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Abstract. In this paper, we use the constructs of branching temporal logic to
formalize reasoning about a class of general flow systems, including discrete-
time transition systems, continuous-time differential inclusions, and hybrid-time
systems such as hybrid automata. We introduce Full General Flow L®BLc],

which has essentially the same syntax as the well-known Full Computation Tree
Logic, CTL *, but generalizes the semantics to general flow systems over arbitrary
time-lines. We propose an axiomatic proof system @L * and establish its
soundness w.r.t. the general flow semantics.

1 Introduction

Recent work in set-valued dynamical systems [4, 5], investigates a general class known
asevolutionary system3hese are described by a set-valued Sagphich maps each
stater € X to thesetS(z) of all possiblefuture evolutions, from initial statez, where

v :[0,00) = X, v(0) = z. These systems armn-deterministicfrom an initial state,

there may be none, exactly one, or many possible futures. The defining condition of
these systems is that the family of s&{s:) must be closed under the operations of tak-

ing asuffixof an evolution, and of taking thiesionof the two evolutions at a common
state. It includes as examples the solution maps over real time of differential equations
with inputs, and of differential inclusions and their impulse/hybrid extensions [4, 7].
In the discrete time case, these same closure properties come up in the study of sets
computation sequenceis automata theory and the semantics of branching temporal
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logics such a€TL * [1,17, 16]. The same closure properties appear again in Willems’
Behavioural Systems thedd8], under the nametime invarianceandaxiom of state
with the time domain the reats the integers. In the analysis of evolutionary systems,
there is particular interest in the area\édbility Theory[7, 4], where a central concept

is that of an evolution beingviable in K until capturing targetC”, which means that
the path starts at a state Iy, andeitherremains inK for all time, or it reaches”' in
finite time, and remains withi&™ until it does so. From a computer science perspective,
this concept corresponds to tbiatil construct on paths in temporal logic.

The purpose of this paper is to generalize the class of evolutionary systems to give
an adequate semantics for non-deterministic temporal logic that is uniform for discrete-
time transition systems, continuous-time differential inclusions, and hybrid systems,
where the time domains of evolutions lie in the lexicographically ordéredN x R .

There are three novelties in our woHitst, we take a minimalist approach to the notion

of a time-line: for the suffix and fusion-closure properties, the minimal structure needed
on a linear order are translation or shift maps, which is weaker than a semi-group.
Second we don'’t take as primitive objects evolutions or paths defined on the entire
time line; that perspective gives something of a “god’s eye” view of the system, looking
forward from now to eternity. Instead, our basic object qfagh describes &ounded-

time segment of a possible evolution of or signal within a systemstaitts somewhere

at relative timed with some valuer € X, and then progresses with an ordering given
by the underlying time-lind. to end somewhereat some time-point > 0, with a
valuez’ € X. We then build up a theory of infinitary extensions with unbounded time
domains.Third, we don't restrict to pathsy : 77 — X with boundedinterval time
domainsT = [0,7] C L, but rather allow “gaps” ifl’. OverL = N x R}, finite
hybrid trajectories are functions taking values in sakhewith time domaing’ C L of

the form T = {J, . [ (4,0), (i, 4;) ], with A; € RE the duration of the-th interval.
Within T', time (i + 1, 0) is the immediateliscrete successaf time (i, A;), but in the
underlying lineL, there is a continuum-length open interval “gap” in between.

The body of the paper is as follows. Section 2 covers preliminaries on set-valued
maps and linear orders, and develops some basic theory of paths with "gappy” time
domains. We introduce general flow systems in Section 3, and give examples in discrete,
continuous and hybrid time. In Section 4, we give an infinitary completion construction,
and relate our model class to evolutionary systems and behavioural systems. Section 5
introduces Full General Flow LogiGFL *, with basically the same syntax as the well-
known Full Computation Tree Logi€CTL *, developed for discrete-time models, but
semantics w.r.t. general flow systems over arbitrary time. In Section 6, we propose an
axiomatic proof system faBFL* and sketch soundness w.r.t. general flow semantics.

2 Preliminaries: set-valued maps, time-lines and paths

When we writeY” C X for setsX, Y, we will meanY is apropersubset ofX, and so
Y CXiffY ¢ XorY = X.Wewriter : X ~ Y tomean : X — 2Y is aset-valued
map with set-values(z) C Y for everyz € X (possiblyr(z) = &); equivalently,
r C X x Y is arelation. Let[ X ~ Y] := 2X*Y denote the set of all maps, partially
ordered byC, sor C ' iff r(z) Cr'(z) forall z € X, with least element the empty



map@. Every mapr : X ~ Y has aconverse~! : Y ~» X given by z € r~1(y) iff

y € r(z). Thedomainof a set-valued map igom(r) := {z € X | r(x) # @}, and the
rangeis ran(r) := dom(r—*) CY.Amapr : X ~ Y istotal on X if dom(r) = X.

We distinguish several sub-classes of maps. We writ&dl — Y to mearr is a (total)
function with values written-(z) = y. We also distinguisipartial functions and write
r : X -—-» Y to mean that is single-valued on its domaifomn (r) C X, and write
r(z) = y whenz € dom(r), andr(z) = UNDEF whenz ¢ dom(r).

