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Abstract. We start from a basic and fruitful idea in current work on
the formal analysis and veri�cation of hybrid and real-time systems: the
uniform representation of both sorts of state dynamics { both contin-
uous evolution within a control mode, and the e�ect of discrete jumps
between control modes { as abstract transition relations over a hybrid
space X � Q�Rn, where Q is a �nite set of control modes. The result-
ing \machine" or transition system model is currently analyzed using the
resources of concurrent and reactive systems theory and temporal logic
veri�cation, abstracted from their original setting of �nite state spaces
and purely discrete transitions. One such resource is the propositional
�-calculus: a richly expressive formal logic of transition system mod-
els (of arbitrary cardinality), which subsumes virtually all temporal and
modal logics. The key move here is to view the transition system models
of hybrid automata not merely as some form of \discrete abstraction",
but rather as a skeleton which can be 
eshed out by imbuing the state
space with topological, metric tolerance or other structure. Drawing on
the resources of modal logics, we give explicit symbolic representation
to such structure in polymodal logics extending the modal �-calculus.
The result is a logical formalism in which we can directly and simply
express continuity properties of transition relations and metric tolerance
properties such as \being within distance �" of a set. Moreover, the log-
ics have sound and complete deductive proof systems, so assumptions
of continuity or tolerance can be used as hypotheses in deductive veri-
�cation. By also viewing transition relations in their equivalent form as
set-valued functions, and drawing on the resources of set-valued analysis
and dynamical systems theory, we open the way to a richer formal anal-
ysis of robustness and stability for hybrid automata and related classes
of systems.

1 Introduction

It is hardly controversial to claim that the �-calculus is a formal logic of central
import for the analysis and veri�cation of hybrid automata and related classes of
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systems. The fundamental concepts of reachability and invariance are expressible
in terms of �xed-points of operators mapping sets of states to sets of states, and
are thus de�nable in the language of the �-calculus. The iterative computation
of the denotation of such �xed point formulas lies at the heart of symbolic model
checking tools for hybrid and real-time systems such as HyTech [4], [19] and
Kronos [13]. More generally, the propositional �-calculus is well-recognized as a
richly expressive logic over transition system models: the power of its �xed-point
quanti�ers are such that it subsumes virtually all temporal, modal and dynamic
logics [15], [25].

However, the current practice, within the allied �eld of automated veri�cation
of (discrete) reactive systems as well as within the hybrid systems community, is
to consider the �-calculus not as a working or usable logic but rather as a logic
of the substratum. It provides a common \machine" language and semantics
for veri�cation by model checking, with user-input speci�cations written in the
more \natural" languages of temporal logics, and then translated into that of
the �-calculus.

This paper challenges that practice, and demonstrates that the propositional
�-calculus and various of its modal logic extensions can provide both an expres-
sively rich and \human readable" formalism for reasoning about properties of
hybrid dynamical systems.

We begin with the \machine" or transition system models of hybrid systems,
in which both sorts of state transformation { continuous evolution within a
control mode, and the e�ects of discrete jumps between control modes { are
uniformly represented as abstract transition relations r � X �X over a hybrid
state space X � Q � Rn, where Q is a �nite set of control modes or discrete
states.

Formally, de�ne a labeled transition system (LTS) (or generalized Kripke
model) to be a structure

M =
�
X; faMga2�; fkpk

Mgp2�
�

(1)

where X 6= ? is the state space (of arbitrary cardinality); for each transition
label a 2 �, aM � X �X is a binary relation on X; and for each propositional
constant (observation or event label) p 2 �, kpkM � X is a �xed subset of X.

An LTS model is a clean and simple abstraction of a �nite automaton. Such
anM is an abstract machine over state space X, with input or action alphabet

� and transition map � : X � � ! P(X) given by: x0 2 �(x; a) i� x
aM
�! x0.

It is additionally equipped with an observation alphabet �, and an output map
o : X ! P(�) given by: o(x) = fp 2 � j x 2 kpkMg; sets of initial or �nal states
can be identi�ed by speci�c labels in �.

A (basic) hybrid automata H is typically represented by a graph of the form
depicted in Figure 1. Hybrid automata and their associated LTS models are
examined in more detail in Section 2; for now, we give a high-level description,
based on Henzinger's \time-abstract" transition system in [19] x1.2.
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Fig. 1. Basic hybrid automaton

An LTS modelMH of a hybrid automatonH has a state space X � Q�Rn,
with Q �nite. So states are pairs (q; x), where q 2 Q and x = (x1; :::; xn) 2 Rn.
For each q 2 Q, let Xq � Rn be the projection of X under q. The transition
alphabet � will include symbols such as eq for the relation of evolution (a
\time-step" or \continuous transition") within each discrete mode q 2 Q. In the

basic case, such a relation is de�ned by: (q; x)
eq
�! (q; x0) i� there is an integral

curve along the 
ow �q connecting x 2 Xq to x0 2 Xq , and all points on the
curve between x and x0 lie inside the invariant set Invq � Xq . The transition
alphabet will also include, for each edge (q; q0) in the discrete transition graph
G � Q � Q of H, a symbol cq;q0 for the controlled jump relation (a \step" or
\discrete transition") modeling the e�ect of making a controlled switch from

mode q to mode q0. Such relations are standardly de�ned by: (q; x)
cq;q0
�! (q0; x0)

i� x 2 Grdq;q0, x
0 2 Invq0 , and x

0 2 rq;q0(x), where rq;q0 � Xq � Xq0 is a reset
relation for the real-valued coordinates, and the domain Grdq;q0 � Xq is known
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as the guard set of the discrete transition (q; q0). The alphabet � of atomic
propositions will include Initq and Invq for q 2 Q, and Grdq;q0 for (q; q0) 2 G.

A trajectory of H is a �nite or in�nite sequence h�i; qi; 
iii2I such that for
each i 2 I: the duration �i � 0; the curve 
i : [0; �i] ! Xqi is such that

(qi; 
i(0))
eqi�! (qi; 
i(t)) for all t 2 [0; �i]; (qi; qi+1) 2 G; and (qi; 
i(�i))

cqi;qi+1
�!

(qi+1; 
i+1(0)). When I is �nite, with largest element N , it is allowed that
�N = 1. When a hybrid automaton is thought of as a discrete controller in-
teracting with a physical plant, the class of trajectories, so de�ned, are founded
on implicit operational assumptions of continuous and perfect precision sensing,
and instantaneous control switches ([19]).

In the modal { as distinct from temporal { variant of the �-calculus1, the
propositional language (over an alphabet (�;�)) includes a dual pair of modal
operators [a] and hai, for each transition label a 2 �. The (standard) relational
Kripke semantics of the labeled modalities are given by the universal and exis-
tential pre-image operators of the corresponding relations r = aM. For relations
r � X � Y , and sets A � Y ,

� (r)(A) $ f x 2 X j (8y 2 Y )[ x
r
�! y ) y 2 A] g

�(r)(A) $ f x 2 X j (9y 2 Y )[ x
r
�! y ^ y 2 A] g

(2)

In the notation of [20], �(r) = pre[r] and � (r) = fpre[r]. The semantic readings
of the modalities are forward-looking, and in temporal logics, they are known as
relativized next operators:

[a]' 
 \All a-successors satisfy '"
hai' 
 \Some a-successor satis�es '"

The temporal variant of the �-calculus usually works with the global transition
relation RM =

S
a2� aM (standardly assumed to be total) and the modal oper-

ators are replaced by global temporal \next" operators: 8X or 8
, and 9X or
9
.

Sentences ' of the �-calculus denote sets of states k'kM � X, and a sentence

is true in M, written M � ' , i� k'kM = X, or equivalently, k:'kM =
?. The propositional connectives :, ^ and _ are interpreted by set theoretic
complement, intersection and union, and other connectives and constants de�ned
in the usual way. In particular, kttkM = X, and an implication ' !  is true

in M exactly when k'kM � k kM. As a point of contrast, in the language
of linear temporal logic LTL, sentences denote sets of (�nite or in�nite) paths
or trajectories of the LTS model, rather than sets of states. In the language
of the branching temporal logic CTL�, there are two sorts of sentences: state
sentences, true or false at states of the LTS model, and path sentences, true or

1 The formal syntax and semantics of the �-calculus are reviewed in detail in Section
3 below. For an account of the modal and temporal 
avors of the �-calculus, see
[38] x4.2. [15] is a good source for translations of various linear and branching time
temporal logics into the �-calculus. For background on modal logics, see [9], [35].
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false of in�nite paths through the model. An 9 or 8 path quanti�er applied to
a path sentence produces a state sentence, and such quanti�cation is de�nable
using the least and greatest �xed-point quanti�ers of the �-calculus.

