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Abstract. The contribution of this paper is threefold. First, we take the well-known
Intuitionistic modal logic of Fischer Servi with semantics in birelational Kripke frames,
and give the natural extension to topological Kripke frames where the frame condi-
tions relating the Intuitionistic partial order with the modal relation generalise to
semi-continuity properties of the relation with respect to the topology. Second, we
develop the theory of an interesting class of topologies arising from spatial discretisa-
tion by finitary covers; the motivating case is covers of Euclidean space. We use the
name “A/D map” to designate covers of a space whose cover cells do not generate
any infinite descending chains; for analog-to-digital conversion, were one seeks a dis-
cretised view of a continuous world via the cells of a cover, the limits of discernment
should be finite. Third, we give a novel application of Intuitionistic semantics to the
problem of approximate model-checking of classical modal formulas in models where
the exact evaluation of denotation sets is not possible; such models are the norm
in applications of modal logics to the formal analysis and design of hybrid (mixed
continuous and discrete) dynamical systems. The main result of the paper is that
for the positive fragment of a modal language generated from a finite set of atomic
propositions, we can give general lower and upper bounds on the classical denotation
set of a formula in a given model. Moreover, these bounds are the Intuitionistic de-
notation sets of the same formula in two different models, where the lower and upper
Intuitionistic models are built from an A/D map and have finitary quotients.

1 Introduction and motivation

Topological semantics for Intuitionistic logic and for the classical modal logic S4 have a long
history going back to Tarski and co-workers in the 1930s and 40s, predating the relational
Kripke semantics for both [15], [18]. A little earlier again is the 1933 Gödel translation
[13] of Intuitionistic logic into classical S4. The translation makes perfect sense within the
topological semantics: � is interpreted by topological interior, and the translation GT(¬ϕ) =
�¬GT(ϕ) says that Intuitionistic negation calls for the interior of the complement, and not
just the complement. For the extension to Intuitionistic modal logics, Fischer Servi developed
semantics over birelational Kripke frames in the late 1970s, which has generated a good deal
of reasearch [9–11, 17, 19, 21, 14]. What is suprising is that there seems to be nothing in the
literature on combining the two: keeping the topology to interpret the Intuitionistic base
logic, and adding a binary relation to interpret the modal operators. In this paper, we develop
a semantics for Intuitionistic modal logic over topological frames F = (X, T , R) where
(X, T ) is a topological space and R ⊆ X ×X is a relation. In the Fischer Servi bi-relational
semantics, there are frame conditions relating the Intuitionistic partial order with the modal
relation. We show that over topological frames, these conditions generalise to semi-continuity
properties of the relation with respect to the topology. Moreover, Fischer Servi’s extension
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of the Gödel translation is laden with topological meaning: where �· is the box modality for
the relation, and � is topological interior, the translation GT(�·ϕ ) = ��· GT(ϕ) says that
the Intuitionistic box requires the interior of the box operator under the classical semantics.
This accords with Intuitionistic semantics for first-order logic, which take the interior of an
intersection for ∀ quantification.

The second contribution of this paper is a study of an interesting class of topologies
that arise from spatial discretisation by finitary covers; the motivating case is covers of
Euclidean space. To designate covers of a space whose cover cells do not generate any
infinite descending chains, we use so-called A/D maps, a notion that is motivated from
an engineering perspective. For analog-to-digital conversion, were one seeks a discretised
view of a continuous world via the cells of a cover, the limits of discernment should be finite.
Our target domain of application is the formal analysis and design of hybrid dynamical
systems; these are systems including both continuous and discrete states, and continuous
and discrete dynamics, and which involve A/D maps as essential components [7]. Nerode
and Kohn in 1993 [16] make an initial study of A/D maps and their topologies; the present
paper offers a further development of that theory. A key idea, advanced in [16], is that the
open sets in the topology on an A/D map have a particularly nice representation as a union
of suitably “small” elements in the lattice of opens.

The third contribution of this paper is a novel application of Intuitionistic semantics to
the problem of approximate model-checking of classical modal formulas in models where the
exact evaluation of denotation sets is not possible; such models are the norm in applications
of modal logics to the formal analysis and design of hybrid systems [8]. Exact or symbolic
model-checking of modal and temporal formulas in models overX ⊆ Rn is typically restricted
to classes of models M = (X,R, ξ) in which the atomic sets

�
p � M = ξ−1(p) ⊆ X and the

relation(s) R ⊆ X×X are definable by linear or polynomial predicates in n and 2n variables
respectively [2]. For relations R that are the orbit relation of solutions of a differential
equation, these restrictions mean that only systems with very simple continuous dynamics
can be model-checked exactly. The main result of the paper is that for the positive fragment
of a modal language generated from a finite set of atomic propositions, we can give general
lower and upper bounds on the classical denotation set of a formula in a given model.
Moreover, these bounds are the Intuitionistic denotation sets of the same formula in two
different models, where the lower and upper Intuitionistic models are built from an A/D
map and have finitary quotients.

The rest of the paper is organised as follows. Section 2 tersely reviews the necessary
material from general topology. In Section 3, we set out the topological semantics for In-
tuitionistic propositional logic and classical S4, and the Gödel translation from the former
to the latter. Section 4 develops topological semantics for Intuitionistic modal logic, gener-
alising from known results on bi-relational Kripke semantics. In Section 5, we develop the
general topology of covers and A/D maps, and in Section 6, we apply results on A/D maps
to give a general recipe for approximately evaluating the classical modal denotation set of a
positive formula.

2 Preliminaries: some general topology

We adopt the notation from set-valued analysis [3] in writing r : X  Y to mean both that
r : X → 2Y is a set-valued map, with (possibly empty) set-values r(x) ⊆ Y for each x ∈ X ,
and equivalently, that r ⊆ X×Y is a relation. The expressions y ∈ r(x), (x, y) ∈ r and x r y
are synonymous. Every set-valued map r : X  Y has an inverse or converse r−1 : Y  X
given by: x ∈ r−1(y) iff y ∈ r(x). The domain of a set-valued map is dom(r) := {x ∈ X |
r(x) 6= ∅}, and the range is ran(r) := dom(r−1) ⊆ Y . A set-valued map r : X  Y is total
if dom(r) = X , and it is surjective if ran(r) = Y . We will write (as usual) r : X → Y to
mean r is a total and single-valued function with values r(x) = y (rather than r(x) = {y}).
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For r1 : X  Y and r2 : Y  Z, we write their relational/sequential composition as
r1 ◦ r2 : X  Z given by (r1 ◦ r2)(x) := {z ∈ Z | (∃y ∈ Y ) [(x, y) ∈ r1 ∧ (y, z) ∈ r2]}, in
left-to-right word order.

On notation, for partial orders or preorders ⊆, 4, v, we write ⊂, ≺, @ for the corre-
sponding strict partial orders or preorders; i.e. x ≺ x′ iff x 4 x′ and not x′ 4 x. Likewise,
we write ⊇, <, w for the corresponding converse partial orders or preorders. Recall that a
preorder is a reflexive and transitive binary relation, and a partial order is a preorder that is
also antisymmetric. A lattice is a partial order in which every pair of elements has an l.u.b.
and a g.l.b. With regard to families A ⊆ 2X of subsets of X , a family A is called a ring
of sets if it contains the extremal elements ∅ and X , and is closed under finite unions and
finite intersections, and A is called a field of sets if it is a ring of sets that is also closed under
set-complement in X . Under the natural order of set-inclusion, a ring of sets is a distributive
lattice with least and greatest elements, and a field of sets is a Boolean algebra.

A relation r : X  Y determines two pre-image operators (predicate transformers). The
lower or existential pre-image pre∃(r) : 2Y → 2X given by

pre∃(r)(W ) := {x ∈ X | (∃y ∈ Y )[ (x, y) ∈ r ∧ y ∈ W ]}
= {x ∈ X |W ∩ r(x) 6= ∅}

for W ⊆ Y . The upper or universal pre-image operator pre∀(r) : 2Y → 2X is the dual under
set-theoretic complement:

pre∀(r)(W ) := X − pre∃(r)(Y −W ) = {x ∈ X | r(x) ⊆W}

In words, x ∈ pre∃(r)(W ) iff some r-successor of x lies in W , while x ∈ pre∀(r)(W ) iff
all r-successors of x lie in W , including x /∈ dom(r). The operator pre∃(r) distributes over
arbitrary unions, while pre∀(r) distributes over arbitrary intersections; pre∃(r)(∅) = ∅,
pre∃(r)(Y ) = dom(r), pre∀(r)(∅) = X − dom(r), and pre∀(r)(Y ) = X .

