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Abstract:

Topological and/or metric structure on sets of hybrid trajectories is central to stability and
robustness theory for hybrid systems, and their generalizations to systems over higher-dimensional
heterogeneous signal domains. Recent work by Goebel, Teel and co-workers (2004,2006,2007),
and also by Collins (2005,2006), utilizes a 2-dimensional hybrid time structure, and indirectly
develops topological structure on hybrid path spaces by studying the convergence of a sequence
of paths in terms of the set-convergence of the graphs of those paths, considered as subsets of the
product of the time structure and the state space. In this paper, we explicitly develop a topology
on spaces of hybrid paths (of both finite and infinite length), where the topology derives from a
3-parameter uniformity giving quantitative measures of closeness. Based on a quite general notion
of a time structure as a partially-ordered abelian group equipped with a norm function (which
includes 2-dimensional hybrid time), we prove that the path operations of prefix, suffix and fusion
all respect the uniformity, and that this uniformity gives topological structure equivalent to that of
graph-convergence, which is in turn equivalent to the modified compact-open topology considered
by Collins (2005,2006). The uniform topology is metrizable for many spaces of hybrid paths,
but it is coarser than the Skorokhod metric topologies considered by Broucke (1998,2002) and
Kossentini and Caspi (2004) for a restricted class of hybrid paths.

1 Introduction

One of the challenges in the foundations of hybrid systems is to develop a metric or topology on the

space of hybrid paths or trajectories that is rich enough to support concepts of stability and robustness

for hybrid systems. Cast in quite general terms, within the framework of differential and difference

inclusions [1, 2, 3, 4], the solution paths of a hybrid system consist of a sequence of segments of real-

time trajectories that satisfy a differential inclusion d
dt x ∈ F(x) and are absolutely continuous in real

time, where the end-state x′n of one segment and the start-state xn+1 of the successor segment satisfy a

difference inclusion x′n ∈ G(xn+1), the latter modelling the response of the state to a discrete transition

event. For example, from [5], consider a system of three particles of varying point-masses moving in

one dimension whose state in R6 consists of the positions and the velocities of each of the particles.

While all the particles remain apart, they move with constant velocity, but when any two adjacent

particles collide, there is a discrete change in velocity, given by Newton’s law of restitution and the

conservation of momentum. In the case of simultaneous collision of all three particles, there will be
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two possible values for the post-collision velocities, so the discrete dynamics are multi-valued, with

different values depending upon which order the two 2-way collisions are taken to occur.

Trajectories of hybrid systems fail to be amenable within the classical theories of dynamical and

control systems for many reasons: discrete transitions typically give rise to both discontinuities in the

state and multi-valued-ness of the state w.r.t. real time; there may be multiple discrete transitions at

the same real time; hybrid paths may exhibit Zeno behaviour, which means infinitely many discrete

transitions occur in finite real time; variations in the timing of discrete transitions means that two

hybrid paths that are “close” may differ in their time domains; and in the passage from finite length

paths to infinite length paths, there are multiple distinct ways in which time can “go to infinity”, and

the notion of a maximal length path becomes more delicate.

One approach addressing several of these issues (proposed independently by Goebel, Teel and co-

workers in [2] and by Collins in [6], and employed in [3, 4, 5, 7, 8]) is to model the time domain of a

hybrid path as a linearly-ordered subset of the partially-ordered structure R × Z, where the real-valued

coordinate gives the real time and the discrete coordinate is incremented with each discrete transition;

the real-time continuity of each of the segments of a hybrid path is then sufficient to give continuity

of the path as a partial function from R × Z into the state-space. This approach is equivalent to the

so-called “hybrid time trajectories” used in [1, 9]. Additionally, 2-dimensional time structures linearly-

ordered by the lexicographic order have been also used in earlier work on hybrid trajectories within

the context of logics and formal methods for hybrid systems in [10, 11, 12, 13, 14], and in behavioural

systems approaches to hybrid systems, in [15] and [16].

In this paper, we first develop a quite general notion of a time structure as a partially-ordered

abelian group equipped with an order-preserving norm (the latter giving a magnitude measure for the

duration of a time position), and then investigate the norm and order topologies on time structures.

Time structures so formulated include 2-dimensional hybrid time R × Z as well as higher-dimensional

structures for modelling the time domains of hierarchically nested hybrid systems, and also doubly-

dense time structures such as R×QB, whereQB := { k
2m | k ∈ Z∧m ∈ N} is the binary-codable rationals,

which can be used (as suggested in [5]) to model continuations of Zeno trajectories beyond their Zeno

time.

We then develop a topology on spaces of hybrid paths (of both finite and infinite length), where the

topology derives from a 3-parameter uniformity giving distinct quantitative measures of closeness. We

show the topology is metrizable for spaces of hybrid paths all of whose time domains are closed in the

norm topology, and that the topology is coarser than the Skorokhod topologies considered by Broucke

[17, 18] and Kossentini and Caspi [19] for a more restricted class of hybrid trajectories of infinite real-

time duration with a positive lower bound between discrete transitions. We also prove that the path

operations of prefix, suffix and fusion all respect the uniform topology. Recent work by Goebel, Teel

and co-workers [2, 3, 4, 8], and also by Collins [5, 7], takes an indirect route in developing topological

structure on hybrid path spaces by studying the convergence of a sequence of paths in terms of the

set-convergence of the graphs of those paths as subsets of Rn+2, where the notion of set-convergence is
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as in texts such as [20]. We prove that for abstract time structures, and under modest assumptions on

the state space and time structure, the 3-parameter uniformity gives topological structure equivalent to

that of graph-convergence, and also to the modified compact-open topology considered in [5, 7]

The paper is organized as follows. Section 2 develops the basics of time structures and their

topologies, while Section 3 concerns compact paths over time structures, their maximal extensions,

and general flows. In Section 4, we introduce set-valued retimings and the 2- and 3-parameter uniform

topologies, and prove that they are respected by the path operations of prefix, suffix and fusion. In

Section 5, we establish the equivalence between the set-convergence of a sequence of graphs of trajec-

tories, and the convergence of the sequence of trajectories in the uniform topology. We also show how

the results of this paper can clarify the notion of an abstract hybrid system as used in [8].

Some preliminaries: we write R : X { Y to mean R is a set-valued map, with values R(x) ⊆ Y ,

and inverse R−1 : Y { X given by R−1(y) := {x ∈ X | y ∈ R(x)}. We also sometimes write (x, y) ∈ R

as synonymous with y ∈ R(x), and we do not distinguish notationally between a map R and its graph

as a subset of X × Y . The domain of a map R is dom(R) := {x ∈ X | R(x) , ∅}, and the range is

ran(R) := dom(R−1). A map R is total on X if dom(R) = X, and surjective onto Y if ran(R) = Y .

We write R : X → Y (as is usual) to mean R is a single-valued function that is total on X, with range

contained in Y , and values written R(x) = y (rather than {y}). Let [ X → Y ] denote the set of all total

functions from X to Y . We also distinguish partial functions, and write R : X d Y to mean that R is a

single-valued function on its domain dom(R) ⊆ X; let [ X d Y ] denote the set of all such maps. For

partial functions, we also write R(x) = y if x ∈ dom(R), and R(x) =  if x < dom(R). The empty

map ε is characterized by dom(ε) = ∅, and it is the minimal element of [ X d Y ] and [ X { Y ]

partially-ordered by inclusion ⊆. In general, we have [ X → Y ] ⊆ [ X d Y ] ⊆ [ X { Y ]. For

functions as well as relations, we write the sequential composition (R1 ◦ R2) : X { Z in left-to-right

sequence order, for R1 : X { Y and R2 : Y { Z; where (R1 ◦ R2) := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈

R1 ∧ (y, z) ∈ R2}. As usual, Z, Q and R denote the integers, rationals and reals, respectively. We write

N and N>0 for the natural numbers and strictly positive integers, and R+ and R>0 for the non-negative

and strictly positive reals, respectively.

2 Time Structures and Their Topologies

A structure (S ,6, 0,+,−) is an partially-ordered abelian group [21] if (S ,6) is a partial order, (S , 0,+,−)

is an abelian group, and the strict ordering < is translation-invariant:

∀s, t, r ∈ S , if s < t then s + r < t + r , (1)
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where, as is usual, s < s′ iff s 6 s′ and s , s′. Integer multiplication is defined as iterated addition:

for all s ∈ S and m ∈ N, 0 s := 0, (m + 1) s := (m s) + s and −m s := −(m s). A strictly positive

element u > 0 is called an order-unit for the partially-ordered group S if for every s ∈ S , there exists

an m ∈ N>0 (depending on s) such that s 6 m u. An order unit u uniquely determines an extended

pseudo-norm || · || : S → R+∞, as follows:

∀s ∈ S , ||s|| := inf
{ m

n
∈ Q+ | m, n ∈ N>0 ∧ −m u 6 n s 6 m u

}
. (2)

Thus ||u|| = 1, and for all s, t ∈ S , if −t 6 s 6 t then ||s|| ≤ ||t||. The pseudo-norm satisfies the difference

inequality: | ||s||− ||t|| | ≤ || s− t ||, as well as the triangle inequality: ||s+ t|| ≤ ||s||+ ||t||, and homogeneity:

||m s|| = |m| ||s|| for m ∈ Z. The pseudo-norm || · || is in fact a finite-valued norm if S is archimedean, in

the sense that if ks 6 t for all k ∈ N, then s 6 0 (which is violated if there is a point t = +∞, for any

s > 0)1. For each s ∈ S and each real δ > 0, the δ-norm-ball around s is B(s, δ) := {t ∈ S | || s−t || < δ}.

The positive cone S+ of a partially-ordered abelian group is given by S+ := {s ∈ S | 0 6 s}, and the set

of strictly positive elements S>0 is given by S>0 := {s ∈ S | 0 < s}.

Given two partially-ordered abelian groups (S 1,61, 01,+1,−1) and (S 2,62, 02,+2,−2), a function

g : S 1 → S 2 is an order-group-homomorphism if g is order-preserving, g(01) = 02, g(s+1 s′) = g(s)+2

g(s′), and g(−1s) = −2g(s) for all s, s′ ∈ S 1. Note that if g : S 1 → S 2 and g′ : S 1 → S 2 are both order-

group-homomorphisms, then so is their sum, (g+g′) : S 1 → S 2 given by (g+g′)(s) := g(s)+2 g′(s). If

g is an order-group-homomorphism, then for all s ∈ S 1 and k ∈ Z, we have g(k s) = k g(s). A positive

order-group-homomorphism g : S 1 → S 2 is one such that if s ∈ S+1 then g(s) ∈ S+2 , for all s ∈ S 1.

Given two non-zero ordered groups with distinguished order-units, (S 1, u1) and (S 2, u2), a function

g : S 1 → S 2 is an normalized positive order-group-homomorphism (npog-homomorphism) if g is a

positive order-group-homomorphism such that g(u1) = u2. In virtue of preserving both algebraic and

order structure, npog-homomorphisms also preserve the norms: given two time structures S1 and S2

with norms || · ||i : Si → R
+ for i = 1, 2, if g : S1 → S2 is a npog-homomorphism, then ||g(s)||2 ≤ ||s||1

for all s ∈ S1, and if g : S1 → S2 is a npog-homomorphism, then ||s||1 = ||g(s)||2 for all s ∈ S1.