The principal advantage of working in the modal rather than temporal frame-
work is that it gives a modular speci�cation language for expressing properties
of transition systems: we can describe and reason about each of the component
transition relations of an LTS model, and how they are combined to form more
complex transition relations. In particular, we can give a clean and modular
formal description of classes of trajectories of the system.

The modal sentences:

 ! [cq;q0 ]' and  ! [eq]'

with the semantic readings \If  holds, then all cq;q0-successors satisfy '", and
likewise for eq, correspond precisely to Manna and Pnueli's two types of (tem-
poral logic) safety veri�cation conditions for hybrid systems in [29] x4.1. Their
notation is: f g�f'g and f gcontf'g, respectively, where � ranges over jump
transitions and \cont" denotes the union of all the evolution relations.

The modal sentence

heq0ihcq0;q1 iheq1ihcq1;q2iheq2 i � � � heqk�1 ihcqk�1;qkiheqk i' (3)

denotes the set of states (q0; x) from which some trajectory with discrete trace

(q0; q1; : : : ; qk) reaches the set k'k
M � X. Dually, the modal sentence

[eq0 ][cq0;q1 ][eq1][cq1;q2 ][eq2 ] � � � [eqk�1 ][cqk�1;qk ][eqk ]' (4)

denotes the set of states from which all (q0; q1; : : : ; qk)-trajectories reach the

set k'kM, upon the last jump cqk�1;qk and remain in k'kM throughout the last
evolution eqk .

De�ning e and c to denote the relational sum (union) of, respectively, the
relations for the eq 's for q 2 Q, and the relations for the cq;q0 's for (q; q0) 2 G,
the dynamics of the class of all hybrid trajectories with �nite discrete traces are
captured by the dual �xed-point de�nable modalities:

hhi' $ �Z: hei' _ heihciZ and [h]' $ �Z: [e]' ^ [e][c]Z (5)

The sentence hhi' \unwinds" to the in�nite union of all sentences of the form
(3), and dually, [h]' corresponds to the intersection of all sentences of the form
(4). As a regular expression, we have h = (ec)�e = e(ce)� (so we are in fact
working in the weaker propositional dynamic logic PDL, rather than the full �-
calculus.) Semantically, hhi and [h] correspond to the dual pre-image operators
of the reachability relation h of the system under the control of H; that is,

(q; x)
h
�! (q0; x0) i� some trajectory h�i; qi; 
iii2I with q0 = q and 
0(0) = x

passes through the point (q0; x0).
We now have the formal linguistic machinery to succinctly express various

system speci�cations. The safety sentence

Init! [h]' (6)
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is true in the modelM = MH exactly when every trajectory that starts in the
set kInitkM always remains within k'kM. More generally, we say a set k'kM is
future-invariant under H exactly when the sentence '! [h]' is true inM. We
also have at our disposal (previously unutilized) deductive proof systems for the
�-calculus, such as Kozen's axiomatization L� [23], [5], [40], which is sound and
complete over arbitrary LTS models. From the �xed-point rules of L� (given in
Section 5), one readily derives an obvious invariance rule for hybrid trajectories:

 ! ' '! [eq]' '! [cq;q0 ]' for q 2 Q, (q; q0) 2 G

 ! [h]'
(7)

This is a simpler �-calculus analog of the LTL invariance rule used in the veri-
�cation of safety properties for hybrid automata in [29], [30].

To express liveness properties, we use modal analogs of the \box-diamond"
construct in temporal logic. For example, the sentence

'! [h]heihcihei tt (8)

is true in M exactly when every maximal H trajectory from a state in k'kM

has an in�nite discrete trace. This is so because [h]heihcihei tt denotes the set
of states from which every trajectory with a �nite discrete trace can be prop-
erly extended. Similarly, the sentence ' ! [h]heihcihei' is true in M exactly

when every trajectory from k'kM returns to k'kM via a controlled jump in-
�nitely often. And [h]hhi' denotes the set of states from which every hybrid

trajectory eventually reaches k'kM. Note that at this level of description, we
cannot expressly rule out Zeno trajectories h�i; qi; 
iii2I such that I is in�nite
but

P
i2I�i <1, but by considering variant evolution relations êq de�ned using

a minimal time duration �, we could.
A clean �-calculus de�nition of the higher-order modalities hhi and [h] also

opens up new possibilities for aggregation in complex systems. We could model
a complex system as a hybrid \meta-automaton", where the dynamics at each
discrete meta-mode p 2 P are given by the reachability relation hp of a (basic)
hybrid automaton over state space Xp � Qp � Rn, with switching relations
from Xp to Xp0 between automata, as illustrated in Figure 2. We now have the
machinery with which to formally reason about the dynamics of such a creature.

We also gain a clearer view of the enterprise of symbolic model checking for
hybrid and real-time systems, as implemented in tools such as HyTech and
Kronos. The basic task of such systems is to compute the reachable region of a
hybrid dynamical system under the control of a given hybrid automaton H. As
noted in the recent paper of Henzinger, Kupferman and Qadeer [20], to capture
the notion \reachable from '", as distinct from \reaches '", one needs in the
semantics the post-image, rather than the pre-image, operator of a relation. The

cleanest way to do it is to use the basic identity: post[r] = pre[
`

r], where
`

r is the
relational converse or inverse of r, and to extend the �-calculus with a converse
operation governed by the rule:

h
`

ai ! ' i�  ! [a]' (9)
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Fig. 2. Aggregation in complex systems

Then the sentence

h
`

hi Init (10)

denotes the reachable region, where the post modalities h
`

hi and [
`

h] are de�ned
as in (5), but substituting the converse relations. Symbolic model checking tools

attempt to compute the value of k h
`

hi Init kM as a �rst-order formula in n+ 1
free variables (z; x1; :::; xn), in the language L(R) of, say, the structure R =
(R;<;+;�; �;0;1; f�qgq2Q) as the real closed �eld2 plus discrete constants. The
procedure computes a sequence of �rst-order formulas �0; �1; :::; �k; :::which are
translations of the �-calculus formulas forming the approximation sequence for

h
`

hi Init, with the translation starting from the explicit �rst-order de�nitions of
the set Init and the relations eq and cq;q0 . The procedure terminates at stage
k + 1 if the formula: �k+1 $ �k is provable in the �rst-order theory Th(R)
of the relevant structure over R, in which case the reachable region is de�ned
by �k. The procedure is guaranteed to terminate when the model M = MH

has a �nite bisimulation quotient M�, where � is an equivalence relation on
X � Q�Rn which respects each of the transition relations eq and cq;q0 and the

2 The real closed �eld R admits elimination of quanti�ers, so all �rst-order formulas
in the language are provably equivalent in the theory Th(R) to a quanti�er-free
formula. The de�nable subsets of Rn in R are the semi-algebraic sets: �nite unions
of sets de�ned by equalities and inequalities over polynomials f 2R[X1; :::;Xn] [14].
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observation sets Initq , Invq , Grdq;q0. The recent work by La�erriere, Pappas,
Sastry and Yovine [27], [28], identi�es a class of systems whose LTS models
MH are �rst-order de�nable in an o-minimal structure R expanding the real-
closed �eld. The �nite cell decomposition property of such structures (together
with a restriction on the form of the controlled jumps relations cq;q0) is used
to construct the �nite bisimulation equivalence. (The theory of de�nable sets in
o-minimal structures is developed in van den Dries' monograph Tame Topology
and O-minimal Structures [14].)

The basic propositional modal �-calculus can provide both a usable and a
richly expressive formalism for reasoning about the abstract dynamics of hybrid
systems. We want and need more. We want to be able to express in our logical
formalisms what we mean by continuous and discrete dynamics, and hybrids
of the two. We want to be able to formally express notions of imprecision or
metric tolerance, such as the property of \being within distance �" of a set, for a
particular � > 0. More generally, we want a logical formalism that supports not
only the speci�cation and veri�cation of single properties, but the larger task of
representing and building up a knowledge base of properties of a system, starting
with structural properties assumed in the modeling, and then adding new facts
as they are veri�ed by either model-checking or deductive means.