For relations r : X  X on a space X , the pre-images express in operator form the
standard relational Kripke semantics for the (future) diamond and box modal operators
determined by r. Note that when r : X → Y is single-valued, the pre-image operators reduce
to the standard inverse-image operator; i.e. pre∃(r)(W ) = pre∀(r)(W ) = r−1(W ). The
relationally converse operators are the post-image operators post∃(r), post∀(r) : 2X → 2Y

given by post?(r) := pre?(r−1) for ? ∈ {∃, ∀}. These operators arise in the relational Kripke
semantics for the past diamond and box modal operators in tense and temporal logics. The
fundamental relationship between pre- and post-images is the adjoint property:

W ⊆ pre∀(r)(V ) iff post∃(r)(W ) ⊆ V .

Recall that a topology T ⊆ 2X on a set X is a family of subsets of X that contains
∅ and X , and is closed under arbitrary unions and finite intersections. The extreme cases
are the discrete topology TD = 2X , and the trivial topology T∅ = {∅, X}. The interior
operator intT : 2X → 2X determined by T is given by intT (W ) :=

⋃

{U ∈ T | U ⊆W}. A
set W ⊆ X is open w.r.t. T if W ∈ T , and this is so iff W = intT (W ). So T is a ring of sets
that is complete w.r.t. unions. Let −T denote the dual lattice under complement; i.e. −T :=
{V ⊆ X | (X−V ) ∈ T }. Then −T is also a ring of sets, and is complete w.r.t. intersections.
The dual closure operator clT : 2X → 2X is given by clT (W ) :=

⋂

{V ∈ −T |W ⊆ V }. A
set W ⊆ X is closed w.r.t. T if W ∈ −T , and this is so iff W = clT (W ).

The purely topological notion of continuity for a single-valued function f : X → Y is that
the inverse image f−1(U) is open whenever U is open. Analogously, the pre-image operators
can be used to characterise purely topological notions of continuity for relations/set-valued
maps, as introduced by Kuratowski and Bouligand in the 1920s. A relation r : (X, T )  
(Y,S) is called: lower semi-continuous (l.s.c.) if for every S-open set U in Y , pre∃(r)(U)
is T -open in X ; upper semi-continuous (u.s.c.) if for every S-open set U in Y , pre∀(r)(U)
is T -open in X ; and simply continuous if it is both l.s.c. and u.s.c. The u.s.c. condition
is equivalent to pre∃(r)(V ) is T -closed in X whenever V is S-closed in Y . Each of the
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semi-continuity conditions reduce to the standard functional continuity when r : X → Y
is single-valued. The semi-continuity properties are preserved under relational composition,
and also under finite unions of relations.

In what follows, we make particular use of Alexandroff topologies, which are also called
Kripke or cone topologies. A topology T on X is called Alexandroff if for every x ∈ X , there
is a smallest open set U ∈ T such that x ∈ U . In particular, every finite topology T is
Alexandroff. There is a one-to-one correspondance between preorders on X and Alexandroff
topologies on X . Any preorder 4 on X induces an Alexandroff topology T4 by taking
intT4

(W ) := pre∀(4)(W ), which means U ∈ T4 iff U is up-4-closed, and V ∈ −T4 iff V

is down-4-closed, and clT4
(W ) := Pre∃(4)(W ). In particular, T4 is closed under arbitrary

intersections as well as arbitrary unions. The sets B4(x) := {y ∈ X | x 4 y} are sometimes
called 4-cones, and they form a basis for the topology T4. Conversely, for any topology,
define a preorder 4T on X , known as the specialisation preorder : x 4T y iff (∀U ∈
T ) [x ∈ U ⇒ y ∈ U ]. For any preorder, 4T4

=4, and T4T
= T iff T is Alexandroff. The

relation ≈T on X of topological equivalence under T is given by ≈T := (4T ∩ <T ), so
x ≈T y means x and y belong to all the same T -open sets. A topology T has T0 separation
iff the preorder 4T is a partial order iff ≈T is identity. Alexandroff topologies lack separation
properties: the only Alexandroff topology that is T1 is the discrete topology, recalling that
T0 is weaker than T1 which is weaker than T2 = Hausdorff.

3 Topological semantics for classical S4 and Intuitionistic
propositional logic

Fix a countably infinite set AP of atomic propositions. The propositional language L0 is
generated from p ∈ AP by the grammar:

ϕ ::= p | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2

As usual, further connectives are defined by ¬ϕ := ϕ → ⊥ and ϕ1 ↔ ϕ2 := (ϕ1 →
ϕ2) ∧ (ϕ2 → ϕ1), and the constant > := ⊥ → ⊥. Let L� be the monomodal language
extending L0 with the addition of the unary modal operator �. A further modal operator
♦ can be defined as the classical dual: ♦ϕ := ¬�¬ϕ.

Let IPC ⊆ L0 be the set of Intuitionistic propositional theorems, and abusing notation,
let IPC also denote one’s favourite axiomatisation for Intuitionistic propositional logic.
Likewise, let S4� ⊆ L� be the set of theorems of classical S4, and let S4� also denote
any standard axiomatisation of classical S4. To be concrete, let S4� contain all instances of
classical propositional tautologies in the language L�, and the axiom schemes

N� : �> T� : �ϕ→ ϕ

R� : �(ϕ1 ∧ ϕ2) ↔ �ϕ1 ∧�ϕ2 4� : �ϕ→ ��ϕ

and be closed under the inference rules of modus ponens (MP) and�-monotonicity (Mono�):
from ϕ1 → ϕ2, infer �ϕ1 → �ϕ2.

The Gödel translation GT : L0 → L� is defined by:

GT(p) := �p for atomic p ∈ AP

GT(⊥) := ⊥

GT(ϕ1 ∨ ϕ2) := GT(ϕ1) ∨GT(ϕ2)

GT(ϕ1 ∧ ϕ2) := GT(ϕ1) ∧GT(ϕ2)

GT(ϕ1 → ϕ2) := � (GT(ϕ1) → GT(ϕ2))

In particular, Intuitionistic negation comes out as GT(¬ϕ) = GT(ϕ→ ⊥) = � (GT(ϕ) → ⊥) =
�¬GT(ϕ) and for double negation, GT(¬¬ϕ) = �¬�¬GT(ϕ) = �♦GT(ϕ). Reading the
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S4 � as topological interior, we can read off the Intuitionistic topological semantics directly
from the clauses of the Gödel translation.

Definition 3.1. Given a topological space F = (X, T ), a model over F is a structure
M = (X, T , ξ) where ξ : X  AP is a set-valued map, the atomic valuation relation. For
each p ∈ AP , the set ξ−1(p) = {x ∈ X | p ∈ ξ(x)} is the denotation of p in M. A model
M = (X, T , ξ) is an open model if for each p ∈ AP , the denotation set ξ−1(p) is open in
T . For open models M, the Intuitionistic denotation map

�
· � M

Int
: L0 → 2X is defined by:�

p � M
Int

:= ξ−1(p)
�
⊥ � M

Int
:= ∅�

ϕ1 ∨ ϕ2 � M
Int

:=
�
ϕ1 � M

Int
∪

�
ϕ2 � M

Int�
ϕ1 ∧ ϕ2 � M

Int
:=

�
ϕ1 � M

Int
∩

�
ϕ2 � M

Int�
ϕ1 → ϕ2 � M

Int
:= intT

(

(X −
�
ϕ1 � M

Int
) ∪

�
ϕ2 � M

Int

)

A formula ϕ ∈ L0 is Intuitionistically topologically valid in an open model M, abbreviated
Int-top valid in M, if

�
ϕ � M

Int
= X, and it is Int-top valid in F = (X, T ), written F �Int ϕ,

if it is Int-top valid in M for all open models M over F . Let IT be the set of all ϕ ∈ L0

such that F �Int ϕ for every topological space F .

