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Bimodal Logics for Reasoning

About Continuous Dynamics
J.M. Davoren and R.P. Goré

abstract. We study a propositional bimodal logic consisting
of two S4 modalities � and [a], together with the interaction ax-
iom scheme 〈a〉�ϕ → �〈a〉ϕ. In the intended semantics, the plain
� is given the McKinsey-Tarski interpretation as the interior op-
erator of a topology, while the labelled [a] is given the standard
Kripke semantics using a reflexive and transitive binary relation
Ra. The interaction axiom expresses the property that the Ra

relation is lower semi-continuous with respect to the topology.
The class of topological Kripke frames characterised by the logic
includes all frames over Euclidean space where Ra is the posi-
tive flow relation of a differential equation. We establish the com-
pleteness of the axiomatisation with respect to the intended class
of topological Kripke frames, and investigate tableau calculi for
the logic, although tableau completeness and decidability are still
open questions.

1 Introduction
We study a propositional bimodal logic consisting of two S4 modalities
� and [a], together with a cross or mix axiom scheme:

〈a〉�lsc : 〈a〉�ϕ→ �〈a〉ϕ

where 〈a〉ϕ def= ¬[a]¬ϕ. This particular bimodal logic is specifically moti-
vated by hybrid dynamical systems: systems characterised by interacting
discrete and continuous dynamics, which are the subject of a rapidly
growing research field at the interface of computer science and control
engineering. In the basic case, a hybrid system consists of finitely many
differential equations together with reset relations prescribing when the
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system can discretely switch from one differential equation to another.
Their engineering applications include air-traffic control, robotics and
automated manufacturing (Antsaklis 2000).

Formal reasoning about discrete dynamics is well-studied in the anal-
ysis and verification of computer hardware and software using temporal
and modal logics; the challenge in the hybrid setting is to also incorpo-
rate continuous dynamics into a common logical framework. A crucial
move is to consider relations Ra ⊆ S×S as a generic way of representing
continuous as well as discrete dynamics (Davoren and Nerode 2000). A
basic relation of interest is the positive flow relation or orbit relation of
a differential equation on a space S ⊆ Rn, where x′ is a flow successor
of x iff there is a solution curve of the differential equation leading from
x to x′. This relation is both reflexive and transitive, hence a preorder,
and motivates our choice of the S4 axioms for the labelled modal oper-
ator [a], given the standard Kripke semantics. In application to hybrid
systems, one works with a PDL-like polymodal extension, with modal
operators [a] labelled by letters a ∈ Σ in an alphabet of relations Σ, as
in (Davoren and Moor 2000).

The purpose of the other S4 modal operator � is to give modal
representation to topological structure and properties, and thence to no-
tions of continuity for relations. The plain box � is given the McKinsey-
Tarski interpretation as the interior operator in an arbitrary topological
space (S, T ), as in (McKinsey 1941), (McKinsey and Tarski 1944) and
(Rasiowa and Sikorski 1963). So the denotation set of a formula �ϕ is
the largest open set in T contained in the denotation set of ϕ; recall that
a set is open if it is equal to its own interior. The dual 3 is interpreted
by the topological closure operator. The semantics for our bimodal logic
are thus over topological Kripke frames F = (S, T , Ra).

The interaction axiom scheme 〈a〉�lsc is equivalent to the asser-
tion that the semantic operator 〈a〉 applied to an open set is always
an open set. From the general topology of relations/set-valued maps
(Kuratowski 1966), there are two quite distinct topological notions of
continuity. As we show in Section 2, an arbitrary relation Ra ⊆ S × S
is lower semi-continuous (l.s.c.) with respect to T exactly when the
frame F = (S, T , Ra) validates the 〈a〉�lsc axiom scheme, and is upper
semi-continuous (u.s.c.) with respect to T exactly when F validates

[a]�usc : [a]�ϕ→ �[a]ϕ

which asserts that the operator [a] applied to an open set is an open set.
When Ra is a total single-valued map, both notions of semi-continuity
reduce to the standard topological notion of continuity for functions. An
arbitrary relation Ra ⊆ S×S is thus called continuous if it is both l.s.c.
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and u.s.c. ; see Kuratowski (1966), Section 18. As we show in Section 3,
the flow relation of a differential equation is always l.s.c. with respect to
the standard Euclidean topology on S ⊆ Rn, but it may fail to be u.s.c.

We give the name LSC to the logic axiomatised by �S4 + [a]S4 +
〈a〉�lsc. The Hilbert-style axiomatisation is sound and complete with
respect to the class LSC of topological Kripke frames (S, T , Ra) for Ra a
preorder that is l.s.c. with respect to T , an arbitrary topology. For com-
pleteness, the standard canonical Kripke model construction extends to
this bimodal configuration, resulting in a canonical frame FLSC whose
topology T� is determined by a preorder �⊆ S × S. Topologies in this
subclass are variously known as Alexandroff, Kripke or cone topolo-
gies, and are in one-one correspondence with preorders. Applying earlier
results in (Davoren 1999), we show that the two semi-continuity prop-
erties translate in the bi-relational setting to quite familiar “diamond”
graph properties; they correspond to the Zig-Zag conditions for � to
be a bisimulation with respect to the relation Ra, with l.s.c. mapping
to the “Zig” condition, and u.s.c. mapping to the “Zag” condition. A
corollary of the completeness proof is that logics such as LSC and its
fraternal twin USC cannot distinguish between frames with Alexandroff
topologies and frames with arbitrary topologies.

We attempt to develop a tableau calculus for the logic LSC, produc-
ing a tableau rule encoding the l.s.c. axiom which uses analytic cuts on
a restricted class of analytic super-formulae. This work builds on previ-
ous studies by Goré (1991, 1999): monomodal �S4.2 is the special case
where [a] is identical to �, so the 〈a〉�lsc axiom scheme reduces to the
weak directedness scheme �2 : 3�ϕ → �3ϕ. Our tableau calculus is
sound with respect to the class of frames but completeness is currently
an open question. We nevertheless give details of our current attempt to
prove completeness since it may help others to invent additional rules
to plug the gap.