The remainder of this paper is an exploration of how the propositional modal
�-calculus can form a basis for a cohesive and expressively rich logical frame-
work for the formal analysis of hybrid systems. In developing the logics, our key
resources include:

1. modal logics, considered as a general formalism for reasoning about binary
relations and operators on sets ([9], [35], [38], [5]); and

2. set-valued analysis and dynamical systems theory, brought into play by con-
sidering transition relations r � X�X in their equivalent form as set-valued
maps r : X ; X, i.e. functions r : X ! P(X) ([1], [6], [7]).

In the course of this paper, it will be important to keep an eye on both the
distinction and the interplay between:

{ the �-calculus and various extensions as propositional modal logics (and thus
ultimately monadic second-order logics [25]), in which formulas of the same
formal language can be meaningfully interpreted in a variety of LTS models
of any cardinality; in particular, in both continuum-sized modelsM and in
�nite quotients M�; and

{ the �rst-order languages L(R) and theories Th(R) of speci�c structures R=
(R;<;+;�; �; 0;1; :::) over the reals, used in de�ning the components { the

state space X, the transition relations aM and observation sets kpkM { of
particular, albeit intended, LTS modelsM.

With regard to the latter, note that in the theory of o-minimal structures, rela-
tions r : Rm

; R
n go by the name of de�nable families (rx)x2Rm ([14] x3.3).
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To restate the point, the system description language is that of �rst-order
logic, while the system speci�cation language is that of propositional polymodal
logic with �xed-point quanti�ers.

This paper is one installment of a larger project. An analysis of the concept
of bisimulation, and its relation to the algebraic semantics for the �-calculus, is
given in [11], and [12] gives the completeness of deductive proof systems for nor-
mal polymodal extensions of the �-calculus. Related logics and earlier versions
of some of the ideas are found in [10].

The paper is organized as follows. Section 2 is a review and analysis of basic
hybrid systems and their associated LTS models. Section 3 is a review of the
syntax and LTS semantics of the modal �-calculus. In Section 4, we 
esh out the
skeleton of an LTS model by imbuing the state space with topological and metric
tolerance structure; we explore continuity and tolerance properties of relations r :
X ; Y and applications to components of hybrid automata. Section 5 presents
deductive proof systems for the new logics, extending Kozen's axiomatization of
L�. Section 6 is a brief discussion of ongoing research.

2 Basic hybrid automata and associated LTS models

First, a note on notation. For a set X, P(X) denotes the family of all subsets of
X (a complete Boolean algebra). Following [6], the notation r : X ; Y means
r � X�Y is a relation, or equivalently, r : X ! P(Y ) is a set-valued map, with
values r(x) � Y for x 2 X. The expressions:

x
r
�! y, (x; y) 2 r, y 2 r(x) and x r y

are synonymous. The domain of r : X ; Y is de�ned by dom(r) $ �(r)(Y ),

and the range ran(r) $ �(
`

r)(X) = dom(
`

r). Relational compositions r � s of
r : X ; Y and s : Y ; Z are read from left to right in sequential order, de�ned
by:

x
r�s
�! z $ (9y 2 Y ) x

r
�! y and y

s
�! z

(cf. [1] where composition is written in the reverse order, as for functional com-
position.)

We base our discussion on a generalization of the systems considered in
[27],[28], depicted in Figure 1. Figure 3 is an illustration.

De�nition 1. A (basic, evolution time-deterministic) hybrid system is a struc-
ture

H = (Q;G; fXqgq2Q; f�qgq2Q; fInitqgq2Q; fInvqgq2Q;
frq;q0g(q;q0)2G; fGrdq;q0g(q;q0)2G)

where

9



{ Q is a �nite set of discrete states or control modes;
{ G � Q� Q is the control graph of discrete transitions;
{ for each q 2 Q,

� Xq � Rn is the state space for mode q;
� �q : Xq �R+! Xq is the continuous semi-
ow of a vector �eld on Xq ;
� Invq � Xq is the set of invariant states for mode q, or the domain of
permitted evolution within mode q;

� Initq � Invq is the set of initial states for mode q (possibly empty);

{ for each discrete transition (q; q0) 2 G,

� Grdq;q0 � Xq is the guard set for the jump from q to q0;
� rq;q0 : Xq ; Xq0 is the reset relation;
for x 2 Xq , rq;q0 (x) � Xq0 is the set of possible reassignment states after
the jump from q to q0.

The hybrid state space of the system H is the set

X =
S
q2Q fqg �Xq

To keep things simple, assume a �xed number n of real-valued coordinates,
so Xq � Rn for each q 2 Q. In [27],[28], the systems under consideration are
simpler again in that they have constant reset relations rq;q0 = Grdq;q0�Rstq;q0 ,
with the constant set of reassignment states Rstq;q0 � Invq0 .

The intention is that a hybrid system, so de�ned, is the semantic content
of a hybrid automaton in the sense of Henzinger [19], Def. 1.1. For de�niteness,
we take a (basic, evolution time-deterministic) hybrid automaton to be a hybrid
system H with a concrete syntactic description, namely:

{ the discrete structure is given by a �nite graph (Q;G), where G � Q�Q;
{ each of the component sets Xq, Initq , Invq , Grdq;q0 � Rn, semi-
ows
�q : Xq � R+ ! Xq, and reset relations rq;q0 � Xq � Xq0 have explicit
�rst-order de�nitions in the language L(<;+;�; �; 0; 1; :::) of some speci�ed
structure R over the reals.

From [27], [28], we have reason to want such a structure R to be o-minimal.
Operationally, a hybrid automaton H can be thought of as de�ning a non-

deterministic hybrid control policy, partially de�ned on states (z; x) 2 X:

if z = q and x 2 Invq
then stay in discrete mode q and continue evolution according to �q;
if z = q and x 2 Grdq;q0 for some (q; q0) 2 G,
then switch to discrete mode q0, re-initialize to some x0 2 rq;q0 (x),
and then evolve according to the 
ow �q0 .

The domain of de�nition of H is given by:

dom(H) $
�S

q2Q fqg � Invq

�
[
�S

(q;q0)2G fqg �Grdq;q0
�

10



Fig. 3. Operation of basic hybrid automaton

If z = q and x 2 Grdq;q0 for some (q; q0) 2 G, then that discrete control switch
is said to be enabled ; if (q; x) 2 dom(H) but x =2 Invq , then some discrete
control switch is said to be forced. It is generally assumed that rq;q0(x) � Invq0

for all x 2 Grdq;q0 ; in words, Invq0 is (forward) rq;q0 -invariant from Grdq;q0 . In
some expositions (e.g. [27]), it is required that H be total or non-blocking, which
amounts to the assumption that dom(H) = X.

In descriptions of the operation of a hybrid automaton and the ensuing class
of trajectories of the system, it is generally assumed (e.g. [19]) that the state
x = (x1; :::; xn) 2 Rn of the physical plant is being continuously sensed, with
perfect precision, and that the action and e�ect of a discrete control switch is
instantaneous.

The accepted ([19], [27]) de�nition of the (\time-abstract") transition system
of a hybrid automaton, with modi�ed notation, is as follows.

De�nition 2. Given a hybrid system H, the LTS model MH determined by H
has the following components:

{ the state space X $ [q2Q fqg �Xq;

11



{ for each discrete state q 2 Q, the constrained evolution relation
eq : Xq ; Xq de�ned by:

x
eq
�! x0 $ (9t 2 R+)[ x0 = �q(x; t) ^ (8s 2 [0; t]) �q(x; s) 2 Invq ]

{ for each discrete transition (q; q0) 2 G, the controlled jump relation
cq;q0 : Xq ; Xq0 de�ned by:

x
cq;q0
�! x0 $ x 2 Grdq;q0 ^ x0 2 Invq0 ^ x

rq;q0
�! x0

{ the observation sets Xq , Initq , Invq , Grdq;q0 .

We adopt the notational convention of identifying, when convenient, sets
Aq � Xq and fqg � Aq � X; moreover, the relations eq : Xq ; Xq and cq;q0 :
Xq ; Xq0 can be \lifted" to relations X ; X in the obvious way.

From the de�nition of the evolution relation eq, a desired property of the
domain of evolution Invq is that it be convex with respect to the semi-
ow �q,
in the sense that:

if x 2 Invq and �q(x; t) 2 Invq for some t � 0,
then �q(x; s) 2 Invq for all s 2 [0; t]

So no curve segment of the semi-
ow with both endpoints in Invq ever leaves
Invq at an intermediate point.