It is immediate that in an open model M, the denotation set
�
ϕ � M

Int
is open in T

for all ϕ ∈ L0, and this corresponds to the 4-persistence or up-4-closed property in the
relational Kripke semantics. Note also that if M = (X, T , ξ) is open then the map ξ :
(X, T ) (AP, TA) is l.s.c., where TA ⊆ 2AP is any topology on AP , because pre∃(ξ)(Y ) =
⋃

{

ξ−1(p) | p ∈ Y
}

is open in TA for any set Y ⊆ AP . Conversely, if ξ : (X, T ) (AP, TD)
is l.s.c., where TD ⊆ 2AP is the discrete topology on AP , then M = (X, T , ξ) is an open
model.

Definition 3.2. For the modal language L�, we define the (classical) denotation map
�
· � M :

L� → 2X with respect to arbitrary topological models M = (X, T , ξ), where ξ : X  AP is
unrestricted; the map is defined the same way as

�
· � M

Int
for atomic p ∈ AP , ⊥, ∨ and ∧, but

differs on the clauses: �
ϕ1 → ϕ2 � M := (X −

�
ϕ1 � M) ∪

�
ϕ2 � M�

�ϕ � M := intT
( �
ϕ � M)

A formula ϕ ∈ L� is modal-top valid in F = (X, T ), written F � ϕ, if
�
ϕ � M = X for all

models M = (X, T , ξ) over F . Let T be the set of all ϕ ∈ L� such that F � ϕ for every
topological space F .

Topological soundness is a simple verification, and topological completeness can be ob-
tained cheaply from Kripke completeness with respect to frames F = (X,4) where 4 is a
preorder on X , using the correspondance between preorders and Alexandroff topologies.

Proposition 3.3. [Topological completeness]

– For all ϕ ∈ L0, ϕ is a theorem of IPC iff ϕ ∈ IT.
– For all ψ ∈ L�, ψ is a theorem of S4� iff ψ ∈ T.

Proposition 3.4. [Gödel translation] For all ϕ ∈ L0,

– ϕ is a theorem of IPC iff GT(ϕ) is a theorem of S4�.
– GT(ϕ) ↔ �GT(ϕ) is a theorem of S4�.

While we can get topological completeness cheaply, it can also be obtained at greater
expense with respect to particular classes of topological spaces. The classic McKinsey and
Tarski result [15] is topological completeness of S4 in separable dense-in-itself metric spaces;
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in particular, Rn equipped with the standard Euclidean topology TE . The reader is referred
to the recent thesis of Aiello [1] which gives new proofs of the McKinsey and Tarski theorem,
and of completeness in Cantor space.

4 Topological semantics for Intuitionistic modal logics

We give a quite straightforward topological extension of the birelational semantics of Fischer
Servi [9, 10], and Plotkin and Stirling [17] over Kripke frames F = (X,4, R), where 4 is
a preorder on X , and R : X  X is a relation. In the birelational semantics, the central
concern is the connection between the two relations: the preorder 4 as the Intuitionistic in-
formation ordering, and the relation R as the modal accessibility relation. Using the induced
Alexandroff topology T4, a birelational Kripke frame F is equivalent to the topological frame
(X, T4, R). The four birelational conditions identified in [17] can be cleanly transcribed as
semi-continuity conditions on the relation R : X  X with respect to the topology T4,
which then generalise to abitrary topologies.

Definition 4.1. Let F = (X,4, R) be a birelational frame. Four conditions on the connec-
tion between 4 and R are identified as follows:

Zig-4, R : if x 4 y and xRx′ then (∃y′ ∈ X)
[

y R y′ and x′ 4 y′
]

Zag-4, R : if x 4 y and y R y′ then (∃x′ ∈ X)
[

xRx′ and x′ 4 y′
]

Zig-4, R−1 : if x 4 y and x′Rx then (∃y′ ∈ X)
[

y′Ry and x′ 4 y′
]

Zag-4, R−1 :if x 4 y and y′Ry then (∃x′ ∈ X)
[

x′Rx and x′ 4 y′
]

�
y

x′

R

x

�

R

y′

�
y

x′

R

x

�

R

y′

�
y

x′

R

x

�

R

y′

�
y

x′

R

x

�

R

y′

Zig-4, R Zag-4, R Zig-4, R−1 Zag-4, R−1

The conditions correspond to the four ways of “completing the square” where two di-
rected edges labelled with 4 and R are given, and the square must be completed with two
more directed edges labelled with 4 and R, and edges with matching labels must be par-
allel and in the same direction. We use the “Zig” and “Zag” names because Zig-4, R and
Zag-4, R are exactly the well-known forth and back conditions on 4 being a bisimulation
on the frame (X,R), which are known by those names. From earlier work [5], we know the
bisimulation conditions correspond to semi-continuity properties.

Proposition 4.2. ([5]) Let F = (X,4, R) be a birelational frame, with T4 the induced
Alexandroff topology. In the following table, the conditions listed along each row are equiva-
lent.

1. Zig-4, R (< ◦R) ⊆ (R◦ <) R is l.s.c. in T4

2. Zag-4, R (4 ◦R) ⊆ (R◦ 4) R is u.s.c. in T4

3. Zig-4, R−1 (< ◦R−1) ⊆ (R−1◦ <) (R◦ 4) ⊆ (4 ◦R) R−1 is l.s.c. in T4

4. Zag-4, R−1 (4 ◦R−1) ⊆ (R−1◦ 4) (R◦ <) ⊆ (< ◦R) R−1 is u.s.c. in T4

In the birelational semantics introduced by Fischer Servi in [10] and used in [11, 17, 19,
14], it is the first and third frame conditions Zig-4, R and Zig-4, R−1 that are identified
as those needed to give an Intuitionistic semantics for modalities based on R. In frames
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meeting these conditions, one can give semantic clauses for the diamond and box that are
natural under the Intuitionistic reading of the restricted ∃ and ∀ quantification with respect
to R-successors. More precisely, the resulting logic is faithfully embedded into Intuitionistic
first-order logic by the standard modal to first-order translation, and a natural extension of
the Gödel translation faithfully embeds it into the classical bimodal logic combining S4�

with K or extensions. Various further motivation for these two frame conditions are offered
in the literature, to which the reader is referred. From the proposition above, we see that
these two conditions correspond to the lower semi-continuity of R and R−1 in T4, and we
use this observation to generalise the semantics to arbitary topologies.

Let L♦·�· be the modal language extending L0 with the addition of two modal operators
♦· and �· , generated by the grammar:

ϕ ::= p | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | ♦·ϕ | �·ϕ
Likewise, let L�♦·�· be the modal language extending L� with the addition of ♦· and �· .
Definition 4.3. A topological frame is a structure F = (X, T , R) where (X, T ) is a topo-
logical space and R : X  X is a relation. We say F is an l.s.c. topological frame if both
R : (X, T )  (X, T ) is l.s.c. and R−1 : (X, T )  (X, T ) is l.s.c. A model over F is a
structure M = (X, T , R, ξ) where ξ : X  AP is an atomic valuation relation. As before,
a model M will be called an open model if for each p ∈ AP , the denotation set ξ−1(p)
is open in T . For open models M over l.s.c. frames F , the Intuitionistic denotation map�
· � M

Int
: L♦·�· → 2X is defined the same way as for L0, with the additional clauses:

�
♦·ϕ � M

Int
:= pre∃(R)

( �
ϕ � M

Int

)

�
�·ϕ � M

Int
:= intT

(

pre∀(R)
( �
ϕ � M

Int

))

A formula ϕ ∈ L♦·�· will be called Int-modal-top valid in an l.s.c. frame F = (X, T , R) if�
ϕ � M

Int
= X for all open models M over F . Let IKT be the set of all ϕ ∈ L♦·�· such that ϕ

is Int-modal-top valid in every l.s.c. topological frame F .

The property that every denotation set
�
ϕ � M

Int
is open in T follows immediately from the

openness condition on ξ−1(p), the l.s.c. condition on pre∃(R), and the extra interior operation
in the semantics for �·ϕ. The semantic clauses are exactly as one would expect, given the
standard modal to first-order translation, and the topological semantics for Intuitionistic
first-order logic, where ∀ is evaluated by the interior of an intersection, and ∃ is evaluated
by a union.