Given two partially-ordered abelian groups (S 1,61, 01,+1,−1) and (S 2,62, 02,+2,−2), their direct

product is the partially-ordered abelian group (S ,6, 0,+,−) such that S := S 1 × S 2 and the ordering

and group operations are co-ordinate-wise: for all s1, t1 ∈ S 1 and s2, t2 ∈ S 2, (s1, s2) 6 (t1, t2) iff

s1 61 t1 and s2 62 t2; the group identity 0 := (01, 02); (s1, s2) + (t1, t2) := (s1 +1 t1, s2 +2 t2); and

−(s1, s2) := (−1s1,−2s2). If (S 1, u1) and (S 2, u2) are ordered groups with distinguished order-units

u1 ∈ S>0
1 and u2 ∈ S>0

2 , and order-unit norms || · ||1 and || · ||2, then (u1, u2) ∈ S>0 is an order-unit for

S = S 1 × S 2, and ||(s1, s2)|| ≥ max{||s1||1, ||s2||2} for all (s1, s2) ∈ S+1 × S+2 .

Definition 2.1 [Time structures]

A time structure (S ,6, 0,+,−, u, || · ||) is a non-zero archimedian partially-ordered abelian group with

1Adding points at infinity to “compactify” a partially-ordered or linearly-ordered group will typically result in only the
weak or non-strict version of translation-invariance being satisfied, so the structure so formed will fail to be an ordered group.
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a distinguished order-unit u > 0 and order-unit norm || · || determined by u, and with S , {0}. A future

time structure T is the positive cone of a time structure, so T = S+ for some S .

Given two time structures S1 and S2, a time-homomorphism from S1 to S2 is a function g : S1 → S2 that

is both an npog-homomorphism and a continuous function w.r.t. the norm topologies on S1 and S2, and

g : S1 → S2 is a time-isomorphism if it is a bijective time-homomorphism (and thus a homeomorphism

w.r.t. the norm topologies). A time structure S will be called finite dimensional if for some integer

n ≥ 1, S is time-isomorphic with an ordered sub-group of (Rn, 1n) with order-unit the n-vector 1n =

(1, 1, . . . , 1) (hence S is lattice-ordered); the dimension of S , dim(S ), is the least such integer n.

The continuous time structure R and the discrete time structure Z are both linearly-ordered abelian

groups, and both are archimedean and Dedekind-complete. While any strictly positive element can

function as an order-unit, we take 1 in this role as this gives the usual absolute-value norm ||s|| = |s| =

max(s,−s).

The basic 2-dimensional hybrid time structure Z × R is an abelian group with pair-wise addition,

(i, t) + (i′, t′) = (i + i′, t + t′), with group identity 0 := (0, 0), partially-ordered by the pair-wise product

order, (i, t) 6 (i′, t′) iff i ≤ i′ and t ≤ t′; it is also Dedekind-complete and archimedean. The basic

hybrid future time structure H := N × R+ is the positive cone (and positive quadrant) of Z × R. For

the order-unit, we can take u = (1, 1), since for every (i, t) ∈ H, we have 0 6 (i, t) 6 (i, r) 6 k (1, 1)

when we take r = max{i, t} and k = dre, the least integer greater than or equal to r, and we also have

−k (1, 1) 6 (−i,−t) 6 0, and −k (1, 1) 6 (−i, t) 6 k (1, 1), and −k (1, 1) 6 (i,−t) 6 k (1, 1). The

order-unit norm on Z × R then evaluates as || (i, t) || = max{ |i|, |t| }. An equivalent norm (giving the

same topology) is ||| (i, t) ||| := 1
2 ( |i|+ |t| ), with ||| (1, 1) ||| = 1, and which satisfies 1

2 || (i, t) || ≤ ||| (i, t) ||| ≤

|| (i, t) ||; the second norm is implicitly used in [3, 4, 8] where the quantity |i| + |t| functions as the real

magnitude of a hybrid time position (i, t) ∈ Z×R. Being a product of linear-orderings, the hybrid time

structure Z × R is also lattice-ordered: for all (i, t), ( j, r) ∈ Z × R, (i, t) ∨ ( j, r) = (max{i, j}, max{t, r})

and (i, t) ∧ ( j, r) = (min{i, j}, min{t, r}).

For the modeling and analysis of discrete-time hybrid systems, where the dynamics in each discrete

mode are typically given by a discrete-time LTI or affine dynamical system, and with event-driven (or

time-driven) switching between modes [22], the appropriate future time set is N ×N, the non-negative

quarter of the linearly ordered abelian group Z × Z, with the norm ||(i, n)|| = max{i, n} and order-unit

(1, 1).

Within real-time hybrid systems, for the modelling of Zeno trajectories and their continuation past

the Zeno time, one can adapt Collins’ proposal in [5] to use the linearly-ordered abelian group of

binary-codable rationals:

QB := {
k

2m ∈ Q | k ∈ Z ∧ n ∈ N }

which has 0 = 0
20 as the additive identity, 1 = 1

20 as the order unit with norm the real magnitude, and
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when m = max(m1,m2), we have:

k1

2m1
+

k2

2m2
=

2m−m2k1 + 2m−m1k2

2m and
k1

2m1
<

k2

2m2
⇔ 2m−m2k1 < 2m−m1k2 .

We can then take the two dimensional partially-ordered time structure QB × R with future time T =

Q+2 × R
+, which has the same identity, order unit and norm as the hybrid time structures Z × R and

H = N×R+. This time structure is lattice-ordered and archimedean, but it is not Dedekind-complete2,

so extra care needs to be taken with arguments depending on the existence of supremums and infimums

of bounded subsets. A Zeno trajectory with values in a state space X will then be a partial function

η : T d X such that:

dom(η) =
⋃
n∈N

{
2n − 1

2n } × [sn, sn+1]

where the real-valued sequence {sn}n∈N of switching or event times is such that limn→∞ sn = s∗ with s∗
finite. Any trajectory η′ which is a continuation of η will continue from the Zeno time (1, s∗).

Our rather general formulation of time structures allows not just for basic hybrid time, but also

for time structures suitable for modeling trajectories of more complex systems such as “meta-hybrid

automata”, represented as a finite state machine with a (standard) hybrid automata at each discrete

state/location; the future time structure needed for such a system would be N × N × R+, where the

first discrete coordinate represents the number of “meta-steps” taken along a trajectory of the system

[23]. More generally, this formulation of time structures allows for multi-dimensional time which can

be used to explicitly model multiple time scales and dynamics along them, as is commonly found in

hierarchical or aggregative systems.

In a time structure S , translation-invariance ensures that for each r ∈ S , the r-translation function

σr : S → S is strictly order-preserving, where σr(s) := s + r for all s ∈ S . Within partial orders, as

within linear orders, the basic sets are the intervals between points, as well as up-sets above or after

a given point, down-sets below or before a given point, and the incomparability set for a given point

(which is empty if the ordering is linear); for elements a, b ∈ S , define:

non-strict/strict up-sets: [a↑) := { s ∈ S | a 6 s } (a↑) := { s ∈ S | a < s }

non-strict/strict down-sets: (↓a] := { s ∈ S | s 6 a } (↓a) := { s ∈ S | s < a }

non-strict interval: [a, b] := { s ∈ S | a 6 s 6 b } = [a↑) ∩ (↓b]

strict interval: (a, b) := { s ∈ S | a < s < b } = (a↑) ∩ (↓b)

order-incomparability set: (a⊥) := { s ∈ S | s 
 a ∧ a 
 s } = S − ( [a↑) ∪ (a↓] ) .

For the semi-strict intervals, [a, b) := [a ↑) ∩ (↓ b) and (a, b] := (a ↑) ∩ (↓ b]. Note that, in general,

intervals, up-sets and down-sets are only partially-ordered, and not linearly ordered.

In a time structure S with order-unit u, the unit interval is [0, u], and the granularity of the norm

2Take the irrational number π, and consider the set A = {t ∈ QB | t < π} which is upper-bounded in Q2 by 3 3
16 =

51
24 , but

there is no supremum within Q2.
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|| · || is defined by gr(S , u) := inf{ ||s|| ∈ R+ | s ∈ (0, u] }. Clearly, the densely-ordered time structures

R, Z × R, and QB × R all have granularity 0, while discretely-ordered time Z has granularity 1. For a

fixed positive integer N ≥ 1, the discretely ordered group Z · ( 1
N ) := { k

N | k ∈ Z}, with order-unit 1, has

unit interval (0, 1] = { k
N | 1 ≤ k ≤ N} and has granularity 1

N .

Given a time structure S , let T6 be the order topology on S which has as a basis the collection B6
of all strict up-sets and down-sets, and their intersections, the strict open intervals:

B6 := { (s↑) | s ∈ S } ∪ { (s↓) | s ∈ S } ∪ { (s, t) | s ∈ S ∧ t ∈ S } .

Let Tnorm be the norm topology on S determined by || · || which has as a basis the collection Bnorm of all

norm-balls B(s, δ) := {t ∈ S | ||t − s|| < δ}, for s ∈ S and real δ > 0; Tnorm is also the coarsest topology

on S w.r.t. which the norm || · || : S → R+ is continuous.

Theorem 2.2 [Topologies on time structures]

Let S be a time structure with future time T , and let || · || : S → R+ be the norm on S .

1. For all s ∈ S and for all real δ > 0, there exists a strictly positive v ∈ T+ such that for all time

points t ∈ (s − v, s + v), we have | ||s|| − ||t|| | < δ; hence the norm || · || : S → R+ is continuous

w.r.t. to the order topology T6 on S

2. The norm topology is refined by the order topology; that is: Tnorm ⊆ T6.

3. For each r ∈ S , the translation-map σr : S → S is continuous w.r.t. both Tnorm and T6; being

invertible, the translation maps σr are thus homeomorphisms in both topologies.

4. For all s, t ∈ S , the non-strict interval [s, t], up-set [s↑), and down-set (s↓], are all closed in

Tnorm, and the order-incomparability set (s⊥) as well as the unions (s↓) ∪ (s⊥) and (s↑) ∪ (s⊥)

are all open in Tnorm; if S is finite-dimensional and s 6 t, then the closed interval [s, t] is also

compact in Tnorm.

5. The addition map (·+ ·) : S ×S → S and the additive inverse (− ·) : S → S are continuous w.r.t.

both Tnorm and T6; in particular, (S ,+,−, 0,Tnorm) is a topological abelian group.

6. If S is linearly-ordered, then Tnorm = T6.

7. If S is finite dimensional, then for all s ∈ S and for all real δ > 0,

if gr(S , u) ≥ δ, then B(s, δ) = {s}, and if gr(S , u) < δ, then:

B(s, δ) =
⋃{

[s − v, s + v] | v ∈ S>0 ∧ ||v|| < δ
}
.

8. If S is finite-dimensional, then for any subset A ⊆ S , A is norm-bounded iff A is order-bounded.
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9. If S is finite-dimensional and Dedekind-complete, then for any subset A ⊆ S , A is compact in

Tnorm iff A is closed and bounded in Tnorm.

Proof of Theorem 2.2: Observe that Part 2 is an immediate consequence of Part 1, because Tnorm is

the coarsest topology on S w.r.t. which the norm || · || : S → R+ is continuous. For Part 1, we consider

two exhaustive cases, depending on the granularity gr(S , u) of the norm || · || from u.

Case I: gr(S , u) = 0. So fix s ∈ S and a real δ > 0. Then choose some δ′ > 0 such that δ′ < δ.

Since gr(S , u) = 0, we can conclude that there exists a strictly positive element v ∈ T+ such that

0 < ||v|| ≤ δ′. Now consider any time point t ∈ (s − v, s + v). Thus we have −v < s − t < v, and hence

||s − t|| ≤ ||v|| ≤ δ < ε. Then by the difference inequality for norms, we have | ||s|| − ||t|| | ≤ ||s − t|| < ε,

as required.

Case II: gr(S , u) > 0. Now fix s ∈ S and a real δ > 0. Then we break into further sub-cases, depending

on the order relationship between gr(S , u) and δ.