Bimodal and polymodal logics without any interaction axioms are
well-studied as fusions of monomodal logics (Wolter 1999) where our
base logic �S4 + [a]S4 would be written S4 ⊗ S4. In particular, by
Corollary 2.4 of (Wolter 1999), the base logic is decidable. The source
of the difficulty in LSC is, of course, the extra interaction axiom.

The remainder of the paper is organised as follows. In Section 2, we
give the syntax and topological semantics for the logics, and establish the
modal characterisation of the semi-continuity properties. In Section 3,
we discuss the motivating applications from the analysis of continuous
and hybrid dynamical systems. Section 4 sets out the relationship be-
tween topological semantics and the bi-relational Kripke semantics. In
Section 5, we give the Hilbert-style axiomatisations for LSC, and estab-
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lish its soundness and completeness. In Section 6 we give our tableau
calculus, with a discussion of how the l.s.c. axiom is coded up as a
rule, and prove its soundness. Section 7 gives a counter-example to the
completeness of our tableau calculus. Section 8 gives an outline of an
alternative calculus for LSC which is complete and terminating, but
whose soundness is open. Section 9 discusses related work on bimodal
and polymodal logics, and the concluding Section 10 discusses further
work.

2 Syntax and Topological Semantics
Definition 2.1 Let AP = {p0, p1, ..., q0, q1, ...} be a fixed countable set
of atomic propositions. With p ∈ AP, the set L(�, [a]) of bimodal for-
mulae is recursively generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | �ϕ | [a]ϕ

The other Boolean connectives, logical constants � and ⊥, and dual
modalities are defined in the standard way. For ϕ ∈ L(�, [a]), the (finite)
set Sf ϕ of subformulae of ϕ is defined as usual.

Definition 2.2 A topological Kripke frame, or frame, for L(�, [a]) is a
structure F = (S, T , Ra) where S �= ∅ is the state space, T ⊆ P(S) is
a topology on S (so S, ∅ ∈ T and T is closed under finite intersections
and arbitrary unions), and Ra ⊆ S × S is a binary relation on S.

A valuation in F is any function ξ : AP → P(S) assigning a set of
states ξ(p) ⊆ S to each atomic p ∈ AP, and a model over F is a pair
M = (F , ξ). For each model M over F , the denotation set JϕKM of a
formula ϕ ∈ L(�, [a]) is defined by:

JpKM
def= ξ(p)

J¬ϕKM
def= S − JϕKM Jϕ1 ∧ ϕ2KM def= Jϕ1K

M ∩ Jϕ2K
M

J�ϕ KM
def= intT

(
JϕKM

)
J [a]ϕ KM

def= Pre∀[Ra]
(
JϕKM

)

where the ∀-pre-image operator Pre∀[R] : P(S)→ P(S) of R is:

Pre∀[R](A) def= {x ∈ S | (∀y ∈ S)[ if xRy then y ∈ A ]}
For formulae ϕ ∈ L(�, [a]), and models over a class of frames F:
• ϕ is satisfied at state s in the modelM, written s �M ϕ, if s ∈ JϕKM

• ϕ is true in the modelM, writtenM � ϕ, if JϕKM = S

• ϕ is valid in the frame F , written F � ϕ, if M � ϕ for all models
M = (F , ξ) over F and
• ϕ is F-valid, written �F ϕ, if F � ϕ for all frames F ∈ F
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The universal pre-image operator is the translation of the standard
Kripke semantics into operator form, and is a special case of Jónsson
and Tarski’s operators on a Boolean algebra. It is also Dijkstra’s weakest
liberal precondition operator, and in set-valued analysis, it is known as
the core operator (Aubin and Frankowska 1990). The semantic operator
for 〈a〉 is the dual ∃-pre-image operator:

Pre∃[R](A) = {x ∈ S | (∃y ∈ S)[ xRy and y ∈ A ]}
On notation, we use letters s, x, y, u, v, w for states/worlds in a frame,
and we write s � ϕ and JϕK without theM when the model is clear.

Definition 2.3 A topological Kripke frame F = (S, T , Ra) is:
• relationally preordered if the relation Ra ⊆ S × S is reflexive and
transitive; i.e. a preorder;
• lower semi-continuous if Ra is l.s.c. in T ; i.e. for all A ⊆ S, if A ∈ T
then Pre∃[Ra](A) ∈ T ;
• upper semi-continuous if Ra is u.s.c. in T ; i.e., for all A ⊆ S, if A ∈ T
then Pre∀[Ra](A) ∈ T .

Let TK denote the universal class of all topological Kripke frames,
let TS4 denote the class of all relationally preordered frames, let LSC

denote the class of all relationally preordered, lower semi-continuous
frames, and let USC denote the class of all relationally preordered, upper
semi-continuous frames. So (LSC ∪USC) ⊆ TS4 ⊆ TK. We now give
the modal characterisation of the semi-continuity properties.

Proposition 2.4 For all frames F ∈ TK, the following are equivalent:

(i) for all formulae ϕ ∈ L(�, [a]), F � 〈a〉�ϕ→ �〈a〉ϕ
(ii) for all formulae ϕ ∈ L(�, [a]), F � 〈a〉�ϕ↔ �〈a〉�ϕ
(iii) the relation Ra is l.s.c. with respect to T .