In the terminology of [1] Ch. 6, De�nition 6.3, the (positive) orbit relation
f : X ; X of a semi-
ow � : X �R+ ! X is de�ned by:

x
f
�! x0 $ (9t 2 R+) x0 = �(x; t) (11)

With respect to the orbit relation fq : Xq ; Xq of �q, the desired convexity
property for Invq has the form:

if x0; x1 2 Invq and x0
fq
�! x

fq
�! x1 then x 2 Invq

So when Invq if fq-convex, we have the decompositions

eq = fq \ (Invq � Invq) and cq;q0 = rq;q0 \ (Grdq;q0 � Invq0 )

in which case we may as well assume the LTS modelMH includes the (uncon-
strained) orbit relations fq and the uncontrolled reset relation rq;q0 . If we want
to express properties which require both the orbit relation fq and its converse

(convexity is one such), then we should include
`

fq as a component of MH as
well (see also [20]).

The modularity of the modal �-calculus allows us to succinctly express not
only desired properties { i.e. those to be veri�ed, but also various of the structural
properties of the LTS modelMH that it will typically possess by assumption. In
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a deductive framework, such sentences and sentence schemes (formulas with free
propositional variables Z) provide an initial stock of facts known to be true in
the model, and serve as hypotheses in application of inference rules when seeking
to expand one's stock of knowledge.

[1] h
`

fqiInvq ^ hfqiInvq ! Invq

[2] Initq ! Invq

[3] Init$
W
q2Q Initq

[4] Inv$
W
q2Q Invq

[5] h
`

rq;q0 iGrdq;q0 ! Invq0

[6] Grdq;q0 ! hrq;q0itt

[7] heqiZ $ Invq ^ hfqi(Z ^ Invq)

[8] h
`

eqiZ $ Invq ^ h
`

fqi(Z ^ Invq)

[9] hcq;q0 iZ $Grdq;q0 ^ hrq;q0 i(Z ^ Invq0)

[10] h
`

cq;q0 iZ $ Invq0 ^ h
`

rq;q0i(Z ^Grdq;q0)

[11] hf iZ $
W
q2Q hfqiZ

[12] Z ! hf iZ

[13] hfqihfqiZ ! hfqiZ

[14] heiZ $
W
q2Q heqiZ

[15] hciZ $
W

(q;q0)2G hcq;q0 iZ

[16] hhitt$
W
q2Q Invq _

W
(q;q0)2GGrdq;q0

[1] says that Invq is fq-convex. [2] is merely that Initq � Invq . [3] and [4] de�ne
the global initial and invariant sets. [5] is the assumption that Invq0 is (future)
rq;q0-invariant from Grdq;q0 . [6] says that every point in Grdq;q0 has an rq;q0 -
successor; i.e. Grdq;q0 � dom(rq;q0 ). [7] { [10] follow from the decompositions
eq = fq \ (Invq � Invq) and cq;q0 = rq;q0 \ (Grdq;q0 � Invq0 ). In particular, using
the rule for converse (9) in Section 1 above, we have:

'! [eq]' i� Invq ^ h
`

fqi(' ^ Invq)! ' (12)

and

'! [cq;q0 ]' i� Invq0 ^ h
`

rq;q0i(' ^Grdq;q0 )! ' (13)
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[11] de�nes f as the union of the orbit relations fq . From the zero semi-
ow
property, each fq is re
exive on its domain Xq , so f is re
exive (and total)
on the whole space X, which is [12]. From the sum semi-
ow property, each
fq is transitive; this is [13]. [14] and [15] are the de�nitions e $ [q2Q eq and
c $ [(q;q0)2G cq;q0 . From [7], [14] and [12], it follows that:

(Z ^ Inv)! hei(Z ^ Inv) (14)

that is, the relational sum e is re
exive on its domain. And from [7] and [13], we
get:

heqiheqiZ ! heqiZ (15)

which says each eq is transitive.
[16] de�nes the domain dom(H). The de�nitions of hhi and [h] in (5) above

should also be added to the list.
Using convexity assumption [1] and (12), the invariance assumption [5] and

(13), and the invariance rule (7), it follows that Inv ! [h] Inv will be true
in MH; i.e. the set Inv is future-invariant under H. More generally, whenever
Inv ! ' is true in MH, then Init ! [h]' will be true, and thus on the

current interpretation, k'kM is safe under the action of H, since no (perfect
precision) hybrid trajectory starting in Init ever leaves Inv. So in this scenario,
the situation of a controlled jump being forced { that is, (q; x) 2 dom(H) but
x =2 Invq { can in fact never arise. Perfect precision trajectories start or land
inside Invq , evolve continuously according to �q, and then while the state is still
inside Invq , or at worst on the (topological) boundary of Invq , a jump is made
according to cq;q0 .

In some accounts of the LTS model of a hybrid automata (including that in
[19]), the de�nition of the constrained evolution relation eq is slightly weaker,
with the requirement: 8s 2 [0; t); �q(x; s) 2 Invq, so the end-point �q(x; t)
need not lie in Invq. If Invq is closed (in the standard topology on Xq � Rn),
then the continuity of �q : Xq�R+! Xq entails that all such end-points will lie
in Invq regardless, so the weakening makes no di�erence. In virtually all concrete
examples of hybrid automata in the literature, the invariant sets Invq are closed.

In Section 4, when we adjoin modalities corresponding to the interior and
closure operators of a topology, we will be able to formally express properties
such as being open, closed, or the topological boundary of a set. We will also be
able to give formal expression to the assumption that the orbit relations fq are
those of continuous semi-
ows, and to consider consequences of continuity.

We also clearly need to entertain the possibility that a physical realization of
a hybrid automaton as a control policy might be less than perfect : sensors will
be accurate only up to some level of precision; we should allow for delay between
sensing the state and acting on that sensor reading in accordance with the control
policy; and then there are margins of error in real-valued constants used in �rst-
order de�nitions of the components of the model. In Section 4, we will consider
alternative classes of hybrid trajectories by playing with the de�nitions of the
�xed-point modalities hhi and [h] in an enriched modal language containing
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modalities h�i and [�] interpreted by metric �-tolerance relations, for concrete
values of � > 0.

3 Syntax and LTS semantics of the modal �-calculus

The �-calculus originated in the late 1960's (Scott and de Bakker) as a formal
logic of digital programs, the input-output behavior of an atomic program being
represented as a binary transition relation on (discrete) states. Contemporary
introductions to the �-calculus can be found in [38], [15]. In this section, we
review the syntax and semantics over LTS models of the propositional modal
�-calculus.

De�nition 3. A modal signature is a pair (�;�), where � is a set of proposi-
tional constants and � is a set of transition labels. Let PVar denote a �xed set
of propositional (second-order or set-valued) variables. The collection F�(�;�)
of formulas of the propositional modal �-calculus is generated by the grammar:

' ::= � j p j Z j :' j '1 _ '2 j hai' j �Z:'

for propositional constants p 2 �, propositional variables Z 2 PVar, and tran-
sition labels a 2 �, and with the proviso that in �Z:', the variable Z occur
positively, i.e. each occurrence of Z in ' is within the scope of an even number
of negations.

The other (classical) propositional connectives, modalities and greatest �xed
point quanti�er are de�ned in the usual way:

tt $ :� '1 ^ '2 $ :(:'1 _ :'2)

'1 ! '2 $ :'1 _ '2 '1 $ '2 $ ('1 ! '2) ^ ('2 ! '1)

[a]' $ :hai:' �Z:' $ :�Z::'[Z := :Z]

An occurrence of a variable Z 2 PVar in a formula that is within the scope of
a �Z is called bound, otherwise it is free (as in �rst-order logic). Let S�(�;�)
denote the set of all sentences, or closed formulas of F�(�;�), i.e. those without
any free variables, and let F(�;�) and S(�;�) denote, respectively, the set of
all purely modal formulas and sentences, i.e. those containing no �xed point
quanti�ers, and in case of sentences, no variables Z.

For formulas ';  2 F�(�;�), let '[Z :=  ] denote the result substituting  
for all free occurrences of Z. By renaming bound variables in ' if necessary, we
can assume such substitutions do not result in the unintended capture of free
variables.

