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Abstract

We take the well-known intuitionistic modal logic of Fischer Servi with seman-
tics in bi-relational Kripke frames, and give the natural extension to topological
Kripke frames. Fischer Servi’s two interaction conditions relating the intuitionistic
pre-order (or partial-order) with the modal accessibility relation generalise to the
requirement that the relation and its inverse be lower semi-continuous with respect
to the topology. We then investigate the notion of topological bisimulation relations
between topological Kripke frames, as introduced by Aiello and van Benthem, and
show that their topology-preserving conditions are equivalent to the properties that
the inverse-relation and the relation are lower semi-continuous with respect to the
topologies on the two models. Our first main result is that this notion of topological
bisimulation yields semantic preservation w.r.t. topological Kripke models for both
intuitionistic tense logics, and for their classical companion multi-modal logics in
the setting of the Gödel translation. After giving canonical topological Kripke mod-
els for the Hilbert-style axiomatizations of the Fischer Servi logic and its classical
companion logic, we use the canonical model in a second main result which char-
acterizes a Hennessy-Milner class of topological models between any pair of which
there is a maximal topological bisimulation that preserve the intuitionistic semantics.
The Hennessy-Milner class we identify includes transition system representations of
hybrid automata over a product state space whose factors are a Euclidean space
and a finite discrete space equipped with an Alexandrov topology determined by a
pre-order.
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1 Introduction

Topological semantics for intuitionistic logic and for the classical modal logic S4 have a
long history going back to Tarski and co-workers in the 1930s and 40s, predating the
relational Kripke semantics for both [29, 36]. A little earlier again is the 1933 Gödel trans-
lation GT [23] of intuitionistic logic into classical S4. The translation makes perfect sense
within the topological semantics: where the S4 � is interpreted by topological interior,
the translation GT(¬ϕ) = �¬GT(ϕ) says that intuitionistic negation calls for the interior
of the complement, and not just the complement. In the topological semantics, a basic
semantic object is the denotation set Jϕ KM of a formula ϕ, consisting of the set of all
states/worlds of the model M at which the formula is true, and the semantic clauses of
the logic are given in terms of operations on sets of states. The intuitionistic requirement
on the semantics is that all formulas must denote open sets: that is, sets that are equal
to their own interior. Any formula ϕ partitions the state space X into three disjoint sets:
the two open sets Jϕ KM and J¬ϕ KM, and the closed set bd(Jϕ KM), with the points in
the topological boundary set bd(Jϕ KM) falsifying the law of excluded middle, since they
neither satisfy nor falsify ϕ.

For the extension from intuitionistic propositional logics to intuitionistic modal logics,
Fischer Servi in the 1970s [18, 19, 20] developed semantics over bi-relational Kripke frames,
and this work has generated a good deal of research [11, 17, 22, 25, 34, 37, 41, 42]. In
bi-relational frames (X,4, R) where 4 is a pre-order (quasi-order) for the intuitionistic
semantics, and R is a binary accessibility relation on X for the modal operators, the two
Fischer Servi conditions are equivalent to the following relation inclusions [20, 34, 37]:

(R−1◦ 4) ⊆ (4 ◦R−1) and (R ◦ 4) ⊆ (4 ◦R) (1)

where ◦ is relational/sequential composition, and (·)−1 is relational inverse. Axiomatically,
the base Fischer Servi modal logic IK has normality axioms for both the modal box �·
and the diamond 6· , as well as the additional two axiom schemes:

FS1 : 6· (ϕ→ ψ) → (�·ϕ→6· ψ) and FS2 : (6· ϕ→ �·ψ) → �·(ϕ→ ψ) (2)

A study of various normal extensions of IK is given in [37], and the finite model property
and decidability of IK is established in [25] and further clarified in [22]. Earlier, starting
from the 1950s, the intuitionistic S5 logic MIPC [35, 10] was given algebraic semantics in
the form of monadic Heyting algebras [6, 31, 32, 39, 40]1 and later as bi-relational frames
with an equivalence relation for the S5 modality [7, 16, 32, 39]. This line of work has
focused on MIPC = IK⊕T�·6· ⊕5�·6· and its normal extensions2, and translations into
intuitionistic and intermediate predicate logics. Within algebraic semantics, topological
spaces arise in the context of Stone duality, and in [6, 7, 16], the focus restricts to Stone
spaces (compact, Hausdorff and totally disconnected, having as a basis the Boolean algebra
of closed-and-open sets).

1The additional monadic operators are ∀ and ∃ unary operators behaving as S5 box and diamond
modalities, and come from Halmos’ work on monadic Boolean algebras.

2Here, T�·6· is the conjunction of the separate �· and 6· characteristic schemes for reflexivity, and
likewise 5�·6· for Euclideanness, so together they characterize equivalence relations.
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In this paper, following [14], we give semantics for intuitionistic modal logic over topo-
logical Kripke frames F = (X, T , R), where (X, T ) is a topological space and R ⊆ X ×X
is an accessibility relation for the modalities; the Fisher Servi bi-relational semantics are
straight-forwardly extended from pre-orders 4 on X and their associated Alexandrov topol-
ogy T4, to arbitrary topological spaces (X, T )3. Over topological Kripke frames, the two
Fischer Servi bi-relational conditions on the interaction between modal and intuitionistic
semantics ((1) above) generalize to semi-continuity properties of the relation R, and of its
inverse R−1, with respect to the topology. As for the base logic, Fischer Servi’s extension
of the Gödel translation reads as a direct transcription of the topological semantics. The
translation GT( �·ϕ ) = ��· GT(ϕ) says that the intuitionistic box requires the interior of
the classical box operator, since the latter is defined by an intersection and may fail to
preserve open sets. In contrast, the translation clause GT(6· ϕ ) = 6· GT(ϕ) says that,
semantically, the operator 6· preserves open sets. This condition is exactly the lower
semi-continuity (l.s.c.) condition on the accessibility relation, and corresponds to the first
Fischer Servi bi-relational inclusion R−1◦ 4⊆4 ◦R−1 in (1), and it is this condition that
is required to verify topological soundness of the axiom scheme FS1 in (2)4. Similarly,
Fischer Servi’s second bi-relational inclusion R ◦ 4⊆4 ◦R generalizes to the l.s.c. prop-
erty of the R−1 relation, where the latter is required to verify topological soundness of the
axiom scheme FS2 in (2).

The symmetry of the interaction conditions on the modal relation R and its inverse
R−1 means that we can – with no additional semantic assumptions – lift the topological
semantics to intuitionistic tense logics extending Fischer Servi’s modal logic (introduced
by Ewald in [17]), with modalities in pairs 6· , �· , and f· , �· , for future and past along the
accessibility relation. It soon becomes clear that the resulting semantics and meta theoretic
results such as completeness come out cleaner and simpler for the tense logic than they
do for the modal logic. We can often streamline arguments involving the box modality �·
by using its adjoint diamond f· , which like 6· , preserves open sets. Furthermore, with
regard to applications of interest, the flexibility of having both forwards and backwards
modalities is advantageous.

For example, the core of transition system representations of dynamical systems (with
discrete, continuous or hybrid evolution) is the reachability relation: one state has a second
as a reachability successor iff there is a trajectory of the dynamical system leading from
the first state to the second, and in general the dynamics are non-deterministic in the sense
that there are multiple trajectories leading out of any state [3, 5, 13]. In this setting, a
formula f· p denotes the set of states reachable from the p states, with p considered as a

3Other work giving topological semantics for intuitionistic modal logics is [41], further investigated in
[27]. This logic is properly weaker than Fischer Servi’s as its intuitionistic diamond is not required to
distribute over disjunction (hence is sub-normal). Both the bi-relational and topological semantics in [41]
and the relational spaces in [27] have no conditions on the interaction of the intuitionistic and modal
semantic structures, and the semantic clauses for both box and diamond require application of the interior
operator to guarantee open sets.

4In the algebraic setting of Monteiro and Varsavsky’s work [31] w.r.t. the logic MIPC, a special case
of the l.s.c. property is anticipated: the lattice of open sets of a topological space is a complete Heyting
algebra, and the structure yields a monadic Heyting algebra when the space is further equipped with an
equivalence relation R with the property that the R-expansion of an open set is open.
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source or initial state set, while the forward modal diamond formula 6· p denotes the set
of states from which p states can be reached, here p denoting a target or goal state set.
The compound formula �·(6· p ∧f· p) denotes the states from which the dynamics always
recurrently visits p states, in the sense that along every trajectory from such a state,
at every point, the trajectory leads to a p-state in the future and leads from a p-state
in the past. The state spaces of dynamical systems (of varying sorts) can be equipped
with natural topologies (of varying sorts). For continuous dynamical systems, and the
continuous components of hybrid systems, under some standard regularity assumptions
on the differential inclusions or equations defining the dynamics [4, 5], the reachability
relation R and its inverse will be l.s.c. (as well as reflexive and transitive).

As an example of a topological concept expressible in the logics, consider the notion
from [2] of a subset A ⊆ X being topologically stable under a relation R ⊆ X × X in a
topological space (X, T ) if for all open sets U ∈ T , if A ⊆ U , then there exists an open set
V ∈ T such that A ⊆ V and for all x, x′ ∈ X, if x ∈ V and xRx′, then x′ ∈ U . In words:
if you start within the neighborhood V of A, then all your R-successors lie in the given
neighborhood U of A. Let M = (X, T , R, v) be a topological Kripke model, with valuation
v(p0) = J p0 KM = A. We can express the topological stability property of the set A under
the classical semantics by the inference rule: from p0 → �ψ, infer p0 → ��·�ψ, or
using the universal modality5 by the formula scheme:

0u (p0 → �ψ) → 0u (p0 → ��·�ψ)

provided the modelM is such that the topology T is suitably ‘saturated’ inM, in the sense
that the family of all denotation sets J�ψ KM, for ψ ranging over all formulas, constitutes
a basis for the topology T . Under the intuitionistic semantics, where all formulas denote
open sets, and in particular, A = J p0 KM must be open, the topological stability property
reduces to invariance for p0, expressed by the validity of p0 → �·p0 in the model M.

We continue on the theme of semi-continuity properties of relations in our second topic
of investigation, namely that of topological bisimulations between topological Kripke mod-
els. A bisimulation notion for topological spaces (X, T ) has recently been developed by
Aiello and van Benthem (e.g. [1], Def. 2.1). We show below that their forth and back
topology-preserving conditions are equivalent to the lower semi-continuity of the inverse
relation and of the relation, respectively. The first main result of the paper is that this
notion of topological bisimulation yields the semantic preservation property w.r.t. topo-
logical Kripke models for both intuitionistic tense logics, and for their classical companion
multi-modal logics in the setting of the Gödel translation, where semantic preservation
means that bisimilar states satisfy the same set of formulas in their respective models, and
thus are indistinguishable in the logic.

In the next part of the paper, we give canonical topological Kripke models for the
Hilbert-style axiomatizations of the Fischer Servi logics and their classical companions
logics – over the set of prime theories of the intuitionistic logic and the set of ultrafilters of
the companion classical logic, respectively, with topologies on the spaces that are neither

5In a multi-modal language including 0u , the classical semantics in a model M with state space X are
that J0u ϕ KM = X if Jϕ KM = X, and otherwise J0u ϕ KM = ∅.
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Alexandrov nor Stone. While the canonical models are of interest in their own right,
the primary use made of them here is as a means to establish the second main result of
the paper, which addresses the question of which classes of models have the Hennessy-
Milner property that indistinguishability under a topological bisimulation coincides with
indistinguishability in the intuitionistic logic, or with indistinguishability in companion
classical logics. For both semantics, we identify a class of models M with the property
that the natural (single-valued) map from M into the canonical model is a topological
bisimulation. Then for any two models M and M′ in the class, the composition of the
natural map fromM with the inverse of the map fromM′ will be a topological bisimulation
which maximally preserves indistinguishability in the semantics. We first give a logical
characterization of the Hennessy-Milner class in terms of ‘saturation’ concepts developed
for the classical topological and intuitionistic semantics, and then identify a set of purely
topological conditions that together are sufficient for a model to be in the given Hennesy-
Milner class.