Proof. Conditions (i), (ii) and (iii) are respectively equivalent to:

(i)∗ Pre∃[Ra] (intT (A)) ⊆ intT
(
Pre∃[Ra] (A)

)
∀A ∈ P(S)

(ii)∗ Pre∃[Ra] (intT (A)) = intT
(
Pre∃[Ra] (intT (A))

)
∀A ∈ P(S)

(iii)∗ Pre∃[Ra] (U) = intT
(
Pre∃[Ra] (U)

)
∀U ∈ T

Since U ∈ T iff U = intT (U) iff U = intT (A) for some A ∈ P(S),
the equivalence (ii)∗ ⇔ (iii)∗ is immediate. So it suffices to show (i)∗ ⇒
(iii)∗ and (ii)∗ ⇒ (i)∗. Since U = intT (U) for all open sets U ∈ T , we
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have Pre∃[Ra](U) =Pre∃[Ra] (intT (U)). Assuming (i)∗, we get

intT
(
Pre∃[Ra](U)

)
⊆ Pre∃[Ra](U)

= Pre∃[Ra] (intT (U))

⊆ intT
(
Pre∃[Ra] (U)

)

so (iii)∗ holds. From the inclusion-monotonicity of both operators to-
gether with intT (A) ⊆ A, we get:

intT
(
Pre∃[Ra] (intT (A))

)
⊆ intT

(
Pre∃[Ra] (A)

)

So (ii)∗ implies (i)∗. �
The “3-to-2” box-diamond equivalences for the l.s.c. property have

four bi-dual versions:
〈a〉�ϕ ↔ �〈a〉�ϕ 3[a]3ϕ ↔ [a]3ϕ
3[a]ϕ ↔ [a]3[a]ϕ 〈a〉�〈a〉ϕ ↔ �〈a〉ϕ

Note that, while the upper two equivalences only require [a] be K, the
lower pair of equivalences require [a] be S4.

The proof of Proposition 2.4 only uses the inclusion-monotonicity of
Pre∃[Ra], so a uniform substitution of Pre∀ for Pre∃ in Proposition 2.4
gives the u.s.c. characterisation, with the characteristic formulae all of
the form box-box or diamond-diamond.

Proposition 2.5 For frames F ∈ TK, the following are equivalent:

(i) for all formulae ϕ ∈ L(�, [a]), F � [a]�ϕ→ �[a]ϕ
(ii) for all formulae ϕ ∈ L(�, [a]), F � [a]�ϕ↔ �[a]�ϕ
(iii) the relation Ra is u.s.c. with respect to T .

3 Applications to Continuous and Hybrid Systems
Consider a state space S ⊆ Rn equipped with the standard Euclidean
metric topology TR, and consider a differential equation d

dtx(t) = F (x(t))
on S. Assuming standard conditions on the vector field F : S → Rn such
as Lipschitz continuity, there is a unique solution γx : T → S from each
initial condition x = γx(0) ∈ S, for some time interval T ⊆ R including 0.
Assume further that solutions exist for the whole non-negative time axis
R+ = [0,∞), so they can be aggregated as the semi-flow Φ : S×R+ → S
of F , which is a continuous function on S×R+ satisfying the flow laws :
Φ(x, 0) = x and Φ(x, t+ s) = Φ(Φ(x, t), s) and ∂

∂tΦ(x, t) = F (Φ(x, t)).

Definition 3.1 Given a semiflow Φ : S × R+ → S, the positive orbit
relation or flow relation f ⊆ S × S of Φ is given by:

x
f−→ x′ iff (∃t ∈ R

+) x′ = Φ(x, t)
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In words, x′ is an f -successor of x iff there is a solution curve of the
differential equation leading from x to x′. We show that the resulting
frame F = (S, TR, f) lies in LSC. The reflexivity and transitivity of f
is immediate from the flow laws. Since time in R+ is linearly ordered, f
is also weakly connected, giving the modal logic S4.3, but we ignore lin-
earity here. Flow relations of reasonable classes of differential inclusions
from set-valued vector fields also obey the basic S4 conditions.

Proposition 3.2 The positive orbit relation of a semi-flow is l.s.c.

Proof. We appeal to an alternative formulation of the l.s.c. property
for relations on metric spaces from (Aubin and Frankowska 1990): R ⊆
S×S is l.s.c. iff for all x ∈ dom(R), if (xn)n∈ω is any sequence converging
to x and xR y, then there exists a sequence (yn)n∈ω converging to y
with xn Ryn for all n ∈ ω. Let (xn)n∈ω be a sequence converging to

x and suppose x
f−→ y. So y = Φ(x, t0) for some t0 ∈ R

+. Since Φ is
continuous on its product domain, it is continuous in both arguments
separately. Thus the map Φt0 := Φ(−, t0) : S → S is continuous, and
thus preserves converging sequences. Hence the sequence (yn)n∈ω defined

by yn = Φt0(xn) must converge to y, and xn
f−→ yn for all n ∈ ω. �

In contrast, the u.s.c. property is possessed by some but not all flow
relations. As a concrete example, consider the piecewise-linear differen-
tial equation over S = R given by dx

dt = −x if x ≤ 1 and dx
dt = x − 2 if

x > 1. The semi-flow is explicitly defined by:

Φ(x, t) =




xe−t if x ≤ 1 and t ∈ R+

eln(
1

2−x )−t if 1 < x < 2 and t ≥ ln
(

1
2−x

)

(x− 2)et + 2 if ( 1 < x < 2 and 0 ≤ t < ln
(

1
2−x

)
)

or ( x ≥ 2 and t ∈ R
+ )

Then consider the open interval A = (−∞, 3). For the relation Ra = f ,
the box or universal pre-image [a]A is the flow-invariant subset of A,
namely the points in A all of whose flow successors are in A; this is the
set (−∞, 2], which is closed and not open1, hence f is not u.s.c. The
diamond or existential pre-image 〈a〉A is the set of points which have
some flow successor in A. For A = (−∞, 3) in the example, this is just
A itself.

Kripke models of hybrid systems typically have a state space of the
form S = Q × X where Q is a finite set and X ⊆ R

n. Such systems
may either flow according to the differential equation associated with a

1This example is due to Thomas Moor, Dept. Systems Engineering, RSISE, ANU.
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discrete state q ∈ Q, or they may switch discrete states with an accom-
panying reset of the real-valued variables (possibly the identity map).
Hybrid trajectories consist of a sequence of segments of solution curves
of differential equations, with endpoints of successive segments related
by discrete reset relations. Each discrete state q ∈ Q also has associ-
ated with it a set Invq ⊆ X , known as the mode invariant, and to be
a segment of a hybrid trajectory, a solution curve of the state q differ-
ential equation is required to lie entirely inside the set Invq. In order
to reason about hybrid trajectories in relational terms, using alternating
compositions of continuous flow relations and discrete reset relations, we
actually need to work with restricted flow relations.