De�nition 4. Given an LTS M = (X; faMga2� ; fkpk
Mgp2�) of modal signa-

ture (�;�), a (propositional, or second-order) variable assignment in M is any
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map � : PVar! P(X). Each such assignment � uniquely extends to a denotation

map k�kM� : F�(�;�)! P(X) as follows:

k�kM� $ ?

kpkM� $ kpkM for p 2 �

kZkM� $ �(Z) for Z 2 PVar

k:'kM� $ X � k'kM�

k'1 _ '2k
M

� $ k'1k
M

� [ k'2k
M

�

khai'kM� $ �(aM)
�
k'kM�

�
for a 2 �

k�Z:'kM� $
T
fA 2 P(X) j k'kM�(A=Z) � A g

where the pre-image operator �(aM) is de�ned as in (2) above, and for sets
A 2 P(X), the variant assignment �(A=Z) : PVar! P(X) is given by:

�(A=Z)(W ) = �(W ) if W 6= Z; and �(A=Z)(W ) = A if W = Z:

For formulas ' 2 F�(�;�) and assignments � : PVar! P(X) in M, we say:

{ ' is true at state x in (M; �), written: M; �; x � ', i� x 2 k'kM� ;

{ ' is true in (M; �), written: M; � � ', i� k'kM� = X; i.e. ' is true at
all states x in (M; �); and

{ ' is true inM, written: M � ', i� ' is true in (M; �) for all assignments
� in M.

For sentences ' 2 S�(�;�), the denotation k'kM� is independent of the

variable assignment �, and is written k'kM. So M � ' i� M; � � ' for any
assignment �.

Given a modelM and variable assignment �, each formula ' 2 F�(�;�) and
each variable Z 2 PVar free in ', together determine an operator on sets
'M�;Z : P(X) ! P(X) given by:�

'M�;Z
�
(A) $ k'kM�(A=Z) (16)

The variant assignment construct corresponds to substitution: for all formulas
 2 F�(�;�), �

'M�;Z
�
(k kM� ) = k'[Z :=  ]kM� (17)

When the variable Z occurs positively within ', so �Z:' 2 F�(�;�), the oper-
ator 'M�;Z is �-monotone:

A � B ) F (A) � F (B)
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for F = 'M�;Z . The clause in De�nition 4 for �-formulas says that k�Z:'kM� is

the �-least pre-�xed-point of the monotone operator 'M�;Z in the complete lattice

P(X). So by the Tarski-Knaster �xed-point theorem, k�Z:'kM� must also be the

�-least �xed-point of 'M�;Z ; that is:

k�Z:'kM� =
\
fA 2 P(X) j k'kM�(A=Z) = A g

In the standard set-theoretic semantics for the �-calculus, as presented here
and given in [23], [38], [40], [15], the propositional variables Z range over the
full power-set (and complete Boolean algebra) P(X) { that is, all subsets of X.
An alternative, developed by Kwiatkowska and colleagues [5], [8], is an algebraic
semantics in which the range of propositional variables is restricted to a sub-
family A � P(X). This work has roots in a number of classic studies from
the 1950's, notably that of Henkin [18] on completeness of higher-order logic; of
J�onsson and Tarski [26] on Boolean algebras with operators; and that of Rasiowa
and Sikorski [36] on algebraic logic.

De�nition 5. ([5], [8]). Given an LTS model M, a family of sets A � P(X)
is said to be a modal algebra for M, and the pair (M;A) is known as a modal
frame, when each of the following holds:

1. A contains each of the observation sets kpkM, for p 2 �;
2. A is a Boolean algebra under the �nitary set-theoretic operations; and
3. A is closed under each of the pre-image operators �(aM) and � (aM), for

a 2 �.

For purely modal formulas ' 2 F(�;�), the clauses in the inductive de�-

nition of the denotation k'kA� � X with respect to a modal frame (M;A) are

identical to those in De�nition 4 for k'kM� , with the proviso that variable as-
signments � are restricted to A, i.e. � : PVar!A.

A formula ' is true in the frame (M;A), written (M;A) � ', i� k'kA� = X
for all assignments � in A.

An LTS model M is identi�ed with the modal frame (M;P(X)).

Modal algebras A � P(X) need not be complete as lattices, so unlike P(X),
we have no guarantee that the set being the �-least pre-�xed-point of 'A�;Z in

fact exists in A; when it does, it is the least �xed-point in A of 'A�;Z, by a variant
of the argument in the Tarski-Knaster �xed-point theorem.

De�nition 6. ([5], [8]). A modal algebra A � P(X) is called a modal �-algebra,
and the pair (M;A) called a modal �-frame, if for each formula �Z:' 2 F�(�;�)
the in�nitary meet or in�mum of the family in A of pre-�xed-points of 'A�;ZV

fA 2 A j k'kA�(A=Z) � A g

exists in A, in which case k�Z:'kA� is that set.
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In general, the denotations k'kM� and k'kA� part company on �-formulas,
since the smallest of all sets A 2 P(X) such that a condition holds will be
contained in the smallest of all sets A 2 A for which the same condition holds.
In [11], we identify conditions under which a modal�-frame (M;A) is in semantic

agreement with M, i.e. for all �-formulas ' 2 F�(�;�), k'k
A

� = k'kM� for all
assignments � restricted to A. The smallest �-algebra for an LTS M is the
countable algebra

SM� $ f k'kM j ' 2 S�(�;�) g

of denotations of �-sentences inM. It is readily veri�ed that SM� is in semantic
agreementM.

From the purely modal clauses in De�nition 4, together with the de�nitions
of the pre-image operators in (2), it follows that if the state space, transition
relations and observation sets of an LTS model M are all �rst-order de�nable
in some structure, then for all modal sentences ' 2 S(�;�), the denotation

k'kM � X is �rst-order de�nable. Otherwise put, the countable algebra

SM $ f k'kM j ' 2 S(�;�) g

of denotations in M of purely modal sentences, has a �nitary syntactic repre-
sentation as a family of �rst-order formulas; a family �nitely generated by the
explicit �rst-order de�nitions of the components ofM, under the straight-forward
translation of modal sentences based on the de�nitions (2) and the (classical)
meaning of the Boolean connectives. Of course, an optimal situation is when the
�rst-order structure admits quanti�er-elimination, as then the naive translation
of a modal sentence can be reduced to a quanti�er-free formula, and so the al-
gebra SM will have a simpler and more tractable representation. Such algebras
are the semantic content of Henzinger's notion of a symbolic execution theory in
[19] x3.1.

Returning to the standard set-theoretic semantics, the completeness of P(X)

as lattice ensures that the set k�Z:'kM� has an equivalent characterization (by
the Park-Hitchcock �xed-point theorem) as the union of an �-increasing se-
quence of approximations:

k�Z:'kM� =
[

�<Ord(M)

k'kM�;�

where

k'kM�;0 $ ?

k'kM�;�+1 $ 'M�;Z

�
k'kM�;�

�
k'kM�;� $

S
�<�

k'kM�;� for limit ordinals �
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andOrd(M) < �+, for � = Card(X), is the closure ordinal ofM. The sets k'kM�;�
are �-approximations of k�Z:'kM� . Likewise, the denotation of �Z:' can be
represented as the intersection of an �-decreasing sequence of �-approximations.

In the general case, over LTS modelsM of arbitrary cardinality, approxima-
tion sequences for the denotation of �xed-point formulas proceed through trans-
�nite ordinals; when X has the cardinality of the continuum, Ord(M) could be
much longer than we care to deal with.

When the operator 'M�;Z corresponding to the body of a �-formula �Z:' is

!-chain-additive, that is, for F = 'M�;Z

F

 [
n<!

An

!
=
[
n<!

F (An) where An � An+1 for all n < !

then the ordinal of convergence for k�Z:'kM� is at worst !. In this case, we have
a sequence of approximation formulas

'0 $ � and 'n+1 $ '[Z := 'n] for n < ! (18)

and

k�Z:'kM� =
[
n<!

k'nkM�

since k'nkM� = k'kM�;n. The terms \order-continuous" and \continuous from be-
low" are also used instead of !-chain-additive, since such an F : P(X) ! P(X)
is a continuous function with respect to the Scott topology on the complete par-
tial order (P(X);�). We adapt the terminology of J�onsson and Tarski [26] on
Boolean algebras with operators, since we are interested in other meanings of
\continuous". Dually, when 'M�;Z is !-chain-multiplicative, the ordinal of conver-

gence for k�Z:'kM� is at worst !, and the sequence of approximation formulas
starts at tt and decreases.