Sub-case IIa: 0 < δ ≤ gr(S , u). Since gr(S , u) is the infimum of the values ||t|| for t ∈ (0, u], and

gr(S , u) > 0, this means there exists at least one strictly positive group element v > 0 such that ||v|| ≥ c

and (s−v, s+v) = {s}. In this case, the only t ∈ (s−v, s+v) is t = s, so we trivially have | ||s||−||t|| | < δ,

as required.

Sub-case IIb: gr(S , u) < δ. In this case, choose a real δ′ such that gr(S , u) ≤ δ′ < δ and there exists

a strictly positive group element v > 0 such that ||v|| = δ′; since c is the infimum of the values ||t|| for

t ∈ (0, u], there exists at least one such pair δ′ and v. Then consider any point t ∈ (s − v, s + v). So we

have −v < (s − t) < v, and hence ||s − t|| ≤ ||v|| = δ′ < δ. Then by the difference inequality for norms,

we have | ||s|| − ||t|| | ≤ ||s − t|| < δ, as required.

For Part 3, fix r ∈ S and consider the translation map σr : S → S . Now translation maps are

strictly order-preserving (by the translation-invariance property of partially-ordered abelian groups),

hence they are continuous w.r.t. the order topology, since taking pre-images, we have (σr)−1( (s, t) ) =

(s − r, t − r), and also (σr)−1( [s, t] ) = [s − r, t − r]. To show that the translation maps are continuous

w.r.t. the order topology, consider a basic open norm ball B(s, δ). Then its pre-image evaluates as the

translated norm-ball, as follows:

(σr)−1( B(s, δ) ) = { t ∈ S | t − r ∈ B(s, δ) }

= { t ∈ S | ||s − (t − r)|| < δ }

= { t ∈ S | ||(s + r) − t|| < δ }

= B(s + r, δ) .

For Part 4, because S is archimedean, the verification that each of the order sets [s, t], [s ↑), and

(s↓], are closed in the norm topology, is immediate from the following result from [21], Lemma 7.17

[CHECK]:

If S is archimedean, and (sn)n∈N and (tn)n∈N are sequences converging in the norm to elements s and t,

respectively, and for all n ∈ N, we have sn 6 tn, then in the limit, s 6 t. Since (s⊥) = S−( [s↑) ∪ (s↓] ),
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it follows that (s⊥) is open in the norm topology.

For Part 5, continuity w.r.t. to the order topology is immediate, and for the norm topology and

addition, it suffices to show that for all s, s′ ∈ S and for all real ε > 0, there exists δ, δ′ > 0 such that

for all t, t′ ∈ S , if || s − t || < δ and || s′ − t′ || < δ′, then || (s + s′) − (t + t′) || < ε. Taking δ = δ′ = 1
2ε and

using the triangle inequality, we have || (s+ s′)− (t+ t′) || ≤ || (s− t) ||+ || (s′ − t′) || < ε, as required. For

the norm topology and the additive inverse, it suffices to show that for all s ∈ S and for all real ε > 0,

there exists δ > 0 such that for all t ∈ S , if || s− t || < δ then || (−s)− (−t) || < ε. Taking δ = ε and using

the homogeneity property for norms, we have || (−s) − (−t) || = || t − s || = || s − t || < ε, as required.

For Part 6, suppose S is linearly-ordered. Then by Part 4, we know all order sets of the form [s, t],

[s ↑), or (s ↓] are closed in Tnorm. Now since S is linearly-ordered, we have the incompatability set

(s⊥) = ∅ for all s ∈ S . Hence for any s < t, we have (s, t) = S − ( (s↓] ∪ [t↑) ), and hence the strict

interval (s, t) is open in Tnorm. Since the strict intervals also form a basis for the order topology T6, and

we already have Tnorm ⊆ T6, we can conclude that Tnorm = T6.

For Parts 7, 8 and 9, we suppose that dim(S ) = n, so S is time-isomorphic with an ordered

sub-group of (Rn, 1n). Then S is lattice-ordered and for any element s ∈ S , we have a coordinate

representation s = (s1, . . . , sn) via the time-isomorphism between S and an ordered sub-group of

(Rn, 1n), and the order-unit norm evaluates as ||s|| = max{ |si| | 1 ≤ i ≤ n }. Now fix s ∈ S and a

real δ ∈ R>0, and suppose that gr(S , u) < δ. Then for any v ∈ S++ such that ||v|| < δ, we will have

[s − v, s + v] ⊆ B(s, δ) and gr(S , u) ≤ ||v|| < δ, hence the right-to-left inclusion must hold. Now for

the converse, left-to-right inclusion, suppose t ∈ B(s, δ), and thus ||t − s|| < δ. If t = s, then choose

any v ∈ S++ such that gr(S , u) ≤ ||v|| < δ (and there are some, since gr(S , u) < δ); then we have

t ∈ [s− v, s+ v], as required. Otherwise, t , s, and in this case, we break into sub-cases, depending on

the order relationship between t and s.

Case I: s < t. Then 0 < t − s, so pick v = t − s, so v > 0 and ||v|| = ||t − s|| < δ and t ∈ [s − v, s + v].

Case II: t < s. Then 0 < s − t, so pick v = s − t, so v > 0 and ||v|| = ||s − t|| < δ and t ∈ [s − v, s + v].

Case III: t ∈ (s⊥) ∩ B(s, δ), say t = (t1, . . . , tn) and s = (s1, . . . , sn), since S is time-isomorphic with a

sub-group of (Rn, 1n). So there must exist i, j, k ∈ {1, . . . , n} with i , j such that si ≤ ti and s j ≥ t j and

sk , tk. In this case, pick v = ( |t1 − s1|, . . . , |tn − sn| ), so that v > 0 and ||v|| = max{ |tm − sm| | 1 ≤ m ≤

n } = ||t − s|| < δ. Now for each m ∈ {1, . . . , n}, if sm ≤ tm (e.g. m = i), then sm − vm = tm − 2vm and

sm + vm = tm, while if sm ≥ tm (e.g. m = j), then sm − vm = tm and sm + vm = tm + 2vm. Hence we can

conclude that t ∈ [s − v, s + v], as required.

For the remaining assertion within Part 6, suppose gr(S , u) ≥ δ. Now suppose, for a contradiction,

that there exists t ∈ B(s, δ) with t , s. Then set v = ( |t1 − s1|, . . . , |tn − sn| ), so that v > 0 and

||v|| = ||t − s|| < δ. But since gr(S , u) is the infimum of all norms ||w|| for w ∈ (0, u], the conclusion that

||v|| < δ while gr(S , u) ≥ δ gives a contradiction, as required.

For Part 8, again suppose that dim(S ) = n, as above. Now fix any subset A ⊆ S . First suppose

that A is norm-bounded. So A ⊆ B(0, r) for some real r > 0; moreover, we can choose r > gr(S , u).

Now for each i ∈ {1, . . . , n}, choose ti ∈ R>0 such that ti > r and the n-tuple t = (t1, . . . , tn) ∈ S>0. Then
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|| t || > r and, applying Part 7, we can conclude that A ⊆ B(0, r) ⊂ [−t, t], and hence −t < s < t for

all s ∈ A, so A is order-bounded. Conversely, suppose that A is order-bounded. So for some strictly

positive t ∈ S>0, we have −t 6 s 6 t for all s ∈ A. Hence || s || ≤ || t || for all s ∈ A, so A is norm-bounded.

Finally, for Part 9, again suppose that dim(S ) = n, as above and also suppose that S is Dedekind-

complete. Now for each i ∈ {1, . . . , n}, the projection Si = πi(S ) := { si | s = (s1, . . . , si, . . . , sn) ∈ S }

is a Dedekind-complete linearly-ordered subgroup of R. Hence by the BolzanoWeierstrass theorem,

we can conclude that a set A ⊆ S is compact in Tnorm iff A is sequentially-compact in Tnorm iff A is closed

and bounded in Tnorm. �

For a counter-example to the converse of Part 2, consider the hybrid time structure S = Z × R, for

an arbitrary hybrid point s = (i, t) ∈ Z × R, and for a strictly positive element v = (k, r) ∈ H>0, the

strict symmetric interval (s − v, s + v) around s evaluates as a union of linearly-ordered intervals, most

including end-points, and only the first and last without some endpoints; if k ≤ 1 then: (s− v, s+ v) =

{i} × (t − r, t + r), while if k > 1 then:

(s − v, s + v) = {i − k} × (t − r, t + r] ∪

 i+k−1⋃
j=i−k+1

{ j} × [t − r, t + r]

 ∪ {i + k} × [t − r, t + r) .

In what follows, we will be particularly interested in subsets of time structures that are linearly-ordered

and are closed or compact inTnorm (and hence also closed inT6). For the hybrid time structure S = Z×R,

it is clear that linearly-ordered intervals of the form {i} × [s, s′] or {i} × [s,∞) are closed in Tnorm, and

those of the form {i} × [s, s′] are also compact in Tnorm. Moreover, countable unions of such intervals,

of the form:

L =
⋃
i∈N

{i} × [si, si+1] (3)

where si ≤ si+1 and as i → ∞, either si → ∞ or si → s < ∞, are also closed sets in Tnorm; such sets

will arise as the time domains of maximally-extended hybrid trajectories with infinitely many discrete

jumps.

3 Compact Paths and Their Maximal Extensions

For the hybrid future time structure T = H, the entities we will call regular hybrid paths are functions

typically taking values in a space X ⊆ Q × Rn, with Q a finite set, and their time domains are finite

disjoint unions of linearly-ordered and norm-compact intervals:

L =
⋃
i<N

{i} × [si, si + ∆i] =
⋃
i<N

[ (i, si), (i, si+1) ] (4)
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where s0 := 0 and si+1 := si + ∆i and (∆0,∆1, . . . ,∆N−1) is a finite sequence (of length N) of interval

durations ∆i ∈ R
+ for i < N, and si+1 ∈ R

+ for i < N − 1 are the real-valued discrete transition

times along L. Along a regular hybrid path, for each i < N − 1, the time position (i + 1, si+1) is the

immediate discrete successor of the transition time position (i, si+1) within the domain D. Applying

Part 4 of Theorem 2.2, we know that set L ⊂ H of the form (4) are compact in the norm topology Tnorm

on H, since they are norm-closed subsets of the norm-compact set [0, sN]; we shall subsequently refer

to them as regular compact hybrid time domains.

The framework here, developed from [13, 14], allows not only for regular hybrid paths in the sense

above, but also for hybrid paths γ that explicitly model some bounded real time delay (and temporal

gap), with si+1 − ti ≤ δ, between a switching position (i, ti), when a sensor detects that a discrete reset

is enabled, and its discrete successor position (i+ 1, si+1), when an actuator effects the required switch

in dynamics and continuous evolution begins again from the new state γ(i+1, si+1) ∈ G(γ(i, ti)), where

G : X { X is the discrete reset map. For hybrid times ( j, s) with j ∈ {i, i + 1} and t − i < s < si+1,

we can treat such a hybrid path γ as being undefined, so in this case dom(γ) will be of the form⋃
i<N {i} × [si, ti], where si ≤ ti ≤ si+1 and si+1 − ti ≤ δ.

A further advantage of the general way we formulate paths is that it allows us to deal with sam-

plings of hybrid paths in the same framework as the original paths. For example, take a regular com-

pact hybrid time domain L of the form (4) and a fixed real-time sampling period ∆ > 0. Then a

“time-driven” ∆-sampling of L will be a finite set of hybrid time points, of the form:

L′ =
⋃
i<N

{i} × { (mi + 1)∆, (mi + 2)∆, . . . mi+1∆ }

where m0 := 0 and for each i ∈ {1, . . . ,N}, mi := b si
∆
c using the integer-floor function b · c. In contrast,

“time+event-driven” ∆-sampling of L will be a finite set of hybrid time points, of the form:

L′′ = L′ ∪ { (i, si+1) | i < N }

where the hybrid time points (i, si+1) are the switching times when a discrete event is detected (and the

sampling device knows to increment the discrete time counter i).