Let (L, <,0) be alinear orderwith least elemen® and no largest element, ard
the reflexive closure of. For elements, b € L, the sefa,b] :={l € L | a <1 < b}
is aclosed, bounded intervah L, and(a,b) := {l € L | a <l < b} is anopen
bounded intervalsimilarly for half-open/half-closed bounded intervalsb) and(a, b].
For right unbounded intervalswe write [a,00) := {l € L | a < [l}. Any subset
T C L givesalinear orde(T, <r), where<r:=< N(T x T'). Define a partial function
succy, : L --» L, fora,b € L, by succy,(a) := b iff a < b and there doesot
exists an € L such thata < [ < b. A linear orderL is calleddiscreteif succy, is a
total function (dom(succy,) = L), and isdenséf succy, if dom(succy,) = &. Given
two linear orderg L, <) and (L', <), a functiong : L — L' is called:strictly order-
preservingf (VI,k € L), I < k implies g(I) <’ g(k); and anorder isomorphisnif it
bijective and botly andg~! are strictly order-preserving.

Definition 1. Let (L, <,0) be alinear orderwith least elemen® and no largest el-
ement. We calll a (future) time lineif L is shift invariant in the sense that if for
eacha € L, there exists an order isomorphissm® : [a,00) — L, with inverse
ote == (67~ L = [a,00), ando~° = idy. We call the functions =2 left a-
shift maps and the inverses ™ right a-shift maps

The discrete time lindY, and the dense continuum time lif& := [0, c0), are
considered with their usual orderings. The hybrid time spageR} is linearly ordered
lexicographically i.e. (i,t) <jex (4,5) iff i < jori = j andt < s. The least element
is 0 := (0,0). This ordering does not admit any natural addition operation to make it a
linearly ordered semi-group, but its shift invariance is withessed by the following order
isomorphisms: for each = (k,r) € L, definec%: [a,00) — L by o7 %(i,t) :=
(0,t —r)ifi = kando (i, t) := (i — k,t)if i > k,forl = (i,t) € [a,00). Then
ot L — [a,00) satisfiess™(i,t) = (k,t +r) if i = 0ande™(i,t) = (i + k,t)
if i > 0. The full hybrid time lineN x RY is everywhere dense. In the "gappy” time
domainsT’ C L considered below, the partial functisncer may be defined at some
time points inT" and not at others, sB is a “hybrid” of discrete and dense.

Definition 2. Let (L, <,0) be a time line. Abvounded time domaiin L is a proper
subsefl’ C L with least elemerlt and a largest elememt- such thafl is a finite union
of closed intervals irl, of the formT" = | J, _ y [a;, b;], whereN € N andao = 0 and
a; < b; < ajyq fori < N —1,andby_; = br. LetBT(L) C 2" denote the set of all
bounded time domains ib. Also defind8I(L) := {T' e BT(L) | (3b€ L)T =[0,b] }
to be the subset of interval time domains. Over any set (signal spacg), define
the set ofL-paths inX, by Path(L, X) := {v : L --» X | dom(y) € BT(L) },
and definelPath(L, X') to be the subsenterval pathswith dom(v) € BI(L). For



v € Path(L, X), defineb, := byom(,) to be the largest element ihom (), so that
~(0) € X is the start-value of and~(b,) € X is the end-value of.

Proposition 1. For L any time line, the sBT (L) is closed under the following oper-
ations: forT, T’ € BT(L) andt € L,
e intersection: TNT’ € BT(L); in particular, [0,¢{]NT € BT(L) ift € T;
e leftt-shift: o~ t([t,br]NT) € BT(L) ift € T;
e union with rightt-shift: T'U ot (T) € BT(L) if t > br.
The subseBI(L) of bounded initial closed intervals is closed under the first two oper-
ations, and is also closed under union with right shift restricted tob.

For X any value space, the following operations are well-defineBaith(L, X):
forv,~' € Path(L, X) andt € dom(v),
e t-end prefix: v|; € Path(L, X'), where v(; := v [0, dom(+)
e t-start suffix: .|y € Path(L, X), where (¢|v)(I) := ~v(at(l)) forall

L € dom(y]y) = o ([t, by] N dom(7))
e fusion: v x+' € Path(L, X), provided thaty'(0) = v(b,) . where

(v=v){1) :==~() forl € dom(y) and

(vx9)(1) =7"(o7" (1)) forl€ ot (dom(y")).

For each value: € X, define thetrivial path 6, : [0,0] — X by 6,(0) = z. In
Path(L, X), the trivial pathd,, functions as a point-wise identity with respect to fusion:
0, xv = v iff v starts at value = v(0), andy * 6, = v iff v ends at value = y(b,).

Definition 3. Let(L, <, 0) be a time line and\ a value space. Define a partial order
on Path(L, X) from the underlying linear order o (re-using notation) byry < +/

iff y C 7' andt < t' forall t € dom(y) andt’ € dom(v') — dom(). If v <+, we
say the pathy’ is a (proper)extensiorof v, or v is a properprefixof 7.

In general, the path extension orderirgis a proper subordering of the subset
relation, but when restricted to the d®ath(L, X), it collapses to the subset relation.
The following proposition characterizes the path extension partial order in terms of the
fusion operation.