The paper is organized as follows. Section 2 covers preliminaries from general topology,
particularly continuity of relations or set-valued maps. Section 3 sets out the syntax and
topological semantics of Fischer Servi intuitionistic modal and tense logics, and their clas-
sical companion logics, while Section 4 introduces topological bisimulations and includes
the semantic preservation results. In Section 5, we give canonical topological models for
axiomatizations of the Ewald’s intuitionistic tense logic and its classical companion. The
lengthy Section 6 is mostly devoted to the Hennessy-Milner property for the intuitionistic
semantics, ending with a brief sketch of an analogous result for the classical topological
semantics, and in Section 7, we investigate the given Hennessy-Milner class for the intu-
itionistic semantics, and characterize in purely topological terms a sub-class of the given
class.

2 Preliminaries from general topology

We adopt the notation from set-valued analysis [4] in writing r : X ; Y to mean both
that r : X → P(Y ) is a set-valued map, with (possibly empty) set-values r(x) ⊆ Y for
each x ∈ X, and equivalently, that r ⊆ X × Y is a relation. The expressions y ∈ r(x),
(x, y) ∈ r and x r y are synonymous. For a map r : X ; Y , the inverse r−1 : Y ; X
given by: x ∈ r−1(y) iff y ∈ r(x); the domain is dom(r) := {x ∈ X | r(x) 6= ∅}, and
the range is ran(r) := dom(r−1) ⊆ Y . A map r : X ; Y is total on X if dom(r) = X,
and surjective on Y if ran(r) = Y . We write (as usual) r : X → Y to mean r is a
function, i.e. a single-valued map total on X with values written r(x) = y (rather than
r(x) = {y}). For r1 : X ; Y and r2 : Y ; Z, we write their relational composition as
r1 ◦ r2 : X ; Z given by (r1 ◦ r2)(x) := {z ∈ Z | (∃y ∈ Y ) [(x, y) ∈ r1 ∧ (y, z) ∈ r2]}.
Recall that (r1 ◦ r2)−1 = r−1

2 ◦ r−1
1 . A pre-order (quasi-order) is a reflexive and transitive

binary relation, and a partial-order is a pre-order that is also anti-symmetric.
A relation r : X ; Y determines two pre-image operators (predicate transformers).

The existential (or lower) pre-image is of type r−∃ : P(Y ) → P(X) and the universal (or
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upper) pre-image r−∀ : P(Y ) → P(X) is its dual w.r.t. set-complement:

r−∃(Z) := {x ∈ X | (∃y ∈ Y )[ (x, y) ∈ r ∧ y ∈ Z]}
= {x ∈ X | Z ∩ r(x) 6= ∅}

r−∀(Z) := X − r−∃(Y − Z) = {x ∈ X | r(x) ⊆ Z}

for all Z ⊆ Y . The operator r−∃ distributes over arbitrary unions, while r−∀ distributes
over arbitrary intersections: r−∃(∅) = ∅, r−∃(Y ) = dom(r), r−∀(∅) = X − dom(r), and
r−∀(Y ) = X. Note that when r : X → Y is a function, the pre-image operators reduce
to the standard inverse-image operator; i.e. r−∃(Z) = r−∀(Z) = r−1(Z). The pre-image
operators respect relational inclusions: if r1 ⊆ r2 ⊆ X × Y , then for all W ⊆ Y , we have
r−∃1 (W ) ⊆ r−∃2 (W ), but reversing to r−∀2 (W ) ⊆ r−∀1 (W ). For the case of binary relations
r : X ; X on a space X, the pre-images express in operator form the standard relational
Kripke semantics for the (future) diamond and box modal operators determined by r. The
operators on sets derived from the inverse relation r−1 are usually called the post-image
operators r∃, r∀ : P(X) → P(Y ) defined by r∃ := (r−1)−∃ and r∀ := (r−1)−∀; these arise
in the relational Kripke semantics for the past diamond and box operators in tense and
temporal logics. The fundamental relationship between pre- and post-images is the adjoint
property :

∀W ⊆ X, ∀Z ⊆ Y, W ⊆ r−∀(Z) iff r∃(W ) ⊆ Z . (3)

Note that for compositions of relations, with r1 : X ; Y and r2 : Y ; Z, the pre- and
post-image operators satisfy (r1◦r2)−Q(Z) = r−Q

1 (r−Q
2 (Z)) and (r1◦r2)Q(W ) = rQ

2 (rQ
1 (W ))

for quantifiers Q ∈ {∃,∀}, and sets Z ⊆ Y and W ⊆ X.
A topology T ⊆ P(X) on a set X is a family of subsets of X closed under arbitrary

unions and finite intersections. The extreme cases are the discrete topology TD = P(X),
and the trivial (or indiscrete) topology T∅ = {∅, X}. The interior operator intT : P(X) →
P(X) determined by T is given by intT (W ) :=

⋃
{U ∈ T | U ⊆ W}. Sets W ∈ T are

called open w.r.t. T , and this is so iff W = intT (W ). Sets W ⊆ X such that (X−W ) ∈ T
are called closed w.r.t. T , and this is so iff W = clT (W ), where the dual closure operator
clT : P(X) → P(X) is given by clT (W ) := X− clT (X−W ), and the topological boundary
is bdT (W ) := clT (W ) − intT (W ). A family of open sets B ⊆ T constitutes a basis for a
topology T on X if every open set W ∈ T is a union of basic opens in B, and for every
x ∈ X and every pair of basic opens U1, U2 ∈ B such that x ∈ U1 ∩U2, there exists U3 ∈ B
such that x ∈ U3 ⊆ (U1 ∩ U2). A family of sets {Wi}i∈I in X has the finite intersection
property if the intersection of every finite sub-family is non-empty; i.e. for every finite
subset F ⊆ I of indices,

⋂
i∈F Wi 6= ∅. An elementary result we use is that a topological

space (X, T ) is compact iff for every family of sets {Wi}i∈I with the finite intersection
property, the intersection of all the closures is non-empty:

⋂
i∈I clT (Wi) 6= ∅.

The purely topological notion of continuity for a function f : X → Y is that the inverse
image f−1(U) is open whenever U is open. Analogous notions for relations/set-valued maps
were first introduced by Kuratowski and Bouligand in the 1920s. Given two topological
spaces (X, T ) and (Y,S), a map R : X ; Y is called: lower semi-continuous (l.s.c.) if
for every S-open set U in Y , R−∃(U) is T -open in X; upper semi-continuous (u.s.c.) if for
every S-open set U in Y , R−∀(U) is T -open in X; and Vietoris continuous if it is both
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l.s.c. and u.s.c. [4, 9, 28, 38]. The u.s.c. condition is equivalent to R−∃(V ) is T -closed in X
whenever V is S-closed in Y . Moreover, we have: R : X ; Y is l.s.c. iff R−∃(intS(W )) ⊆
intT (R−∃(W )) for all W ⊆ Y ; and R : X ; Y is u.s.c. iff R−∀(intS(W )) ⊆ intT (R−∀(W ))
for all W ⊆ Y ([28], Vol. I, §18.I, p.173). The two semi-continuity properties reduce
to the standard notion of continuity for functions R : X → Y , and both are preserved
under relational composition, and also under finite unions of relations. We also make a
limited use of yet another notion, that of outer semi-continuity (o.s.c.) which holds of a
map R : X ; Y if R(x) is closed for all x ∈ dom(R) (R is closed-valued) and R−∃(V ) is
T -closed in X whenever V is S-compact in Y . A map R : X ; Y is called Fell continuous
if it is l.s.c. and o.s.c. 6 If Y is Hausdorff and R is image-closed, then R being u.s.c. implies
R is o.s.c.

We note the subclass of Alexandrov topologies because of their correspondence with
Kripke relational semantics for classical S4 and intuitionistic logics. e.g. [1, 30]. A topo-
logical space (X, T ) is called Alexandrov if for every x ∈ X, there is a smallest open
set U ∈ T such that x ∈ U . In particular, every finite topology (i.e. only finitely many
open sets) is Alexandrov. There is a one-to-one correspondence between pre-orders on X
and Alexandrov topologies on X. Any pre-order 4 on X induces an Alexandrov topology
T4 by taking intT4(W ) := (4)−∀(W ), which means U ∈ T4 iff U is upwards-4-closed.
In particular, T4 is closed under arbitrary intersections as well as arbitrary unions, and
−T4 = T<. Conversely, for any topology, define a pre-order 4T on X, known as the spe-
cialisation pre-order : x 4T y iff (∀U ∈ T ) [x ∈ U ⇒ y ∈ U ]. For any pre-order, 4T4 = 4,
and for any topology, T4T = T iff T is Alexandrov (e.g. see [1]). Alexandrov topologies
have weak separation properties: the only Alexandrov topology that is Hausdorff is the
discrete topology.

3 Syntax and topological semantics

Fix a countable set AP of atomic propositions. The propositional language L0 is generated
from p ∈ AP using the connectives ∨, ∧, → and the constant ⊥. As usual, define further
connectives: ¬ϕ := ϕ → ⊥ and ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and > := ⊥ → ⊥.
Let L0,� be the mono-modal language extending L0 with the addition of the unary modal
operator �. A further modal operator 3 can be defined as the classical dual: 3ϕ := ¬�¬ϕ.

For the intuitionistic modal and tense languages, let Lm (Lt) be the modal (tense)
language extending L0 with the addition of two (four) modal operators 6· and �· (and f·
and �·) , generated by the grammar:

ϕ ::= p | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 |6· ϕ | �·ϕ ( |f· ϕ | �·ϕ )

6The Fell and Vietoris topologies are two possible structures on the set of ClT [X] of closed subsets of
a space, and continuity of set-valued maps R : X ; Y can be equivalently formulated as continuity of
functions R : X → ClT [Y ] when all images R(x) are closed sets in Y . When Y is compact Hausdorff, the
Fell and Vietoris topologies on ClT [Y ] coincide, and for such Y , if R is image-closed, then the u.s.c. and
o.s.c. properties are equivalent.
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for p ∈ AP . Likewise, for the classical topological modal and tense logics, let Lm
� (Lt

�) be
the modal (tense) language extending L0,� with the addition of6· and �· (andf· and �·).

The original Gödel translation [23], as a function GT : L0 → L0,�, simply prefixes �
to every subformula of a propositional formula. Reading the S4 � as topological interior,
this means we force every propositional formula to intuitionistically denote an open set. In
Fischer Servi’s extension of the Gödel translation [20, 18], the clauses for the propositional
fragment are from a variant translation used by Fitting [21], who shows it to be equivalent
to Gödel’s original ([21], Ch. 9, # 20). Define the function GT : Lt → Lt

� by induction
on formulas as follows:

GT(p) := �p for p ∈ AP

GT(ϕ1 → ϕ2) := � (GT(ϕ1) → GT(ϕ2)) GT(⊥) := ⊥
GT(ϕ1 ∨ ϕ2) := GT(ϕ1) ∨GT(ϕ2) GT(ϕ1 ∧ ϕ2) := GT(ϕ1) ∧GT(ϕ2)

GT(6· ϕ ) := 6· GT(ϕ) GT(f· ϕ ) := f· GT(ϕ)

GT( �·ϕ ) := ��· GT(ϕ) GT( �·ϕ ) := ��· GT(ϕ)

In topological terms, the only clauses in the translation where it is essential to have an
explicit � to guarantee openness of denotation sets are for atomic propositions, for impli-
cation →, and for the box modalties �· and �· . There is no such need in the clauses for ∨
and ∧ because finite unions and finite intersections of open sets are open. For the diamond
modalties, the semi-continuity conditions that R and its inverse R−1 are both l.s.c. ensure
that the semantic operators R−∃ and R∃ interpretting 6· and f· must preserve open sets.
We now explain this generalization, which was first presented in [14].

The bi-relational semantics of Fischer Servi [18, 19], and Plotkin and Stirling [34, 37]
are over Kripke frames F = (X,4, R), where 4 is a pre-order on X and R : X ; X is the
modal accessibility relation. Using the induced Alexandrov topology T4, a bi-relational
Kripke frame F is equivalent to the topological frame (X, T4, R). A set is open in T4

exactly when it is 4-persistent or upward-4-closed. The four bi-relational conditions
identified in [34], and also familiar as the forth (“Zig”) and back (“Zag”) conditions for
bisimulations (e.g. [8], Ch. 2), can be cleanly transcribed as semi-continuity conditions on
the relations R : X ; X and R−1 : X ; X with respect to the topology T4.