Given a semi-flow Φ : S × R+ → S and any set A ⊆ S ⊆ Rn, define
the relation e(A,Φ) ⊆ S × S of restricted evolution by:

x
e(A,Φ)−→ x′

def⇔ (∃t ∈ R+)[x′ = Φ(x, t) ∧ (∀s ∈ [0, t]) Φ(x, s) ∈ A ]

The (unrestricted) flow or orbit relation f = f(Φ) is then the special
case given by f = e(S,Φ).

Restricted evolution relations e(A,Φ) are transitive, weakly con-
nected, and quasi-reflexive, in the sense that they are reflexive on their
domain A. The axiom schemata [a]TQ : ([a]ϕ ∧ 〈a〉�)→ ϕ characterises
quasi-reflexivity; note that the domain of the relation Ra is the denota-
tion set of the formula 〈a〉�.

Various topological and dynamic conditions on the domain A suffice
to ensure that a relation e(A,Φ) is l.s.c. in the standard Euclidean topol-
ogy, with quite distinct conditions sufficing for the u.s.c. property. For ex-
ample, suppose the domain A is f -convex, in the sense that if x1, x2 ∈ A
and x1

f−→ x
f−→ x2 then x ∈ A. Letting pA be an atomic proposition

denoting the set A, and 〈f〉 and [f ] be the modalities for f , this prop-
erty is captured modally by the formula pA → [f ](〈f〉 pA → pA), and is
equivalent to the relational equality e = f ∩ (A×A), where e = e(A,Φ).
In such a case, the modal operators for e are definable in terms of those
for f . Under the hypothesis that A is f -convex, e is l.s.c. iff A is an
open set. If additionally, f is known to be u.s.c. , then e is u.s.c. iff A
is a closed set. As developed in (Davoren and Nerode 2000), a rich ar-
ray of properties of hybrid trajectories can be encoded as formulae of
PDL, the modal µ-calculus Lµ, and extensions obtained by adding �S4
topological modalities.

In addition to the standard Euclidean topology on S ⊆ Rn, work in
hybrid systems also leads one to consider finite topologies generated from
finite covers of S, which are necessarily Alexandroff. Operationally, finite
topologies arise from (set-valued) analog-to-digital conversion maps, and
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(a) “Lower” diamond property (b) “Upper” diamond property

FIGURE 1 Bi-relational forms of semi-continuity properties

from finite discretisations of S used for computational approximation.
Modal logic has been used quite successfully in (Davoren and Moor 2000)

to give a framework and methodology for the design and synthesis of
switching controllers for hybrid systems. In that work, the base logic is
a polymodal fusion of K modalities, which is further extended with ax-
ioms for restricted evolution relations, and for metric tolerance relations
Bε ⊆ S×S defined by: xBε y iff d(x, y) < ε, where d is a metric on S. The
latter relations are captured by the modal logic KTB (for reflexivity and
symmetry). Note, however, that (Davoren and Moor 2000) does not yet
make use of any semi-continuity interactions axioms – although continu-
ity arguments are used in proofs in natural language mathematics. Thus
the question of what happens when we do add the lower semi-continuity
axiom to the basic bi-modal �S4+[a]S4 logic is of considerable interest.

4 Bi-relational Kripke Semantics
We now discuss how the relational Kripke semantics for S4 are a special
case of the McKinsey-Tarski topological semantics; see (Davoren 1998,
Davoren 1999). We then characterise the semi-continuity properties in
bi-relational frames as “diamond” properties, as illustrated in Figure 1.

Given a preorder � on S, the Alexandroff topology T� on S deter-
mined by � is defined by taking U ∈ T� iff U is up-closed with respect to
�, i.e. if x ∈ U and x � y then y ∈ U . Dually, the closed sets under the
topology T� are exactly the down-closed sets with respect to �, i.e. if
y ∈ C and x � y then x ∈ C. The topology T� is closed under arbitrary
intersections as well as unions, and for all sets A ⊆ S,

intT�(A) = Pre∀[�](A) and clT�(A) = Pre∃[�](A)

More generally, a topology T on S is called Alexandroff if for every
point x ∈ S there is a smallest open set containing x. In particular, every
finite topology on a (arbitrary) set S is Alexandroff. For a preorder �
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on S, the topology T� is of course Alexandroff. Going the other way, any
topology T on S determines a relation �T on S, called the specialisation
preorder of T , given by:

x �T y iff (∀U ∈ T )[ x ∈ U ⇒ y ∈ U ]

Alexandroff topologies are those that can be completely recovered from
their specialisation preorder: for any preorder � on S, �T�=�, and if T
is Alexandroff, then T�T = T . Note that the closure under intersections
means that Alexandroff topologies occupy a far corner in the space of all
topologies, and look pathological from the viewpoint of general topology:
the only Alexandroff topology that is Hausdorff is the discrete topology.

For a class F of topological Kripke frames, we let AF denote the
subclass of frames (S, T , Ra) in F where T is Alexandroff. We also refer
to these as bi-relational frames, and write them as (S,�, Ra).

Proposition 4.1 Let F = (S, T�, Ra) be any frame with an Alexandroff
topology, with � the corresponding preorder. Then:
• The relation Ra is l.s.c. with respect to T� iff Ra satisfies the “lower”

diamond property w.r.t. �: for all s0, s1, s2 ∈ S

s0 � s1 and s0Ra s2 ⇒ (∃s3 ∈ S)[ s1Ra s3 and s2 � s3 ]

• The relation Ra is u.s.c. with respect to T� iff Ra satisfies the “upper”
(or “sideways”) diamond property w.r.t. �: for all s0, s1, s3 ∈ S

s0 � s1 and s1Ra s3 ⇒ (∃s2 ∈ S)[ s0Ra s2 and s2 � s3 ]

Proof. Apply Proposition 2.2 of (Davoren 1999). �

The “lower” and “upper” diamond properties are illustrated in Fig-
ure 1, parts (a) and (b) respectively, and correspond to the Zig-Zag con-
ditions for � to be a bisimulation with respect to Ra (Davoren 1999).