In earlier work [13, 14], we developed a notion of paths γ : T d X and their maximal extensions

without assuming any structure on the value space or signal space X, as the focus in that work was on

developing a sematics for branching or non-deterministic temporal logic which can express complex

dynamic properties, but which is not equipped to express any topological or other space-structural

concepts. Here, since we are examining topological structure on path spaces, we assume the minimal

structure of a metric space (X, dX), and further restrict our attention to paths that, as partial functions,

are continuous on their domain with respect to the norm topology on T and the metric topology on X.

Definition 3.1 [Compact time domains]

Given a time structure S with future time T , a compact time domain in T is a linearly-ordered subset
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L ⊆ T with minimum element 0 and a maximum element bL := max(L) such that L is compact in the

norm topology Tnorm on T . Let CoTD(T ) denote the set of all compact time domains in T .

The partial-ordering 6 on the future time structure T induces a partial-ordering on CoTD(T ): for

L, L′ ∈ CoTD(T ), we say L′ is a (proper) ordered extension of L, and (re-using notation) we write

L < L′, if L ⊂ L′ and t < t′ for all t ∈ L and all t′ ∈ L′ − L; (as usual) L 6 L′ iff L < L′ or L = L′.

Applying Part 9 of Theorem 2.2, if S is finite dimensional and Dedekind-complete, then a linearly-

ordered subset L ⊆ T will be in CoTD(T ) iff it contains 0 and a maximum element bL and is closed

Tnorm. The Zeno continuation time structure QB × R fails to be Dedekind-complete, but if L is of the

form:

L =
⋃
n∈N

{
2n − 1

2n } × [sn, sn+1]

where the real-valued sequence {sn}n∈N such that limn→∞ sn = s∗ < ∞, then the set L∪ {(1, s∗)} will be

in CoTD(QB × R), while the set L is bounded but neither closed nor compact.

From the standard definitions, a partial function η : T d X is continuous on its domain iff for all

t ∈ dom(η) and for every real ε > 0, there exists a δ > 0 such that for all s ∈ dom(η), if ||t − s||T < δ

then dX(η(t), η(s)) < ε. In contrast, a partial function η : T d X is uniformly continuous on its domain

iff there exists a total function u : R>0 → R>0 such that for every ε ∈ R>0, and for all t, s ∈ dom(η), if

||t − s||T < u(ε) then dX(η(t), η(s)) < ε. When dom(η) is compact in T , a partial function η : T d X is

uniformly continuous iff it is continuous. Note that if T has the discrete topology, such as T = N or

T = N × N, then all partial functions are uniformly continuous, while if T = H the basic hybrid time

structure, and dom(η) is a disjoint union of countably many linearly-ordered norm-compact intervals of

the form {i}×[si, si+1], with transition time sequence {(i, si+1)}i∈N, then since || (i+1, si+1)−(i, si+1) ||H =

1, ηwill be (uniformly) continuous on its domain iff for each i, the restriction of η to the set {i}×[si, si+1]

is (uniformly) continuous with time-bound witness δ < 1 (u(ε) < 1) for each ε.

Definition 3.2 [Compact continuous paths]

Given a time structure S with future time T , let the signal value space be a non-empty metric space

(X, dX). We define the set of compact continuous T-paths in X as:

CPath(T, X) := { γ : T d X | dom(γ) ∈ CoTD(T ) ∧ γ is continuous on dom(η) } .

For γ ∈ CPath(T, X), define the length of γ by len(γ) := ||max(dom(γ))||.

Define a partial order on CPath(T, X) from the underlying order on T that is a sub-ordering of the

subset relation; (again re-using notation) define: γ < γ′ if γ ⊂ γ′ and dom(γ) < dom(γ′), in which

case we say the path γ′ is a (proper) extension of γ, and γ is a (proper) prefix of γ′. As usual, γ 6 γ′

iff γ < γ′ or γ = γ′.

Since the domain of a continuous path in CPath(T, X) is compact, it follows that all γ ∈ CPath(T, X)

are in fact uniformly continuous.
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When T = R+ or T = N, the paths γ ∈ CPath(T, X) such that dom(γ) = [0, b] are just finite length

signals in the usual sense.

Proposition 3.3 [Operations on paths]

The following three operations on paths are well-defined partial functions on the set CPath(T, X) of

compact continuous paths: for γ ∈ CPath(T, X), t ∈ T and bγ := max(dom(γ)):

• the t-prefix (or restriction) γ|t, with dom(γ|t) := [0, t]∩dom(γ) and γ|t(s) := γ(s) for all s ∈ dom(γ|t);

• the t-suffix (or translation) t|γ, which is defined only when t ∈ dom(γ), with dom(t|γ) := [0, bγ − t]∩

σ−t(dom(γ)) where t|γ(s) := γ(s + t) for all s ∈ dom(t|γ); and

• the t-fusion (or point-concatenation) γ∗t γ′, which is defined only when t ∈ dom(γ) and γ(t) = γ′(0),

and which has dom(γ ∗t γ′) = dom(γ|t) ∪ σ+t(dom(γ′)) and (γ ∗t γ′)(s) := γ(s) if s ∈ dom(γ| t) and

(γ ∗t γ′)(s) := γ′(s − t) if s ∈ σ+t(dom(γ′)).

Note that the prefix operation is well-defined for all t ∈ T , not just t ∈ dom(γ), and that γ|t 6 γ

for all t ∈ T ; in particular, γ|t < γ if t � bγ, while γ|t = γ if t > bγ. In contrast, for the suffix and

fusion operations, if t < dom(γ), then t|γ = ε and γ ∗t γ′ = ε, where ε is the empty map which is not in

CPath(T, X). Under the assumption that T is Dedekind-complete, we have:

dom(γ|t) = [0, t1] ∩ dom(γ) where t1 = sup{s ∈ dom(γ) | s 6 t } .

To see this, observe that being norm-closed, the set dom(γ) is also closed in the order topology on

T , so must contain the supremum of any upper-bounded subset. A set P ⊆ CPath(T, X) is called

prefix-closed if for all γ ∈ P and all t ∈ T , the path γ| t ∈ P.

A basic property of sets of compact paths is that of extendibility under the extension partial order.

For any set of paths P ⊆ CPath(T, X), we say that P is deadlock-free if for all γ ∈ P, there exists

γ′ ∈ P such that γ < γ′. When P represents the behaviour of a dynamical system, deadlock-freedom

means that further non-trivial motion is possible from every reachable state. From our earlier work on

non-deterministic temporal logic with semantics over paths of a system, we have a generic model of

dynamical systems which uniformly covers discrete-time state machines, continuous-time differential

systems, and hybrid-time systems.

Definition 3.4 [General flow systems]

A general flow system [13, 14] is a set-valued map Φ : X { CPath(T, X) such that for all x ∈ dom(Φ),

for all γ ∈ Φ(x), and all t ∈ dom(γ):

(GF0) x = γ(0);

(GF1) t|γ ∈ Φ(γ(t)); and

(GF2) (γ ∗t γ′) ∈ Φ(x) for all γ′ ∈ Φ(γ(t)).

For the assymptotic analysis of dynamical systems, as well as for the semantics of temporal logics

of such systems, we need to determine the maximal extensions of finite-length paths. Infinitary ex-

tensions or asymptotic limits of paths are formed by taking unions of strictly extending sequences of
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compact paths. Given a future time structure T , let |T |+ denote the successor cardinal of the cardinality

of the largest linearly-ordered subset of T , and the initial ordinal of that cardinality, and let LO(T ) be

the set of all limit ordinals ν < |T |+ with ω ≤ ν, where ω is the ordinal length of N. Given any set of

compact paths P ⊆ CPath(T, X), and a ν ∈ LO(T ), a ν-length sequence {γm}m<ν is called a P-chain if

for all m,m′ < ν, γm ∈ P and m < m′ implies γm < γm′ . The limit of a P-chain is the partial function

η : T d X such that η =
⋃

m<ν γm, with the length len(η) := supm<ν len(γm), possibly infinite. Since a

P-chain is a strictly extending sequence of continuous partial functions, it is easy to see that the union

η must also be continuous everywhere on its domain3. To see this, fix any t ∈ dom(η), and within

the strictly extending sequence of compact paths {γm}m<ν, choose an ordinal index m < ν such that

t ∈ dom(γm) and there is a δm > 0 such that for all s ∈ dom(η), if || s − t ||T < δm then s ∈ dom(γm).

Then γm is continuous at t, so for each ε > 0, let δ ≤ δm be such that for all s ∈ dom(γm) if || s− t ||T < δ

then dX(γm(s), γm(t)) < ε. Thus we have that s ∈ dom(η) if || s − t ||T < δ then dX(η(s), η(t)) < ε, as

required. The extension partial order on compact paths can also be applied to limit paths: η < η′ iff

η ⊂ η′ and t < t′ for all t ∈ dom(η) and t′ ∈ dom(η′)r dom(η). The prefix, suffix and fusion operations

also extend to limit paths in the straight-forward way.

Definition 3.5 [Limit extension and maximal extension of path sets]

Let T be a future time structure. For any set P ⊆ CPath(T, X) of compact paths, define the limit ex-

tension Ext(P), the maximal extension M(P) ⊆ Ext(P), and the maximal length-unbounded extension

MU(P) ⊆ M(P), as follows:

Ext(P) := { η ∈ [T d X] | (∃ν ∈ LO(T ))
(
∃γ ∈ [ν→ CPath(T, X)]

)
(∀m < ν)

γm := γ(m) ∈ P ∧ (∀m′ < ν) (m < m′ ⇒ γm < γm′) ∧ η =
⋃

m<ν γm };

M(P) := { η ∈ Ext(P) | (∀γ ∈ P ) η ≮ γ } and MU(P) := { η ∈ M(P) | len(η) = ∞} .

A set of compact paths P is called maximally extendible if for all γ ∈ P, there exists η ∈ M(P) such

that γ < η, and P is called forward complete if P is maximally extendible and M(P) = MU(P).

Given a general flow system Φ : X { CPath(T, X), the maximal extension of Φ is the set-valued map

MΦ : X { LPath(T, X) given by MΦ(x) := M(Φ(x)), and a general flow Φ is maximally extendible

(forward complete) if for all x ∈ dom(Φ), the path setΦ(x) is maximally extendible (forward complete).

From [13, 14], a core result (requiring the Axiom of Choice) is that a set of paths P ⊆ CPath(T, X)

(or a general flow Φ : X { CPath(T, X)) is maximally extendible iff P is deadlock-free (or for each

x ∈ dom(Φ), the path set Φ(x) is deadlock-free). Thus the infinitary and time-global property of being

maximally-extendible – which is a minimal requirement for asymptotic analysis – is equivalent to the

finitary and time-local property of being deadlock-free.

3Note, in contrast, that the union of a strictly extending sequence of uniformly-continuous partial functions can fail to
be uniformly continuous; a condition sufficient to guarantee that the union will be uniformly-continous is that the chain of
compact partial functions are uniformly equicontinuous, which means there is a single common uniform witness function
u : R>0 → R>0 for the whole chain.
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We will subsequently be interested in the set CPath∞(T, X) := CPath(T, X)∪Ext(CPath(T, X)) of

all continuous paths, of finite or infinite length, and also the subsets:

CPath∞cl (T, X) := CPath(T, X) ∪ { η ∈ CPath∞(T, X) | dom(η) is norm-closed in T }

CPath∞bd(T, X) := CPath(T, X) ∪ (CPath∞(T, X) r CPath∞cl (T, X)) .