Definition 4.4. For the modal language L�♦·�· , we define the (classical) denotation map�
· � M : L�♦·�· → 2X with respect to arbitrary topological models M = (X, T , R, ξ), where
ξ : X  AP is unrestricted; the map is defined the same way as for L�, with the additional
clauses: �

♦·ϕ � M := pre∃(R)
( �
ϕ � M)

�
�·ϕ � M := pre∀(R)

( �
ϕ � M)

A formula ϕ ∈ L�♦·�· will be called modal-top valid in F = (X, T , R), written F � ϕ, if�
ϕ � M = X for all models M over F . Let KT be the set of all ϕ ∈ L�♦·�· such that ϕ is

modal-top valid in F for every topological frame F , and let LST be the set of all ϕ ∈ L�♦·�·
such that ϕ is modal-top valid in every l.s.c. topological frame.

The Fischer Servi extension of the Gödel translation [9, 11], extends to GT : L♦·�· →
L�♦·�· with the additional clauses:

GT(♦·ϕ ) := ♦·GT(ϕ)

GT(�·ϕ ) := ��· GT(ϕ)
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The extension continues with the clause-by-clause syntactic replication of the topological
semantics. The semi-continuity frame conditions also have clean modal characterisations, as
we have observed in [6].

Proposition 4.5. ([6]) Let F = (X, T , R) be a topological frame and let p ∈ AP . In the
following tables, the conditions listed across each row are equivalent.

1. R is l.s.c. in T F � ♦·�p→ �♦·p F � ♦·�p↔ �♦·�p
2. R is u.s.c. in T F � �·�p→ ��·p F � ♦♦·p→ ♦·♦p
3. R−1 is l.s.c. in T F � ��·p→ �·�p F � ♦·♦p→ ♦♦·p
4. R−1 is u.s.c. in T F � �♦·p→ ♦·�p

This modal syntactic characterisation can shed some further light on the Intuitionistic
frame conditions. The R-l.s.c. scheme ♦·�p ↔ �♦·�p expresses directly that ♦· applied to
an open set �p must be open, being �♦·�p. The R−1-l.s.c. scheme is not quite so clear:
it says that � can be “pushed through” �· in one direction. We return to these modal
characterisations of the semi-continuity frame conditions later in this section when deriving
theorems on semi-duality between Intuitionistic ♦· and �· via the Gödel translation.

Let IK♦·�· be the axiomatic system of Fischer Servi [11, 14], which is equivalent to an
alternative axiomatisation given in [17, 19]; IK♦·�· also goes by the name FS in [14] and
[21]. IK♦·�· has as axioms all instances in the language L♦·�· of Intuitionistic propositional
theorems, and further axiom schemes:

R♦· : ♦·(ϕ ∨ ψ) ↔ (♦·ϕ ∨ ♦·ψ)

R�· : �·(ϕ ∧ ψ) ↔ (�·ϕ ∧�·ψ)

N¬♦· : ¬♦·⊥
N�· : �·>

F1�·♦· : ♦·(ϕ→ ψ) → (�·ϕ→ ♦·ψ)

F2�·♦· : (♦·ϕ→ �·ψ) → �·(ϕ→ ψ)

IK♦·�· is closed under the inference rules of modus ponens (MP) and the rule (Mono♦· ):
from ϕ1 → ϕ2, infer ♦·ϕ1 → ♦·ϕ2, and likewise (Mono�· ). The theorems of IK♦·�· include
the following schema expressing semi-duality laws for ♦· and �· .

SD1 : ♦·ϕ→ ¬�·¬ϕ
SD2 : ♦·¬ϕ→ ¬�·ϕ
SD3 : ¬♦·ϕ↔ �·¬ϕ

IK♦·�· has characteristically Intuitionistic features.

Proposition 4.6. ([17])

1. Disjunction property: for all ϕ, ψ ∈ L♦·�· , if ϕ ∨ ψ is a theorem of IK♦·�· , then either
ϕ is a theorem of IK♦·�· or ψ is a theorem of IK♦·�· .

2. Classical collapse: the axiom system consisting of IK♦·�· together with excluded middle
ϕ ∨ ¬ϕ and modal duality ♦·ϕ ↔ ¬�·¬ϕ, captures exactly the minimal classical normal
modal logic K�· .

Let (S4�⊗K�· ) be the bimodal fusion of S4� and K�· , i.e. the smallest normal bimodal
logic in the language L�♦·�· containing both S4� and K�· , which includes closure under
the modal inference rules (Mono�), (Mono♦· ) and (Mono�· ). With regard to notation for
combinations of modal logics, we follow that used in the work of Wolter and Zakharyaschev
[21, 22]. If L1 and L2 are modal logics in languages L1 and L2 respectively, then the fusion
L1 ⊗ L2 is the smallest (poly-)modal logic in the language L1 ⊗ L1 containing L1 and L2,
and closed under all the inference rules of L1 and L2; we use L1 ⊗ L1 to denote the least
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common extension of the languages L1 and L2. If L is a logic in language L, and Γ is a
finite list of schema in L, then the extension L⊕ Γ is the smallest logic in L extending L,
containing the schema in Γ as additional axioms, and closed under the rules of L.

Let KLSC := (S4� ⊗ K�· ) ⊕ (♦·�ϕ → �♦·ϕ) ⊕ (��·ϕ → �·�ϕ) be the extension of
(S4� ⊗K�· ) with the characteristic schema for the R-l.s.c. and R−1-l.s.c. frame conditions.
The closely related logic (S4�⊗S4�· )⊕ (♦·�ϕ→ �♦·ϕ) is studied by Davoren and Goré [6],
under the working name of LSC, and given semantics in topological frames where R is l.s.c.
and a preorder. That logic was motivated by a modal investigation of continuous dynamics,
as the class of frames characterised by LSC includes frames over Euclidean space where R
is the positive orbit relation of a differential equation with unique solutions. With a stronger
requirement of invertibility on the flow of the differential equation, both R and R−1 will be
l.s.c., so those topological frames can be models of KLSC as well.

As a point of comparison, the basic system of Intuitionistic modal logic in [21], under the
name IntK♦·�· , is weaker than IK♦·�· in that it has only the axiom schema R♦· , R�· , N¬♦· ,
and N�· , plus the rules (Mono♦· ) and (Mono�· ). So our IK♦·�· = IntK♦·�· ⊕{F1�·♦· ,F2�·♦·}.
The additional schemes F1�·♦· and F2�·♦· are identified in [11].

The topological soundness of IK♦·�· and KLSC are easy verifications. To prove topo-
logical completeness, we can get a free ride from the corresponding proofs for birelational
frames. Completeness for IK♦·�· [11], [19], is proved using a canonical model over the state
space XIK♦·�· as the set of all prime theories T ⊆ L♦·�· such that IK♦·�· ⊆ T , where T is

prime if it is deductively closed, consistent, and has the disjunction property. The space is
partially ordered by inclusion, inducing an Alexandroff topology T⊆, and the modal relation
is: T1RT2 iff {♦·ϕ | ϕ ∈ T2} ⊆ T1 and {ψ | �·ψ ∈ T1} ⊆ T2, which is the conjunction of
the usual (classically equal) relations determined by ♦· and �· . Topological completeness for
S4� ⊗K�· and KLSC comes straightforwardly via the classical canonical model over the
space of maximal consistent theories, with the preorder determined by �, and R determined
by �· [6].

Proposition 4.7. [Topological completeness] For all ϕ ∈ L♦·�· ,
– ϕ is a theorem of IK♦·�· iff ϕ ∈ IKT.
– For all ψ ∈ L�♦·�· , ψ is a theorem of S4� ⊗K�· iff ψ ∈ KT.
– For all ψ ∈ L�♦·�· , ψ is a theorem of KLSC iff ψ ∈ LST.

Proposition 4.8. [Extended Gödel translation] (Fischer Servi [10]) For all ϕ ∈ L♦·�· ,
– ϕ is a theorem of IK♦·�· iff GT(ϕ) is a theorem of KLSC
– GT(ϕ) ↔ �GT(ϕ) is a theorem of KLSC.