5 Hilbert-style Axiomatisation

Our Hilbert-style proof system HLSC for the logic LSC contains the
tautologies of classical propositional logic, the rule of modus ponens, and
the axiom schemata and inference rules below:
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�K∧ : �(ϕ1 ∧ ϕ2)↔ (�ϕ1 ∧�ϕ2) �K�: ��
�T : �ϕ→ ϕ �4 : �ϕ→ ��ϕ
[a]K∧ : [a](ϕ1 ∧ ϕ2)↔ ([a]ϕ1 ∧ [a]ϕ2) [a]K�: [a]�
[a]T : [a]ϕ→ ϕ [a]4 : [a]ϕ→ [a][a]ϕ

〈a〉�lsc : 〈a〉�ϕ→ �〈a〉ϕ

�-monotonicity:
ϕ→ ψ

�ϕ→ �ψ [a]-monotonicity:
ϕ→ ψ

[a]ϕ→ [a]ψ

We write #HLSC ϕ if the formula ϕ ∈ L(�, [a]) is derivable in HLSC.
A set Γ ⊆ L(�, [a] of formulae is HLSC-consistent if it is not the case
that #HLSC (ϕ1 ∧ · · · ∧ ϕn)→ ⊥ for any finite subset {ϕ1, . . . , ϕn} ⊆ Γ.

The �S4 axiom schemes and the �-monotonicity rule as presented
correspond precisely to Kuratowski’s (1966) axiomatisation of the topo-
logical interior operator (McKinsey 1941, McKinsey and Tarski 1944),
(Rasiowa and Sikorski 1963). Note that the usual box-necessitation rules
can be derived from the monotonicity rules using the box-K� axioms.
Likewise, the [a]S4 axiom schemata capture the properties of the op-
erator Pre∀[Ra] for preordered relations Ra. The verification that F �
〈a〉�ϕ → �〈a〉ϕ for all frames F ∈ LSC is given in Proposition 2.4.
This establishes soundness. For completeness of the axiomatisation, the
standard canonical model construction using maximal consistent sets of
formulae suffices, as independently discovered by Fischer-Servi (1981).

Proposition 5.1 (Soundness and completeness of HLSC)
For all ϕ ∈ L(�, [a]), �LSC ϕ iff #HLSC ϕ.

Proof. For completeness, define an Alexandroff frame FLSC where:

S := { s ⊆ L(�, [a]) | s is maximal HLSC-consistent }
s1 � s2 iff (∀ϕ ∈ L(�, [a])) [ �ϕ ∈ s1 ⇒ ϕ ∈ s2 ]

iff (∀ϕ ∈ L(�, [a])) [ ϕ ∈ s2 ⇒ 3ϕ ∈ s1 ]

s1Ra s2 iff (∀ϕ ∈ L(�, [a])) [ [a]ϕ ∈ s1 ⇒ ϕ ∈ s2 ]
iff (∀ϕ ∈ L(�, [a])) [ ϕ ∈ s2 ⇒ 〈a〉ϕ ∈ s1 ]

and define the canonical valuation ξ0 : AP→ P(S) as usual by ξ0(p) :=
{s ∈ S | p ∈ s}. Let MLSC = (FLSC, ξ0) denote the canonical model.
By the standard arguments, the axioms for �S4 and [a]S4 entail that
the relations � and Ra are both preorders, hence FLSC ∈ ATS4.

To establish that FLSC is l.s.c. with respect to T�, and so FLSC ∈
LSC, we need to verify the l.s.c. diamond property: if s0 � s1 and
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s0Ra s2, then there exists a state s3 such that s1Ra s3 and s2 � s3. So
suppose s0 � s1 and s0Ra s2. Then consider the set of formulae

c = {ϕ ∈ L(�, [a]) | [a]ϕ ∈ s1 or �ϕ ∈ s2 }
If c is non-empty and HLSC-consistent, then there exists a maximal
HLSC-consistent set s3 ⊇ c, and by construction, s1Ra s3 and s2 � s3.

The non-emptiness of c is immediate, since [a]� ∈ s and �� ∈ s for
all s. To prove that c is HLSC-consistent, suppose, for a contradiction,
that it is not. Then there is a finite subset c0 = {ϕ1, ..., ϕn, ψ1, ..., ψm}
of c, such that #HLSC (ϕ1 ∧ · · · ∧ ϕn ∧ ψ1 ∧ · · · ∧ ψm) → ⊥, where each
[a]ϕi ∈ s1 and each �ψj ∈ s2. Let ϕ = ϕ1 ∧ · · · ∧ ϕn and likewise
ψ = ψ1 ∧ · · · ∧ψm, hence #HLSC ψ → ¬ϕ. Since maximal consistent sets
s are closed under conjunction, and boxes distribute over conjunction,
we have [a]ϕ ∈ s1 and �ψ ∈ s2. Now �ψ ∈ s2 and s0Ra s2 imply
〈a〉�ψ ∈ s0, so by the 〈a〉�lsc axiom 〈a〉�ψ → �〈a〉ψ, we then have
�〈a〉ψ ∈ s0. By the monotonicity of both diamonds and boxes, #HLSC

�〈a〉ψ → �〈a〉¬ϕ, hence �〈a〉¬ϕ ∈ s0. Then since s0 � s1, we have
〈a〉¬ϕ ∈ s1, and hence ¬[a]ϕ ∈ s1. But this contradicts [a]ϕ ∈ s1, so c
must be HLSC-consistent.

The usual induction on formulae establishes the “Truth Lemma”:
s ∈ JϕKMLSC iff ϕ ∈ s for all maximal HLSC-consistent sets s ⊆
L(�, [a]) and all formulae ϕ ∈ L(�, [a]). Then for any ϕ, if it is not the
case that #HLSC ϕ, then there is some maximal HLSC-consistent set s
such that ϕ /∈ s, henceMLSC 
 ϕ. �

Corollary 5.2 For all ϕ ∈ L(�, [a]), �LSC ϕ iff �ALSC ϕ.