Definition 3.1 Let F = (X,4, R) be a bi-relational frame. Four conditions expressing
interaction between 4 and R are identified as follows:

Zig(4, R) : if x 4 y and xRx′ then (∃y′ ∈ X)
[
y R y′ and x′ 4 y′

]
Zag(4, R) : if x 4 y and y R y′ then (∃x′ ∈ X)

[
xRx′ and x′ 4 y′

]
Zig(4, R−1) : if x 4 y and x′Rx then (∃y′ ∈ X)

[
y′Ry and x′ 4 y′

]
Zag(4, R−1) : if x 4 y and y′Ry then (∃x′ ∈ X)

[
x′Rx and x′ 4 y′

]
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From earlier work [12], we know these bi-relational conditions correspond to semi-
continuity properties of R with respect to the Alexandrov topology T4.

Proposition 3.2 ([12]) Let F = (X,4, R) be a bi-relational frame, with T4 it induced
topology. The conditions in each row below are equivalent.

1. Zig(4, R) (R−1◦ 4) ⊆ (4 ◦R−1) R is l.s.c. in T4

2. Zag(4, R) (4 ◦R) ⊆ (R ◦ 4) R is u.s.c. in T4

3. Zig(4, R−1) (R ◦ 4) ⊆ (4 ◦R) R−1 is l.s.c. in T4

4. Zag(4, R−1) (4 ◦R−1) ⊆ (R−1◦ 4) R−1 is u.s.c. in T4

The Fischer Servi interaction conditions between the intuitionistic and modal relations,
introduced in [19] and used in [17, 20, 25, 34, 37], are the first and third bi-relational condi-
tions Zig(4, R) and Zig(4, R−1). In Kripke frames meeting these conditions, one can give
semantic clauses for the diamond and box that are natural under the intuitionistic reading
of the restricted ∃ and ∀ quantification with respect to R-successors. More precisely, the
resulting logic is faithfully embedded into intuitionistic first-order logic by the standard
modal to first-order translation, and a natural extension of the Gödel translation faithfully
embeds it into the classical bi-modal logic combining S4� with K or extensions.

Since the Fischer Servi interaction conditions for the forward or future modal operators

6· and �· for R require the same l.s.c. property of both R and R−1, this means that, at no
extra cost in semantic assumptions, we can add on the backward or past modal operators

f· and �· for R−1, and obtain the desired interaction condition for R−1 for free.

Definition 3.3 A topological frame is a structure F = (X, T , R) where (X, T ) is a topo-
logical space and R : X ; X is a binary relation. F is an l.s.c. topological frame if both
R and R−1 are l .s .c. in T . A model over F is a structure M = (F , v) where v : AP ; X
is an atomic valuation relation. A model M is an open model if for each p ∈ AP, the de-
notation set v(p) is open in T . For open models M over l .s .c. frames F , the intuitionistic
denotation map J·KMI : Lt ; X (or J · KMI : Lm ; X) is defined by:

JpKMI := v(p) for p ∈ AP J⊥KMI := ∅

Jϕ1 → ϕ2KMI := intT ((X − Jϕ1KMI ) ∪ Jϕ2KMI )

Jϕ1 ∨ ϕ2KMI := Jϕ1KMI ∪ Jϕ2KMI Jϕ1 ∧ ϕ2KMI := Jϕ1KMI ∩ Jϕ2KMI
J6· ϕKMI := R−∃(JϕKMI ) J�·ϕKMI := intT

(
R−∀(JϕKMI )

)
Jf· ϕKMI := R∃(JϕKMI ) J�·ϕKMI := intT

(
R∀(JϕKMI )

)
.
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A formula ϕ is satisfiable in M if JϕKMI 6= ∅, and ϕ is falsifiable in M if JϕKMI 6= X. For
a formula ϕ ∈ Lt (or ϕ ∈ Lm ), we write M 
 ϕ , if JϕKMI = X, and for an l .s .c. frame
F = (X, T , R), we write F 
 ϕ , if M 
 ϕ for all open models M over F .

Let LSC denote the class of all l .s .c. topological frames. For any class of frames
F ⊆ LSC, define the intuitionistic theory of F to be:

ThI(F) := {ϕ ∈ Lt | (∀F ∈ F) F 
 ϕ } .

The property that every denotation set Jϕ KMI is open in T follows immediately from
the openness condition on v(p), the l.s.c. properties of R−∃ and R∃, and the extra interior
operation in the semantics for →, �· and �· .
Definition 3.4 For the tense (modal) language Lt

� ( and Lm
� ), we define the classical

denotation map J · KM : Lt
� ; X ( J · KM : Lm

� ; X ) with respect to arbitrary topological
models M = (X, T , R, v), where v : AP ; X is unrestricted. The map J · KM is defined
the same way as J · KMI for atomic p ∈ AP, ⊥, ∨, ∧, 6· and f· , but differs on the following
clauses:

Jϕ1 → ϕ2KM := (X − Jϕ1KM) ∪ Jϕ2KM J�ϕ KM := intT (Jϕ KM)

J�·ϕKM := R−∀ (JϕKM) J�·ϕKM := R∀ (JϕKM) .

For a formula ϕ ∈ Lt
� (or ϕ ∈ Lm

� ), we write M |= ϕ , if JϕKM = X, and for a topological
frame F = (X, T , R), we write F |= ϕ , if M |= ϕ for all models M over F .

Let T denote the class of all topological frames. For any class of topological frames
F ⊆ T, define the classical theory of F to be:

Th(F) := {ψ ∈ Lt
� | (∀F ∈ F) F |= ψ } .

For Fischer Servi’s extension of Gödel’s translation, Definitions 3.3 and 3.4 imply that
for any model M = (F , v) over an l.s.c. topological frame F , if M′ = (F , v′) is the variant
open model with v′(p) := intT (v(p)), then ∀ϕ ∈ Lt:

JϕKM
′

I = J GT(ϕ) KM = J�GT(ϕ) KM. (4)

Consequently, we have semantic faithfulness, as well as the openness property: for all
ϕ ∈ Lt, the formula GT(ϕ) ↔ �GT(ϕ) is in ThI(LSC).

Proposition 3.5 [Extended Gödel translation: semantic faithfulness]
For all ϕ ∈ Lt, ϕ ∈ ThI(LSC) iff GT(ϕ) ∈ Th(LSC).

The semi-continuity conditions can be cleanly characterized in the companion classical
multi-modal logics, as given in [15].

Proposition 3.6 [[15] Modal characterization of semi-continuity conditions]
Let F = (X, T , R) be a topological frame and let p ∈ AP. In the following table, the
conditions listed across each row are equivalent.
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(1.) R is l .s .c. in T F |=6·�p→ �6· p F |=6·�p↔ �6·�p
(2.) R is u.s .c. in T F |= �·�p→ ��·p
(3.) R−1 is l .s .c. in T F |= ��·p→ �·�p F |=f·�p↔ �f·�p
(4.) R−1 is u.s .c. in T F |= �6· p→6·�p

For naturally occurring l.s.c. topological frames, consider frames F where X ⊆ Rn,
with norm ‖·‖ on Rn inducing the standard Euclidean topology TE on X (as a subspace of
Rn). Let AC(X) be the set of all functions γ : [0, τ ] → X such that τ ∈ R+

◦ := [0,∞) and
γ is absolutely continuous on the real interval [0, τ ]. A differential inclusion is described
by a set-valued map F : X ; Rn, and solutions to the inclusion ẋ ∈ F (x) starting at
a state x ∈ X are defined by: SolF (x) :=

{
γ ∈ AC(X) | γ(0) = x ∧

(
d
dt
γ
)
(s) ∈ F (γ(s))

for almost all s ∈ [0, τ ] }. The set SolF (x) is partially ordered by inclusion (considering
solution curves as subsets γ ⊂ R+

◦ × X). To ensure the existence of non-trivial solutions
from each x ∈ cl(dom(F )), one needs to impose regularity assumptions on F : X ; Rn,
such as the Marchaud conditions [5]7. The reachability relation RF : X ; X is defined
by (x, x′) ∈ RF iff there exists γ ∈ SolF (x) such that γ(t) = x′ for some t ∈ dom(γ).
Clearly, RF is reflexive and transitive, so the 6· and �· modalities will satisfy the axioms
of S4. Under the Marchaud conditions (and weaker assumptions) on F , both the forwards
and backwards relations RF and R−1

F will be l.s.c., thus F = (X, TE, RF ) will be an l.s.c.
topological frame.

A hybrid automaton H (see, e.g., [3]) with continuous dynamics in Rn consists of a
finite family of differential inclusion maps Fq : Rn ; Rn and mode domains Dq ⊆ Rn

indexed by q ∈ Q, with Q the space of discrete modes, together with a transition graph
E : Q ; Q and family of reset or switching relations Sq,q′ : Rn ; Rn for each (q, q′) ∈ E,
describing when and how discrete changes of mode and dynamics are permitted. The
system H has the state space XH := {(q, x) ∈ Q×Rn | x ∈ Dq}, and reachability relation
RH : XH ; XH such that (q, x)RH (q′, x′) iff there is a H-trajectory of finite duration
leading from (q, x) to (q′, x′). Equipping XH with the product topology TH arising from
an Alexandrov topology T4 from a pre-prder 4 on Q and the Euclidean topology TE on
Rn, we have a topological frame FH = (XH , TH , RH). The product topology TH will then
be Hausdorff only in special cases, when the pre-order 4 is identity and T4 is discrete, or
when the mode domains Dq are pair-wise disjoint. Assume the reset relations Sq,q′ and
their inverses are l.s.c. with respect to TE on Rn (which implies that the transition guard
regions dom(Sq,q′) and the post-transition sets ran(Sq,q′) are open), and assume regularity
conditions on the continuous dynamics Fq and the domains Dq sufficient for the l.s.c.
property for their reachability relations Rq : Rn ; Rn and their inverses. Further assume
that the discrete transition relation E : Q ; Q is such that (E−1◦ 4) ⊆ (4 ◦E−1) and
(E◦ 4) ⊆ (4 ◦E), and hence E and E−1 are l.s.c. with respect to T4. Then the hybrid
reachability relation RH and its inverse will be l.s.c., and thus the frame FH will be l.s.c..

7(a) F is total on X; (b) F ⊆ X ×Rn is a closed set; (c) the image set F (x) is convex and compact
in Rn for every x ∈ dom(F ); and (d) there exists a real constant c > 0 such that sup{ ‖y‖ | y ∈ F (x)} 6
c(‖x‖+ 1) for all x ∈ dom(F ).
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4 Topological bisimulations

Aiello and van Benthem’s notions of topological simulation and bisimulation between clas-
sical S4 topological models are as follows.

Definition 4.1 [[1], Definition 2.1] Let (X1, T1) and (X2, T2) be two topological spaces,
let v1 : AP ; X1 and v2 : AP ; X2 be valuations of atomic propositions, and let
M1 = (X1, T1, v1) and M2 = (X2, T2, v2) be topological models.
A relation B : X1 ; X2 is a topo-bisimulation between M1 and M2 if
(i.a) ∀x ∈ X1, ∀y ∈ X2, ∀p ∈ AP , if xB y and x ∈ v1(p) then y ∈ v2(p) ;
(i.b) ∀x ∈ X1, ∀y ∈ X2, ∀p ∈ AP , if xB y and y ∈ v2(p) then x ∈ v1(p) ;
(ii.a) ∀x ∈ X1, ∀y ∈ X2, ∀U ∈ T1, if xB y and x ∈ U

then ∃V ∈ T2 with y ∈ V and ∀y′ ∈ V, ∃x′ ∈ U such that x′B y′ ;
(ii.b) ∀x ∈ X1, ∀y ∈ X2, ∀V ∈ T2, if xB y and y ∈ V

then ∃U ∈ T1 with x ∈ U and ∀x′ ∈ U, ∃y′ ∈ V such that x′B y′ .
If only conditions (i.a) and (ii.a) hold of a relation B : X1 ; X2, then B is called a
topo-simulation of M1 by M2.

Our first observation is that the topological conditions (ii.b) and (ii.a) are equivalent
to lower semi-continuity properties of the relation B and its inverse.

