, ©),

if FL,. ¢ theny is universallyvalid, meaningdn = ¢ for

all LTS modelsM, of arbitrary cardinality and character.
The validity problemfor L 4, of determining whether a for-
mulay € F,(X, ®) is valid, is EXPTIME complete [33].
More recently, theeompletenessef Kozen’s axiomatization
has been established, namely, tha i valid, theny,,, ¢.

A drawback of the proof of this result in [94] is that it does
not extend in any modular fashion to axiomatic extensions,
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such as that foffopL i, which adds thes4 axioms for[
(Section IV-H).

In trying to establish tha®?t = ¢ using a proof system
for Ly or TopL i1, one seeks to show thatis a deductive
consequencef a list[" of formulasy such thatlt |= ¢ is
already known. In selectingj, one has at one’s disposal a
hierarchy of formulas that form knowledge basabout9t:

« formulas that are theorems of the proof system, that are
true in all LTS models;
formulas that are true in all models in the intended
class, such as the LTS models of hybrid automata; these
arise as deductive consequences of definitionk jin
of modal/temporal operators liKa] and (3hif), and
formula schemes such &§)T, (f)4 and (f)L (Sec-
tion I1V-C) for symbolst for the orbit relations of flows;
formulas that have already been directly verified as true
in 9, either deductively, or for sentences, perhaps by
a call to a separate model checking tool.

To see a proof system in action, we give a formal proof
in TopL 12 that if a relationa™: S ~ S is Isc, then so is its
Kleene star

1. (a)0Z - {a)Z Assumption
2. {a){a*)Z — (a*)Z PDL theorem
3. Ma)(a*) Z — Da*)Z 2. Rule.Mono
4. {(a)O{a*) Z — {a){a*)Z 1.: Rule.Subst
5 (@)d(a*)Z — O{a*) Z 4., 3.: PL

6. Z—{a")YZ PDL theorem
7. 07 - 0O{a*)y Z 6.: Rule.Mono
8. (OZV{(a)a*)Z) — O(a*)Z 5.,7..PL

9. pW.(OZV ()W) — O(a*)Z 8.: Rule.u-f.p
10. («*)OZ — O{a*) Z 9.: Def. {a*).

Rule.Mono is the derived rule for any modal operatd(box
or diamond): fromy) — ¢, infer Oyy — Oy, andPL is
propositional logic.

From thel .. characterization dh] together with the dual
inference ruleRule.v-f.p in Ly, one can readily derive an
obviousinvariance induction ruléor proving safety proper-
ties of hybrid automata

P — x

x — [e]x  foreachg e Q
Rulednv-n: X — [Faolx foreach(e,q) € £

X =

¥ — [hep.

The premises of the rule assert that the set-states isn-
variant under both evolution and reset relations, and ghat
is intermediatebetweem) and ¢. This is a cleaney.-cal-
culus analog of the invariance ruleliiL -based logics used
for the verification of safety properties for hybrid automata
in [12]-[14] and implemented in the verification to®TeP
[95].

In the course of our controller synthesis construction in
Section lI-D, we generate alist BML formulas that are true
in a modelMN - over the state space := X C R", using
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a suitable model checking tool; a partial list is given in Sec-
tion IV-D. The idea is that theynthesiss self-verifying in

systems before them. Translating Ramadge and Wonham's
modular feedback logif89] into modal logic (and extending

the sense that the correctness of construction can be demonit from single-valued partial functions to arbitrary relations),

strated by formally deducing tHey, formulas encoding per-
formance specifications (given in Sections IV-F and IV-G)
from this list of PML formulas. For ease of discussion, we
continue to work it rather than shift the analysis up to
the hybrid modeb)ty overS := Q x X.

For the safety propertyGood — [h]-Bad, we use
Rule.Inv-h. We only need to chec&ood — [r, ,/|Good,
since the initiality conditionGood — -—-Bad and the
evolution invarianceGood — [e,]Good are already
established. For eacly,¢) = ((p,¢), (v',¢)) € E,
the resetR, , = test.(4, N A,), so it follows that
[ro,0]1Z < [(Ap ANAY)?Z < ((Ap AAy) — Z). We
then need to prov€&ood — ((A, A A,) — Good),
but this is a propositional tautology, so we are done.
The jump-infinite livenesgproperty can also be formally
verified using Rule.Inv-h to prove [h]{e)Grd.

For the non-Zeno livenesproperty, we need to calculate
a lower boundA on the time duration between resets,
which could be done using the semialgebraic descrip-
tions of the cover setsd, ,,. For the event sequence
requirement expressed using(Vhi{) (Section IV-G),
the idea is that chains of local inevitability formulas
such asA274 — [6(274)7ac]<e(274)7ac>(A1 \% A275) and
A275 — [e(275)7c]<e(275)7c)A1 will entail (AQ A GOOd) —
A>(Vhif)A;.