Proof. In the non-trivial direction, suppose �ALSC ϕ. Then in particular,
MLSC � ϕ in the canonical model, hence #HLSC ϕ. Then since HLSC
is sound with respect to the whole class LSC, we have �LSC ϕ. �

The canonical model construction can be applied uniformly to the
family of bimodal logics obtained by axiomatising the relational modality
[a] by any consistent normal canonical monomodal logic, and adding one
or both of the two semi-continuity axioms; in particular to the natural
twin logic USC given by �S4+[a]S4+[a]�usc (Coulthard 2000). Con-
sequently, the (finitary) bimodal language cannot distinguish between
validity in the class of all appropriate frames, with arbitrary topologies,
and validity in the class of appropriate frames restricted to Alexandroff
topologies. Hence we can restrict attention to the corresponding class of
bi-relational frames without any loss.

It remains on open question as to whether standard filtration quo-
tient techniques (see, for example, Chapter 4 of (Goldblatt 1992)) can
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be successfully extended to the canonical model MLSC to prove the
finite model property for the logic LSC, or analogously for USC, or
whether filtration breaks down for these logics. What is not clear is
how to choose a finite filtration set Γ adequate to push through the
semi-continuity properties. As an alternative method of attack we have
investigated a tableau calculus for the logic LSC as reported next.

6 The Tableau Calculus TLSC

Our tableau calculus TLSC for LSC is based upon the tableau calculus
for the logic S4.2 from (Goré 1991). The logic S4.2 is the monomodal
logic obtained from LSC if Ra = � = R. All the rules for TLSC are
given in Figure 2 where X,Y ⊆ L(�, [a]) are finite sets of formulae
and X ;ϕ means X ∪ {ϕ}: see (Goré 1999) for an introduction to modal
tableau calculi. The subset of these rules consisting of the top three rows
gives another calculus called T(�S4 + [a]S4), discussed later.

A TLSC-tableau for a finite set of formulae X is an upside down tree
with root X , such that each node in the tree is obtained from its parent
node by an application of a rule of TLSC. A tableau branch is closed if
the final rule application on this branch is (⊥), otherwise the branch is
open. A tableau is open if some branch is open, otherwise it is closed.
If there is a closed TLSC-tableau for the finite set X ∪ {¬ϕ}, we write
X #TLSC ϕ. In particular, when X is empty we write #TLSC ϕ.

Following (Goré 1999), all rules are static except (K4¬�) and
(K4¬[a]) which are transitional since they correspond to the creation of
successor worlds. The (LSC) rules create bigger formulae from smaller
formulae. To keep this process from repeating itself ad infinitum, the
new formula is marked with a , and the (LSC) rules are not applicable
to such starred formulae. All other rules must treat starred formulae as
if they were unstarred. Also, if the formula to be added by an (LSC)
rule is already present without a star, then that rule is not applied. This
stops a formula from appearing both starred and unstarred in a node.

As usual, each tableau rule can be read downwards as: if the set of
formulae above the horizontal line is LSC-satisfiable, then so is at least
one of the sets below the horizontal line.

Proposition 6.1 (Soundness of TLSC)
For all formulae ϕ ∈ L(�, [a]), if #TLSC ϕ then �LSC ϕ.

Proof. All rules except the (LSC) rules are standard S4 rules, so con-
sider the (LSC) rules. The premiss of (LSC¬�) is that X ;¬�ϕ is
LSC-satisfiable. Thus there is an LSC-model with a world w0 such that
w0 � X and w0 � ¬�ϕ. Now if w0 � [a]¬�ϕ then we are done, since
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(⊥) X ;ϕ;¬ϕ
⊥ (∧) X ;ϕ ∧ ψ

X ;ϕ;ψ
(¬∧) X ;¬(ϕ ∧ ψ)

X ;¬ϕ | X ;¬ψ (¬¬) X ;¬¬ϕ
X ;ϕ

(KT�)
X ;�ϕ
X ;�ϕ;ϕ (KT [a])

X ; [a]ϕ
X ; [a]ϕ;ϕ

(K4¬�)
X ;�Y ;¬�ϕ
�Y ;Y ;¬ϕ (K4¬[a]) X ; [a]Y ;¬[a]ϕ

[a]Y ;Y ;¬ϕ

(cut¬�)
X ;¬�ϕ

X ;¬�ϕ;ϕ | X ;¬�ϕ;¬ϕ (cut¬[a]) X ;¬[a]ϕ
X ;¬[a]ϕ;ϕ | X ;¬[a]ϕ;¬ϕ

(LSC¬�)
X ;¬�ϕ

X ;¬�ϕ;�(¬[a]¬�ϕ)� | X ;¬�ϕ; [a]¬�ϕ ¬�ϕ unstarred

(LSC¬[a]) X ;¬[a]ϕ
X ;¬[a]ϕ; [a](¬�¬[a]ϕ)� | X ;¬[a]ϕ;�¬[a]ϕ ¬[a]ϕ unstarred

FIGURE 2 Tableau Calculi T(�S4+ [a]S4) and TLSC

then w0 satisfies the right child of (LSC¬�). So suppose w0 
 [a]¬�ϕ,
that is, w0 � 〈a〉�ϕ. Then by Proposition 2.4, w0 � �〈a〉�ϕ, or equiv-
alently, w0 � �¬[a]¬�ϕ. Hence w0 satisfies the left child of (LSC¬�).
The soundness of (LSC¬[a]) is proved analogously. �

The two branches of (LSC¬�) are mutually exclusive since the right
child contains [a]¬�ϕ, and an application of (KT�) to the left child
brings (¬[a]¬�ϕ)� into the left child. If this formula were unstarred
then the (LSC¬[a]) rule would be applicable to it, sending the system
into an infinite loop. Thus (LSC¬�) encodes a cut on the larger formula
[a]¬�ϕ, for some subformula ¬�ϕ. The fact that the left child contains
�(¬[a]¬�ϕ)� rather than just (¬[a]¬�ϕ)� encodes the axiom 〈a〉�ϕ↔
�〈a〉�ϕ, but does not lead to an infinite loop since no rule creates bigger
formulae from �-formulae. The (LSC¬[a]) rule encodes an analogous
cut rule and axiom. This “analytic super-formula property” is the key
to termination of proof search (Goré 1999).