Proposition 4.2 Given a map B : X1 ; X2 between (X1, T1) and (X2, T2),
(1.) B satisfies condition (ii.a) of Definition 4.1 iff B−1 is l.s.c.;
(2.) B satisfies condition (ii.b) of Definition 4.1 iff B is l.s.c..

Proof. By rewriting in terms of the pre- and post-image set-operators, it is easy to show
that conditions (ii.a) and (ii.b) are equivalent to the following:

(ii.a]) ∀U ∈ T1, B∃(U) ⊆ intT2
(
B∃(U)

)
(ii.b]) ∀V ∈ T2, B−∃(V ) ⊆ intT1

(
B−∃(V )

)
Clearly, (ii.a]) says that B∃(U) is open in X2 whenever U open in X1, while (ii.b]) says
that B−∃(V ) is open in X1 whenever V open in X2. a

For a suitable notion of topological bisimulation between topological Kripke models
for the intuitionistic and classical companion modal and tense logics under study here, we
need to put together the topology-preserving conditions (ii.a) and (ii.b) above with the
standard clauses respecting the modal/tense semantic structure.

Definition 4.3 Let M1 = (X1, T1, R1, v1) and M2 = (X2, T2, R2, v2) be two topological
models. A map B : X1 ; X2 will be called a tense topo-bisimulation between M1 and M2

if for all atomic p ∈ AP:

(i.a) B∃(v1(p)) ⊆ v2(p) (i.b) B−∃(v2(p)) ⊆ v1(p)
(ii.a) B−1 : X2 ; X1 is l .s .c. (ii.b) B : X1 ; X2 is l .s .c.
(iii.a) (B−1 ◦R1) ⊆ (R2 ◦B−1) (iii.b) (B ◦R2) ⊆ (R1 ◦B)
(iv.a) (B−1 ◦R−1

1 ) ⊆ (R−1
2 ◦B−1) (iv.b) (B ◦R−1

2 ) ⊆ (R−1
1 ◦B)
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If only conditions (i.a), (ii.a) and (iii.a) hold of the map B : X1 ; X2, then B is called a
modal topo-simulation of M1 by M2; if all but conditions (iv.a) and (iv.b) hold, then B
is a modal topo-bisimulation between M1 and M2.

What we discover is that this notion of bisimulation between models yields the same
semantic preservation property for both the intuitionistic and the classical semantics. Oth-
erwise put, the specifically topological requirement that the operators B∃ and B−∃ preserve
open sets is enough to push through the result for intuitionistic modal and tense logics.

Conditions (i.a) and (i.b) give the base case for atomic propositions, in an induction
on formulas ϕ ∈ Lt and for open l.s.c. models M1 and M2, for the following semantic
preservation inclusions in set-operator form:

B∃(Jϕ KM1
I ) ⊆ Jϕ KM2

I and B−∃(Jϕ KM2
I ) ⊆ Jϕ KM1

I (5)

and likewise for classical denotation maps Jϕ KMi , without restriction on the topological
models. We will also use the dual versions under the adjoint equivalence (3). These are:

Jϕ KM1
I ⊆ B−∀(Jϕ KM2

I ) and Jϕ KM2
I ⊆ B∀(Jϕ KM1

I ) (6)

and likewise for Jϕ KMi .
Combining all the four Zig-Zag conditions (iii.a), (iii.b), (iv.a) and (iv.b), one obtains

two relational equalities: (R1 ◦B) = (B ◦R2) and (R2 ◦B−1) = (B−1 ◦R1). The inductive
cases for f· and 6· in the proof of the set-operator semantic preservation inclusions (5),
for both the intuitionistic and the classical semantics, are easy consequences of these two
equalities.

The topological condition (ii.a) requiring that B−1 : X2 ; X1 be l.s.c. has a further
equivalent set-operator characterization: intT1(B

−∀(Z)) ⊆ B−∀(intT2(Z)), for all Z ⊆ X2;
symmetrically, condition (ii.b) requiring that B : X1 ; X2 be l.s.c. is equivalent to
intT2(B

∀(W )) ⊆ B∀(intT1(W )), for all W ⊆ X1. These are generalizations of the charac-
terization for binary relations on a single space X that is formalized in Proposition 3.6,
Row (3.).

The set-operator semantic preservation inclusions (5), for a formula ϕ ∈ Lt and a tense
topo-bisimulation B from model M1 to model M2, are equivalent to the condition that for
all states x in M1 and y in M2, if xB y then the formula ϕ is either satisfied by both
x in M1 and y in M2, or else it is not satisfied by either of them. Semantic preservation
thus means that bisimilar states satisfy the same formulas in their respective models.

Definition 4.4 Let M = (X, T , R, v) be a topological model. Define the classical the-
ory map ThM : X ; Lt

� to be the inverse of the denotation map J · KM : Lt
� ; X; that

is, ThM(x) := {ψ ∈ Lt
� | x ∈ Jψ KM}. When M is open and l .s .c., likewise define

the intuitionistic theory map ThMI : X ; Lt to be the inverse of the denotation map
J · KMI : Lt ; X, so ThMI (x) := {ϕ ∈ Lt | x ∈ Jϕ KMI }.

It is immediate that ThM1
I (x) = ThM2

I (y) holds exactly when x ∈ Jϕ KM1
I iff y ∈ Jϕ KM2

I

for all ϕ ∈ Lt, and likewise for the classical semantics.
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Theorem 4.5 [Semantic preservation for tense topo-bisimulations]
Let M1 = (X1, T1, R1, v1) and M2 = (X2, T2, R2, v2) be any two topological models, and let
B : X1 ; X2 be a tense topo-bisimulation between M1 and M2.

(1.) If M1 and M2 are open and l .s .c., then for all x ∈ X1 and y ∈ X2:

xB y implies ThM1
I (x) = ThM2

I (y) .

(2.) For all x ∈ X1 and y ∈ X2:

xB y implies ThM1(x) = ThM2(y) .

Proof. The proof proceeds as usual, by induction on the structure of formulas, to es-
tablish the two inclusions displayed in (5), or their analogs for the classical denotation
maps. As noted already, the base case for atomic propositions is given by conditions (i.a)
and (i.b), and the induction case for f· and 6· are immediate from conditions (iii) and
(iv). For the classical semantics in Part (2.), the argument is completely standard for the
propositional and modal/tense operators, and the case for topological � is given in [1].
For the intuitionistic semantics in Part (1.), we give the cases for implication → and for
box �· . Assume the result holds for ϕ1 and ϕ2 in Lt. In particular, from inclusions (5) and
(6), we have: (X1 − Jϕ1KM1

I ) ⊆ (X1 −B−∃(Jϕ1KM2
I )), and Jϕ2KM1

I ⊆ B−∀(Jϕ2 KM2
I ). Now:

B∃ (Jϕ1 → ϕ2 KM1
I )

= B∃ (intT1 ( (X1 − Jϕ1KM1
I ) ∪ Jϕ2KM1

I ))

⊆ B∃ (intT1
(
X1 −B−∃(Jϕ1KM2

I ) ∪ B−∀(Jϕ2KM2
I )

))
by induction hypothesis

= B∃ (intT1
(
B−∀(X2 − Jϕ1KM2

I ) ∪ B−∀(Jϕ2KM2
I )

))
by duality B−∀ /B−∃

⊆ intT2
(
B∃ (B−∀(X2 − Jϕ1KM2

I ) ∪ B−∀(Jϕ2KM2
I )

))
by B−1 being l.s.c.

⊆ intT2
(
B∃ (B−∀ ( (X2 − Jϕ1KM2

I ) ∪ Jϕ2KM2
I )

))
by monotonicity of B−∀

⊆ intT2 ( (X2 − Jϕ1KM2
I ) ∪ Jϕ2KM2

I ) by adjoint property

= Jϕ1 → ϕ2 KM2
I

Verifying that B−∃ (Jϕ1 → ϕ2 KM2
I ) ⊆ Jϕ1 → ϕ2 KM1

I proceeds similarly, using from the
induction hypothesis: (X2 − Jϕ1KM2

I ) ⊆ (X2 −B∃(Jϕ1KM1
I )), and Jϕ2KM2

I ⊆ B∀(Jϕ2 KM1
I ).

For the �· case:

J�·ϕ KM1
I

= intT1
(
R−∀

1 (Jϕ KM1
I )
)

⊆ intT1
(
R−∀

1

(
B−∀ (Jϕ KM2

I )
))

by induction hypothesis

⊆ intT1
(
B−∀ (R−∀

2 (Jϕ KM2
I )
))

since R1 ◦B = B ◦R2

⊆ B−∀ (intT2
(
R−∀

2 (Jϕ KM2
I )
))

by B−1 being l.s.c. (dual B−∀ form)

= B−∀ (Jϕ KM2
I )

The argument for �· symmetrically appeals to B being l.s.c. (dual B∀ form). a

In Section 6 below, we give a partial converse (Hennessy-Milner type result) by proving
that a certain class of open l.s.c. models has the property that for any two models M
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and M′ in the class, there is a tense topo-bisimulation B between them that maximally
preserves the intuitionistic semantics, in the sense that for all x ∈ X and y ∈ X ′:

xB y iff ThMI (x) = ThM
′

I (y) .

A key ingredient in the Hennessy-Milner type result is the canonical topological model of
the base Fisher Servi tense logic, as developed in the next section.

5 Axiomatizations and canonical models

Let IPC ⊆ L0 be the set of intuitionistic propositional theorems, and abusing notation,
let IPC also denote a standard axiomatisation for that logic. Likewise, let S4� ⊆ L0,� be
the set of theorems of classical S4, and let S4� also denote any standard axiomatisation
of classical S4. To be concrete, let S4� contain all instances of classical propositional
tautologies in the language L0,�, and of the axiom schemes:

N� : �> T� : �ϕ→ ϕ

R� : �(ϕ1 ∧ ϕ2) ↔ �ϕ1 ∧�ϕ2 4� : �ϕ→ ��ϕ

and be closed under the inference rules of modus ponens (MP), uniform substitution
(Subst) (of formulas for atomic propositions), and �-monotonicity (Mono�): from ϕ1 →
ϕ2 infer �ϕ1 → �ϕ2.

On notation, for any axiomatically presented logic Λ in a language L, set of formulas
Ψ ⊆ L and formula ϕ ∈ L, we write Ψ `Λ ϕ to mean that there exists a finite set
{ψ1, . . . , ψn} ⊆ Ψ of formulas such that (ψ1 ∧ · · · ∧ ψn) → ϕ is a theorem of Λ (allowing
n = 0 and ϕ is a theorem of Λ). The relation `Λ⊆ 2L × L is the consequence relation of
Λ. We will abuse notation (as we have with IPC and S4�) and identify Λ with its set of
theorems: i.e. Λ = {ϕ ∈ L | ∅ `Λ ϕ }.

Let IK be the axiomatic system of Fischer Servi [20, 11, 17, 25], which is equivalent to
an alternative axiomatisation given in [34, 37]; IK also goes by the name FS in [25] and
[22, 42, 43]. IK has as axioms all instances in the language Lm of the axiom schemes of
IPC, and the following further axiom schemes:

R6· : 6· (ϕ ∨ ψ) ↔ (6· ϕ ∨6· ψ) N6· : ¬6·⊥
R�· : �·(ϕ ∧ ψ) ↔ (�·ϕ ∧�·ψ) N�· : �·>
F1�·6· : 6· (ϕ→ ψ) → (�·ϕ→6· ψ) F2�·6· : (6· ϕ→ �·ψ) → �·(ϕ→ ψ)

and is closed under the inference rules (MP) and (Subst), and the rule (Mono6· ): from
ϕ1 → ϕ2 infer 6· ϕ1 →6· ϕ2, and likewise (Mono�·).

With regard to notation for combinations of modal logics, we follow that of [22]. If Λ1

and Λ2 are axiomatically presented modal logics in languages L1 and L2 respectively, then
the fusion Λ1⊗Λ2 is the smallest multi-modal logic in the language L1⊗L2 containing Λ1

and Λ2, and closed under all the inference rules of Λ1 and Λ2, where L1 ⊗ L2 denotes the
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least common extension of the languages L1 and L2. If Λ is a logic in language L, and Γ is
a finite list of schemes in L, then the extension Λ⊕ Γ is the smallest logic in L extending
Λ, containing the schemes in Γ as additional axioms, and closed under the rules of Λ. The
basic system in [42], under the name IntK, is such that: IK = IntK⊕F1�·6· ⊕F2�·6· .
The latter two schemes were identified by Fischer Servi in [20]8.