To prove (ϕ → ψ) is a theorem of IK♦·�· , it suffices to prove that GT(ϕ) →GT(ψ)
is a theorem of KLSC. This is so because GT(ϕ → ψ) = �(GT(ϕ) →GT(ψ)), which is
derivable from GT(ϕ) →GT(ψ) by the derived rule of �-necessitation. We prove instances
of the semi-duality properties by the Gödel translation, with explicit appeal to the modal
semi-continuity schema.

SD1 : GT(♦·p) ↔ ♦·�p
↔ �♦·�p R-l.s.c. (♦·�ϕ↔ �♦·�ϕ)
→ �♦♦·♦�p T♦ scheme & Mono rules
↔ �¬�¬♦·¬�¬�p duality �/♦
↔ �¬��·�¬�p duality �·/♦·
↔ GT(¬�·¬p)
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SD2 : GT(♦·¬p) ↔ ♦·�¬�p
↔ �♦·�¬�p R-l.s.c.(♦·�ϕ↔ �♦·�ϕ)
→ �♦·¬�p T� & Mono rules
→ �♦♦·¬�p T♦ & Mono rules
↔ �¬��·�p duality �/♦ & �·/♦·
↔ GT(¬�·p)

SD3 : GT(¬♦·p) ↔ �¬♦·�p
↔ ��·¬�p duality �·/♦·
↔ ���·¬�p 4� and T�

→ ��·�¬�p R−1-l.s.c. (��·ϕ→ �·�ϕ) & Mono�

↔ GT(�·¬ϕ)
and

GT(�·¬ϕ) ↔ ��·�¬�p
→ ��·¬�p T� & Mono rules
↔ �¬♦·�p duality �·/♦·
↔ GT(¬♦·p)

On the subject of decidability, there are some positive results on extensions IK♦·�· ⊕ Γ
for some subsets Γ of the five axiom schemes below:

T�·♦· : (�·ϕ→ ϕ) ∧ (ϕ→ ♦·ϕ)

B�·♦· : (ϕ→ �·♦·ϕ) ∧ (♦·�·ϕ→ ϕ)

D♦· : ♦·>
4�·♦· : (�·ϕ→ �·�·ϕ) ∧ (♦·♦·ϕ→ ♦·ϕ)

5�·♦· : (♦·�·ϕ→ �·ϕ) ∧ (♦·ϕ→ �·♦·ϕ)

Simpson [19] proves the finite model property over birelational frames for extensions where
Γ ⊆ {T�·♦· ,B�·♦· ,D♦·}, and Grefe [14] proves the result independently for IK♦·�· ; earlier
work via algebraic models proves the finite model property over birelational frames for
IS5♦·�· := IK♦·�· ⊕ T�·♦· ⊕ 5�·♦· , also known as MIPC. Decidability and the finite model
property for the other combinations, including IS4♦·�· := IK♦·�· ⊕T�·♦· ⊕ 4�·♦· , remain open
questions. For the bimodal logics, decidability for KLSC, and for the related S4-based LSC
logic of [6] are also open questions. Wolter and Zakharyaschev also have finite model property
results for quite a number of extensions of the weaker logic IntK♦·�· , summarised in [21].

5 General topology of covers and A/D maps

We now turn our attention to a particularly interesting class of topologies identified in [16]
that arise in the course of spatial discretisation.

Definition 5.1. On an arbitrary set X 6= ∅, a cover is a total and surjective map α : X  
Y . The cells of the cover α are the sets Ay := α−1(y) = {x ∈ X | y ∈ α(x)}, for each y ∈ Y ,
and we call Y the index set or range of α.

Note that the totality condition on α ensures that X =
⋃

y∈Y Ay, and the surjectivity

condition ensures that α−1 is total, which means Ay 6= ∅ for each y ∈ Y . Observe that an
arbitrary map β : X  Z can be readily transformed into a total and surjective α : X  Y
by taking Y = ran(β) ∪ {$} with α(x) = β(x) ∈ Z for x ∈ dom(β), and α(x) = {$} for
x /∈ dom(β), and $ /∈ Z a new element. If α : X → Y is single-valued, then α is a quotient
map and the α-cells are partition blocks or equivalence classes. Let Cov(X) be the family of
all covers of a set X . Extremal elements of Cov(X) are the constant function c : X → {0}
onto a one point space, and at the other end of the spectrum, bijective functions f : X → Y .
The family Cov(X) is partially ordered by the following notion of refinement.
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Definition 5.2. For two covers α : X  Y and β : X  Z of X, we say α is refined by β,
written α b β, if the following two conditions hold:
(1) for all y ∈ Y , there exists z1, . . . , zn ∈ Z such that Ay = Bz1

∪ · · · ∪Bzn
;

(2) for all z ∈ Z, there exists y ∈ Y such that Bz ⊆ Ay.

The refinement relation b can be thought of as an information ordering: the constant
function is the minimal element with least information, while the maximal elements with
perfect information are the bijective functions on X .

With the notion of a cover, we have placed no constraint on the cardinality of the range
Y . For a cover map α : X  Y to be appropriate for analog-to-digital conversion from an
uncountable state space, say X ⊆ Rn, onto a space Y , we place a constraint that the limits
of discernment available through α are finite. This constraint can be simply satisfied by
taking Y to be finite (as we did in [7] and in [16]). More generally, we can require that the
α-cells Ay do not generate any infinite descending chains of subsets of X .

Definition 5.3. Given a cover α : X  Y of X, let Tα ⊆ 2X be the topology generated
by the α-cells; i.e. the collection of all sets U ⊆ X formed from α-cells by closing under
arbitrary unions and finite intersections.
We call a cover α : X  Y an A/D map if as a lattice ordered by set-inclusion, Tα has only
finite-length chains.

Simple examples of A/D maps include covers α : X  Y where Y is finite, in which case
the topology Tα is finite, and in cardinality, |Tα| ≤ 2|Y |. Further examples include covers
α : X  Y of X ⊆ Rn where the cells Ay are of a fixed geometric shape and size, and are laid
out in a regular grid; in this case, if X is unbounded then the range set Y will be countably
infinite, and if X is bounded then Y will be finite. On the other hand, if X ⊆ Rn, and the
α-cells constitute a sub-basis for the standard Euclidean topology TE on X , so Tα = TE ,
then α clearly fails to have the finite discernment property.

Observe also that our notion of cover refinement respects the subtopology relation. It is
immediate that if α b β then Tα ⊆ Tβ . Conversely, if T1 ⊆ T2 are topologies on X , then
there exist covers α : X  Y and β : X  Z of X such that α b β and Tα = T1 and Tβ = T2;
to see this, take the T1-open sets to be α-cells and the T2-open sets to be β-cells.

Drawing on old results in lattice theory, we can use the finite discernment property of an
A/D map α to give an elegant representation of the lattice of Tα-open sets. The key step,
following [16], is to distinguish suitable “minimal” elements in the lattice Tα.

Definition 5.4. (Birkhoff [4], III §3) Let A be a ring of sets. A set B ∈ A is called join
irreducible in A if B 6= ∅ and for all A1, A2 ∈ A,

if B = A1 ∪ A2 then B = A1 or B = A2.

As established in [4], III §3, the join-irreducible property is equivalent to: B 6= ∅ and for
all A1, A2 ∈ A,

if B ⊆ A1 ∪A2 then B ⊆ A1 or B ⊆ A2.

Proposition 5.5. (Birkhoff [4], III §3) If A is a ring of sets with only finite-length chains,
then each set A ∈ A has a unique representation as a union of join-irreducibles, where
uniqueness comes from the union being irredundant; i.e. any smaller union is properly con-
tained in A.

Definition 5.6. Given an A/D map α : X  Y , let Jα ⊆ Tα be the set of all join-
irreducibles of Tα. We suppose the elements of Jα are indexed by a set Zα, so Bz is the
element of Jα indexed by z ∈ Zα; thus Jα = {Bz | z ∈ Zα}. Define a map ᾱ : X  Zα by
ᾱ(x) := {z ∈ Zα | x ∈ Bz}. Also define a partial ordering v on Zα by: z v z′ iff Bz ⊇ Bz′ .
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A2A3

A1

B7 := A1 ∩ A2 ∩ A3

B2 := A2B1 := A1 B3 := A3

B4 := A1 ∩ A2 B5 := A1 ∩ A3 B6 := A2 ∩ A3

Cover X = A1 ∪A2 ∪A3 Partial order of join-irreducible sets Bz

A simple illustration of an A/D map α and the partial order Jα is given above. Note
also that every Bz ∈ Jα is a finite intersection of α-cells; i.e. Bz = Ay1

∩ · · · ∩Ayk
for some

y1, . . . , yk ∈ Y = ran(α). The induced partial order (Zα,v) is just a replica of the partial
order (Jα,⊇) of join-irreducible sets; as we shall see, they form the fundamental core of the
topology Tα.