Proposition 2. For L a time line, X a value space, and for al, v’ € Path(L, X),
v < A" iff 4/ =~ 4" for somey” € Path(L, X) with~" # 6, and~"(0) = v(bs).

We now return to the hybrid time line = N x R$ for a more detailed discussion
of some of its paths. DefinBS := TPath(N, R ) to be the set of all (finitejluration
sequences.e. A € DS is a finite sequence of value$; := A(i) € R fori < N
for N = length(A) € N. For duration sequences € DS, defineHT' (A) to be the
hybrid time domairetermined byA:

HT(A) = Ui<length(A) [(Z’0)7 (laAl)]
HT := {HT(A) e BT(L) | Ae DS} Q)
HPath(X) := {v € Path(N x RS, X) | dom(y) € HT }
For hybrid pathsy € HPath(X), define theduration sequencef ~ by ds(y)

iff dom(y) = HT(A) for A € DS, and define theliscrete lengttof v by dl(vy) :
length(ds(7)) € N. Also define theotal durationof by td(7v) := >_;qi(,) Ai-

A



Proposition 3. For all v,+" € HPath(X),
v Stex 7' iff di(y) <dl(y') and (Vi < N :=dl(y) = 1) v; =7 andywv < vy

With hybrid paths, we have to deal with the product structure on the time line. We
also encounter product structure on the value spacerket (X xY) — X and
7y : (X xY) = Y be the standard coordinate projection functions on a product of sets
X xY. These can be lifted to give projection functions on paths Path(L, X xY) —
Path(L, X') and to projections on functions : [L — (X xY)] — [L — X, by
defining (mx()(t) := mx(¢(t)) fort € dom(¢) and( € Path(L,X xY)or¢: L —
(X xY); and symmetrically forry in the other coordinate.

3 General flow systems

The general dynamical system model we develop here is essentially Aubin’s model of
an evolutionary system, generalized to arbitrary time libeand “deconstructed”, so
that the basic objects are bounded length paths, hakingy) C [0, b,].

Definition 4. Let(L, <,0) be atimeline, andleX # & be an arbitrary value space. A
general flow systeraver X with time lineL isamap ®: X ~» Path(L, X) satisfying,
for all z € dom(®), for all v € &(z), and for allt € dom(7):

(GFO) initialization:  ~(0) =z
(GF1) suffix-closure: |y € (v(t))
(GF2) fusion-closure: v|; ' € &(z) forallv' € &(y(t))

@ hasinterval pathsif ran(®) C IPath(L, X);

@ hashybrid pathsif ran(®) C HPath(X) and L = N x RY;

& isreflexive if 8, € &(x) forall x € dom(P);

& is blocked atz if &#(x) = {6, }, andnon-blockingf not blocked at any: € X;
@ is prefix-closedif |, € &(x) forall x € dom(®), vy € &(x) andt € dom(v);
& is deterministic if for all z € dom(®), the set?(z) is linearly ordered by.

In terms ofBehavioural Systems theof¥8], the suffix-closure conditiof{GF1)
corresponds to thiéme invarianceproperty, while the fusion-closure conditi¢GF 2)
corresponds to the so-calléaixiom of state” principle, that‘the state should contain
sufficient information about the past so as to determine the future behaylmoause
the various possible extensions of a trajectory at tiraee exactly those which would
have been possible if we had observed only the state atitisred not the past of the
trajectory prior to that point.

Proposition 4. Let (L, <,0) be a time line, letX # @ be a value space, and let
&: X ~ Path(L, X) be a general flow system ov&rwith respect ta_.. Then:
(1.) The setdom(®) C X is closed under reachability bf-paths:
if z € dom(®) andy € &(x), andt € dom(v), theny(t) € dom(P).
(2.) @ is reflexive iff® is prefix-closed.
(3.) @ is non-blocking iff for allc € dom(®), v € &(z), thereisay’ € () : v <+'.



Example 1.If g : Ly — L» is an order embedding, arél: X ~» Path(L{,X) is a
general flow system, then the mép : X ~» Path(L-, X) is also a general flow, where
for z € dom(®,) := dom(P), define &,(z) := {n € Path(L,,X) | Iy € &(z) :
dom(n) = g(dom(y)) A (Vt € dom(n)) n(t) = (g~ '(t)) }.

Example 2.A (basic)state transition systelis a structuré X, R) whereX # & is the
state space, an® : X ~ X is any set-valued map (the one-step transition relation).
The mapR determines a general flow system with interval paths over timeHigeN:
Pp(z) = {yeIPath(N,X) |v(0) =2 A (Vi<b,—1) v(i+1) € R(v(i)) }.It

is easily verified thatbg(x) = {6,} iff « ¢ dom(R). Hence®y is non-blocking iff

the mapR is total onX, and®y, is deterministic iff the magR is a partial function.

Example 3.A differential inclusionis a structurd X, F') whereX C R" is a finite di-
mensional vector space with the Euclidean norm,BndX ~» R is a set-valued map.
DefineAC(X) := {y € IPath(R{, X) | ~ absolutely continuous ofb), b,] }. Solu-
tions to the inclusion:(t) € F(x(t)) starting at a state are defined bySolp(z) :=
{yeACX) | y(0) =2 A (L)) € F(v(1)) a.e.forl € [0,b,] } . Itisimmediate
that Solp is reflexive and is suffix-closed and fusion, hence is a general flow system
with interval paths ovel, = R}. For the non-blocking property, to ensure the exis-
tence of non-trivial solutions from each € cl(dom(F)), one needs to impose some
regularity assumptions (e.gipschitzor Marchaudconditions) on the mag’ [7, 3, 6].