The example illustrates how inference rules
Rule.Inv-h can be used inconjunction with model
checking tools. Similar ideas are developed in [14], using
the tool STeP. This verification tool combines the model
checking capability of automatically generating first-order
translations of candidate invariant sentenggssuch as
Init v (e)tt Vv (F)tt, with proof systems for LTL-based

—

like

themaximal control invariant subsef a set of state® C S
is obtained as the greatest fixed point of the operator

(A 2]

where>,, = X — %, is the subalphabet afncontrollable
events and,: S ~» S is the component relation for event
a € X of the system transition relation S x ¥ ~» 5. 1In
words,H(Z) is the set of statesin P such that for each un-
controllable event € ¥,,, thea-successors ofare all inZ.
Control is effected by a supervisor's being able to override
the system transition relation adisablecontrollable events

a € ¥, at statess € dom(4,). A statefeedback supervisor
isamapf: S ~ X such that,, C f(s) forall s € S, and

a € Y. is disabled byf ats if a ¢ f(s). From any con-
trol invariant set” C S, one can construct a state feedback
supervisor whose application rendétsan invariant set; the
maximalcontrol invariant subset af then gives rise to the
least restrictivesupervisor to enforce the invariance®fIn
[39], modularity is considered with respect to conjunction of
predicates; working withith 1, a richer level of modularity

is attainable.

The construction in [39] is specifically adapted to hybrid
systems in [97], where the system model is essentially a hy-
brid automaton over state spage= @@ x X andX C R",
with reset maps,: S ~» S indexed by eventa ¢ >, and
for a € X.., a supervisor can override and disable a reset
at statess € Grd,,. Earlier work on controller synthesis for
timed automata in [98] is along the same general lines.

In work on controller synthesis in this special issue, [41]

H(Z) € PA

|ogics_ In related Work, envisaged for discrete Systems but considers a class of control prOblemS in which one starts with
more generally applicable, the general-purpose verification & complete hybrid automataH, and the synthesis task is

environmentprototype verification systerPVS) [96] is

to find the largestsubsysten’’ < H, in the sense that

used to give an integration of model checking and theorem the state space and flows are the same,/buf, C Inv,

proving; this is achieved by encoding the propositional
p~calculus within the (classical) simply typed higher order
logic on which PVS is based.

C. Controller Synthesis

In our example in Section 1I-D, we demonstrate one
way of formulating a controller synthesis problem
for hybrid systems within our logic framework.
The cover and AD map{A,},cp was found using
some custom-designed predecessor operators on

sets, namelyPred; ™(2) < Aj A (8)(er.)Z and
Pred{™(Z) © Ay A [er..]-Z, applied toZ := (§)Bad.
By the nature of that construction, it did not involve any
iteration, but subject to the restriction on inclusion-mono-
tonicity (which holds forPred; ™, but not forPredy"), we
can iterate any set operator of our design.

andGrd, , C Grdg (with the resets alway#,
test. G7d 0. ) such that the subsystell’ satisfies a safety
property. Their solution is a greatest fixed-point construction
using a customized predecessor operator on subsets of hy-
brid states. Transcribed in modal logic, this operator is of the
form

Z) €z A

\/ e/ Z | v

q€qQ

\/ (eq(2)) (Grdy, ¢ A Z)

(¢4 )CE

wheree,(Z) denotes the relativized evolution relation de-
fined in Section IV-G, requiring the substitutidh:= ¢ of a
sentence to give it concrete meaning. In wordis, in 7(7)

Fixed points of operators on sets are a dominant theme iniff sisin Z, and either for some € Q, there is a-evolution

work on controller synthesis for hybrid systems, and for DES
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to g-evolve froms for some time, while remaining withi#, To get full value out of our modal representation of topo-

and then switch and still be i#. logical and metric structure, more study is needed of notions
The controller synthesis problems considered in [42] are of stability and robustness for hybrid systems framed in the

more complex—their hybrid automata have continuous con- language of the general topology of relations and their inte-

trol and disturbance inputs, and the task is to construct agration with the concepts developed from classical control

feedback control map (with both discrete and continuous theory.

values), which restricts the behavior of the system so as to  Giventhe natural occurrence of distributed, multiagent hy-

satisfy a safety property. But there again, we see a greatesbrid systems, there is a clear need for further investigation of

fixed-point construction of a maximal controlled invariant logics for these systems, applying and building on [74] and

subset. Due to quantification over control and disturbance [80].

functionsu: I — U andd: I — V on a time intervall

(rather tharvaluesin U andV'), their controllable and uncon- A ckNOWLEDGMENT
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