Proposition 5.7. Let α : X  Y be any A/D map, with its induced join-irreducible map
ᾱ : X  Zα.

1. For every state x ∈ X, there is a unique ⊆-smallest join-irreducible Bz ∈ Jα such that
x ∈ Bz.

2. For every Bz ∈ Jα, there is some x ∈ X such that Bz is the smallest Tα-open set
containing x; i.e. Bz =

⋂

{U ∈ Tα | x ∈ U}.
3. Tα is an Alexandroff topology, and the collection Jα forms a minimal basis for Tα.
4. The map ᾱ : X  Zα is an A/D map on X that refines α, and if α b β b ᾱ then
Tβ = Tα.

PROOF. For 1., fix x ∈ X , and let U(x) ⊆ Jα be the family of all join irreducibles B ∈ Jα

such that x ∈ B. Under inclusion, U(x) is a sub-partial-order of Tα, hence all chains in U(x)
are of finite length, and thus have minimum elements. Let V(x) ⊆ U(x) be the collection of
all the minimum elements of the chains in U(x). We claim V(x) is a singleton, so V(x) = {Bz}
for some z and thus Bz is the ⊆-smallest join-irreducible containing x. To prove the claim,
suppose otherwise, so there exists B1, B2 ∈ V(x) with B1 * B2 and B2 * B1. But this
means x ∈ (B1 ∩ B2) ∈ U(x) and (B1 ∩ B2) ⊂ B1 and (B1 ∩ B2) ⊂ B2, which contradicts
the assumption that B1 and B2 are minimum elements of chains in U(x).

For 2., suppose for a contradiction that there exists a Bz ∈ Jα such that for all x ∈ Bz,
there exists a z′ A z such that x ∈ Bz′ . Hence Bz =

⋃

{ Bz′ ∈ Jα | z @ z′ }, which means
Bz could not be a join irreducible.

For 3., the characteristic of Alexandroff topologies is that for every x ∈ X , there is a
smallest open set containing x, so Tα being Alexandroff is immediate from 1. The proof that
Jα is a basis for Tα, and that no smaller collection forms a basis, is straight-forward, with
an appeal to the representation in Proposition 5.5.

For 4., it is immediate that α b ᾱ and that Tᾱ = Tα because the ᾱ-cells are just Jα,
the join-irreducibles of Tα. If α b β b ᾱ, then since b respects the subtopology relation, we
have Tα ⊆ Tβ and Tβ ⊆ Tᾱ = Tα, and hence Tβ = Tα. �

Our next move is to further refine the non-deterministic A/D map ᾱ : X  Zα to
produce a deterministic quotient function. Following [16], the key objects of study are the
essential parts of the join-irreducibles Bz ∈ Jα.

Definition 5.8. Let α : X  Y be any A/D map, with its refined join-irreducible A/D map
ᾱ : X  Zα. For each z ∈ Zα, define the essential part Ez of Bz as follows:

Ez := Bz −
⋃

{ Bz′ ∈ Jα | z @ z
′}

Then define a function qα : X → Zα by: qα(x) = z iff x ∈ Ez.
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In words, the set Ez = q−1
α (z) is that part of the join-irreducibleBz which is not contained

in any strictly smaller join-irreducible Bz′ ∈ Jα. It must be non-empty, for otherwise Bz =
⋃

{ Bz′ ∈ Jα | z @ z′} which would meanBz is not join irreducible. The following proposition
summarises elementary properties of essential parts and the qα map; the results are all simple
consequences of Proposition 5.7 and the definitions.

Proposition 5.9. For each z ∈ Zα

1. Ez 6= ∅ is the intersection of a Tα-open set and a Tα-closed set;
2. for all z′ 6= z, Ez ∩Ez′ = ∅;
3. Ez = {x ∈ Bz | Bz is the smallest Tα-open set containing x}.

Hence:

(a) the collection {Ez}z∈Zα
forms a total partition of X, thus the single-valued function

qα : X → Zα is well-defined;
(b) for all open sets U ∈ Tα, and for all z ∈ Zα, the following are equivalent:

(i) Ez ∩ U 6= ∅ (ii) Ez ⊆ U (iii) Bz ⊆ U (iv) Bz ∩ U 6= ∅

(c) for all x, x′ ∈ X, if x 4Tα
x then qα(x) v qα(x′); thus x ≈Tα

x iff qα(x) = qα(x′);
(d) α b ᾱ b qα and as a relation, qα ⊆ ᾱ
(e) ᾱ = qα◦ w
(f) qα(x) = z iff z is the v-maximal element of the set ᾱ(x).

Observe that if the original A/D map α is actually single-valued, so we start with a
partition of X , then Tα is actually a Boolean algebra (closed under complement), and the
join-irreducibles are identical to the essential parts, which in turn are the atoms of the
Boolean algebra. In this sense, the special case of partitions can be viewed as “collapsing
back” into classical reasoning.

Theorem 5.10. [Decomposition of open and closed sets of Tα into essential parts]
For all join-irreducibles Bz ∈ Jα,

Bz =
⋃

{Ez′ | z v z′} (1)

Hence for all open sets U ∈ Tα,

U =
⋃

{ Ez | z ∈ Zα and Bz ⊆ U } (2)

and for all closed sets V ∈ (−Tα),

V =
⋃

{ Ez | z ∈ Zα and V ∩ Bz 6= ∅ } (3)

PROOF. Fix z ∈ Zα, and consider the RHS set Rz :=
⋃

{Ez′ | z v z′} =
⋃

{Ez′ | Bz′ ⊆
Bz}. Since Ez′ ⊆ Bz′ ⊆ Bz for each essential part Ez′ in the disjoint union, we know that
Rz ⊆ Bz. So it suffices to show that Bz ⊆ Rz. Suppose x /∈ Rz. So for some z′ ∈ Zα, we do
not have z v z′ and we do have x ∈ Ez′ . So Bz′ * Bz, and by Proposition 5.9, part (2.), we
must have Bz′ =

⋂

{ U ∈ Tα | x ∈ U }. This implies x /∈ Bz, as required.
Next, fix any open set U ∈ Tα. Then

U =
⋃

{ Bz ∈ Jα | Bz ⊆ U } by Proposition 5.7, part (3.)

=
⋃

{
⋃

{ Ez′ | z v z′} | z ∈ Zα and Bz ⊆ U} by equation (1)

=
⋃

{ Ez′ | z′ ∈ Zα and Bz′ ⊆ U } by simplification

Finally, fix any closed set V ∈ (−Tα). So V = X − U for some U ∈ Tα. Then

V = X − U
= X −

⋃

{ Ez′ | z′ ∈ Zα and Ez′ ⊆ U } by equation (2)
=

⋃

{ Ez | z ∈ Zα and Bz * U } since {Ez}z∈Zα
partitions X

=
⋃

{ Ez | z ∈ Zα and Bz * (X − V ) }
=

⋃

{ Ez | z ∈ Zα and V ∩ Bz 6= ∅ } �
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We can now derive a simple and clean characterisation of both the interior and the
closure operators of Tα in terms of the essential part partition blocks. The proof is omitted
due to space constraints.

Corollary 5.11. The topological operators of Tα satisfy the following formulas:

intTα
(W ) =

⋃

{ Ez | z ∈ Zα and Bz ⊆W } (4)

clTα
(W ) =

⋃

{ Ez | z ∈ Zα and W ∩Bz 6= ∅ } (5)

Let Tq denote the quotient topology on Zα induced by qα : X → Zα; that is, the minimal
topology on Zα such that qα : (X, Tα) → (Zα, Tq) is a continuous function. Thus

Tq := {V ⊆ Zα | q
−1
α (V ) ∈ Tα}

where q−1
α (V ) =

⋃

{Ez | z ∈ V }. The partial order v on Zα gives us a way to “read off” how
and when blocks Ez “clump together” to form the open and closed sets in Tα, as captured
in the next proposition.