If F: X — R" is actually a function and the differential equatiéft) = F(x(¢))
has a unique maximal solution : [0,c,) — X starting from eachr € X, with

¢z € RE U {00}, thenSolp(z) = {n|: | t € [0,¢,) } is linearly ordered, hence deter-
ministic at everyr € X.

Example 4.A hybrid automatoiil5, 2, 14, 1] is a structure = (Q,E, X, F,D,R):

e () is a finite set of control modes;

e F : () ~ () is the discrete transition relation;

e X C R” is the continuous state space;

e F: () - [X ~ R"] maps eacly € @ to a set-valued vector fielH(q) : X ~ R”
with differential inclusion solution mafolg := Solr(4) : X ~ IPath(Rg, X);

eD:(@Q~ X mapseacl € QtoasetD, := D(q) C X, the domain of mode;

eR:E —[X~ X]maps(q,q') € Etoaresetmal, , := R(q,¢') : X ~ X.

Define a mapirajy : (Q x X) ~ HPath(Q x X) by:

Trajy (¢,z) := {v € HPath(Q x X) |
© 7(0,0) = (g,2) A (Vi <dl(y)) [for A; :=ds(y)(i) A ¢; = 7mqY;(0)
(1) mxy; € Solg; (mxv;(0)) Aran(y;) C {g;} x Dg; A
@ (@,9i1) € E N 7xv3,1(0) € R, qiyy (mxi (4y)) if i <di(y) =11}
Paths inTraj;; are called finite) trajectoriesof H. Direct from the definition, we can
see thatlom(Trajy) = D = {(¢,z) € @ x X |z € Dy}.
We will say a hybrid automatoH is well-constitutedf all of the following hold:

(4) Q# o, and E : Q ~ Q is total;
(B) X C R™ is a non-empty finite dimensional vector space with the Euclidean norm;



(©) D:Q~ X istotal, soD, # @ for eachg € Q;

(p) foreachy € @, domainD, C dom(Solg) andSolg is not blocked atany € D,;

(e) for each transition paifg, ¢') € E, the reset relatio®®, ,» : X ~ X satisfies the
constraintsiom(R,, o) # @ anddom (R, ) C D, andran(Ry,q) C Dy

Any assumptions will do on the set-valued vector fiditlg) : X ~ R", provided they

give non-trivial solution paths ifolg on the mode domaing,,.

Proposition 5. LetH = (Q, E, X, F, D, R) be a hybrid automaton. Then the trajec-
tory mapTrajy : (@ x X) ~ HPath(Q x X) is a general flow system ovéy x X
with time lineN x R} . If H is well-constituted thefiraj,; is also prefix-closed.

The conditions o being well-constituted rule out all “trivial” ways thdtraj
may become blockediol is not blocked at any: € Dg C dom(Solg); sinceE is
total, everyy € @ has a discrete successor; and for each discrete trangitigh € E,
thetransition guardsetdom (R, , ) is non-empty and contained i3, and under the
reset relation, the image setn (R, , ) lies in D, . So in attending to the possibility of
blocking, we need to focus only on states D, that are not in any transition guard
set, so no discrete transition is possible frgmz), and statex: € D, from which
every non-trivialg-solution leaved, “immediately after now”, so there are no hybrid
trajectories fron(g, ) with non-trivial continuous evolution in mode

Proposition 6. If a hybrid automatorf{ is well-constituted, and

Outy := {z € Dy | (Vy € Solg(z))(Vt € dom(y),t > 0)(Is < t) ~(s) ¢ Dy }
Grdg == Uy epy) dom(Rqq)
then Trajg is non-blocking on its domaib iff Out, C Grd, for eachg € Q.

The setsOut, and the conditiorOut, C Grd, are identified in [15], for systems
with deterministic continuous dynamics. In virtue of the continuity of patt$lg(x),
the setOut, is contained in the topological bounda®ut, C bd(Dy) := cl(D,) —
int(D,). An immediate corollary is that for well-constituted systeHsTraj; will be
non-blocking onD if for all ¢ € @, either(bd(D,) N D,) C Grd,, or D, is open.

We can also show thienpulse differential inclusiomodel of hybrid systems from
[7] to be an example of a general flow system over the hybrid time line; this example
and others will be discussed in a separate paper.

4 Infinitary extensions of general flow systems

From Proposition 4, we know that if a general flénis non-blocking, then for each

z € dom(®) andy € &(x), there exists an infinite sequence of paiths} with o =y

andy, € &(z) andy, < y,+1 for all n. Motivated by this fact, we view “maximal
extensions” or “completions” of paths as infinitary objects, arising as limits of infinite
ordered sequences of finitary bounded paths. In this paper, we take limits over ordered
sequences of order type (ordinal)the order type oN, but we want to leave open the
possibility, for later work, of dealing with sequences of transfinite length, with ordinals
greater thaw (for formalizing the notion of a continuation of a Zeno hybrid trajectory



that has discrete stagesw + 1, w + 2, ... up to some limit ordinalr > w). We need
access to maximal length paths in order to formalizelWnél construct in temporal
logic, but we also want to “go to infinity” in order to be able to directly compare our
class of dynamical systems with those developed in terms of functions over the whole
time lineL = Nor L = RY; in particular, Aubin’s model of arvolutionary systerfb,

4], and also Willem'dehavioural systemsodel [18].