Thus CPath∞cl (T, X) is the set of all continuous paths with norm-closed time domains, while the set

CPath∞bd(T, X) consists of all continous paths with norm-bounded time domains, and the set CPath(T, X)

of compact paths is the intersection of CPath∞cl (T, X) and CPath∞bd(T, X). The basic fact being used

here is that if η ∈ (CPath∞(T, X) rCPath∞cl (T, X)) then η is a limit path whose time domain fails to be

norm-closed, and hence dom(η) must be norm-bounded with finite length (for if η had infinite length,

then dom(η) would be norm-closed).

An important case requiring extra care with the prefix operation is when η ∈ CPath∞bd(T, X) but

η < CPath(T, X), which will be the case when len(η) < ∞ and t0 := sup(dom(η)) < dom(η). In this

case, the sole point of failure for dom(η) being norm-closed is due to t0 < dom(η): for all t � t0, we

will still have η| t < ηwith dom(η| t) in CoTD(T ), but for all t > t0, we will have η| t = η and so dom(η| t)

will fail to be in the set CoTD(T ) of norm-compact time domains.

Fundamental relationships between the extension partial order, the path operations, and deadlock-

free path sets P ⊆ CPath(T, X), are expressed in the following.

Proposition 3.6 Let S be a finite-dimensional time structure. Then for all η, η′ ∈ CPath∞(T, X), the

following are equivalent:

(1) η < η′;

(2) η′ = η ∗t ( t|η
′) for some t ∈ dom(η) such that t|η < t|η

′.

If η, η′ ∈ (P ∪M(P)) for some deadlock-free set P ⊆ CPath(T, X), then (1) and (2) are also equivalent

to the following:

(3) η ∈ P and η = η′| t where t = max(dom(η));

(4) η′ = η ∗t ( t|η
′) where t = max(dom(η)).

Given a set of compact paths P ⊆ CPath(T, X), a limit path η ∈ Ext(P) exhibits finite escape time

w.r.t. P if η ∈ M(P) but η < MU(P), so dom(η) is norm-bounded in T but will fail to be norm-closed,

since sup(dom(η)) will not be in dom(η).

If P ⊆ CPath(R+, X) is a deadlock-free set of real time interval-domain paths, then for a maximal

limit path, η ∈ M(P) r MU(P) iff the time domain dom(η) = [0, c) for some c < ∞, which means η

exhibits finite escape time w.r.t. P
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If P ⊂ CPath(H, X) is a deadlock-free set of regular compact hybrid paths, of the form (4), then

similarly, η ∈ M(P) r MU(P) iff dom(η) fails to be norm-closed and dom(η) ⊂ [0, (i, c)) for some

i, c < ∞, which will be the case exactly when the last continuous time evolution exhibits finite escape

time. A hybrid limit path η is Zeno iff len(η) = ∞ and dom(η) ⊂ N × [0, c) for some c < ∞, in which

case the length of η is infinite but the total real-time duration is finite and bounded by c. A hybrid

limit path η is called instantaneously Zeno [3, 5] if dom(η) = N × {0}, in which case the total real-time

duration is 0. For both general Zeno and instantaneously Zeno limit paths η, the time domain dom(η)

is always a closed set in Tnorm.

Cast in the framework of differential and difference inclusions [1, 3], an hybrid system is a structure

H = (X, F,G,C,D) where X ⊆ Rn, F : X { Rn, G : X { X, C := dom(F) and D := dom(G).

The paths or trajectories of H determine a prefix-closed general flow system ΦH : X { CPath(H, X)

such that a finite hybrid path γ ∈ ΦH(x) iff dom(γ) is a regular hybrid time domain, of the form (4),

x ∈ C ∪ D and γ(0, 0) = x, and for each (i, t) ∈ dom(γ), if (i + 1, t) ∈ dom(γ) (so that t = si+1, a

switching time), then γ(i, t) ∈ D and γ(i + 1, t) ∈ G(γ(i, t)), while if si 6 t < si+1 then γ(i, t) ∈ C

and d
dτγ(i, τ) ∈ F(γ(i, τ)) for almost all τ ∈ [si, t], where the curve segment ξ : [si, si+1] → X given

by ξ(τ) := η(i, τ) for all τ ∈ [si, si+1] is required to be absolutely continuous on the interval [si, si+1].

If one of the vector coordinates xi of x ∈ X (w.r.t. a fixed basis) is designated discrete, then the i-th

component Fi : X { R obtained by projection from F is such that Fi(x) = {0} for all x ∈ C and xi ∈ Q

for all x ∈ C ∪ D, with Q a finite set.

In [3], Proposition 2.4, sufficient conditions are identified for the continuous and discrete compo-

nents of an impulse differential inclusion hybrid system H under which the compact path flow map

ΦH is maximally extendible, and every maximal path is either of infinite length, or eventually leaves

every compact subset of the signal space X (so finite escape time is possible). In [1], Corollary 2 and

Assumption 1, slightly stronger conditions are identified on the components of H under which the flow

map ΦH is forward complete, and consequently, for every maximal path η ∈ MΦH(x) = MUΦH(x), the

time domain dom(η) is closed in the norm topology on H.

4 Uniform Topologies on Path Spaces

Given a time structure (S ,6, 0,+,−, u, || · ||) and its future time T , we have available both the order

topology T6 with basic opens the strict intervals (s, t), and the norm topology Tnorm with basic opens the

norm balls B(s, δ). By Theorem 2.2, we in general have Tnorm ⊆ T6, with equality in special cases such

as S linearly-ordered like R and Z. In developing topological structure on path sets Z ⊆ CPath(T, X),

we take the norm topology Tnorm on S and T as primary, since it gives a quantitative measure on time

points, as well as suitably respecting the order topology T6, as in Theorem 2.2. Since we want to make

use of additional properties identified in Theorem 2.2, such as a set A ⊂ T being norm-bounded iff it is
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order-bounded, we will henceforth always assume that the time structure S is finite dimensional, and

hence lattice-ordered.

When two paths γ and γ′ in CPath(T, X) have the same time domain, we can use the metric dX on

the signal space X to determine whether they are spatially ε-close, meaning the supremum over t in

the common time domain of dX(γ(t), γ′(t)) is less than ε. In order to allow the quantitative comparison

of paths with different time domains, we need a suitable notion of retiming maps between the time

domains of paths, and then make use of a second parameter δ to bound the deviation of the retimings.

The Skorokhod metric (considered for infinite non-Zeno hybrid trajectories in [17, 18, 19]) allows

for the comparison of piecewise-continuous signals with differing points of discontinuity by making

use of retiming maps which are bijective, strictly order-preserving functions between the time domains

of the signals. Specifically, for two signals η, η′ : R+ → X, the Skorokhod metric distance between

them is defined by:

dSkor(η, η′) := inf
{
ε > 0 | ∃ρ ∈ BRet(R+), sup

t∈R+
||t − ρ(t)|| < ε ∧ sup

t∈R+
dX(η(t), η(ρ(t))) < ε

}
.

where BRet(R+) is the set of all functions ρ : R+ → R+ that are bijective and strictly order-preserving,

with deviation dev(ρ) = sup
t∈R+
||t − ρ(t)|| for ρ ∈ BRet(R+).

Within T = N×R+, consider two compact hybrid time domains L = {0}×[0, 0.5]∪{1}×[0.5, 0.6]∪

{2} × [0.6, 1.6], and L′ = {0} × [0, 0.6] ∪ {1} × [0.6, 0.6] ∪ {2} × [0.6, 1.5], illustrated below.

.

For the time domains L and L′, there are no strictly order-preserving single-valued functions be-

tween them, yet we are inclined to say that they are “close”. It will not work relax to single-valued

maps that are order-preserving but not strictly so, because the strictness is needed for invertibility and

symmetry. This motivates our relaxation to retiming maps that are order-preserving in a set-valued

sense.

Definition 4.1 [Retimings] Given a time structure S with future time T , define:

Lin(T ) := { L ⊆ T | L is linearly-ordered ∧ L , ∅ } .
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Define the earlier-than relation P on Lin(T ) as follows: for all L, L′ ∈ Lin(T ),

L P L′ ⇔ ∀t ∈ (L r L′), ∀t′ ∈ L′, t < t′ ∧ ∀t ∈ L, ∀t′ ∈ (L′ r L), t < t′ .

A set-valued map ρ : T { T will be called order-preserving if for all t1, t2 ∈ dom(ρ), if t1 < t2 then

ρ(t1) P ρ(t2). Given sets L, L′ ∈ Lin(T ), a map ρ : T { T will be called a retiming from L to L′ if the

following conditions are satisfied:

(i) dom(ρ) = L and ran(ρ) = L′;

(ii) for all t ∈ L, ρ(t) ∈ Lin(T ), and for all t′ ∈ L′, ρ−1(t′) ∈ Lin(T );

(iii) ρ and ρ−1 are both order-preserving.

For a retiming ρ : L{ L′, define the deviation dev(ρ) ∈ R+∞ as follows:

dev(ρ) := sup
{
|| t − s || ∈ R+ | t ∈ dom(ρ) ∧ s ∈ ρ(t)

}
.

Let Ret(L, L′) denote the set of all retimings ρ : L{ L′ together with all retimings ρ′ : L′ { L, so that

Ret(L, L′) = Ret(L′, L).

Clearly, the compact time domains CoTD(T ) ⊂ Lin(T ), since Lin(T ) contains arbitrary linearly-

ordered subsets; in particular, every singleton set {t} is in Lin(T ). For all limit paths η ∈ LPath(T, X)

and all compact paths η ∈ CPath(T, X), dom(η) ∈ Lin(T ).

Proposition 4.2 The earlier-than relation P is a partial order on Lin(T ): it is reflexive, transitive and

anti-symmetric, and has least element {0}.

Proof: For reflexivity, we trivially have L P L for all L ∈ Ext(T ), since then L r L = ∅, so the

universal quantification is vacuuous. For transitivity, suppose L P L′ and L′ P L′′. Then for arbitrary

points t ∈ (L r L′′) and t′′ ∈ L′′, we want to show that t < t′′. Now we have the disjoint unions

L r L′′ = (L r L′) ∪ ((L ∩ L′) r L′′) and L′′ = (L′′ ∩ L′) ∪ (L′′ r L′), so we can proceed by cases.

Case I: t ∈ (L r L′) and t′′ ∈ (L′′ ∩ L′); then t < t′′ since L P L′.

Case II: t ∈ (L r L′) and t′′ ∈ (L′′ r L′); then since L P L′ and L′ P L′′, for any t′ ∈ L′ such that

t′ 6 t′′, we have t < t′ and hence t < t′′.

Case III: t ∈ ((L∩L′)rL′′ and t′′ ∈ (L′′∩L′); then t < t′′ since L′ P L′′ and t ∈ (L′rL′′) and t′′ ∈ L′′.

Case IV: t ∈ (L∩ L′)r L′′ and t′′ ∈ (L′′ r L′); then again we get t < t′′ since L′ P L′′ and t ∈ (L′ r L′′)

and t′′ ∈ L′′.

Conversely, consider arbitrary points t′′ ∈ (L′′ r L) and t ∈ L, and we want to show that t < t′′. This

time, using the disjoint unions L′′ r L = (L′′ r L′) ∪ ((L′′ ∩ L′) r L) and L = (L ∩ L′) ∪ (L r L′), we

can again proceed by four cases, to derive the conclusion that t < t′′. Hence L P L′′, as required.
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For anti-symmetry, suppose that L P L′ and L , L′; we want to show that L′ R L. Since L , L′,

we have either (L r L′) , ∅ or (L′ r L) , ∅. In the first case, pick any t ∈ (L r L′) and any t′ ∈ L′;

then since L P L′, we have t < t′, and hence t′ ≮ t, and thus L′ R L. In the second case, pick any

t′ ∈ (L′ r L) and any t ∈ L; then since L P L′, we have t < t′, and hence t′ ≮ t, and thus L′ R L. �.