Proposition 5.12. For all subsets V ⊆ Zα, the conditions in each row are equivalent.

1. V is open in Tq; V is up-v-closed; q−1
α (V ) is open in Tα.

2. V is closed in Tq ; V is down-v-closed; q−1
α (V ) is closed in Tα.

In particular, Tq and Tv are identical topologies on Zα.

We conclude this section with an analysis of the semi-continuity properties of the refined
A/D map ᾱ and the quotient A/D function qα.

Theorem 5.13. Let α : X  Y be any A/D map. Then the refined A/D map ᾱ : X  Zα

and the quotient function qα : X → Zα are such that:

1. ᾱ : (X, Tα) (Zα, Tq) is l.s.c.
2. ᾱ−1 : (Zα, Tq) (X, Tα) is u.s.c.
3. qα : (X, Tα) (Zα, Tq) is l.s.c.
4. qα : (X, Tα) (Zα, Tq) is u.s.c.
5. q−1

α : (Zα, Tq) (X, Tα) is l.s.c.
6. q−1

α : (Zα, Tq) (X, Tα) is u.s.c.

PROOF. (1.) To establish that ᾱ is l.s.c, first observe that pre∃(ᾱ)(V ) =
⋃

{Bz ∈ Jα | z ∈
V } for V ⊆ Zα. We claim that if V is up-v-closed, then pre∃(ᾱ)(V ) = q−1

α (V ). The l.s.c.
property for ᾱ would then follow from the claim together with Tq = Tv and the functional
continuity of qα : (X, Tα) → (Zα, Tq). To establish the claim, observe that the inclusion
q−1
α (V ) ⊆ pre∃(ᾱ)(V ) holds in general, since Ez ⊆ Bz. For the converse inclusion, we know

that Bz =
⋃

{Ez′ | z v z′}, hence pre∃(ᾱ)(V ) =
⋃

{Ez′ | (∃z)[ z ∈ V and z v z′ ]}.
Since V is up-v-closed, we know that z ∈ V and z v z′ implies z′ ∈ V . It follows that
pre∃(ᾱ)(V ) ⊆

⋃

{Ez | z ∈ V } = q−1
α (V ).

(2.) To prove that ᾱ−1 is u.s.c., start by observing that pre∀(ᾱ−1)(U) = {z ∈ Zα | Bz ⊆
U} for subsets U ⊆ X . Now if U is Tα-open and Bz ⊆ U and z v z′, then Bz′ ⊆ Bz ⊆ U ;
this shows that pre∀(ᾱ−1)(U) is up-v-closed.

(3.) and (4.) are trivial, since qα : (X, Tα) → (Zα, Tq) is continuous as a single-valued
function, by the very definition of the quotient topology Tq .

(5.) To show that q−1
α is l.s.c., observe that for subsets U ⊆ X , we have pre∃(q−1

α )(U) =
{z ∈ Zα | U ∩ Ez 6= ∅}. Now if U is Tα-open and U ∩ Ez 6= ∅, then by Proposition 5.9,
part (b), we must have Bz ⊆ U . Then if z v z′, we have Bz′ ⊆ Bz and hence Bz′ ⊆ U and
thus Ez′ ⊆ U from which we can conclude U ∩ Ez′ 6= ∅. This reasoning shows that if U is
Tα-open then pre∃(q−1

α )(U) is up-v-closed, hence q−1
α is l.s.c.

(6.) Finally, for the u.s.c. property for q−1
α , we claim that if U is Tα-open then pre∀(q−1

α )(U) =
pre∃(q−1

α )(U); the result would then follow from part (5.). To prove the claim, observe that
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pre∀(q−1
α )(U) = {z ∈ Zα | Ez ⊆ U}, and that by Proposition 5.9, part (b), Ez ⊆ U iff

U ∩ Ez 6= ∅. �

In general, it seems that ᾱ : (X, Tα) (Zα, Tq) need not be u.s.c., and ᾱ−1 : (Zα, Tq) 
(X, Tα) need not be l.s.c. Counter-examples will be given in the full paper.

6 Applications of Intuitionistic semantics to approximate
model-checking

When it comes real-world application of modal logics, more often than not one finds oneself
in a situation where exact model-checking is impossible. This, for example, is the typical
case in the formal analysis and design of hybrid dynamical systems. A common approach to
overcome this limitation is to discretise the state space by an A/D map, and to investigate
relevant reachability relationships through the lenses provided by the cells of the cover; e.g.
[12, 20]. In this section, we shall use Intuitionistic semantics in order to relate this sort of
discretised view of a model with the original model itself.

Suppose we have a Kripke model M = (X,R, ξ), and we want to evaluate the (classical)
denotation set

�
ϕ � M for formulas ϕ ∈ L(P0)

+

♦·�· , where P0 ⊂ AP is a finite set of atomic

propositions, and L(P0)
+

♦·�· is the positive sublanguage of L♦·�· generated from P0 under ∨,
∧, ♦· and �· ; i.e. no implications or negations.

Recipe: model approximation via spatial discretisation

Input: a Kripke model M = (X,R, ξ), and a finite set P0 ⊂ AP of atomic propositions.

Step 1: Design an A/D map α : X  Y such that for each p ∈ P0, the denotation set
ξ−1(p) ⊆ X is a union of α-cells. Then construct the topology Tα, join-irreducible refinement
ᾱ : X  Zα, the quotient map qα : X → Zα, and the topology Tq = Tv on Zα.

Step 2: Design two relations Qun : Zα  Zα and Qov : Zα  Zα satisfying the following:
(1)-un: Qun : (Zα, Tq) (Zα, Tq) and Q−1

un : (Zα, Tq) (Zα, Tq) are l.s.c.
(2)-un: (qα ◦Qun ◦ q−1

α ) ⊆ R
(3)-un: (q−1

α ◦R) ⊆ (Qun◦ v ◦q−1
α )

(1)-ov: Qov : (Zα, Tq) (Zα, Tq) and Q−1
ov : (Zα, Tq) (Zα, Tq) are l.s.c.

(2)-ov: R ⊆ (qα ◦Qov ◦ q−1
α )

(3)-ov: (v ◦Qov) ⊆ (v ◦q−1
α ◦R ◦ qα).

Output: the topological models Mun := (X, Tα, Run, ξ0) and Mov := (X, Tα, Rov, ξ0),
where: Run := qα ◦Qun◦q

−1
α , and Rov := qα◦Qov ◦q

−1
α , and atomic valuation ξ0 : X  AP

defined by p ∈ ξ0(x) iff (x ∈ ξ−1(p) and p ∈ P0), or (x ∈ intTα
(ξ−1(p)) and p 6∈ P0).

By conditions (1)-un and (1)-ov, together with Theorem 5.13, parts (3.) and (5.), we know
that Run, R

−1
un , Rov , R

−1
ov : (X, Tα)  (X, Tα) are all l.s.c. By the design of α, the original

atomic valuation has ξ−1(p) open in Tα for p ∈ P0, and the new valuation ξ0 enforces
openness in Tα for those p ∈ AP − P0, about which we do not care. Hence Mun and Mov

are l.s.c. and open (Intuitionistic) topological models.
Conditions (2)-un and (2)-ov are minimal for the approximation task, since they give

Run ⊆ R ⊆ Rov . Intuitively, conditions (3)-un and (3)-ov say that Run and Rov additionally
have to be “quite close” to the original R, where the measure of the closeness correlates with
the size of the overlaps of the α-cells. In the case that there are no overlaps at all, when α
is chosen to be a partition, then v is the identity and (3)-un forces Run = R, and (3)-ov
forces Rov = R. Hence there is no allowance or “wiggle room” for approximating R. This
accords with the intuition that if the topology Tα is actually a Boolean algebra, then one
has collapsed back into the classical realm and so one shouldn’t expect to draw much benefit
from a detour into Intuitionistic logic.
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Theorem 6.1. Given M = (X,R, ξ) and a finite set P0 ⊂ AP , suppose we have followed
the recipe above. Then for all positive formulas ϕ ∈ L(P0)

+

♦·�· ,�
ϕ � Mun

Int
⊆

�
ϕ � M ⊆

�
ϕ � Mov

Int
(6)

Moreover, the Intuitionistic denotation sets in Mun and Mov can be computed from deno-
tation sets in quotient models under qα on the set Zα. Define models Nun := (Zα, Tq , Qun, ξ̄)
and Nov := (Zα, Tq, Qov, ξ̄) where ξ̄ := q−1

α ◦ ξ. Then for all formulas ψ ∈ L(P0)♦·�· , and for
~ ∈ {un, ov}:

�
ψ � M~

Int
=

⋃

{

Bz | z ∈
�
ψ � N~

Int

}

(7)

PROOF. We prove the double inclusion (6) by induction on formulas. The base case for
p ∈ P0, we have

�
p � Mun

Int
= ξ−1

0 (p) = ξ−1(p) =
�
p � M and likewise

�
p � Mov

Int
=

�
p � M. The

induction for ∨ and ∧ proceeds straight-forwardly, since ⊆ respects ∪ and ∩. (Notice why
the induction step can’t go through for →; its semantics involve set-complement in the
antecedent, which reverses inclusions, so the best we can do is a positive fragment.)