For the extension to tense logics with forwards and backwards modalities, let IKt be
Ewald’s [17] deductive system, which is the fusion of IK6·�· := IK with the “mirror”
system IKf·�· having axiom schemes Rf· , Nf· , R�· , N�· , F1�·f· and F2�·f· , and
inference rules (Monof· ) and (Mono�·), which is then further extended with four axiom
schemes expressing the adjoint property (Assertion (3)) of the operators interpreting the
tense modalities:

Ad1 : ϕ→ �·f· ϕ Ad2 : ϕ→ �·6· ϕ Ad3 : 6·�·ϕ→ ϕ Ad4 : f·�·ϕ→ ϕ .

Thus IKt := (IK6·�· ⊗ IKf·�·)⊕Ad1⊕Ad2⊕Ad3⊕Ad4.
We now identify the companion classical logics. Let K�· be the minimal normal modal

logic (over a classical propositional base), let (S4� ⊗ K�·) be the bi-modal fusion of
S4� and K�· , and let KmLSC := (S4� ⊗ K�·) ⊕ (6·�ϕ → �6· ϕ) ⊕ (��·ϕ → �·�ϕ)
be the extension of (S4� ⊗ K�·) with characteristic modal schemes for the R-l.s.c. and
R−1-l.s.c. frame conditions, from Proposition 3.6 (and as identified in [18]). Likewise,
Kt := (K�· ⊗ K�·) ⊕ Ad1 ⊕ Ad2 is the minimal normal tense logic, and KtLSC :=
(S4�⊗Kt)⊕(6·�ϕ→ �6· ϕ)⊕(f·�ϕ→ �f· ϕ), here using instead the tense scheme for
R−1-l.s.c. from Proposition 3.6. (A related logic is S4LSC := (S4� ⊗ S4�·) ⊕ (6·�ϕ →
�6· ϕ) of the fusion of S4� and S4�· , studied in [15], where it goes under the working
name of LSC).

In what follows, we will deal generically with extensions IKt ⊕ Γ for subsets Γ of the
five axiom schemes below or their �· -f· mirror images:

T�·6· : (�·ϕ→ ϕ) ∧ (ϕ→6· ϕ) B�·6· : (ϕ→ �·6· ϕ) ∧ (6·�·ϕ→ ϕ)

D6· :6·>
4�·6· : (�·ϕ→ �·�·ϕ) ∧ (6·6· ϕ→6· ϕ) 5�·6· : (6·�·ϕ→ �·ϕ) ∧ (6· ϕ→ �·6· ϕ)

(7)

where the schemes characterize, in turn, the properties of relations R : X ; X of reflex-
ivity, symmetry, totality (seriality), transitivity and Euclideanness, and the mirror image
scheme characterize relations R such that R−1 has the property9. For a set Γ of formula
schemes, let Lt(Γ) denote the set of all instances of schemes in Γ in the language Lt, and
let LSCI(Γ) denote the class of all l.s.c. topological frames F such that F 
 ϕ for every
formula ϕ ∈ Lt(Γ). Likewise, for the companion classical logics, let Lt

�(Γ) denote the set
of all instances of schemes in Γ in the language Lt

�, and let T(Γ) denote the class of all
topological frames F such that F |= ψ for every formula ψ ∈ Lt

�(Γ).

8The intuitionistic modal logics considered in [41] and [27] are yet weaker sub-systems: they have the
normality schemes R�· and N�· for �· , but 6· is sub-normal – they include the scheme N6· , but R6· is
replaced by (�·ϕ ∧6· ψ) → 6· (ϕ ∧ ψ).

9Note that R has reflexivity, symmetry or transitivity iff R−1 has the same property, so the mirrored
tense schemes T�·f· , B�·f· and 4�·f· are semantically equivalent to their un-mirrored modal versions.
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The topological soundness of IKt and of KtLSC are easy verifications. For example,
the soundness of the Fischer Servi scheme F1�·6· is equivalent to the assertion that, for
all open sets U, V ∈ T :

R−∃ (intT (−U ∪ V )) ⊆ intT
(
−intT (R−∀(U)) ∪R−∃(V )

)
.

The inclusion R−∃ (intT (−U ∪ V )) ⊆ intT
(
R−∃(−U ∪ V )

)
follows from R being l.s.c. Ap-

plying distribution over unions, duality, and monotonicity, we can get intT
(
R−∃(−U ∪ V )

)
⊆

intT
(
−intT (R−∀(U)) ∪R−∃(V )

)
, so we are done. R being l.s.c. is also used for soundness

of the adjoint axioms Ad2 and Ad3.
From Proposition 3.5 and topological completeness in Proposition 5.2 below, we can

derive deductive faithfulness of the extended Gödel translation.

Proposition 5.1 [Extended Gödel translation: deductive faithfulness]
Let Γ be any finite set of schemes in Lt from the list in (7) above.
For all ϕ ∈ Lt, ϕ ∈ IKt ⊕ Γ iff GT(ϕ) ∈ KtLSC⊕ Γ.

This result can also be derived from a general result for (an equivalent) Gödel transla-
tion given in [43], Theorem 8, on the faithful embedding of modal logics L = IntK ⊕ Γ1

(including IK ⊕ Γ = IntK ⊕ F1�·6· ⊕ F2�·6· ⊕ Γ) into bi-modal logics in the interval
between (S4� ⊗ K�·) ⊕ GT(Γ1) and (Grz� ⊗ K�·) ⊕ GT(Γ1) ⊕ mix, where Grz� =
S4� ⊕ � (�(ϕ→ �ϕ) → ϕ) → ϕ and mix = (��·ϕ ↔ �·ϕ) ∧ (�·�ϕ ↔ �ϕ). Since
that level of generality is not sought here, we have restricted the schemes in Γ to those
from a “safe” list of relational properties that don’t require translating, since the schemes
characterize the same relations in the intuitionistic and classical semantics.

Recall that for a logic Λ in a language L with deductive consequence relation `Λ, a
set of formulas x ⊆ L is said to be Λ-consistent if x 0Λ ⊥ ; x is Λ-deductively closed if
x `Λ ϕ implies ϕ ∈ x for all formulas ϕ ∈ L; and x is maximal Λ-consistent if x is
Λ-consistent, and no proper superset of x is Λ-consistent. A set x ⊆ L is a prime theory
of Λ if Λ ⊆ x, and x has the disjunction property, and is Λ-consistent, and Λ-deductively
closed.

It will follow as a consequence of topological completeness (and be used in Section 6
below) that for every open and l.s.c. model M, and for all states w in M, the set of
formulas ThMI (w) is a prime theory of IKt. Likewise, in the classical semantics, for every
l.s.c. topological model M and every state w, the set of formulas ThM(w) is maximal
KtLSC-consistent.

Completeness w.r.t. bi-relational frames for IK and IKt is proved in [20, 37] and [17]
by building a canonical model over the state space XIP defined to be the set of all sets of
formulas x ⊆ Lt that are prime theories of IKt. The space XIP is partially ordered by
inclusion, so we have available an Alexandrov topology T⊆. One then defines the modal
accessibility relation R0 in an “almost classical” way, the only concession to intuitionistic
semantics being clauses in the definition for both 6· and �· . As verified in [20, 37, 11]
for the modal logic, and [17] for the tense logic, the relations R0 and R−1

0 satisfy the
frame conditions Zig(⊆, R0) and Zig(⊆, R−1

0 ). So we get an l.s.c. topological frame F0 =
(XIP, T⊆, R0), and with the canonical valuation u : AP ; XIP given by u(p) = {x ∈ XIP |
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p ∈ x}; one then proves of the model M0 = (F0, u) the “Truth Lemma”: for all ϕ ∈ Lt

and x ∈ XIP, x ∈ JϕKM0
I iff ϕ ∈ x.

Adapting [1], Sec. 3, on classical S4, to the classical companion logics here, we can
go beyond the pre-orders of the bi-relational Kripke semantics by equipping the space of
maximal consistent sets of formulas with a natural topology that is neither Alexandrov
nor Stone, but rather is the intersection of those two topologies.

Proposition 5.2 [Topological soundness and completeness]
Let Γ be any finite set of axiom schemes from Lt from the list in (7) above.
(1.) For the classical logic, KtLSC⊕ Γ = Th(LSC ∩ T(Γ)).
(2.) For the intuitionistic logic, IKt ⊕ Γ = ThI(LSCI(Γ)).

In what follows, we use IL and L�, respectively, as abbreviations for the axiomatically
presented logics IKt ⊕ Γ and KtLSC ⊕ Γ. Taking soundness as established, we sketch
completeness by describing the canonical models.

For the classical companion L�, define a model M� = (Y�M,S�, Q�, v�) as follows:

Y�M := {y ⊆ Lt
� | y is a maximal L�-consistent set of formulas };

S� is the topology on Y�M which has as a basis the family
{V (�ψ) | ψ ∈ Lt

� } where V (�ψ) := {y ∈ Y�M | �ψ ∈ y};
Q� : Y�M ; Y�M defined for all y ∈ Y�M by

Q�(y) := { y′ ∈ Y�M | {6· ψ | ψ ∈ y′} ⊆ y and {f· ψ | ψ ∈ y} ⊆ y′ } ;

v� : AP ; Y�M defined for all p ∈ AP by v�(p) := {y ∈ Y�M | p ∈ y}.

As noted in [1], the topology S� on Y�M is the intersection the “default” Alexandrov
topology from the canonical relational Kripke model, and the standard Stone topology on
Y�M which has as a basis all sets of the form V (ψ) for all formulas ψ ∈ Lt

�, not just the
V (�ψ) ones. Moreover, the space (Y�M,S�) is compact and dense-in-itself (has no isolated
points). Verification that Q� and Q−1

� are l.s.c. reduces to establishing that for all ψ ∈ Lt
�:

Q−∃
� (V (�ψ)) = V (�6·�ψ) and Q∃

�(V (�ψ)) = V (�f·�ψ).

The “Truth Lemma” here is y = ThM�(y) for all y ∈ Y�M, which means y ∈ JϕKM� iff
ψ ∈ y, for all ψ ∈ Lt

� and all y ∈ Y�M.

For the intuitionistic logic IL, define an open model M? = (XIP, T?, R?, u?) as follows:

XIP := {x ⊆ Lt | x is a prime IL-theory };
T? is the topology on XIP which has as a basis the family

{U(ϕ) | ϕ ∈ Lt } where U(ϕ) := {x ∈ XIP | ϕ ∈ x};
R? : XIP ; XIP defined for all x, x′ ∈ XIP by R? := R0; i.e. xR? x

′ iff

{6· ψ | ψ ∈ x′} ⊆ x and {ψ | �·ψ ∈ x} ⊆ x′ and

{f· ψ | ψ ∈ x} ⊆ x′ and {ψ | �·ψ ∈ x′} ⊆ x ;

u? : AP ; XIP defined for all p ∈ AP by u?(p) := U(p).
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Here, the toplogical space (XIP, T?) has a spectral topology (see, for example, [38], Sec.4),
which means it is compact and T0; the family of compact and open sets in T? gives a basis
for the topology; and T? is sober, i.e. for every completely prime filter F in the lattice T?,
there exists a (unique) point x ∈ XIP such that F = Nx := {U ∈ T? | x ∈ U}, the filter
of neighbourhoods of x. An equivalent characterization of a topology being sober is that
every irreducible closed set is the closure of exactly one singleton set, where a closed set is
irreducible if it is not the union of two proper closed subsets.

The hardest parts of the verification that M? is a model are the l.s.c. properties for R?

and R−1
? . The task reduces to establishing that for all ϕ ∈ Lt:

R−∃
? (U(ϕ)) = U(6· ϕ) and R∃

?(U(ϕ)) = U(f· ϕ) .