In particular, the semantic operator corresponding to the body of hhi' (or

h
`

hi'), as de�ned in (5), for sentences ', is:

A 7�! �(e)(k'kM) [ �(ec)(A)

Since the 9-pre-image of any relation is completely additive, i.e. distributes over
arbitrary unions, it follows that khhi'kM is the union of the denotations of the
approximation sequence

�, hei', hei' _ heihcihei', hei' _ heihcihei' _ heihciheihcihei', ...

Dually, the semantic operator corresponding to [h] is completely multiplicative.
When � is a bisimulation equivalence onM { that is, an equivalence relation

on X which respects the transition relations aM and the observation sets kpkM
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in a suitable sense3 { then the fundamental property of truth-preservation is as
follows: for all sentences ' 2 S�(�;�) and all x; y 2 X,

x � y ) [ x 2 k'kM , y 2 k'kM ] (19)

It follows that if � is a bisimulation equivalence of �nite index N , then the
denotation k'kM of each sentence is a �nite union of equivalence classes under

�. Hence for sentences �Z:' and �Z:', the ordinal of convergence for k�Z:'kM

and k�Z:'kM is bounded by N . In this case, the �nite quotient LTS M� is a
�nite simulacrum, and �nite automaton representation, of the original system
M. If such is the case, the countable �-algebra SM� is in fact a �nite algebra,
and the atoms of the algebra are the equivalence classes under �. The familiar
bisimulation algorithm ([19] x3.1; [27] x2) can be reinterpreted algebraically as
the construction of a sequence of algebras SMk for k < !, where

SMk $ f k'kM j ' 2 Sk(�;�) g

is the �nite Boolean algebra of denotations ofmodal sentences of modal degree �
k. The modal degree measures depth of nesting of modal operators; for example,
for hybrid trajectory formulas of the form (3), the degree is 2n + 1, where n
is the length of the discrete trace. It follows that SMk+1 is the smallest Boolean

algebra generated by SMk [f�(aM)(A) j A 2 SMk g. The algorithm terminates at
stage k + 1 if SMk+1 = SMk , in which case the equivalence relation:

x �SM
k
y $ (8A 2 SMk )[ x 2 A , y 2 A ]

is a �nite bisimulation equivalence whose equivalence classes are atoms of the
algebra SMk , and SM� = SMk .

4 Adding topological and metric tolerance structure

Within modal logic, there is a well-known way of representing a topology T on
the state space X of an LTS or Kripke model. From McKinsey and Tarski's
work in the 1940's ([31], [32], [36]), the axioms for the box � modality of the
modal logic S4 correspond exactly to those of the Kuratowski axioms for the
topological interior operator intT , and dually, the S4 diamond 3 corresponds
to topological closure clT . S4 is a well-studied modal logic, and is of particu-
lar interest in virtue of the 1933 G�odel translation of Intuitionistic logic into
(classical) S4. The relational Kripke semantics for S4 is in terms of pre-orders:

3 The concept is not formally de�ned here. An analysis of the concept of bisimulation
is given in [11]. See also the handbook article [38] x5.3, where it is noted that if one
wants to preserve the truth of sentences containing the converse operation, then the
notion of bisimulation must be strengthened so as to include respect for the converses
of the aM.
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re
exive and transitive relations 4� X � X, and can be shown to be a special
case of the topological semantics via Alexandro� topologies, which are in one-one
correspondence with pre-orders (see [11]). For background on general topology,
see [33], [24].

Let F�;�(�;�) denote the collection of formulas de�ned as in De�nition 3
with an additional clause for a plain � modality, with analogous notation for the
collection of sentences, and the purely modal fragments. The diamond is de�ned
by the usual negation (de Morgan) duality: 3' $ :�:'.

De�nition 7. IfM = (X; T ; faMga2�; fkpk
Mgp2�) is a topologized LTS model

then the additional clauses to be added to De�nition 4 for the semantics of for-
mulas ' 2 F�;�(�;�) are:

k�'kM� $ intT

�
k'kM�

�
and k3'kM� $ clT

�
k'kM�

�
In the enriched language, we can simply express topological properties of sets

of states. For example, a set k'kM � X is, respectively, open, closed, dense or
nowhere dense (empty interior), with respect to T , exactly when the sentences
' ! �', 3' ! ', 3', or 3:' are true in M. The topological boundary
of k'kM is denoted by the sentence 3' ^ :�' (and boundary sets are always
nowhere dense).

Note that if X � R
n is �rst-order de�nable in an o-minimal structure R,

T is the subspace topology on X inherited from the standard metric topology
on Rn (derived from the order < on R), and A � X is de�nable, then intT (A)
and clT (A) are also de�nable ([14], Lemma 3.4). Thus if the components of a
topologized modelM are de�nable in R, then the topological modal algebra

SM
�
$ fk'kM j ' 2 S�(�;�)g

of denotations of modal sentences including� is also de�nable. From the perspec-
tive of o-minimality, observe that the cells of a cell decomposition of a de�nable
X � Rn are either open in Rn, or else are boundary sets ([14], Proposition 2.5)
{ properties expressible in the enriched modal language.

Note that if we want a bisimulation to be truth-preserving with respect to
sentences ' 2 S�;�(�;�), then it must also respect the topology T . For equiv-
alence relations �, this amounts to the requirement that for each equivalence
class B under �, the closure clT (B) must be a union of equivalence classes, thus
either intT (B) = B or intT (B) = ?; in brief, the equivalence classes B are
\cell-like".

OK, so we've formally got topologies in the picture, so we should be able to
express some notion of continuity. A sticking point is that the standard notion of
continuity is for functions, not relations. In purely topological terms, a function
f : (X; T )! (Y;S) is continuous i� for every open set U in Y , the inverse-image
f�1(U ) is open in X. The relevant notions for relations r : (X; T ) ; (Y;S)
were introduced by Kuratowski and Bouligand in the 1930's, and replace the
functional inverse-image with the relational 8- and 9-pre-image operators.
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De�nition 8. ([6] x1.4; [1]4 Ch. 7; [24] x18.) A relation r : (X; T ); (Y;S) is:

{ upper semi-continuous (u.s.c.) i� for every open set U in Y , the 8-pre-image
� (r)(U ) is open in X;

{ lower semi-continuous (l.s.c.) i� for every open set U in Y , the 9-pre-image
�(r)(U ) is open in X;

{ continuous i� it is both u.s.c. and l.s.c..

When r : (X; T ) ; (Y;S) is in fact a (single-valued) function, each of the
semi-continuity properties is equivalent to functional continuity, since in that
case, the two relational pre-image operators collapse to the familiar inverse-
image operator: �(r) = � (r) = r�1. Logics of continuous functions are developed
in [10].

The two semi-continuity properties are simply expressible in the language of
the topological �-calculus by the formulas (sentence schemes):

[a]�Z ! �[a]Z and hai�Z ! �haiZ (20)

In dual form, upper semi-continuity can be read as preservation of closed sets
by the familiar 9-pre-image �(r) = Pre(r):

3haiZ ! hai3Z

From these simple characterizations of the semi-continuity properties, it follows
purely formally that each of the properties is inherited under �nite relational
compositions and �nite relational unions (sums). Inheritance of continuity prop-
erties under in�nitary �xed-point quanti�cation is a topic of continuing investi-
gation.

So far, the discussion of continuity is still rather formal, and a tad insubstan-
tial. But in the case of compact metric spaces, we get to see some meat on the
bones.

Proposition 1. ([1] Ch.7, Proposition 11) For relations r : X ; Y where X
and Y are compact metric spaces and the direct image r(x) � Y for each x 2 X
is closed, the following are equivalent:

1. r is u.s.c.;
2. for all x 2 X and all � > 0, there is a � > 0 such that for all x0 2 X and

y0 2 Y ,

dX(x; x
0) < � and x0

r
�! y0 ) (9y 2 Y )[ x

r
�! y and dY (y; y

0) < � ]

3. as a subset of X � Y , (the graph of) r is closed;

4 Note that in [6], [7], Aubin uses the terms \core" and \inverse-image" instead of
universal and existential pre-image, while in [1], Akin uses but has neither names
nor notation for the pre-image operators.
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4.
`

r : Y ; X is u.s.c.