Definition 5. For any path se C Path(L, X), define thev-extensiorof P by:
Ext“(P) := {n:L--+ X | (3F:w — Path(L, X)) (Vk <w)[ w :=7(k) A
wEP AN Y <Y1t A n=Upew %]}

DefineEPath® (L, X) := Ext*( Path(L, X) ); EIPath® (L, X) := Ext“( IPath(L, X)).
Pathsn € Ext” (P) will be calledw-pathsof P.

Thus thew-extensiorExt” (P) contains all the partial functions: L --» X that
can arise as the union or limit of amlength strictly extending sequence of paths in
the setP. The path extension orderirgon bounded paths induced by the linear order
on L can be lifted tow-paths. For pathg,n' € Path(L, X) U EPath?(L, X), we
extend Definition 3 to defingy < n' if n C ' andt < t' forallt € dom(n) and
t' € dom(n') — dom(n). If n < n' thendom(n) must be eoundedsubset ofL..

For a general flow system, we want to pick outéhpathsy € Ext”(é(x)) that are
maximalin the sense that there are no real paths of the systdrtuinextending;.

Definition 6. Given a general flow systedn X ~» Path(L, X), define thenaximized
w-extensiorof & to be the set-valued map“®: X ~» EPath” (L, X) given by:

(E“@)(x) = {n € Ext*(®(x)) | (Vy € &(z)) nL~}

A systen® will be calledw-extendibleif for everyz € dom(®) and everyy € &(x),
there exists) € (E“®)(z) such thaty < n.

In general,dom (E“®) C dom/(®); P is w-extendible iff dom(E“®) = dom(P).
In reasoning about the behaviour of arextendible systen®, we can safely replace
quantification over all possible paths @{z), with quantification ove(E“®)(z), the
maximalw-paths; this is crucial for the semantics of the tempuhaiil construct.

Proposition 7. For any general flowd: X ~» Path(L, X),
(1.) @ isw-extendible iff & is non-blocking.
(2.) If & non-blocking, then & is deterministic iff E“® is a partial function.

The non-trivial direction is® is non-blocking implie is w-extendible; the proof
uses Zorn’s Lemma to obtain a maximum of any strictly extending sequencpaths.

We are now in a position to formalize the relationship between Aubin’s model of an
evolutionary systerfb, 4], and the general flow systems defined here. An evolutionary
system, over time lined = R§ or L = N, isamap? : X ~» [L — X ] such that, for
whole line pathg : L — X, n(0) = z foralln € ¥(x) and¥ is closed under the suffix
and fusion operations (the natural extensions to unbounded paths of the operations in
Proposition 1), in the same sense as which general flow systems with bounded paths are
closed under these operations, as required by cld@ek) and(GF2) of Definition 4.



Proposition 8. Let the time line be eithek = Nor L = R}, andX # &.
¥: X ~ [L — X] isan evolutionary system in the sense of Aubin

iff  there exists an interval path general flow sys&mX ~» IPath(L, X)
that is non-blocking and satisfids= E“ &.

Thus evolutionary systems are a subclass of non-blocking general flow systems.
In Willem’s Behavioural Systemmodel [18], with time linesL. = Nor L = R}, a
behaviouris a set of function® C [L — X ]. It can also be established tt#tis
a time-invariant and complete state behaviour iff there exists an interval path, non-
blocking general flow systedi: X ~» IPath(L, X') such that8 = ran(E“®).

WhenL = N, then allw-pathsy € EPath® (N, X') have infinite time domain, so we
will always have(E¥®)(x) = Ext”(®(x)) for any non-blocking general flod.

When L. = RS, we know that everyw-pathn € ElIPath* (RS, X) must have
dom(n) = [0,c) for somec € RY U {oo}. For a non-blocking flowd, suppose
n € Ext¥(®(x)) is anyw-path. Therne = oo automatically gives) € (E“®)(z). If
¢ < o0, then we will have a maximally extendedpathn € (E“®)(z) exactly when
nl: € ®(x) forall t € [0,¢) but the limit ast — ¢ of n(t) does not exist, or does exist
but is not indom(®); i.e. n hasfinite escape timeThe analysis for the,-extensions
of general bounded patiyse EPath” (RS, X) is similar. For the differential inclusion
systems inExample 3 the Marchaud conditions of' in [3, 7] constitute a property
stronger than non-blocking: they imply th&dm (n) = [0, co) forall n € (E¥Solg)(z),
so there are n@-paths with finite escape time.

WhenL = Nx R} is the hybrid time line, we can characterize the maximaaths
of a non-blocking system as follows.