To prove the right-to-left inclusions, a recursive Henkin-style construction can be used to
produce a prime IL-theory x′ such that xR? x

′ and ϕ ∈ x′, to derive x ∈ R−∃
? (U(ϕ)) given

x ∈ U(6· ϕ), and symmetrically for the R∃
?(U(ϕ)) inclusion. The required “Truth Lemma”

is that x = ThM?
I (x) for all x ∈ XIP, which means x ∈ JϕKM?

I iff ϕ ∈ x for all ϕ ∈ Lt and
all x ∈ XIP.

6 Hennessy-Milner classes

Given a modal language L and semantics J · KM : L ; X in models M with state spaces
X, together with a notion of bisimulation between models, a class C of models is said to
have the Hennessy-Milner property [26, 24] if for every two models M,M′ ∈ C, there is a
tense topo-bisimulation B : X ; X ′ that maximally preserves the semantics, in the sense
that for all x ∈ X and y ∈ X ′:

xB y iff ThM(x) = ThM
′
(y)

where ThM(x) = {ϕ ∈ L | x ∈ Jϕ KM} is the theory map inverse to the denotation map.
In classical modal (tense) logics, the original Hennessy-Milner class consisted of all

models whose accessibility relations R are image-finite (bi-image-finite); i.e. for all x ∈ X,
the set R(x) is finite (and also for R−1(x) for tense logics). A natural generalization of
the image-finite condition is that of a relation R being modally saturated in a model M:
for every state x ∈ X and every set Ψ ⊆ Lm, if for every finite subset {ϕ1, . . . , ϕn} ⊆ Ψ,
there is an R-successor x′ ∈ R(x) that satisfies each ϕk for 1 ≤ k ≤ n, then there is an
R-successor x? ∈ R(x) that satisfies every formula in Ψ (and likewise for Ψ ⊆ Lt and R−1

for tense logics); see [8], Ch. 2. For a diamond modality 6· interpreted by R, classical
modal saturation is equivalent to the condition that6· is descriptive of R in M: i.e. xRx′

iff for all ϕ ∈ Lm, if x′ ∈ Jϕ KM then x ∈ J6· ϕ KM. Informally, this condition says that
the relation R is “recoverable” from the algebra of denotation sets {Jϕ KM | ϕ ∈ Lm} in
the model M, in the same way that the usual relation in the canonical Kripke model for a
modal logic is so “recoverable” (and more generally, as it is for descriptive general frames;
e.g. [8, 24]).
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Addressing the question for the intuitionistic semantics, we start with the canonical
modelM? for the base logic IKt. For any open l.s.c. modelM over state space X, consider
the natural single-valued function B? : X → XIP given by:

B?(w) := ThMI (w)

for all w ∈ X. From topological completeness, each such set of formulas ThMI (w) is a prime
theory of IKt, so the function B? is total and well-defined (single-valued). In the special
case when M = M?, the map B? is the identity function, since by the “Truth Lemma”,
x = ThM?

I (x) for all x ∈ XIP.
Our question then becomes: For which class of open l .s .c. models C is it the case that

for each model M in C, the natural map B? is a tense topo-bisimulation between M and
the canonical model M??

Suppose we had identified such a class C, and we pick arbitrary models M,M′ ∈ C

with their canonical model bisimulations B? : X → XIP and B′
? : X

′ → XIP. We can then
define the set-valued map B : X ; X ′ by B = B? ◦(B′

?)
−1 to get a tense topo-bisimulation

between M and M′ that maximally preserves the intuitionistic semantics, since for all
w ∈ X and z ∈ X ′, we will have:

wB z iff B?(w) = B′
?(z) iff ThMI (w) = ThM

′

I (z) .

Hence such a class C has the Hennessy-Milner property. Moreover, such a class C will be
maximal w.r.t. the Hennessy-Milner property iff it is maximal w.r.t. the property that for
every model in the class, the natural map B? is a tense topo-bisimulation into the canonical
model.

In answering the question, we first need to determine, for an arbitrary open l.s.c. model
M, how “far short” the map B? is from being a tense topo-bisimulation (how many of
the clauses of Definition 4.3 “come for free”), and then to determine what additional
“saturation” or “recoverability” properties are required of M in order to fill the short-fall.

First, consider an arbitrary open l.s.c. model M and a formula ϕ ∈ Lt with (open)
denotation sets Jϕ KMI in M and Jϕ KM?

I = U(ϕ) = {x ∈ XIP | ϕ ∈ x}. Evaluating ∃-pre-
and ∃-post-images of the map B?, we get:

(B?)
−∃(U(ϕ)) = Jϕ KMI and (B?)

∃ ( Jϕ KMI ) = U(ϕ) . (8)

Direct from equations (8), clauses (i.a) and (i.b) of Definition 4.3 for atomic p ∈ AP , are
immediately satisfied.

The second semi-continuity clause (ii.b) calling for B? : X → XIP to be l.s.c. is also
an immediate consequence of the first equation in (8): every open set V in the canonical
model M? is a union of a family of basic opens U(ϕ) indexed by a set of formulas Ψ ⊆ Lt,
hence:

(B?)
−∃(V ) =

⋃
ϕ∈Ψ

(B?)
−∃(U(ϕ)) =

⋃
ϕ∈Ψ

Jϕ KMI .

Thus (B?)
−∃(V ) is an open set in the given model M.

The first semi-continuity clause (ii.a), calling for B−1
? : XIP ; X to be l.s.c., requires

that the topology be “recoverable” from the algebra of denotation sets in the model. Before
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developing that notion, we first examine more closely the inverse map B−1
? and the image

sets (B?)
∃(W ) for W ⊆ X.

In an arbitrary open l.s.c. model M, and for any x ∈ XIP a prime theory of IKt,

B−1
? (x) = {w ∈ X | x = ThM(w) } .

In examining the state set B−1
? (x), we need to address not only the satisfiability of formulas

in the set x, but also the falsifiability of formulas not in x (as in [33]; see also [22],
Proposition 10.12, in the setting of general frames). The formulas not in x have to be
separated into those whose negations are in x, and those such that neither they nor their
negations are in x; for the second, the boundaries of their denotation sets are crucial.

Lemma 6.1 Given an open l .s .c. topological model M = (X, T , R, v) and canonical model
map B? : X → XIP, the inverse map B−1

? : XIP ; X is such that for all x ∈ XIP,

B−1
? (x) =

( ⋂
ϕ∈x

Jϕ KMI

)
∩

( ⋂
ψ∈∂x

bdT (Jψ KMI )

)
(9)

where ∂x := {ψ ∈ Lt | ψ /∈ x ∧ ¬ψ /∈ x }.

PROOF. Direct from the definition of B−1
? , it is immediate that:

B−1
? (x) =

( ⋂
ϕ∈x

Jϕ KMI

)
∩

⋂
ψ/∈x

(X − Jψ KMI )

 .

Since we have the disjoint union X − Jψ KMI = J¬ψ KMI ∪ bdT (Jψ KMI ), and we also have
bdT (Jψ KMI ) = (X − Jψ KMI ) ∩ (X − J¬ψ KMI ), equation (9) follows directly. a

Note that for each prime theory x ∈ XIP, the set B−1
? (x) consists of all the states w in

the model M that realize x as a theory in M, since w ∈ B−1
? (x) iff x = ThMI (w).

In developing a notion of the topology being “recoverable” from the algebra of denota-
tion sets in the model, we draw on ideas in [24], here also giving the corresponding notion
for the companion classical logics.

Definition 6.2 Given an open and l .s .c. topological model M = (X, T , R, v), define BMI
to be the family of opens:

BMI :=
{

Jϕ KMI | ϕ ∈ Lt
}

and let T M
I be the smallest sub-topology of T containing the family BMI . We say the topology

T is saturated in the model M if T M
I = T .

Given an arbitrary topological model M = (X, T , R, v), let BM� be the family of open
sets:

BM� :=
{

J�ψ KM | ψ ∈ Lt
�

}
and let T M

� be the smallest sub-topology of T containing the family BM� . We say the topology
T is �-saturated in M if T M

� = T .
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It is readily seen that the families BMI and BM� are closed under finite intersections, just
by taking conjunctions of formulas; thus they constitute a basis for the topologies T M

I and
T M

� , respectively. A topology T is saturated in an open l.s.c. model M if there are no
other open sets in T besides the ones you get by taking unions of intuitionistic denotation
sets of formulas. If T is saturated in an open l.s.c. model M, then T is also �-saturated
in M, under the extended Gödel translation.

From our example class of frames F over X ⊆ Rn, the Euclidean topology TE has as a
basis the countable family of all metric δ-balls Bδ(x) where δ ∈ Q+ is positive rational and
the centers x ∈ (X ∩ Qn); here, Bδ(x) := {y ∈ Rn | d(x, y) < δ}. Thus we can make the
topology TE saturated in a modelM over F if the atomic valuation ofM maps surjectively
onto this family. More generally, if the topological space (X, T ) has a countable basis, and
the maps R and R−1 are l.s.c., then indexing the basic opens via the countable set AP of
atomic propositions, we can form an open and l.s.c. model M in which T is saturated.

We now verify that this notion of topological saturation is sufficient to push through
the first semi-continuity clause (ii.a).

Lemma 6.3 Given an open l .s .c. topological model M = (X, T , R, v) and canonical model
map B? : X → XIP, if the topology T is saturated in M, then B−1

? : XIP ; X is l .s .c.

PROOF. Suppose T is saturated in M. Then each open set W in T is the union of a
family of basic opens Jϕ KMI indexed by a set of formulas Ψ ⊆ Lt, hence:

(B?)
∃(W ) = (B?)

∃

( ⋃
ϕ∈Ψ

Jϕ KMI

)
=
⋃
ϕ∈Ψ

(B?)
∃(Jϕ KMI ) =

⋃
ϕ∈Ψ

U(ϕ) .

Thus (B?)
∃(W ) is an open set in the canonical model M?. a

The remaining clauses in Definition 4.3 of a tense topo-bisimulation are the Zig-Zag
clauses (iii.a), (iii.b), (iv.a) and (iv.b), which together give the equalities R ◦B? = B? ◦R?

and B−1
? ◦ R? = R ◦ B−1

? . Using equations (8) together with R−∃
? (U(ϕ)) = U(6· ϕ) and

R∃
?(U(ϕ)) = U(f· ϕ) from the proof of topological completeness, it is readily verified that

for all formulas ϕ ∈ Lt:

J6· ϕ KMI = (R ◦B?)
−∃ (U(ϕ)) Jf· ϕ KMI = (R ◦B−1

? )∃ (U(ϕ))
= (B? ◦R?)

−∃ (U(ϕ)) = (B−1
? ◦R)∃ (U(ϕ))

U(f· ϕ) = (R ◦B?)
∃ (Jϕ KMI ) U(6· ϕ) = (R ◦B−1

? )−∃ (Jϕ KMI )
= (B? ◦R?)

∃ (Jϕ KMI ) = (B−1
? ◦R)−∃ (Jϕ KMI ) .

(10)

Then define two maps J1 : X ; XIP and J2 : XIP ; X as follows: for all w ∈ X and
x ∈ XIP,

w J1 x ⇔ (∀ϕ ∈ Lt) [ [ϕ ∈ x ⇒ w ∈ J6· ϕ KMI ] ∧ [w ∈ Jϕ KMI ⇒ f· ϕ ∈ x ] ]

x J2w ⇔ (∀ϕ ∈ Lt) [ [ϕ ∈ x ⇒ w ∈ Jf· ϕ KMI ] ∧ [w ∈ Jϕ KMI ⇒ 6· ϕ ∈ x ] ]

The two equalities B? ◦ R? = J1 and R? ◦ B−1
? = J2, and the inclusions R ◦ B? ⊆ J1

and B−1
? ◦ R ⊆ J2, are all easy consequences of equations (10) together with properties
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of the canonical relation R? in M?. Thus we get clauses (iii.a) and (iv.a) “for free”. The
remaining clauses (iii.b) and (iv.b) of Definition 4.3 (ensuring that B−1

? is a tense topo-
simulation of M? by the given model M) require further “saturation”-type conditions.
Before investigating such conditions, we summarize our reasoning over the proceeding few
pages.

Proposition 6.4 Given an open l .s .c. topological model M = (X, T , R, v), the canonical
model map B? : X → XIP is a tense topo-bisimulation between M and M? iff the
following conditions are satisfied:

(1) B−1
? : XIP ; X is l .s .c.,

(2) J1 ⊆ (R ◦B?), and

(3) J2 ⊆ (B−1
? ◦R) .