The earlier-than partial-order is distinct from, but a relative of, the extension partial-order on com-

pact time domains and the domains of limit paths, which has L < L′ iff L ⊂ L′ and for all t ∈ L and all

t′ ∈ L′ r L, we have t < t′. Hence we have L < L′ iff L ⊂ L′ and L P L′.

Retiming maps ρ : L { L′ are total and surjective (condition (i)), whose set-images ρ(t) and

ρ−1(t′) are non-empty and linearly-ordered (condition (ii)), and it and its inverse satisfy a set-valued

order-preservation property (condition (iii)).

If a retiming ρ is in fact single-valued, with ρ : L→ L′, then condition (iii) requires that ρ is order-

preserving, but not necessarily strictly order-preserving (as in [24]), since if t1, t2 ∈ L with t1 < t2,

and ρ(t1) = {t′1} and ρ(t2) = {t′2}, then ρ(t1) P ρ(t2) implies that t′1 6 t′2 (rather than the strict order

relationship t′1 < t′2). Note that, in general, ρ−1 is set-valued even when ρ is single-valued; indeed, ρ−1

is single-valued iff ρ is single-valued and strictly order-preserving (and hence injective).

When the deviation of a retiming ρ is bounded, then each of the linearly-ordered image-sets ρ(t)

within ran(ρ) are bounded in the norm. More precisely, for real δ > 0, if dev(ρ) < δ then ||t|| − δ <

||s|| < ||t||+δ for all t ∈ dom(ρ) and all s ∈ ρ(t). The notion of set-valued retimings has been formulated

to ensure closure under relational inverse; a further highly desirable property of set-valued retimings

is that they are also closed under relational composition.

Proposition 4.3 [Inverses and compositions of retimings]

Given L, L′, L′′ ∈ Lin(T ),

if ρ ∈ Ret(L, L′), then ρ−1 ∈ Ret(L, L′) and dev(ρ−1) = dev(ρ); and

if ρ1 ∈ Ret(L, L′) and ρ2 ∈ Ret(L′, L′′), then (ρ1◦ρ2) ∈ Ret(L, L′′), and dev(ρ1◦ρ2) ≤ dev(ρ1)+dev(ρ2).

Proof: Fix ρ ∈ Ret(L, L′). Since dom(ρ−1) = ran(ρ) = L′ and ran(ρ−1) = dom(ρ) = L, it is clear

that ρ−1 satisfies condition (i). It is also immediate that ρ−1 satisfies conditions (ii) and (iii), since both

properties are symmetric across inverses. The equation dev(ρ−1) = dev(ρ) also follows by symmetry

across inverses of the definition of deviation.

For the second part, fix ρ1 ∈ Ret(L, L′) and ρ2 ∈ Ret(L′, L′′), and consider the relational composi-

tion ρ1 ◦ ρ2. By replacing ρ1 with ρ−1
1 if need be, and likewise possibly also replacing ρ2 with ρ−1

2 , we

can assume that ran(ρ1) = dom(ρ2) = L′. Then by condition (i) for ρ1 and ρ2, we can conclude that

dom(ρ1 ◦ ρ2) = dom(ρ1) = L and ran(ρ1 ◦ ρ2) = ran(ρ2) = L′′, so condition (i) is satisfied for ρ1 ◦ ρ2.

For each t ∈ dom(ρ1 ◦ ρ2), we have (ρ1 ◦ ρ2)(t) =
⋃
{ρ2(s) | s ∈ ρ1(t)}; to show that (ρ1 ◦ ρ2)(t) is

linearly-ordered, consider two elements t′1, t
′
2 ∈ (ρ1 ◦ ρ2)(t). we want to show that either t′1 < t′2 or else

t′2 6 t′1. Now there must exist s1 ∈ ρ1(t) and s2 ∈ ρ1(t) such that t′1 ∈ ρ2(s1) and t′2 ∈ ρ2(s2). Since ρ1(t)

is linearly-ordered, we know that either s1 < s2 or s1 = s2 or s2 < s1.
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In Case I: s1 < s2, we have ρ2(s1) P ρ2(s2), and then break into further sub-cases, depending on t′1
and t′2. Either we have t′1 ∈ ρ2(s1) − ρ2(s2), in which case t′1 < t′2, or else t′1 ∈ ρ2(s1) ∩ ρ2(s2) and

t′2 ∈ ρ2(s2) r ρ2(s1), in which case t′1 < t′2, or else both t′1 ∈ ρ2(s1) ∩ ρ2(s2) and t′2 ∈ ρ2(s1) ∩ ρ2(s2), in

which case either t′1 < t′2 or t′2 6 t′1, since the set ρ2(s1) ∩ ρ2(s2) is linearly-ordered.

In Case II: s1 = s2, we have ρ2(s1) = ρ2(s2), and hence either t′1 < t′2 or t′2 6 t′1, since the set ρ2(s1) is

linearly-ordered.

In Case III: s2 < s1, we have ρ2(s2) P ρ2(s1), and then break into further sub-cases, depending on

t′1 and t′2. Either we have t′2 ∈ ρ2(s2) r ρ2(s1), in which case t′2 < t′1, or else t′2 ∈ ρ2(s2) ∩ ρ2(s1) and

t′1 ∈ ρ2(s1) r ρ2(s2), in which case t′2 < t′1, or else both t′2 ∈ ρ2(s1) ∩ ρ2(s2) and t′1 ∈ ρ2(s1) ∩ ρ2(s2), in

which case either t′2 < t′1 or t′1 6 t′2, since the set ρ2(s1) ∩ ρ2(s2) is linearly-ordered.

Hence (ρ1 ◦ ρ2)(t) is linearly-ordered, as required. The argument for (ρ1 ◦ ρ2)−1(t′) =
⋃
{ρ−1

1 (s) | s ∈

ρ−1
2 (t′)}, for each t′ ∈ ran(ρ1 ◦ ρ2), proceeds symmetrically. Hence condition (ii) is satisfied for ρ1 ◦ ρ2.

For condition (iii), suppose t1, t2 ∈ dom(ρ1 ◦ ρ2) = dom(ρ1) = L are such that t1 < t2; we want to

show that (ρ1 ◦ ρ2)(t1) P (ρ1 ◦ ρ2)(t2). First, consider arbitrary points t′1 ∈ (ρ1 ◦ ρ2)(t1) r (ρ1 ◦ ρ2)(t2)

and t′2 ∈ (ρ1 ◦ρ2)(t2). We want to show that t′1 < t′2. Since t′2 ∈ (ρ1 ◦ρ2)(t2), there exists s2 ∈ ρ1(t2) such

that t′2 ∈ ρ2(s2). Since t′1 ∈ (ρ1 ◦ ρ2)(t1) r (ρ1 ◦ ρ2)(t2), there exists s1 ∈ ρ1(t1) such that t′1 ∈ ρ2(s1),

but there does not exist any s3 ∈ ρ1(t2) such that t′1 ∈ ρ2(s3). Hence we can conclude that s1 , s2.

Moreover, since t1 < t2, we know that ρ1(t1) P ρ1(t2), so we can deduce order relationships between

s1 ∈ ρ1(t1) and s2 ∈ ρ1(t2). Indeed, we know that s1 ∈ ρ1(t1)rρ1(t2) because s1 ∈ ρ1(t1)∩ρ2(t2) would

contradict t′1 ∈ (ρ1 ◦ ρ1)(t1) r (ρ1 ◦ ρ2)(t2). Hence we have s1 < s2, and thus ρ2(s1) P ρ2(s2). Now

t′1 ∈ ρ2(s1) r ρ2(s2) and t′2 ∈ ρ2(s2), hence we can conclude that t′1 < t′2, as required. Next, consider

arbitrary points t′2 ∈ (ρ1◦ρ2)(t2)r(ρ1◦ρ2)(t1) and t′1 ∈ (ρ1◦ρ2)(t1). We want to show that t′1 < t′2. Since

t′1 ∈ (ρ1 ◦ ρ2)(t1), there exists s1 ∈ ρ1(t1) such that t′1 ∈ ρ2(s1). Since t′2 ∈ (ρ1 ◦ ρ2)(t2) r (ρ1 ◦ ρ2)(t1),

there exists s2 ∈ ρ1(t2) such that t′2 ∈ ρ2(s2), but there does not exist any s4 ∈ ρ1(t1) such that

t′2 ∈ ρ2(s4). Hence we can conclude that s1 , s2. Moreover, since t1 < t2, we know that ρ1(t1) P ρ1(t2),

so we can deduce order relationships between s1 ∈ ρ1(t1) and s2 ∈ ρ1(t2). Indeed, we know that

s2 ∈ ρ1(t2)rρ1(t1) because s2 ∈ ρ1(t1)∩ρ1(t2) would contradict t′2 ∈ (ρ1◦ρ2)(t2)r(ρ1◦ρ2)(t1). Hence we

have s1 < s2, and thus ρ2(s1) P ρ2(s2). Now t′2 ∈ ρ2(s2)rρ2(s1) and t′1 ∈ ρ2(s1), hence we can conclude

that t′1 < t′2, as required. We have thus established that t1 < t2 implies (ρ1 ◦ ρ2)(t1) P (ρ1 ◦ ρ2)(t2). The

argument that, for t′1, t
′
2 ∈ ran(ρ1◦ρ2) = ran(ρ2) = L′′, that t′1, t

′
2 implies (ρ1◦ρ2)−1(t′1) P (ρ1◦ρ2)−1(t′2),

proceeds symmetrically, using the fact that (ρ1 ◦ ρ2)−1 = ρ−1
2 ◦ ρ

−1
1 . Hence condition (iii) is satisfied,

to conclude that proof that (ρ1 ◦ ρ2) ∈ Ret(L, L′′). �

For some concrete examples of retimings, consider hybrid future time H, and two bounded hybrid

time domains: L := {0}×[0, 1
2 ] ∪ {1}×[ 1

2 ,
9
8 ] ∪ {2}×[ 9

8 , 2], and L′ := {0}×[0, 5
8 ] ∪ {1}×[ 5

8 , 1] ∪ {2}×[1, 2],

as illustrated below.
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There are numerous possible retimings ρ between L and L′, some single-valued and some set-

valued, although all have dev(ρ) ≥ 1
8 . As one example (which illustrates several different patterns of

mapping relationships), consider the map ρ1 : L{ L′ defined for all (i, t) ∈ L as follows:

ρ1(i, t) :=



{ (i, t) } if (i, t) ∈ {0} × [0, 1
2 ) ∪ {2} ×

(
( 9

8 ,
5
4 ] ∪ ( 15

8 , 2]
)

L′ ∩
(
{i} × (t − 1

8 , t +
1
8 )
)

if (i, t) ∈ {1} × ( 5
8 ,

9
8 ) ∪ {2} × ( 5

4 ,
15
8 ]

{0} × [ 1
2 ,

5
8 ] if (i, t) = (0, 1

2 )

{ (1, 5
8 ) } if (i, t) ∈ {1} × [ 1

2 ,
5
8 ]

{ (1, 1) } if (i, t) ∈ {1} × [1, 9
8 ]

{2} × [1, 9
8 ] if (i, t) = (2, 9

8 ) .

.