Proposition 9. For any X # & and non-blocking general flo& : X ~» HPath(X),
everyw-pathn € (E¥®)(z) is of one of two forms:

(i) » =~ *vwherey € &(z) andv : {0} x [0,¢) - X withc € RS U {oo} and
v = U, <, 7» @nd eachy, € &(v(0,0)) hasdl(y,) = 1, hencen has finite discrete
lengthdl(n) = di(y) € N, and total durationtd(n) = td(vy) + ¢, which may be finite
or infinite, depending on; or

(i) 7 = U,cw 7o Wheredl(vy,) < dl(vn+1), hencep has infinite discrete length, and
total durationtd(n) = Y. _  td(v,), which may be finite or infinite;

n<w

The non-blockingb-extendibility property here allows for two cases among ex-
tensions of hybrid paths that are typically considered “pathologic@lénoextended
hybrid pathsy € (E¥®)(x) that have infinite discrete length but finite total duration
td(n) < oo; and livelockedextended hybrid pathg € (E¥®)(z) that have finite
discrete lengthll(n) = k + 1 and finite total duration. Livelocked) are maximal
with the last path segment havinlpm () = [0, c); this & path would “die” atk-
local timet = ¢ (hybrid time (k, ¢)) if it ever got there, but it never can, as for every
extension ofy;, to domain|0, ¢], the resulting hybrid path is not i#(x). For a non-
blocking hybrid automatot, the general flowlraj; will exhibit livelock on an ex-
tended trajectory) € (E“Trajy)(z) with di(n) = k£ + 1 iff the last path segment
e ¢ [0,¢) = (@ x X) is such that, fory, := mgonk(0) andzy := wxnk(0), there
exists a solution patly € Solg, (z) such thatdom(y) = [0,b,], with b, > ¢ and



7 l10,c)= mxne, that eventually leaves the mode domaip, but never passes through
Grd, on the wayxy(c) ¢ D, andv(t) € D, — Grd, forallt € [0, c).

5 Full General Flow Logic GFL*: syntax and semantics

We now turn to the syntax and semantics of a logic we Eall General Flow Logi¢

GFL™*, which generalizes to general flow models the semantidauifComputation

Tree Logi¢ CTL*, introduced by Emerson and Halpern in 1983 [10] for formalizing
reasoning about executions of concurrent programs in discrete time. The syntax here is
a labelled variant of that dETL *, allowing for semantic models consisting of a finite
family of non-blocking general flow systems.

Definition 7. A signatures a pair X = (Sys, Prp), whereSys is a finite set of system
labels, andPrp is a countable set of atomic propositions. The temporal logic language
L(X) consists of the set of all formulgegenerated by the grammar:

o u=plop eV | prlapr | Vap
for atomic propositiong € Prp, and system labels € Sys.

The other propositional (Boolean) connectives and logical constardsT, and
false L, are defined in a standard way, and the path quantificteve classical nega-
tion duals3,, as follows:

P1 AP £ = (a1 V —ps) o1 P2 Z a1 Voo
o1 ¢ 0o E (01 = @2) A (p2 = @1) Jap € Ve (2)
T ¥ pv-p foranyp € Prp 1€ .7

The temporal operatord,, for a € Sys, refer to thew-path space of a non-blocking
general flow systend,. The formulapU,1), read % until ¢, for a-type paths”, will

hold along anyv-pathn of typea if at some time in the future (along the formulas)

holds, and at all intermediate times (alafdgoetween now and themp, holds. The uni-
versal quantifie¥,, applied to a path formula produces a state formula, @b ¢/, v)

holds at a state if everyw-pathn € (E¥®,)(x) satisfies the path formulg i/, 1.
Dually, 3, (¢ U,1) holds at a state if there existanw-pathn € (E¥®,)(x) which
satisfies the path formula/,%. The until construct on paths can be formulated in
several distinct ways; we shall take as primitive tigectestversion ofuntil, and then
define weaker variants in terms of it. In particular, an importhifi¢rencebetween the

logic here, and the usual presentatiol©diL * developed for discrete time paths, is that
instead of taking tha@ext-timediscrete successor operator as a syntactic and semantic
primitive, we use a known method tiefinenext-time in terms of the strictesntil [8,

13]. Our semantics covers arbitrary time lines, so in general the immediate successor
map is only a partial function on the domain of a path, and in the case of interval paths
in a dense time line, may be everywhere undefined.

Definition 8. A general flow logic model (logic modefor shor) of signatureyY’ =
(Sys, Prp) is a structuredt = (X, L, 8, P), where:



e X # g isthe state space, of arbitrary cardinality;

e [ is a function mapping each symhokE Sys to a time lineL, := L(a);

¢ §Sis afunction mapping each symhok Sys to an non-blocking general flow system
&, :=8(a) : X ~ Path(L,, X) over the space, with time lineL,;

e P: Prp~ X maps eachy € Prp to a setP(p) C X of states.

Thew-path spacef a modebt is defined byEPath(Mt) := {J,q,s EPath®(Lq, X).

Let GF (X) denote the class of all general flow logic models of signattirand for
the case of a single time link, let GIF (L, X') denote the subclass of all logic models
9 such thatC(a) = L for all a € Sys. For the further special case whefgs| = 1
andPrp is countably infinite, [etTR(N) denote the subclass of all discrete time logic
modelsDt with one general flowb : X ~» IPath(N, X') from a total transition relation
R: X ~ X (also calledr-generable modeld 2, 10, 16]). For the case of deterministic
systems, letDF (L) denote the subclass of all logic models where the time lirie
the non-negative half of a linearly ordered abelian group, and the one general flow
& : X ~ IPath(L, X) is deterministic, total, interval path, and non-blocking [9].