Now consider more closely condition (2): to show that J1 ⊆ R◦B?, suppose w J1 x ; we
need to find an R-successor w0 ∈ R(w) such that x = ThMI (w0); we would then have w0 ∈
R(w)∩B−1

? (x) which witnesses that w (R◦B?)x, as required. We use the characterization
of B−1

? (x) from Lemma 6.1 in formulating an intuitionistic notion of saturation.

Definition 6.5 Let M = (X, T , R, v) be any open l .s .c. topological model, and let the
relation S : X ; X be either S = R or S = R−1.

– S is image-closed w.r.t. T if for each w ∈ X, the set S(w) is closed in T ;
– S has negative saturation in M if for every set of formulas Ψ ⊆ Lt and for every
w ∈ X, the following holds:

if, for every finite subset {ψ1, . . . , ψm} ⊆ Ψ, w ∈ S−∃
(⋂

1≤j≤m(X − Jψj KMI )
)
,

then w ∈ S−∃
(⋂

ψ∈Ψ(X − Jψ KMI )
)
;

– S has realization saturation in M if for every set of formulas Ψ ⊆ Lt that contains IKt

and is negation-consistent (not both ϕ ∈ Ψ and ¬ϕ ∈ Ψ), and for every state w ∈ X,
the following condition holds:

if, for every finite subset {ϕ1, . . . , ϕn} ⊆ Ψ, w ∈ S−∃
(⋂

1≤k≤nJϕk KMI
)
,

and for every finite {ψ1, . . . , ψm} ⊆ ∂Ψ, w ∈ S−∃
(⋂

1≤j≤m bdT (Jψj KMI )
)
,

then there exists an S-successor w0 ∈ S(w) such that Ψ = ThMI (w0);
i.e. w0 realizes Ψ as a theory in M.

– S is boundary-closed in M if for every set of formulas Ψ ⊆ Lt that contains IKt and
is negation-consistent, and for every finite subset {ψ1, . . . , ψm} ⊆ ∂Ψ,
if D :=

⋂
1≤j≤m bdT (Jψj KMI ) then S−∃(D) is closed in T .

Regarding the two distinct notions of intuitionistic relational saturation, the second,
realization saturation, will be used immediately to establish the Hennessy-Milner property.
The first notion, negative saturation, returns in Section 7, where we establish that it
implies realization saturation under further topological hypotheses: compactness of the
space, and outer semi-continuity (and hence Fell continuity and image-closedness) of the
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the relation. The technical boundary-closed property is used in establishing the hypotheses
of realization saturation. In the classical companion logics, the standard notion of modal
saturation works as usual.

Definition 6.6 Let M = (X, T , R, v) be any topological model, and let S : X ; X be
either S = R or S = R−1. The relation S has (classical) modal saturation in M if for
every set of formulas Ψ ⊆ Lt

� and for every x ∈ X, the following holds:

if, for every finite subset {ψ1, . . . , ψm} ⊆ Ψ, x ∈ S−∃
(⋂

1≤j≤mJψj KM
)
,

then x ∈ S−∃
(⋂

ψ∈ΨJψ KM
)
.

Definition 6.7 Let C0 denote the class of all open l .s .c. models M = (X, T , R, v) such
that either M = M?, or else M is such that:

– the topology T is saturated in M; and
– the relations R and R−1 both have realization saturation in M; and
– both R and R−1 are boundary-closed in M.

Let C1� denote the class of all topological models M = (X, T , R, v) such that:

– the topology T is �-saturated in M; and
– the relations R and R−1 both have classical modal saturation in M.

Unfortunately, the class C0 has a somewhat awkward disjunctive characterization, in-
cluding the base canonical model as a separate case, because we have been unable to
directly verify that M? satisfies all three of the main conditions for the class. It is clear
that the topology T? is saturated in M?, and with a straight-forward argument by cases, it
can be shown that both R? and R−1

? have realization saturation in M?. However, we have
not been able to settle the question as to whether or not R? and R−1

? are boundary-closed
in M?. In the classical case, it is clear that canonical models M�M do satisfy the two
conditions for the class C1�.

Theorem 6.8 [Hennessy-Milner property for class C0]
Let M = (X, T , R, v) and M′ = (X ′, T ′, R′, v′) be two open and l .s .c. topological models
in the class C0.
Then there exists a tense topo-bisimulation B : X ; X ′ between M and M′ such that for
all pairs of states w ∈ X and z ∈ X ′:

wB z iff ThMI (w) = ThM
′

I (z) .

The map B will be total when ThI(M) ⊆ ThI(M′), and surjective when ThI(M′) ⊆
ThI(M), where ThI(M) := {ThMI (w) | w ∈ X}.

PROOF. It suffices to show, for arbitrary M = (X, T , R, v) in C0, that the canonical
model map B? : X → XIP is a tense topo-bisimulation between M and M?. If M = M?,
then B?(x) = ThM?

I (x) = x for all x ∈ XIP so B? is the identity map, and thus trivially
a tense topo-bisimulation. So suppose that M 6= M?. Then by Proposition 6.4 and
Lemma 6.3, it only remains to show that J1 ⊆ (R ◦B?) and J2 ⊆ (B−1

? ◦R).
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For the first inclusion, suppose w J1 x . We need to find an R-successor w0 ∈ R(w)
realizing x in M. Since M∈ C0, we know R has realization saturation in M. So we want
to establish the two hypotheses of that property hold of the state w ∈ X and the set of
formulas x ∈ XIP, a prime theory of IKt. So we need to show that for every finite subset
{ϕ1, . . . , ϕn} ⊆ x, there is a w1 ∈ R(w) such that w1 ∈ Jϕk KMI for each k ∈ {1, . . . , n}, and
for every finite subset {ψ1, . . . , ψm} ⊆ ∂x, there is a w2 ∈ R(w) such that w2 ∈ bdT (Jψj KMI )
for each j ∈ {1, . . . ,m}.

Now if {ϕ1, . . . , ϕn} ⊆ x, then ϕ0 ∈ x, where ϕ0 :=
∧

1≤k≤n ϕk, since x is IKt-
deductively closed. Then w J1 x and ϕ0 ∈ x together imply that w ∈ J6· ϕ0 KMI , and hence
there exists a w1 ∈ R(w) such that w1 ∈ Jϕk KMI for each k ∈ {1, . . . , n}.

Suppose {ψ1, . . . , ψm} ⊆ ∂x. Then ψ0 /∈ x, where ψ0 :=
∨

1≤j≤m (ψj ∨¬ψj), since x has

the disjunction property. Then f·�·ψ0 /∈ x, since x is IKt-deductively closed (applying
axiom Ad4). Then w J1 x together with f·�·ψ0 /∈ x imply that we have w /∈ J�·ψ0 KMI ,
and hence w ∈ clT (R−∃(X − Jψ0 KMI )). Now set:

D := X − Jψ0 KMI =
⋂

1≤j≤m

bdT (Jψj KMI )

Since M ∈ C0, the relation R is boundary-closed in M, so we can conclude that the set
R−∃(D) is closed in T , so clT (R−∃(D)) = R−∃(D), and thus w ∈ R−∃(D). Hence there
exists a w2 ∈ R(w) such that w2 ∈ bdT (Jψj KMI ) for each j ∈ {1, . . . ,m}, as required.
Hence J1 ⊆ R ◦B?.

The final inclusion J2 ⊆ B−1
? ◦R is equivalent to (J2)

−1 ⊆ R−1 ◦B?, and this is proved
by the symmetric “mirror” argument, obtained by uniformly replacing J1 with (J2)

−1,
replacing 6· and �· with f· and �· , and replacing R and R with relations R−1 and R−1. a

For the base classical tense logic Kt ⊗ S4�, consider the canonical model M� over
the space Y�M of maximal Kt⊗S4�-consistent sets of formulas. Then for any topological
model M over state space X, we can use the natural map B� : X → Y�M given by:

B�(w) := ThM(w)

for all w ∈ X. By topological completeness of the classical semantics, the formula set
B�(w) will be maximal (Kt ⊗ S4�)-consistent, and for y ∈ Y�M, we have B−1

� (y) =⋂
ψ∈yJψ KM, the classical realization set, with ∂y = ∅ due to maximal consistency. In the

special case when M = M�, the map B� is the identity function, since by the “Truth
Lemma”, y = ThM�(y) for all y ∈ Y�M. However, no special case argument is required for
the classical semantics, since M�M satisfies the two conditions for the class C1�.

Proposition 6.9 [Hennessy-Milner property for class C1�]
Let M = (X, T , R, v) and M′ = (X ′, T ′, R′, v′) be two topological models in the class C1�.
Then there exists a tense topo-bisimulation B : X ; X ′ between M and M′ such that for
all pairs of states w ∈ X and z ∈ X ′:

wB z iff ThM(w) = ThM
′
(z) .
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For models M in C1�, the verification that the natural map B� is a tense topo-
bisimulation proceeds along the same lines as for the intuitionistic semantics, map B?

and class C0, but the arguments are simpler.

It remains an open the question as to what is the maximal class of open l.s.c. models
with the Hennessy-Milner property for the intuitionistic semantics. The maximality of
C0 is not at all clear, although what is (painfully) clear is that the current characteriza-
tion of C0 is sub-optimal: the boundary-closed property is a lingering thorny issue. A
clean characterization of the maximal Hennessy-Milner class should clearly include the
canonical model M?. In category theory terms, one would expect M? to be the termi-
nal object in a category of models with morphisms being functional (single-valued) tense
topo-bisimulations.

7 Investigating the Hennessy-Milner class C0

In this final section, we identify some topological sufficient conditions for being in the class
C0, as a means to identify some naturally occurring models in the class. The main result
is the following.

Theorem 7.1 Let M = (X, T , R, v) be any open l .s .c. model such that:

(i) (X, T ) is compact;

(ii) the topology T has a countable basis B = {Un | n ∈ N} with the atomic valuation
v(pn) = Un, for some enumeration AP = {pn | n ∈ N} with N ⊆ N; and

(iii) both R and R−1 are o.s .c. (and hence Fell continuous and image-closed) with respect
to T .

Then M∈ C0.

It should first be noted that for M ∈ C0 where the topology is Hausdorff, there is no
value in looking at the maximal topo-bisimulation B between M and itself, because in
that case, B will be the identity map: the Hausdorff property together with the topology
saturated in the model means that for any states x and y, there exists disjoint basic open
sets Jϕ KMI and Jψ KMI such that x ∈ Jϕ∧¬ψ KMI and y ∈ Jψ∧¬ϕ KMI . So in this setting, the
Hausdorff property is too strong, and for models from continuous dynamical systems over
Euclidean spaces, tense topo-bisimulation gives too fine a notion of model equivalence.

For models MH arising from the dynamics of a hybrid system H, the state space
is of the form XH := {(q, x) ∈ Q × Rn | x ∈ Dq} and is equipped with the product
topology coming from an Alexandrov (and finite, so compact) topology T4 on the finite
set Q and and the Euclidean topology on Rn. In looking at model equivalence via tense
topo-bisimulation, we now have good motivation for examining non-trivial pre-orders 4
structuring the discrete component of the state space, and for casting to one side the
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special cases of TH being Hausdorff, arising when the pre-order 4 is identity and T4 is
discrete, or when the mode domains Dq are pair-wise disjoint. For a hybrid system model
MH to meet the hypotheses of Theorem 7.1, one can ask of the discrete transition relation
E : Q ; Q that (E−1◦ 4) = (4 ◦E−1) and (E◦ 4) = (4 ◦E), so E will be Vietoris
continuous w.r.t. T4.

To prove Theorem 7.1, we utilize a series of lemmas, the proofs of which are given in
an Appendix section. In what follows, let M be any open l.s.c. model over state space X
with canonical model map B? : X → XIP.

Lemma 7.2 If T is saturated in M, then for all prime theories x ∈ XIP:

clT (B−1
? (x)) =

( ⋂
ϕ∈x

clT (Jϕ KMI )

)
∩

( ⋂
ψ∈∂x

bdT (Jψ KMI )

)

Lemma 7.3 If T is saturated in M, and R has negative saturation in M, then for all
w ∈ X and all prime theories x ∈ XIP,

if, for every finite {ψ1, . . . , ψm} ⊆ (Lt − x), w ∈ R−∃
(⋂

1≤j≤m(X − Jψj KMI )
)
,

then w ∈ R−∃(clT (B−1
? (x))).