It is readily seen that ρ1 is a retiming, and dev(ρ1) = 1
8 . This example illustrates the possibility of s < s′

and ρ1(s) P ρ1(s′) and the intersection ρ1(s)∩ρ1(s′) containing a non-trivial interval. For example, for

s = (1, t) and s′ = (1, t′) with 5
8 < t < t′ < t+ 1

8 < 1, we have ρ1(s)∩ρ1(s′) = L′∩ ( {1}× (t′− 1
8 , t+

1
8 ) ).

For the point s′′ = (1, 5
8 ), we have s′′ < s with ρ1(s′′) = { (1, 5

8 ) } and ρ1(s) = L′ ∩ ( {1} × (t− 1
8 , t+

1
8 ) ),

so either ρ1(s) = {1} × [ 5
8 , t +

1
8 ) (when t < 3

4 ), or else ρ1(s) = {1} × (t − 1
8 , t +

1
8 ) (when 3

4 6 t 6 7
8 ); in

either case, it is clear that ρ1(s′′) P ρ1(s).

For another example, consider the single-valued and strictly order-preserving (hence injective)

function ρ2 : L→ L′ defined for all (i, t) ∈ L as follows:

ρ2(i, t) :=


(0, 5

4 t) if (i, t) ∈ {0} × [0, 1
2 ]

(1, 5
8 +

3
5 (t − 1

2 )) if (i, t) ∈ {1} × [ 1
2 ,

9
8 ]

(2, 1 + 8
7 (t − 9

8 )) if (i, t) ∈ {2} × [ 9
8 , 2] .

In this case, we also have dev(ρ2) = 1
8 . As one further example, with a different deviation, consider

the singled-valued map ρ3 : L → L′ that is the identity on the real-coordinate t: ρ3(i, t) := (i, t) if

(i, t) ∈ L∩ L′; ρ3(i, t) := (0, t) if (i, t) ∈ {1} × [ 1
2 ,

5
8 ); and ρ3(i, t) := (2, t) if (i, t) ∈ {1} × (1, 9

8 ]. Again, it

is readily seen that ρ3 is a retiming because it is order-preserving, and in this case, dev(ρ3) = 1.

To illustrate retimings in the context of samplings of hybrid paths, suppose a “time+event-driven”

∆-sampling of L′ is taken, for ∆ = 1
5 , resulting in a compact time domain L′′ such that: L′′ =

{0} × {0, 1
5 ,

2
5 ,

3
5 ,

5
8 } ∪ {1} × {

4
5 , 1} ∪ {2} × {

6
5 ,

7
5 ,

8
5 ,

9
5 , 2}. One possible retiming map ρ4 : L′ { L′′ does
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the time-driven sampling by mapping intervals of length 1
5 to sample points, and does the event-driven

sampling by adding further sample points at switching times and mapping intervals of length at most
1
5 to these switching times:

ρ4(i, t) :=



{ (0, 0) } if (i, t) = (0, 0)

{ (0, k+1
5 ) } if i = 0 and t ∈ [ k

5 ,
k+1

5 ] for k ∈ {0, 1, 2}

{ (0, 5
8 ) } if i = 0 and t ∈ [ 3

5 ,
5
8 ]

{ (1, 4
5 ) } if i = 1 and t ∈ [ 5

8 ,
4
5 ]

{ (1, 1) } if i = 1 and t ∈ [ 4
5 , 1]

{ (2, k+1
5 ) } if i = 2 and t ∈ [ k

5 ,
k+1

5 ] for k ∈ {5, 6, 7, 8, 9}

.

Then we have dev(ρ4) = 1
5 . By composability of retimings, the map ρ5 := ρ1 ◦ ρ4 is a retiming

ρ5 : L{ L′′ of deviation dev(ρ5) ≤ dev(ρ1) + dev(ρ4) = 13
40 .

We will first identify topological structure on the set CPath∞bd(T, X) of paths with bounded time

domains (which includes the compact paths in CPath(T, X) as well as those η ∈ CPath∞(T, X) with

bounded but not closed time domains within the norm topology on T ). In a second stage, we then lift

that structure to the set CPath∞(T, X) of all paths, finite or limit.

We develop a natural topology on CPath∞bd(T, X) (and thus on any set Z ⊆ CPath∞bd(T, X) via

the standard subspace topology) by constructing a uniformity or uniform structure [25] on the path

set CPath∞bd(T, X), which gives quantitative measures of closeness of paths that utilizes both spatial

closeness under the metric dX on X and temporal closeness under the norm || · ||T on T .

From [25], on a set Z, a family of binary relations or set-valued maps V ⊆ [Z { Z] constitutes a

basis for a uniformity on the set Z if the following conditions are satisfied:

(i) every V ∈ V is a reflexive and total binary relation (i.e. (z, z) ∈ V for all z ∈ Z);

(ii)V is closed under relation-inverse (i.e. V−1 ∈ V for all V ∈ V);

(iii)V is downward-closed under intersection, in the sense that for all V1,V2 ∈ V,

there exists W ∈ V such that W ⊆ (V1 ∩ V2); and

(iv) for all V ∈ V, there exists W ∈ V such that (W ◦W) ⊆ V (generalized triangle inequality).

The relations/maps V ∈ V are called the basic entourages, and the uniformity or uniform structure

generated by the basisV is the filter generated byV, namely:

UV := {U ∈ [Z { Z] | ∃V ∈ V, V ⊆ U } ,

the family of all supersets of the basic entourages V ∈ V. For each z ∈ Z and basic entourage V ∈ V,

let V(z) = {z′ ∈ Z | (z, z′) ∈ V} be the set-image of the map V on z. The uniform topology on Z

generated byV is the topology TV which has as a basis the family of all sets:

BV := {V(z) | z ∈ Z ∧ V ∈ V } .
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For any set P ⊆ Z and basic entourage V ∈ V, the set-image V(P) =
⋃

z∈P V(z) is the union of all

the V-basic opens with center at z ∈ P. Assume the topology TV is first-countable, which requires

there exists a countable subset of V0 ⊆ V such that V0 constitutes a basis for a uniformity, and the

topology TV0 generated byV0 is equal to TV. Further assume that the TV is Hausdorff ; this requires

that (z, z′) ∈
⋂
V iff z = z′, where

⋂
V is the intersection of all the basic entourages. In particular,

every metric space is a Hausdorff uniform space. In a first-countable and Hausdorff uniform space,

given z ∈ Z and a sequence of elements (zn)n∈N in Z, the sequence converges to a limit z within the

uniformity UV, and the limit is unique and we write lim
n→∞

zn = z, if for every basic open V(z), there

exists an m ∈ N such that zn ∈ V(z) for all n ≥ m.

We also need a further result (a special case of [25], Proposition 4.12) that in a first-countable

Hausdorff uniform space (Z,V), a set K ⊆ Z is compact in Z iff K is Cauchy-sequence-complete and

totally-bounded. A set K is Cauchy-sequence-complete if every Cauchy sequence in K converges to a

limit in K, where a sequence {zn}n∈N is Cauchy if for every entourage V ∈ V, there exists an integer

k such that (zn, zm) ∈ V for all n,m > k. A set K is totally-bounded if for every entourage V ∈ V,

there exists a finite set F ⊂ K such that K ⊆
⋃

z∈F V(z). The result of [25], Proposition 4.12, is for

general uniform spaces, where the notions of limits, convergence, and the Cauchy property must be

formulated in terms of filters rather than countable sequences; the result states that a set is compact iff

it is Cauchy-filter-complete and totally-bounded.

With this background, we can now set out the 2-parameter uniform structure on compact path

spaces.

Definition 4.4 [Retimings and relative distance on spaces of bounded time paths]

Let S be a finite dimensional time structure with future time T , let (X, dX) be a metric space, and let

Z ⊆ CPath∞bd(T, X) be any set of paths with bounded time domains. For each pair (γ, γ′) ∈ Z × Z,

define Ret(γ, γ′) := Ret(dom(γ), dom(γ′)), and define the set Ret(Z) of retimings for Z as:

Ret(Z) :=
⋃{

Ret(γ, γ′) | γ ∈ Z ∧ γ′ ∈ Z
}
.

Then define an extended-real-valued 3-argument metric-like function dXsup : ( Z × Z × Ret(Z) ) → R+∞

by setting dXsup(γ, γ′, ρ) := ∞ if ρ < Ret(γ, γ′), and otherwise, assuming dom(ρ) = dom(γ) and

ran(ρ) = dom(γ′) (and this can always be arranged when ρ ∈ Ret(γ, γ′), by replacing ρ with its

inverse if need be), we have:

dXsup(γ, γ′, ρ) := sup
{
dX( γ(t), γ′(t′) ) | t ∈ dom(γ) ∧ t′ ∈ dom(γ′) ∧ (t, t′) ∈ ρ

}
.

Define the parameter set R2 := R>0 × R>0, and for each real pair (δ, ε) ∈ R2, define the relation

Vδ,ε : Z { Z as follows:

Vδ,ε :=
{
(γ, γ′) ∈ Z × Z | ∃ ρ ∈ Ret(γ, γ′), dev(ρ) < δ ∧ dXsup(γ, γ′, ρ) < ε

}
.
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The first task is to verify that the family of all relations Vδ,ε for (δ, ε) ∈ R2 constitutes a basis for

a uniformity. It is clear that each Vδ,ε is total and reflexive, since for any path γ, the identity map id

on dom(γ) is a retiming with deviation 0. Symmetry is also clear, with the inverse of a retiming a

retiming of the same deviation, hence (Vδ,ε)−1 = Vδ,ε. Observe that for ρ ∈ Ret(γ, γ′), if dev(ρ) < δ,

then ||t − t′|| < δ for all (t, t′) ∈ ρ, and if dXsup(γ, γ′, ρ) < ε, then (independent of δ), we will have the

initial states such that dX(γ(0), γ′(0)) < ε, since (0, 0) ∈ ρ for all retimings ρ.

The further, more challenging task, is to demarcate sets Z ⊆ CPath∞bd(T, X) of paths with bounded

time domains for which the 2-parameter uniform topology is Hausdorff. The condition on Z we iden-

tify is that for some deadlock-free and prefix-closed set of compact paths P ⊆ CPath(T, X), we have

P ⊆ Z and ZrCPath(T, X) ⊆ M(P)∩CPath∞bd(T, X). The key idea is that if we are comparing distinct

paths where at least one of them has a compact time domain, then we can quantify the discrepancy

between the paths by looking at compact prefixes. Maximality also allows us to rule out any compact

paths properly extending a maximal path.

Theorem 4.5 [2-parameter uniform topology on spaces of compact paths]

Let S be a finite dimensional time structure with future time T , let (X, dX) be a metric space, let Z ⊆

CPath∞bd(T, X) be any set of paths with bounded time domains, and for each (δ, ε) ∈ R2, let Vδ,ε : Z { Z

be the relation as in Definition 4.4. Then for all parameter pairs (δ, ε), (δ1, ε1), (δ2, ε2) ∈ R2, we have:

Vδ1,ε1 ⊆ Vδ2,ε2 when (δ1, ε1) 6 (δ2, ε2)

Vδ,ε ⊆ Vδ1,ε1 ∩ Vδ2,ε2 when (δ, ε) 6 (δ1, ε1) ∧ (δ2, ε2)

Vδ1,ε1 ◦ Vδ2,ε2 ⊆ Vδ,ε when (δ1, ε1) + (δ2, ε2) 6 (δ, ε)

Vδ,ε ◦ Vδ,ε ⊆ Vδ1,ε1 when (δ, ε) 6 1
2 (δ1, ε1) .

Hence the family V2 := {Vδ,ε : Z { Z | (δ, ε) ∈ R2 } constitutes a basis for a uniformity on the path

set Z, and additionally, the basic entourages are inclusion-monotone w.r.t. the product partial-ordering

on the parameter space R2 = R
>0 × R>0. The basic open sets in the 2-parameter uniform topology T2

on Z are the (δ, ε)-tubes Vδ,ε(γ) around a path γ ∈ Z.