Definition 9. For ¢ € L(X) andw-pathn € EPath(9), the relation ) is satisfied
along pathy in modeldn”, written 99t,n = v, is defined by induction on the structure
of formulae, withp € Prp anda € Sys:

Mm,n = p iff n(0) € P(p)

My E ¢ iff M,y ¥ P

M,y 1 Vape it Dy = P or My | e

M,n = Uy s iff neEPath?(L,,X) and 3t € dom(n) with ¢ >0 :
M, ¢|n = 2 andVs € (0,t) Ndom(n): M, 5|n = ¢

M,n E Vot iff V&€ (E“®,)(n(0)) : ME E ¢

For formulasy € £(X), thew-path denotation sdty ™ C EPath(91), and thestate
denotation sef |2 C X, are defined by:

[@]™ :={n € EPath(M) | M,n |= ¢}
[o]2 :={x € X | In € EPath(M) : M,n | ¢ and z =n(0) }

For a logic modett € GIF(X), class of logic model§’ C GF(X), and for formulas
p € L(X), we say:

e ¢ is satisfiablen 90, if [ |2 # &;

e pistruein M, written M |= ¢, if M,n | ¢ foreveryn € EPath(9M);

e pis C-valid, written |=¢ ¢, if M |= ¢ foreverydt € C.

Define Valid(C) := {¢ € L(¥) | ¢ ¢} to be the set of alC-valid formulas,
and defineCTL* := Valid( TR(N) ) and GFL* := Valid(GF(X)).

Thewhile...alwaysperator is a negation dual oftil: ¢ A, v £ —(pU, (-1)),
which can be read as “if a typepath, therwhile ¢, alwaysy”. The semantics are:

M,y = oA, iff if y € EPath®(L,, X) then Vt € dom(n) with ¢ > 0,
it (Vs € (0,t) Nndom(n)) M, s|n = ¢ then M, ¢|n = ¢



Other one-place operators are definekasy £ TiU,¢, o £ TA, e,
ef

Cop ¥ LU, p, and @, & —pA,L, where

<o type« paths along whickp will eventuallybe true in theuture
U, ¢ type-u paths along whiclp will alwaysbe true in thduture, plus non-typez paths;
®q ¢ type- paths along which timé has a discrete successor, anis truethen

@, ¢ typea-paths along whiclp is trueimmediately after nowplus non-typez paths.
In particular, thenext-timeoperatorsp,, come out asht,n E ©, ¢ Iff
for T := dom(n) and0 € dom(succr) andk := succr(0) andd, |n = ¢

Different versions ofintil come by varying the constraints on end-values of the bounded
paths that satisfy until they satisfy,) :

U E o N pUalp AY) pUP Y E o Npllat (3
We briefly illustrate the expressivity of the logic in two areas.

Viability Theory: In the recent work of Aubin and co-workersVability Theory[3, 7,
4], the key concept is of paths beingéble in K until capturing targetC"”. Define:

oVath E (TUT Ao A Dap A D 0uT) VU (4)

The formulay V, 9 is satisfied by aw-pathn € EPath“(L,, X) iff either¢ is true
now and at all times in the future alomg and the time domain of is unboundedor
there is a finite time along at whichi) becomes true, andis true at all times between
now and then (inclusive). Thusis eitherviable forever in the sef¢ ]™ or viable in

[ ]™ until it captures the target sty |™ in finite time. Applying the path quantifiers
3, andV, restricts taw-paths of the systefa“ &, and this can be used to formalize in
the logic the two-place state set operators known asititglity kernel with targetand
theinvariance kernel with target

Dynamical properties of hybrid automateGiven a hybrid automatof, assume that
H is well- constituted, and define a logic modai with state space&X C R* the
continuous state space Hf. Let the system label sStysg := @, and for eacly € Q,
the time line isL(¢g) := R¢ and the general flow systems &) = &, := Sol,.
Assume the atomic proposition detp’! includes constanis, andG, for eachg € @,
and the valuatiof? : Prp” ~» X satisfiesP(D,) = D, , andP(G,) = Grd, .

e Trajy isnon-blocking iff MY = A o ((©,-D;) = G,)
e If Trajg isnon-blocking, then Traj; has nolivelock iff

img = /\qu Yy ((Dg A ©g=Dg) = (Dgly (GgAOy=Dy)))
We can, of course, also form a logic mo@®&l” with state spac€ x X, and have a sin-
gle system labe8ys := {0} with the general flow systesh, := Traj;;, and formalize
with the operatorél, andv, quite sophisticated temporal and dynamic propertie§ of

as a single system. We can also reason about multiple systems over a common state
space, and express comparative properties.



Definition 10. Given a class of logic mode{s C GF(X'), thevalidity problem forC

is to determine, for any given formuae £(X'), whether or noty € Valid(C). The
validity problem forC' is decidableif there is a recursive procedure for determining
membership oValid(C') that finitely terminates on all input formulgee £(X).

Proposition 10. [12, 11] The validity problem is decidabl€TL* (the classTR(N)
of discrete time models), with complexity double exponential time in the length of the
formula.