For the two modal cases, let U1 =
�
ϕ � Mun

Int
, W =

�
ϕ � M and U2 =

�
ϕ � Mov

Int
, so the

induction hypothesis is that U1 ⊆W ⊆ U2. The ♦· case is quite simple. By conditions (2)-un
and (2)-ov, we have the inclusions Run ⊆ R ⊆ Rov. Hence U1 ⊆ W ⊆ U2 implies that
pre∃(Run)(U1) ⊆ pre∃(R)(W ) ⊆ pre∃(Rov)(U2), and thus

�
♦·ϕ � Mun

Int
⊆

�
♦·ϕ � M ⊆

�
♦·ϕ � Mov

Int
.

The harder part is the �· case. We do the two inclusions separately.
To prove

�
�·ϕ � Mun

Int
⊆

�
�·ϕ � M, it suffices to prove intTα

(pre∀(Run)(U1)) ⊆ pre∀(R)(U1),

since intTα
(pre∀(Run)(U1)) =

�
�·ϕ � Mun

Int
and pre∀(R)(U1) ⊆ pre∀(R)(W ) =

�
�·ϕ � M. Now

intTα
(pre∀(Run)(U1)) ⊆ pre∀(R)(U1)

⇔ pre∃(R−1)
(

intTα
(pre∀(Run)(U1))

)

⊆ U1 adjoint property
⇔

⋃
{

pre∃(R−1)(Ez) | Bz ⊆ pre∀(Run)(U1)
}

⊆ U1 Thm 5.10 & distribution
⇔

⋃
{

pre∃(R−1)(Ez) | pre∃(R−1
un )(Bz) ⊆ U1

}

⊆ U1 adjoint property
⇔ (∀z ∈ Zα)[ if pre∃(R−1

un )(Bz) ⊆ U1 then pre∃(R−1)(Ez) ⊆ U1 ]

So it suffices to show that pre∃(R−1)(Ez) ⊆ pre∃(R−1
un )(Bz) for all z ∈ Zα. Now starting from

condition (3)-un, we can take inverses to conclude that (R−1◦qα) ⊆ (qα◦ w ◦Q−1
un). The map

Q−1
un is l.s.c. by condition (1)-un, hence by Proposition 4.2, part (1.), (w ◦Q−1

un) ⊆ (Q−1
un◦ w )̇.

Thus (R−1 ◦ qα) ⊆ (qα ◦Q
−1
un◦ w), and (qα ◦Q

−1
un◦ w) = (qα ◦Q

−1
un ◦ (q−1

α ◦ qα)◦ w) = (R−1
un ◦

qα◦ w) = (R−1
un ◦ᾱ), by Proposition 5.9, part (e). Hence (R−1◦qα) ⊆ (R−1

un ◦ᾱ). Now observe
that (x, z) ∈ (R−1 ◦qα) iff x ∈ pre∃(R−1)(Ez), and (x, z) ∈ (R−1

un ◦ ᾱ) iff x ∈ pre∃(R−1
un )(Bz).

Hence for all z ∈ Zα, we have pre∃(R−1)(Ez) ⊆ pre∃(R−1
un )(Bz), as required.

To prove
�
�·ϕ � M ⊆

�
�·ϕ � Mov

Int
, we need pre∀(R)(W ) ⊆ intTα

(pre∀(Rov)(U2)). Since U2

is Tα-open, (−U2) is Tα-closed; hence by Theorem 5.10, (−U2) =
⋃

{ Ez | Bz * U2 }. Then

pre∀(R)(W ) ⊆ intTα
(pre∀(Rov)(U2))

⇔ clTα
(pre∃(Rov)(−U2)) ⊆ pre∃(R)(−W ) taking complements

Now

clTα
(pre∃(Rov)(−U2))

=
⋃

{

Ez | pre∃(Rov)(−U2) ∩ Bz 6= ∅
}

Thm 5.11
=

⋃
{

Ez | (∃z′ ∈ Zα)[ Bz′ * U2 and pre∃(Rov)(Ez′ ) ∩Bz 6= ∅ ]
}

On the other side,

pre∃(R)(−W )
⊇ pre∃(R)(intTα

(−W ))
=

⋃
{

Ez | pre∃(R)(−W ) ∩ Bz 6= ∅
}

Thm 5.11
=

⋃
{

Ez | (∃z′ ∈ Zα)[ Bz′ * W and pre∃(R)(Ez′) ∩ Bz 6= ∅ ]
}

Since W ⊆ U2, if Bz′ * U2 then Bz′ * W . Hence it suffices to show that for all z, z′ ∈ Zα,

(?) if pre∃(Rov)(Ez′) ∩ Bz 6= ∅ then pre∃(R)(Ez′ ) ∩Bz 6= ∅
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(Note that the converse is already known, since R ⊆ Rov by condition (2)-ov.) As to be ex-
pected, to prove (?), we appeal to condition (3)-ov. It is readily verified that pre∃(Rov)(Ez′)∩
Bz 6= ∅ iff (z, z′) ∈ (v ◦q−1

α ◦ Rov ◦ qα) = (v ◦Qov), and pre∃(R)(Ez′ ) ∩ Bz 6= ∅ iff
(z, z′) ∈ (v ◦q−1

α ◦R ◦ qα). Since condition (3)-ov says (v ◦Qov) ⊆ (v ◦q−1
α ◦R ◦ qα), we are

done.
The last part of the theorem expresses how the Intuitionistic denotation sets in Mun

and Mov can be computed from denotation sets in the quotient models Nun and Nov. For
all formulas ψ ∈ L(P0)♦·�· generated from P0, here including implications, we have:

�
ψ � M~

Int
=

⋃

{

Ez | z ∈
�
ψ � N~

Int

}

for ~ ∈ {un, ov}. Since
�
ψ � M~

Int
is Tα-open, we get equation (7). �

The stronger conditions (3)-un and (3)-ov on Qun and Qov are there to push through
the induction for �· formulas. One pragmatic response is to take consolation that, in the
absence of conditions (3)-un and (3)-ov, one can still get the approximation inclusion (6) for
the smaller fragment of positive formulas generated from atomic propositions in P0 under
∨, ∧ and ♦·. Another response is to consider a strategic refinement of an A/D map α if it
is “too coarse” to allow for the design of approximation relations Qun and Qov on Zα that
will satisfy (3)-un and (3)-ov. One should use data witnessing the failure of the conditions
in seeking a refinement β c α that might be better for the job. There is also plenty of scope
for identifying particular classes of models M = (X,R, ξ) for which an approximation triple
(α,Qun, Qov) can be explicitly determined, and algorithms for doing so.

7 Conclusions

In the course of this paper, we have made three original contributions. We have given a
complete topological semantics for the Intuitionistic modal logic of Fischer Servi, includ-
ing generalising the known bi-relational frame conditions to semi-continuity properties of
the relation with respect to the topology. We have developed the general topology of an
interesting class of topologies arising from spatial discretisation via A/D maps, which are
known from engineering practice in the area of hybrid dynamical systems. And finally, we
have produced a novel application of Intuitionistic semantics and our theory of A/D maps
to the problem of approximate model-checking of classical modal formulas in models where
the exact evaluation of denotation sets is not possible.
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