7 A counter-example to completeness of TLSC

In previous versions of this paper, we conjectured that TLSC was com-
plete, but the following counter-example to completeness was recently
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found by Nicolette Bonnette.

Example 7.1 The set X = {p1, p2, p3,¬p1 ∨ ¬p2 ∨ ¬p3} is classically
unsatisfiable and every non-empty proper subset of X is classically sat-
isfiable. Consider the formula

ϕ0 := �[a]p1 ∧3[a]p2 ∧ [a]�p3 ∧ 〈a〉�(¬p1 ∨ ¬p2 ∨ ¬p3)

Proposition 7.2 The formulae ϕ0 is not LSC-satisfiable.

Proof. For a contradiction suppose that there is an LSC-model with a
world s0 such that s0 � ϕ0. Then there must exist two worlds s1 and s2
such that s0 � s1 and s0Ras2, s1 � [a]p1, [a]p2 and s2 � �p3,�(¬p1 ∨
¬p2 ∨¬p3). By the l.s.c. condition there must exist a world s3 such that
s1Ras3 and s2 � s3. Then we must have s3 � p1, p2, p3, (¬p1∨¬p2∨¬p3),
which we know to be impossible. �

However, as a detailed attempt will show, there is no closed TLSC-
tableau for the set {ϕ0}.

We are currently trying to pinpoint exactly why completeness fails
using the model-graph techniques outlined in (Goré 1999) so we can in-
vent new rules to plug the gap. The l.s.c. condition is unusual because
of its non-local effects: we require a global view of the counter-model in
order to detect and repair incomplete half-diamonds. A similar situation
occurs in tense logics where events in the future can effect worlds in the
past, and vice-versa. We believe that this is the cause of the incomplete-
ness of our purely local tableau calculus TLSC.

An alternative approach is to use a complete and terminating explicit
algorithm, and to prove its soundness, as sketched next.

8 An Alternative Tableau Calculus TlscSAT

For a class of bi-relational frames B, let Bfr denote the subclass of frames
(S,�, Ra) in B such that S is finite and the frame consists of a finite
rooted tree of nodes: the nodes are finite Ra-clusters and �-clusters when
the underlying relations are transitive (Goré 1999).

Let T(�S4+[a]S4) consist of the rules (⊥), (∧), (¬∧), (¬¬), (KT�),
(KT [a]), (K4¬�), and (K4¬[a]) from Figure 2. Thus, T(�S4 + [a]S4)
is the union of two standard calculi for S4 (Goré 1999), one for each
relation Ra and �.

Proposition 8.1 For all ϕ ∈ L(�, [a]), the following are equivalent:
(i) �TS4 ϕ (ii) �ATS4 ϕ (iii) �ATS4fr ϕ (iv) #H(�S4+[a]S4) ϕ
(v) #T�S4+[a]S4 ϕ
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Given a finite set of formulae X , the systematic tableau procedure
(Goré 1999) attempts to construct a closed T(�S4 + [a]S4)-tableau for
X . If it succeeds then by soundness, the set X is not TS4-satisfiable. If
it fails, then no T(�S4 + [a]S4)-tableau for X closes so the systematic
procedure constructs a (finite) ATS4fr-model M whose root satisfies
X . In such a representation, the number of actual edges is minimised
by including only the essential edges, and implicitly making the edges
“transitive”. ThusM is really a data structure (graph), but there is no
explicit “database” of tuples representing the relations.

The tableau calculus TlscSAT is a “hybrid” calculus that uses the
tableau calculus T(�S4 + [a]S4) to handle the �S4 + [a]S4 aspects of
our logic, and uses an additional global data-structure to explicitly track
and repair the failures of the l.s.c. condition. A similar technique is used
in (Fariñas del Cerro and Gasquet 1999)2.

In our hybrid method, we start by applying the systematic T(�S4+
[a]S4)-tableau construction to {¬ϕ}. If this procedure finds a closed
T(�S4+ [a]S4)-tableau, then we know that ϕ is TS4-valid, and hence ϕ
is also ALSC -valid. Otherwise, we have at least one finite ATS4fr-model
M1 whose root satisfies ¬ϕ. In constructingM1, the systematic method
chooses either the left or right disjunct when applying the (¬∧) rule. But
the other disjunct may also lead to a different finite ATS4fr-modelM2

for {¬ϕ}. In general, there will be some finite number k of such ATS4fr-
models M1, · · · ,Mk for {¬ϕ}. We want to extend one of them to an
ALSC

fr-modelMo, the root node of which still satisfies ¬ϕ. To do this
we have to ensure that it satisfies the l.s.c. condition.

Let (s0 � s1, s0Ras2) stand for three worlds s0, s1 and s2 in M1

such that s0 � s1 and s0Ras2 both hold, but such that there is no x for
which both s1Rax and s2 � x hold. The l.s.c. condition demands that
every such “incomplete lsc-half-diamond” be completed. To create such
a world we start a new systematic T(�S4+ [a]S4)-tableau construction
for the set x := {[a]ψ | [a]ψ ∈ s1} ∪ {�ψ | �ψ ∈ s2}. If this procedure
finds a closed T(�S4+[a]S4)-tableau then the current modelM1 cannot
be extended into an LSC-model so we tryM2, and so on. If the system-
atic procedure finds no closed T(�S4 + [a]S4)-tableau, it will return an
ATS4fr-model Mx with a root node r containing x. We can safely add
the “transitive” edges s1Rar and s2 � r as desired, thereby appending
Mx to M1. If the new model contains no further incomplete lsc-half-
diamonds we have produced an ALSC

fr-model which falsifies ϕ at its

2The claim on page 317 of (Fariñas del Cerro and Gasquet 1999) that “a decid-
ability result for confluence with transitivity was an open problem” is erroneous as
Segerberg proved the finite model property for K4.2 in his doctoral dissertation and
(Goré 1991) contains a decision procedure for S4.2.
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root node. Otherwise we must complete all remaining lsc-half-diamonds
in the new model. Eventually, we will either report that each original
ATS4fr-model for {¬ϕ} contained at least one lsc-half-diamond which
could not be completed, or until we find some ATS4fr-model for {¬ϕ}
in which we can complete all incomplete lsc-half-diamonds.