We conjecture that the validity problem is decidable for the dEBER ) of deter-
ministic, total, interval path, non-blocking flows described by functipnsy xR — X
satisfying the group action laws. These models are studied in [9], where they are used
to give semantics fountil andsince(the time-reversal or past tense correlate) in the
language olLinear Temporal Logi¢LTL), with no path quantifiers, and the validity
problem for that logic is decidable.

6 Axiomatisation and soundness

We seek formal deductive proof systems f@FL* := Valid(GF(Y)), or for the
validity set of distinguished subclasses of general flow modelssdhadnessr ade-
guacyof a proof systemi for a semantically characterized formula set suct#d.*,

is the property that ify is provable in4, then ¢ € GFL*. For soundness proofs, the
larger the class of semantic models, the stronger the result (so we do rather well here on
that score). The technically much more challenging task is to estatadisipletenessf

a proof system, which in our case is the property: if € GFL*, then is provable

in A. Proofs of completeness proceed via the contrapositive, and in that form, are es-
sentially amodel realization problenif ¢ is A-consistent(i.e. the formula— ¢ is not
provable inA), then there exists a logic mod®t € GF(X') in which ¢ is satisfiable.
Generally speaking, the smaller the class from which the realization models are drawn,
the stronger or tighter the completeness result.

An axiomatic proof system consists of a recursive list aikioms usually given by
taking all instances in the language of some finite séwhula schemesogether with
a finite list of inference rulesof the form: if ¢ is provable inA, then ¢ is provable
in A. A formula is provable ind if it is an axiom of A or is derivable from provable
formulas by a finite sequence of applications of inference rules. We Writep to
mean thatp is provable in the system.

A sound and complete axiomatic proof system for the IG@EL* remained an
open problem for almost 20 years, and was solved by Reynolds quite recently [16].
That axiomatization lays side by side a list of axioms for path formulae, obtained from
axiomatizingLTL together with a list of axioms for universal quantification over paths.

In addition, Reynolds’ proof system includes the axid¥ T, which asserts that the
underlying time line is discrete, or equivalently, the discrete successor map is total. It
also includes an additional inference rule, which isirguction rulefor “recursively
unwinding” Until formulae in terms of theext-timeoperator. The axiomatic proof
system we present f@& FL* consists of Reynolds’ system faTL*, minusthose last

two “discrete” items, the axiom and rule.



Let A be the proof system having as axioms all formulag(8ig) that are instances
of propositional tautologies, or are instances of the schéRBs- (P6)and(Q1) —(Q5)
below, and having as rules of inference the propositional ruladus Ponen$MP)
along with three monotonicity rules:

(Monold-1) : if kg o1 = @2 then Fxo o1 Uyt) = p2Uptp
(Monol{-2) : if b4 1 — s then by @Uathy — U1,
(MonoV) : if F41o—¢Y then F4 Yo — Vo0

(P1): Vo (TUT)

(P2): —(TU,L)

(P3): (pUathr A =(@Uath2)) = U (Y1 A =1b2)

(P4): (pr1lath A =(pallath)) — p1lla(p1 A =2 A p1lda))
(P5): U = (o A pUah)Usyp

(P6): QU (p N pUD) = U1

(P7): (P1latpr A pallatpa) — ((p1 A p2) U (Y1 A th2)

V(o1 A p2) Ua(p2 A1)
V(o1 A p2) Ua (1 Aha))

(Q1): v, T

(Q2): Vol Ap) = (Yap AVar))
(QS) Voo = VoVe0
(Q4): Vap = ¢

(Q5): 0 = Y,3up

Proposition 11. (Soundness of Axiomatisatiofpr every formulap € £(Sig),
Fa ¢ = ¢ € GFL*

The verification of soundness of an axiom schesmensists of showing thaft =
o for every modeb)t € GIF(X), and for an inference rule of the forih -4 ¢ then
F4 ¢, one needs to show thatlft = ¢, thendt = ), for all modelsdt € GF (X).

We give some verbal explanation for a selection of the axioms. The first ag#dn,
asserts that the union ovenof all type-a paths is equal to the whole-path space of the
model. To understan@5), supposey is ana-path satisfyingp i, 1. Then there must
be some positive timealong~y at which the suffix path|y satisfies) and at all strictly
intermediate points along the suffix paths satisfy. In particular at all those strictly
intermediate points, the suffix paths satigfandp U, 1, meaning thaty satisfieqp A
©U, ) U, 1p. The axiom(P6) is sound because of the fusion closure of theath
space since the antecedent contains embelddgédoperators. The axiom(Q1-Q5)all
follow directly from the meaning of the universal (and existential) quantification. The
three rules all express the monotonicity of the operators with respect to subset inclusion.



7 Summary and discussion

In this paper, we propose and develop a quite general class of dynamical system models
we callgeneral flow systemsghich include and extend the broad class of evolutionary
systems identified by Aubin, and the complete state behaviours of Willems. The ad-
vance specifically consists in modellihgbrid time pathss entities in their own right.

We take the syntactic constructs of the non-deterministic and branching temporal logic
CTL* originally developed for discrete time models, and re-interpret them in a seman-
tics over general flow systems and with respect to arbitrary time lines. We propose a
first candidate for an axiomatic proof system for the class of general flow models, and
establish the soundness or adequacy of the proof system.
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