The following are also equivalent:

1. r is l.s.c.;
2. for all x 2 X and all � > 0, there is a � > 0 such that for all x0 2 X and

y 2 Y ,

dX(x; x
0) < � and x

r
�! y ) (9y0 2 Y )[ x0

r
�! y0 and dY (y; y

0) < � ]

Fig. 4. The u.s.c. property in the compact metric setting.

The metric u.s.c. property says that if an input x0 is within � of x, then every
point y0 in the output or image r(x0) is contained within an � \ball" or \tube"
around r(x). For the orbit relation f : X ; X of a semi-
ow � : X �R+ ! X
(de�ned in (11)), where f(x) = f�(x; t) j t 2 R+g is the positive trajectory from
x, the picture really is that of an �-tube: if dX(x; x

0) < � then the trajectory
f(x0) lies inside an �-tube around the trajectory f(x), as illustrated in Figure
4. The idea is certainly reminiscent of the \tube neighborhoods" in the work of
Gupta, Henzinger and Jagadeesan [17] on robust timed automata; the interest
in that paper is on metrics on trajectories � 2 (� �R>0)�, where � is a �nite
alphabet of event names.

When X is a compact metric space, � : X �R+ ! X is a continuous semi-

ow, and T � R+ is compact, the restricted orbit relation fT : X ; X given by
fT (x) = f�(x; t) j t 2 Tg has a closed graph and hence is u.s.c. ([1], Ch. 6). This
leads to the following result on continuity properties of both sort of transition
relations in an LTS model of a hybrid automaton.

Proposition 2. LetMH be the LTS model of a hybrid automaton, as in De�ni-
tion 2. Assume that each Xq � Rn is compact in the standard topology on Rn. Let
Tq be the subspace topology on Xq , and assume the semi-
ow �q : Xq�R+! Xq

is continuous.

1. If Invq is closed in Tq, and time-bounded under �q , in the sense that there
is a tq > 0 such that for all x 2 Invq and all t > tq, �q(x; t) =2 Invq ,
then the relation eq : Xq ; Xq de�ned by eq = fq \ (Invq � Invq) is u.s.c..
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2. If Grdq;q0 � Xq and Invq0 � Xq0 are both closed, in Tq and Tq0 respectively,
and the graph of rq;q0 : Xq ; Xq0 is closed,
then the relation cq;q0 : Xq ; Xq0 de�ned by cq;q0 = rq;q0 \ (Grdq;q0 � Invq0 )
is u.s.c..

The point is that the u.s.c. property is su�ciently attractive that we may
wish it to be the case that all our transition relations possess it. From our
observations above, all �nite compositions and unions of the eq and cq;q0 will be
u.s.c. if the eq and cq;q0 are u.s.c.. Note also that for the constant jump relations
cq;q0 = Grdq;q0 �Rstq;q0 of [27], cq;q0 is u.s.c. when both Grdq;q0 and Rstq;q0 are
closed.

When the relations eq : Xq ; Xq and cq;q0 : Xq ; Xq0 are lifted to relations
X ; X, the issue arises as to what is the appropriate topology on the hybrid
state space X � Q�Rn ? Taking the Xq equipped with their standard topology
fromRn, the question then becomes: what topology TQ on the �nite discrete state
space Q? One reasonable choice is thatQ really is discrete and has no topological
structure, which amounts to taking TQ to be the discrete topology. Then the
lifted relations will be u.s.c. or l.s.c. whenever their unlifted counterparts are.
An alternative reasonable choice is to consider Q as structured by the control
graph G � Q�Q, so take TQ = TG to be the (Alexandro�) topology determined
by the re
exive-transitive closure 4G of G. The open (closed) sets in TG are
those P � Q that are up- (down-) invariant under 4G; the clopen sets in TG
are cycles under G. The inherited topology on X � Q�Rn, and the continuity
properties, are more complicated, and under current investigation.

Metric structure on the state space of an LTS model can be used to de�ne
explicit metric tolerance relations that allow us to express such properties as
being within � of a set, for a particular � > 0. Again, the resources of modal logic
come into play. For X a metric space and � > 0, de�ne a relation of �-tolerance
or �-indiscernability (�) : X ; X by:

x (�) x0 i� dX(x; x
0) < � (21)

Such a relation is re
exive and symmetric, but not transitive. My source for the
notion of a tolerance relation is Smyth's [37]. A motivating idea in that paper,
which is traced back to Poincar�e's The Value of Science1905) and independently,
to the topologist Zeeman in the early 1960's, is that perceptual or physical con-
tinua, as opposed to the idealized continua of classical mathematics, are of �nite
or countable cardinality and are structured by a relation of indiscernability that
is re
exive and symmetric, but not transitive. In [1] Ch.1, the relation (�) goes
by the name V�.

Formally, we extend the alphabet � of transition labels with a new symbol �.
Interpreting the new modalities h�i and [�] in the standard way by the pre-image

operators �(�) and � (�), the sentence h�i' denotes the �-ball around k'kM, or

the �-closure of k'kM { that is, the set of states within � of some point in k'kM,

while [�]' denotes the �-interior of k'kM { that is, the set of states all of whose
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�-neighbors are in k'kM . The modalities for symmetric and re
exive relations
are axiomatized by the modal logic KTB; see [9] x4.3.

The combination of topological and tolerance structure opens up new possi-
bilities. For example ([1] Ch.1, Corollary 2), if aM : X ; X is u.s.c. in a compact

metric space X, then for each closed set k'kM � X, and each � > 0, there is a
� > 0 such that the sentence

h�ihai'! haih�i' (22)

is true inM.
Metric tolerance structure can be used to de�ne \imperfect precision" hybrid

trajectories. In the LTS model MH of a hybrid automaton H, suppose that on
each projection Xq � R

n, we have a metric tolerance (�q) : Xq ; Xq for
some given �q > 0. Then instead of considering \perfect precision" trajectories
formed from the simple alternation of constrained evolution and controlled jump
relations, as in (3), we might want to consider transition sequences:

eq0 � �q0 � cq0 ;q1 � eq1 � �q1 � cq1;q2 � eq2 � � � � � eqk�1 � �qk�1 � cqk�1;qk � eqk (23)

Operationally, this can be construed as allowing metric \gaps" of up to size
�q between the decision to make a controlled switch cq;q0 , and the point at
which such a switch actually occurs. De�ning (�) : X ; X to be the union of
each of the lifted relations (�q), the dynamics of the class of all \�-imperfect"
hybrid trajectories with �nite discrete traces are captured by the dual �xed-point
modalities

hh�i' $ �Z: hei' _ heih�ihciZ and [h�]' $ �Z: [e]'^ [e][�][c]Z (24)

Alternatively, one could \relax" the de�nition of the constrained evolution rela-
tion, and take

h�eqiZ $ h�qiInvq ^ hfqi(Z ^ Invq)

that is, �eq = fq \ (Invq � �(�q)Invq), where the revised convexity property is:

h
`

fqiInvq ^ hfqih�q iInvq ! h�qiInvq

which says: curves along �q that start in Invq and end in �(�q)Invq lie inside
�(�q)Invq .

5 Deductive Proof Systems

We present simple Hilbert-style axiomatic proof systems for the logics of interest.
The axiomatizations are not intended to be minimal; rather, they are meant to
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serve as a useful reference list. In particular, we give the axioms and rules for
both of the dual diamond and box modalities. Kozen's axiomatization L� [23]
forms the foundation, with extensions developed in a modular fashion. So far, we
have identi�ed S4 for topological and relational pre-order modalities, and KTB
for tolerance relations. A further candidate is S5, the modal logic of equivalence
relations: we can give modal representation to any partition of the state space
of our choosing; bisimulation equivalences spring to mind. S5 is also the base of
logics of knowledge [16]: the knowledge of an agent is modeled by the equivalence
relation of indistinguishability relative to its knowledge base.

Equivalent Gentzen sequent-style proof systems for the �-calculus are pre-
sented in [5], [8], and also in [40].

De�nition 9. The Hilbert-style proof system for the logic L� has the following
axioms: for transition labels a 2 �, propositional variables Z;W 2 PVar, and
formulas ' 2 F�(�;�),

CP : axioms of classical propositional logic

_-hai : hai(Z _W )$ (haiZ _ haiW ) � -hai : hai� $ �

^-[a] : [a](Z ^W )$ ([a]Z ^ [a]W ) tt-[a] : [a]tt$ tt

�-f.p. : '[Z := �Z:']! �Z:' �-f.p. : �Z:'! '[Z := �Z:']

and the inference rules, for formulas ';  2 F�(�;�):

modus ponens:
'; '!  