The procedure TlscSAT is complete and terminates, but we have
been unable to prove its soundness. The main problem is that a node
x inserted when completing a half-diamond may appear already higher
up in the current counter-model under construction, thereby creating
an infinite path. A standard trick is to insert the two required edges
so they loop back to the previous occurrence of x, thereby maintain-
ing finiteness at the cost of two loops in the current counter-model.
Although this trick can be made to work in the mono-modal setting
(Fariñas del Cerro and Gasquet 1999), it is by no means clear how to
treat such loops within an inductive argument in the bimodal setting.

9 Related Work on Bimodal and Polymodal Logics

While topological semantics for S4-like modalities have been used in a
number of recent studies of bimodal logics, our work is the first to di-
rectly address continuity properties of relations in a bimodal framework.
Earlier work by Davoren (1998), and independent work by Kremer and
Mints (1997), uses the topological semantics for �S4 together with the
scheme [a]F : [a]ϕ↔ 〈a〉ϕ, which characterises Ra = g as a total func-
tion g : S → S. The resulting bimodal logic is adequate to formalise the
continuity of functions, via the equivalent schemata 〈a〉�lsc or [a]�usc,
plus other topological properties such as being an open map or being a
homeomorphism. The thesis (Davoren 1998) proves the decidability of
the bimodal logic �S4+ [a]KF+ 〈a〉�usc by giving a sound and com-
plete tableau proof system, and taking a finite quotient of the infinite
systematic tableau constructed for completeness. That thesis also begins
an investigation of polymodal logics built on �S4+DPDL (i.e. deter-
ministic PDL) with the atomic actions a ∈ Σ interpreted by continuous
total functions. While the l.s.c. property is inherited under each of the
regular expression operations of relational composition, finite unions and
Kleene-star, inheritance of the u.s.c. property fails for the Kleene-star
(Davoren and Nerode 2000). As noted in an unpublished manuscript by
Kremer, following (Kremer and Mints 1997), there are continuous func-
tions whose Kleene-star is not u.s.c.

Dabrowski, Moss and Parikh (1996), and Heinemann (1998, 2000),
examine bimodal logics for expressing elementary reasoning about points
and sets in general topology, motivated by applications to reasoning
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about knowledge in multi-agent systems. Their semantics are given over
subset frames (S,O) where O is an arbitrary family of non-empty sub-
sets of S, so for a topology T on S, the family O = T −{∅} gives a special
case. In (Dabrowski et al. 1996, Heinemann 2000) the logics are built on
the bimodal base �S4+KS5, where the two box modalities � andK are
interpreted by different aspects of the relationship between points s ∈ S
and sets U ∈ O, and are further interconnected by the K�usc axiom
scheme; these logics also have persistence axioms for literals: p→ �p and
¬p → �¬p for atomic propositions p. When O comes from a topology,
the topological interior operator is recovered by their compound modal-
ity 3K. The papers (Dabrowski et al. 1996, Heinemann 2000) also ex-
tend the canonical Kripke model construction to their bimodal setting,
with the two modalities realised by a preorder and an equivalence re-
lation respectively; (Dabrowski et al. 1996) further establishes the de-
cidability of their bimodal logic by taking a finite filtration of the bi-
relational canonical Kripke model. In (Heinemann 1998), the S4 box is
weakened to that from a partial function, to give a “next-time” operator.

Fischer-Servi (1981, 1989) studies bimodal logics where two relation-
ally interpreted modalities are subject to interaction axioms of the same
form as those we study. These logics have an axiomatisation equivalent
to �L+[a]S4+ 〈a〉�lsc+[a]�usc, where L is any one of KT, S4, S4.1
and S4.2. The equivalence can be seen by mapping the box operators
L1 and L2 of (Fischer-Servi 1981) to our [a] and � respectively, and us-
ing the equivalence between 3[a]ϕ→ [a]3ϕ and 〈a〉�lsc. Fischer-Servi
interprets both modalities using relations, varies the axioms for � and
fixes [a] as an S4-modality, whereas we fix � as a topologically inter-
preted S4-modality and vary the axioms for [a]. The notion of “finite
axiomatizability” used in (Fischer-Servi 1989) is without the necessita-
tion rules, hence Fischer-Servi’s negative results do not directly apply
to questions of decidability of our logics.

10 Further Work and Conclusions

We have developed a simple and elegant logical framework in which to
reason about continuous dynamics, using the very familiar ingredients of
two S4 modalities together with an interaction axiom. As demonstrated,
the interaction is non-trivial, and its origins lie in a natural mathematical
phenomenon, giving solid motivation for the resulting logic LSC.

We have given a tableau calculus TLSC which is sound but not
complete for LSC. We have outlined a procedure TlscSAT which is
complete and terminating for LSC, but for which soundness is still open.
We have also considered various filtration methods, all to no avail. It
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is clear that the problems of completeness of TLSC, the soundness of
TlscSAT and the solution to the filtration method are all three vertices
of the same problem: if we can solve one, then we can solve them all.

A wide spectrum of interesting bimodal and polymodal logics can
be obtained by keeping the topological �S4 fixed and varying the ax-
ioms for the relational modalities [a] and 〈a〉. For example, one may
strengthen to [a]S4.3 to cover the weak connectedness of flow relations,
or consider polymodal variants to cover discrete reset relations. Further
investigation is required of logics such as �S4 + PDL and �S4 + Lµ,
combining the topological modalities with infinitary constructs such as
the Kleene-star or more general fixed-point quantification, and the effect
on them of adding one or more semi-continuity axioms.
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