Lemma 7.4 If T is compact and saturated in M, then for all prime theories x ∈ XIP, the
set B−1

? (x) is a compact set w.r.t. T .

Lemma 7.5 If T is saturated in M, R has negative saturation in M, and R is o.s .c.,
then R has realization saturation in M.

PROOF of Theorem 7.1. By assumptions (ii) and (iii), the topology T is clearly
saturated in the model M, and we have an open atomic valuation, as well as the l.s.c. and
the o.s.c. properties for R and R−1; in particular, both maps are image-closed. To see that
R (and symmetrically, R−1) is boundary-closed in M, fix an prime theory x ∈ XIP and a
finite subset {ψ1, . . . , ψm} ⊆ ∂x and set D :=

⋂
1≤j≤m bdT (Jψj KMI ). Being the intersection

of boundary sets, D is closed, and since (X, T ) is compact, by assumption (i), the set D
must be compact. Then since R is o.s.c., by assumption (iii), R−∃(D) must be a closed
set. Thus R is boundary-closed.

We claim that from compactness (assumption (i)) plus the image-closed property (from
assumption (iii)), we can prove negative saturation. Then by Lemma 7.5, we will have
realization saturation, and so M∈ C0.

To see that R (and symmetrically, R−1) has negative saturation, fix a set of formulas
Ψ ⊆ Lt and a state w ∈ X, and suppose that for every finite subset {ψ1, . . . , ψm} ⊆ Ψ,
there is an w′ ∈ R(x) such that w′ /∈ Jψj KMI for each j ∈ {1, . . . ,m}. Then since R(w) is
closed, the family of closed sets {R(w) ∩ (X − Jψ KMI ) | ψ ∈ Ψ} has the finite intersection
property. Then by compactness of the topology T on X, the intersection of the whole
family is non-empty, so there exists w0 ∈ R(w) such that w0 ∈

⋂
ψ∈Ψ(X − Jψ KMI ). Thus

R has negative saturation, as claimed. a

26



8 Conclusion

This paper illustrates the way topological structure on the state spaces of Krikpe models
provides for a clean and intuitive intuitionistic semantics for modal and tense logics, as
well as making perpicuous the semantics content of the Gödel translation into the classical
companion modal logics. We then investigate the logics by studying the notion of topo-
logical bisimulations between models as relations that preserve logical indistinguishability,
and identify classes of models with the Hennessy-Milner property that for any two models
in the class, there is a topological bisimulation that maximally preserves logical indistin-
guishability, for both the intuitionistic modal and tense logics, and for the classical logics
into which they are translatable. We leave open the question as to whether the identified
Hennessy-Milner class is maximal with respect to the property of preserving intuitionistic
logical indistinguishability.

References

[1] M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about space: the modal
way. J. Logic and Computation, 13:889–920, 2003.

[2] E. Akin. The general topology of dynamical systems. American Mathematical Society,
1993.

[3] R. Alur, T.A. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88:971–984, July 2000.

[4] J-P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser, Boston, 1990.
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9 Appendix

PROOF of Lemma 7.2. To begin with, set:

A :=
⋂
ϕ∈x

Jϕ KMI , B :=
⋂
ψ ∈∂x

bdT (Jψ KMI ), C :=
⋂
ϕ∈x

clT (Jϕ KMI ).

So we have B−1
? (x) = A ∩ B, and hence the inclusions B−1

? (x) ⊆ clT (B−1
? (x)) ⊆ (B ∩ C).

We need to show that (B ∩ C) = clT (B−1
? (x)). (Note that in the extremal case when

∂x = ∅ – which is the case iff x is maximal IKt-consistent – the intersection over an
empty family gives B = X and hence B−1

? (x) = A, so we don’t need to address this case
separately.) For prime theories x ∈ XIP, let:

∼x := {ψ ∈ Lt | ψ /∈ x ∧ ¬ψ ∈ x }

so that x, ∼x and ∂x form a partition of the language Lt, and the set x itself further
divides into x− := {ϕ ∈ x | (∃ψ /∈ x)ϕ = ¬ψ} and x+ := x− x−.

Since T is saturated in the model M, we have as a basis the family of all denotation
sets BMI . Then:

clT (B−1
? (x)) =

⋂
{(X − Jψ KMI ) | ψ ∈ Lt ∧ B−1

? (x) ⊆ (X − Jψ KMI ) }
=

⋂
{(X − Jψ KMI ) | ψ /∈ x }

=
⋂
{(X − Jψ KMI ) | ψ ∈∼x ∨ ψ ∈ ∂x }

= (
⋂
{(X − Jψ KMI ) | ψ ∈∼x } ) ∩ (

⋂
{bdT (Jψ KMI ) | ψ ∈ ∂x } )

= B ∩ (
⋂
{(X − Jψ KMI ) | ψ ∈∼x } )

= B ∩ (
⋂
{clT (J¬ψ KMI ) | ¬ψ ∈ x } )

⊇ B ∩ C

Hence clT (B−1
? (x)) = (B ∩ C), as required. a

PROOF of Lemma 7.3. Fix w ∈ X, and suppose that for every finite subset {ψ1, . . . , ψm} ⊆
(Lt− x), there is a w′ ∈ R(w) such that w′ /∈ Jψj KMI for each j ∈ {1, . . . ,m}. Since R has
negative saturation, there exists an w0 ∈ R(w) such that w0 ∈

⋂
ψ/∈x(X − Jψ KMI ).

Now for any formula ϕ ∈ x, we have ¬ϕ /∈ x, since x is negation-consistent, hence
w0 ∈ (X − J¬ϕ KMI ) = clT (Jϕ KMI ). For any boundary formula ψ ∈ ∂x, we have both
ψ /∈ x and ¬ψ /∈ x, and hence w0 ∈ (X − Jψ KMI ) ∩ (X − J¬ψ KMI ) = bdT (Jψ KMI ).
Applying Lemma 7.2, we can conclude that: w0 ∈ R(w) ∩ clT (B−1

? (x)), and thus w ∈
R−∃(clT (B−1

? (x))), as required. a
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PROOF of Lemma 7.4. Assume T is compact and saturated in M, and fix a prime
theory x ∈ XIP; we need to show that the set B−1

? (x) is a compact set w.r.t. T . First
observe that clT (B−1

? (x)) is compact, since it is a closed subset of a compact space. Now
suppose, for a contradiction, that B−1

? (x) is not compact. Then since T is saturated in
M, there exists an infinite set of formulas Θ such that B−1

? (x) ⊂
⋃
θ∈ΘJ θ KMI , but for all

finite subsets {θ1, . . . , θn} ⊂ Θ, there exists w ∈ B−1
? (x) ∩

⋂
1≤i≤n (X − J θi KMI ). Now for

any two states w,w′ ∈ B−1
? (x), we have ThMI (w) = x = ThMI (w′). Hence we can conclude

that θ /∈ x for all θ ∈ Θ, so the set Θ must be disjoint from x. We can also assume
that there are no formulas θ ∈ Θ such that ¬θ ∈ x, for if that were such a formula, we
would have B−1

? (x) ⊆ (X − J θ KMI ), and so this formula θ would contribute nothing to the
cover of B−1

? (x), and could be dropped from Θ without any loss. Hence we can conclude
that for all formulas θ ∈ Θ, we have both θ /∈ x and ¬θ /∈ x, and thus θ ∈ ∂x. Hence
we have Θ ⊆ ∂x. But this means we have B−1

? (x) ⊂
⋂
θ∈Θ bdT (J θ KMI ), which contradicts

the supposition that B−1
? (x) ⊂

⋃
θ∈ΘJ θ KMI . Having obtained a contradiction, we can thus

conclude that B−1
? (x) is compact. a

PROOF of Lemma 7.5. To prove R has realization saturation in M, fix a prime theory
x ⊆ Lt, and fix a state w ∈ X. Suppose that for every finite subset {ϕ1, . . . , ϕn} ⊆ x, we
have w ∈ R−∃ (⋂

1≤k≤nJϕk KMI
)
, and for every finite subset {ψ1, . . . , ψm} ⊆ ∂x, we have

w ∈ R−∃
(⋂

1≤j≤m bdT (Jψj KMI )
)
. We need to show that w ∈ R−∃(B−1

? (x)).

Since R has negative saturation in M, consider the set of formulas Ψ = Lt − x, and
fix an arbitrary finite subset {ψ1, . . . , ψm} ⊆ Ψ. For each ψj, we have either ψj ∈ ∼x
and ¬ψj ∈ x, or else ψj ∈ ∂x and thus both ψj /∈ x and ¬ψj /∈ x. We claim that

w ∈ R−∃
(⋂

1≤j≤mX − Jψj KMI
)
, so that by negative saturation and Lemma 7.3, we can

conclude that w ∈ R−∃(clT (B−1
? (x))). To prove the claim, we proceed by cases.

Case I : ∂x = ∅. Then we have ¬ψj ∈ x− for every j ∈ {1, . . . ,m}, and hence

there exists a w1 ∈ R(w) ∩
(⋂

1≤j≤mJ¬ψj KMI
)
⊆ R(w) ∩

(⋂
1≤j≤mX − Jψj KMI

)
. Hence

w ∈ R−∃
(⋂

1≤j≤mX − Jψj KMI
)
, and so we are done.

Case II : ∂x 6= ∅ but ¬ψj ∈ x− for every j ∈ {1, . . . ,m}. Then proceed as for Case I.
Case III : ∂x 6= ∅ and ψi ∈ ∂x for at least one i ∈ {1, . . . ,m}. Then re-number the

formulas so that for some q ∈ {1, . . . ,m}, we have ψi ∈ ∂x for 1 ≤ i ≤ q, and ¬ψj ∈ x−

for q < j ≤ m. We now claim that {ψ′1, . . . , ψ′m} ⊆ ∂x, where this finite set of formulas
is defined by ψ′i := ψi for 1 ≤ i ≤ q, and ψ′j := (ψ1 ∨ ψj) for q < j ≤ m; then we can

conclude that w ∈ R−∃ (⋂
1≤i≤m bdT (Jψ′j KMI )

)
. To prove the claim, there is nothing to do

for ψ′i = ψi ∈ ∂x for 1 ≤ i ≤ q. For ψ′j for q < j ≤ m, first note that ψ′j /∈ x since x

has the disjunction property. Moreover, (¬ψ1 ∧ ¬ψj) ↔ ¬ψ′j is a theorem of IKt. Since

x is IKt-deductively-closed and negation-consistent, and ¬ψ1 /∈ x, we can conclude that
¬ψ′j /∈ x, and hence ψ′j ∈ ∂x for every j ∈ {1, . . . ,m}, as claimed. Now for q < j ≤ m, we
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have:

bdT (Jψ′j KMI )

= clT (Jψ1 ∨ ψj KMI ) ∩ clT (J¬ψ1 ∧ ¬ψj KMI )

= (clT (Jψj KMI ) ∩ clT (J¬ψ1 ∧ ¬ψj KMI )) ∪ (clT (Jψ1 KMI ) ∩ clT (J¬ψ1 ∧ ¬ψj KMI ))

⊆ bdT (Jψj KMI ) ∪ clT (J¬ψj KMI )

⊆ X − Jψj KMI

Hence w ∈ R−∃
(⋂

1≤j≤mX − Jψj KMI
)
, as required to conclude Case III.

So now we have that w ∈ R−∃(clT (B−1
? (x))). Since R−1 is l.s.c. we have the in-

clusion R−∃(clT (W )) ⊆ clT (R−∃(W )), for all subsets W ⊆ X. Thus we can conclude
that w ∈ clT (R−∃(B−1

? (x))), where R−∃(B−1
? (x)) 6= ∅, and hence also B−1

? (x) 6= ∅.
Now by Lemma 7.4, we know that B−1

? (x)) is compact as well as non-empty. Since we
have assumed R is o.s.c., we can then conclude that R−∃(B−1

? (x)) is closed, and hence
w ∈ clT (R−∃(B−1

? (x))) = R−∃(B−1
? (x)), and we are done. a
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