 

substitution:
'

'[Z :=  ]

hai-monotonicity:
'!  

hai'! hai 

[a]-monotonicity:
'!  

[a]'! [a] 

�-least-f.p.:
'[Z :=  ]!  

�Z:'!  

�-greatest-f.p.:
 ! '[Z :=  ]

 ! �Z:'

Hoare composition:
 ! hai� �! hbi'

 ! haihbi'

Hoare composition:
 ! [a]� �! [b]'

 ! [a][b]'
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We write: L� ` ' for formulas ' 2 F�(�;�) if there is a proof of ' in L�.
The axioms and monotonicity rules for hai and [a] together assert they are

normal diamond (possibility) and box (necessity) modalities ([9] Ch. 4); they
are equivalent to system K (for Kripke), the logic of generic binary relations.
In the language of [26], hai denotes a normal and �nitely additive operator on a
Boolean algebra. The Hoare composition rules follow readily from monotonicity.
As always, we assume substitutions '[Z :=  ] are legitimate ones; i.e. no capture
of free variables.

The axioms and rules for the �xed-point quanti�ers assert what they ought:
that �Z:' (�Z:') is the least (greatest) �xed point of the operator de�ned by
'.

Each of the rules is readily veri�ed to be truth-preserving, in the sense that
for any LTS modelM, if the hypotheses of a rule is true inM then the conclusion
is true in M. From the veri�cation that the each of the axioms is true in every
LTS model, we then get soundness: if L� ` ' then M � ' for all LTS models
M of signature (�;�).

De�nition 10. The Hilbert-style proof system for the logic L� +S4 in the lan-
guage F�;�(�;�) is obtained from that of L� by adding the normality axioms
and rules for 3 and �, together with: for propositional variables Z 2 PVar,

T3 : Z ! 3Z T� : �Z ! Z

43 : 33Z ! 3Z 4� : �Z ! ��Z

The proof system for the logic L�+S4 +Ca is that of L�+S4 together with
Ca, where Ca is one or more of the semi-continuity axiom schemes:

uschai : 3haiZ ! hai3Z usc[a] : [a]�Z ! �[a]Z

lschai : hai�Z ! �haiZ lsc[a] : 3[a]Z ! [a]3Z

In the relational (preorder) semantics for S4, the T axioms correspond to
re
exivity, while the 4 axioms correspond to transitivity. Extensions of the Hoare
composition rules:

 ! [a]�� �! [b]�'

 ! [a][b]�'
and

 ! hai�� �! hbi�'

 ! haihbi�'

can be derived in the systems L�+S4 +usc[a] +usc[b] and L�+S4 + lschai+
lschbi respectively.

De�nition 11. The Hilbert-style proof system for the logic L� +KTB in the
language F�(�;� [ f�g) is obtained from that of L� by adding the normality
axioms and rules for h�i and [�]; the axioms Th�i and T[�]; and also:

Bh�i : h�i[�]Z ! Z B[�] : Z ! [�]h�iZ

The B axioms express that tolerance relations (�) are symmetric.
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De�nition 12. The Hilbert-style proof system for the logic L� +S5 in the lan-
guage F�(�;�[f�g) is obtained from that of L� by adding the normality axioms
and rules for h�i and [�]; the axioms Th�i, T[�], 4h�i and 4[�]; and also:

5h�i : h�i[�]Z ! [�]Z 5[�] : h�iZ ! [�]h�iZ

The 5 axioms express that � is a Euclidean relation: if x � y and x � z
then y � z. And re
exive, transitive and Euclidean binary relations are exactly
equivalence relations. Under the knowledge interpretation of S5, the axiom 5[�]
is usually referred to as the axiom of negative introspection: :[�]'! [�]:[�]',
which reads: \if it is not the case that agent A knows ', then agent A knows
that it is not the case that she knows '".

Walukiewicz has recently established the completeness of the Kozen axioma-
tization with respect to the standard set-theoretic semantics for the �-calculus.

Theorem 1. ([39],[40]) Soundness and Completeness of L� (set-theoretic se-
mantics)

For all formulas ' 2 F�(�;�),
L� ` ' i� M � ' for all LTS models M of signature (�;�).

The completeness part of the cited theorem is stated in the form: if ' is
unsatis�able in every LTSmodelM, i.e. k'kM� = ; for all assignments � in P(X),
then :' is provable in L�.Walukiewicz's proof is very intricate, proceeding by
�rst contracting to a subclass of \nice" formulas, and then producing a \tableaux
refutation" of unsatis�able formulas of nice form, where such a refutation in
turn implies that the negation of the given formula is provable in L�. Topics
of continuing enquiry include whether the Walukiewicz proof can be extended
to cover speci�c modal enrichments of L�, and the relationship between his
tableaux refutation system and a tableaux proof system for the �-calculus and
polymodal extensions, in the style of [35] and [10].

The algebraic semantics of Kwiatkowska et al. [5], [8], provide a framework
for extending Stone duality theory to the algebra of �xed-points. Their proof
of completeness for modal �-frames starts with the Lindenbaum algebra FL�
of formulas in F�(�;�) modulo provable equivalence in L�, then realizes the
abstract �-algebra as a canonical LTS model ML� with state space the Stone
space X = Ult(FL�) of (Boolean) ultra�lters in FL� , together with the canonical
�-algebra AL� = Clop(Ult(FL�)) �= FL� of subsets of X clopen in the Stone
topology. For each a 2 �, andM =ML�, the relations a

M on X are de�ned by:

x
aM
�! y i� (8' 2 FL�)[ [a]' 2 x ) ' 2 y ]. The formal statement of the result

is as follows.

Theorem 2. ([5]) Soundness and Completeness of L� (algebraic semantics)

For all formulas ' 2 F�(�;�),
L� ` ' i� (M;A) � ' for all modal �-frames (M;A) of signature (�;�).
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In [8] x6, it is established if (M;A) is a descriptive modal �-frame, then
(M;A) is in semantic agreement with M. In particular, the canonical frame
(ML�;AL�) is descriptive, and thus in semantic agreement with the underlying
LTS modelML� . Thus the \easy" algebraic proof of completeness can be used
to give an alternative proof of completeness of L� with respect to the standard
set-theoretic semantics, as stated in Theorem 1.

The Kwiatkowska algebraic completeness proof extends quite smoothly to
normal polymodal extensions of the �-calculus, including topological S4 exten-
sions with semi-continuity axioms. For example, if L = L� + S4 + fusc[a] +
lschaiga2� , the topology on the canonical model ML comes from a relation 4
on X = Ult(FL) de�ned in the same way as the relations aML as above. The
S4 axioms ensure that the relation 4 is a preorder, so the topology is Alexan-
dro�, and from the semi-continuity axiom schemes, one proves that each of the
relations aML have the corresponding semi-continuity property. A more detailed
treatment is given in [12].

6 Discussion

We have developed a family of expressively rich and usable logical systems and
broadened horizons for the formal analysis of hybrid dynamical systems. In addi-
tion to those mentioned in the text, further lines of enquiry include the following.

{ Investigation of non-deterministic continuous dynamics, in the form of set-
valued or parametrized semi-
ows, and their topological properties. Our
relation-based view of dynamics is of course conducive to such generaliza-
tions.

{ A deeper investigation of relations (de�nable families) in o-minimal struc-
tures, and of the use of �nite cell-decomposition in the construction of topo-
logical bisimulations.

{ Further investigation of �nite sub-topologies of the standard topology on
X � Rn, and semi-continuity properties of relations in such topologies, pur-
suing themes developed in [11].

{ Application to hybrid systems of the theory of knowledge in multi-agent
settings and its formalization in S5 based logics of knowledge.

{ LTS models and �-calculus speci�cations of hybrid petri nets. One approach
is to take the state space X to be a set of �nite partial functions x : P ; R

(equivalently, variable-length vectors over R), where P is the �nite set of
places of the net.

{ Application of game-theoretic methods for the �-calculus, and related work
on automata over transition systems; e.g. [25], [22].

{ Investigation of tableaux proof systems for polymodal logics and the �-
calculus, in the style of [35] and [10].

{ Investigation of Intuitionistic (constructive) logics for hybrid systems, using
topological semantics and S4 as a bridge between the classical and construc-
tive worlds.
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