Moreover, the uniform topology T2 is always first-countable, and T2 will be Hausdorff if the path

set Z ⊆ CPath∞bd(T, X) is such that for some deadlock-free and prefix-closed set of compact paths

P ⊆ CPath(T, X), we have P ⊆ Z and Z r CPath(T, X) ⊆ M(P) ∩ CPath∞bd(T, X). When T2 is

Hausdorff, the topology T2 is metrizable, and we can use the metric d2 : Z × Z → R+ given by:

d2(γ, γ′) := max{ δ0, ε0 } where (δ0, ε0) := inf
{
(δ, ε) ∈ R>0 × R>0 | (γ, γ′) ∈ Vδ,ε

}
.

In particular, for a sequence {γk}k∈N in Z and a path γ ∈ Z, we have γ = limk→∞ γk in the uniformity

V2 iff for every (δ, ε) ∈ R2, there exists an index m such that γk ∈ Vδ,ε(γ) for all k ≥ m.

Proof: The first inclusion is trivial, and for the second, suppose paths γ and γ′ are such that (γ, γ′) ∈
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Vδ1,ε1 ◦Vδ2,ε2 . Hence there exists a third path γ1 ∈ Z such that (γ, γ1) ∈ Vδ1,ε1 and (γ1, γ
′) ∈ Vδ2,ε2 . Now

(γ, γ1) ∈ Vδ1,ε1 implies that there exists a retiming ρ1 ∈ Ret(dom(γ), dom(γ1)), such that dev(ρ1) < δ1
and dXsup(γ, γ1, ρ1) < ε1, and without loss of generality, we may suppose that dom(ρ1) = dom(γ)

and ran(ρ1) = dom(γ1). On the other side, (γ1, γ
′) ∈ Vδ2,ε2 implies that there exists a retiming ρ2 ∈

Ret(dom(γ1), dom(γ′)), such that dev(ρ2) < δ2 and dXsup(γ1, γ
′, ρ2) < ε2, and without loss of generality,

we may suppose that dom(ρ2) = dom(γ1) and ran(ρ2) = dom(γ′). Now set δ′ := δ1 + δ2 and ε′ :=

ε1 + ε2. By Proposition 4.3, the composite map ρ := ρ1 ◦ ρ2 is a retiming ρ : dom(γ){ dom(γ′) with

dev(ρ) ≤ dev(ρ1) + dev(ρ2) < δ1 + δ2 = δ′. It remains to show that dXsup(γ, γ′, ρ) < ε′. To see this, fix

arbitrary points t ∈ dom(ρ) = dom(γ) and t′ ∈ ran(ρ) = dom(γ′) such that (t, t′) ∈ ρ. Since ρ is the

composition ρ1 ◦ ρ2, there exists t1 ∈ ran(ρ1) = dom(ρ2) such that (t, t1) ∈ ρ1 and (t1, t′) ∈ ρ2. Then

since ρ1 ∈ Ret(γ, γ1) and dXsup(γ, γ1, ρ1) < ε1, we know that dX(γ(t), γ1(t1)) < ε1. Additionally, since

ρ2 ∈ Ret(γ1, γ
′) and dXsup(γ1, γ

′, ρ2) < ε2, we know that dX(γ1(t1), γ′(t′)) < ε2. Then by the triangle

inequality for the metric dX on X, we have: dX(γ(t), γ′(t′)) ≤ dX(γ(t), γ1(t1)) + dX(γ1(t1), γ′(t′))) <

ε1 + ε2 =< ε
′, so dX(γ(t), γ′(t′)) < ε′, as required. The third inclusion, that Vδ′′,ε′′ ◦ Vδ′′,ε′′ ⊆ Vδ1,ε1

when ε′′ := 1
2ε1 and δ′′ := 1

2δ1, is a particular case of the second inclusion.

For first-countability of a uniform space, we only need show that there exists a countable subset of

entouragesV0 ⊆ V2 such thatV0 constitutes a basis for a uniformity, and the topology TV0 generated

byV0 is equal toT2. So takeV0 := {Vδ,ε | ε ∈ Q>0∧δ ∈ Q>0}, the family of all entourages parameterized

by positive rationals. The verifications are then straightforward.

Now suppose that the path set Z ⊆ CPath∞bd(T, X) is such that for some deadlock-free and prefix-

closed set of compact paths P ⊆ CPath(T, X), we have P ⊆ Z and Z r CPath(T, X) ⊆ M(P) ∩

CPath∞bd(T, X). Hence for all γ ∈ Z, either γ ∈ CPath(T, X) or γ ∈ M(P) ∩ CPath∞bd(T, X). To prove

that the topology T2 is Hausdorff, it suffices to prove the topology satisfies T0 separation, which for a

uniform space is equivalent to the condition that (γ, γ′) ∈
⋂
V2 iff γ = γ′. The (⇐) direction holds for

all uniform spaces. For the converse (⇒) implication, suppose a pair of paths (γ, γ′) is such that γ , γ′;

we need to exhibit a parameter pair (δ1, ε1) ∈ R2 such that (γ, γ′) < Vδ1,ε1 , which means that for all

retimings ρ ∈ Ret(γ, γ′) such that dev(ρ) < δ1, there exists (t1, t2) ∈ ρ such that dX(γ(t1), γ′(t2)) ≥ ε1.

Since γ , γ′, there are two cases to consider: Case I: dom(γ) = dom(γ′) but there exists t1 ∈ dom(γ)

such that γ(t1) , γ′(t1); and Case II: dom(γ) , dom(γ′).

In Case I, set ε1 := 1
2 dX(γ(t1), γ′(t1)), so ε1 > 0 since dX is a metric. Since γ′ is continuous at

the time point t1, there exists a real δ0 > 0 such that for all s ∈ dom(γ′), if || t1 − s || < δ0 then

dX(γ′(t1), γ′(s)) < ε1. Then set:

δ1 := sup
{
δ ∈ (0, δ0] | ∀s ∈ dom(γ′) : || t1 − s || < δ ⇒ dX(γ′(t1), γ′(s)) < ε1

}
So δ1 is well-defined (since the reals are Dedkind-complete) and δ1 > 0. Now consider any retiming

ρ ∈ Ret(γ, γ′) such that dev(ρ) < δ1, and choose any time point t2 ∈ ρ(t1). Then we have t2 ∈

dom(γ′) = dom(γ), and || t1 − t2 || < δ1, hence dX(γ′(t1), γ′(t2)) < ε1. By the triangle inequality for the
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metric dX, we have 2ε1 = dX(γ(t1), γ′(t1)) ≤ dX(γ(t1), γ′(t2)) + dX(γ′(t1), γ′(t2)), and hence:

dX(γ(t1), γ′(t2)) ≥ 2ε1 − dX(γ′(t1), γ′(t2)) > ε1 .

Hence (γ, γ′) < Vδ1,ε1 , as required.

In Case II, when dom(γ) , dom(γ′), we either have (dom(γ) r dom(γ′)) , ∅. or (dom(γ′) r

dom(γ)) , ∅; by symmetry, we can consider only the first of these. We then break into further sub-

cases, depending upon whether (a) γ′ ∈ CPath(T, X), or else (b) γ′ ∈ M(P) ∩ CPath∞bd(T, X) for some

deadlock-free and prefix-closed set of compact paths P ⊆ CPath(T, X).

In Case II.a, when dom(γ′) is compact, choose any element t1 ∈ (dom(γ)r dom(γ′)), and then set:

δ1 := inf
{
|| t1 − s ||T | s ∈ dom(γ′)

}
.

Since dom(γ′) is compact, and hence closed, in the norm topology on T , and t1 < dom(γ′), we can

conclude that δ1 > 0. This means that for every retiming ρ ∈ Ret(γ, γ′) and for every t2 ∈ ρ(t1) ⊆

dom(γ′), we have || t1 − t2 ||T ≥ δ1 and hence dev(ρ) ≥ δ1. This now means that for any choice of

ε1 > 0, it is the case that for all retimings ρ ∈ Ret(γ, γ′), if dXsup(γ, γ′, ρ) < ε1, then dev(ρ) ≥ δ1. Hence

(γ, γ′) < Vδ1,ε1 , as required.

In Case II.b, when γ′ ∈ M(P)∩CPath∞bd(T, X) for P deadlock-free and prefix-closed, we have that

dom(γ′) is bounded but not closed in the norm topology; set t0 := sup(dom(γ′)), so t0 < dom(γ′). We

now break into three exhaustive sub-sub-cases, to complete the proof.

• Case II.b.1: there exists t1 ∈ (dom(γ) r dom(γ′)) such that t1 � t0. Then we know that dom(γ′| t1)

is compact, and γ′| t1 ∈ P since P is prefix-closed, and max(dom(γ′| t1)) < t1. Now set δ1 := || t1 −

max(dom(γ′| t1)) ||T > 0. This means that for every retiming ρ ∈ Ret(γ| t1 , γ
′| t1) and for every t2 ∈

ρ(t1) ⊆ dom(γ′| t1), we have || t1 − t2 ||T ≥ δ1 and hence dev(ρ) ≥ δ1. This now means that for any

choice of ε1 > 0, it is the case that for all retimings ρ ∈ Ret(γ| t1 , γ
′| t1), if dXsup(γ| t1 , γ

′| t1 , ρ) < ε1, then

dev(ρ) ≥ δ1. Hence (γ| t1 , γ
′| t1) < Vδ1,ε1 . In this case, we must also have (γ, γ′) < Vδ1,ε1 , as required.

Note that the negation of the condition for Case II.b.1 is that for all t1 ∈ (dom(γ) r dom(γ′)), we

have t1 > t0, which is equivalent to the condition that for all t1 ∈ (dom(γ), if t1 � t0 then t1 ∈ dom(γ′));

given that time domains of paths are linearly-ordered, so dom(γ) ∩ (t0⊥) = ∅, this latter condition is

in turn equivalent to the property that [0, t0) ∩ dom(γ) ⊆ dom(γ′).

• Case II.b.2: [0, t0) ∩ dom(γ) ⊆ dom(γ′) and (dom(γ) r dom(γ′)) = { t0 }. In this case, we have

dom(γ′) ( dom(γ) = [0, t0]∩dom(γ), and thus γ = γ|t0 ∈ P is a compact path. Now by the maximality

of γ′ with respect to P, with γ ∈ Z = (P∪M(P))∩CPath∞bd(T, X), we know that γ′ 1 γ|t0 , for otherwise

we would have γ′ < γ, contradicting the maximality of γ′. Thus there must exist a time t1 ∈ dom(γ′)

such that γ′(t1) , γ(t1). Now set ε1 := 1
2 dX(γ(t1), γ′(t1)), so ε1 > 0 since dX is a metric, and then

proceed as in Case I to determine a parameter δ1 > 0 such that (γ, γ′) < Vδ1,ε1 , as required.

• Case II.b.3: [0, t0) ∩ dom(γ) ⊆ dom(γ′) and there exists t1 ∈ (dom(γ) r dom(γ′)) such that t1 > t0,

and thus γ| t1 is a compact path and γ| t1 ∈ P, since P is prefix-closed. By the maximality of γ′ with
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respect to P, we know that γ′ ≮ γ|t1 , and hence either dom(γ′) ≮ dom(γ|t1), or else dom(γ′) < dom(γ|t1)

and γ′ 1 γ|t1 . To finish the proof, we break into these two exhaustive sub-sub-sub-cases.

? Case II.b.3.i: dom(γ′) ≮ dom(γ|t1), and hence there exists a time t3 ∈ dom(γ|t1)rdom(γ′) and a time

s3 ∈ dom(γ′) such that such that t3 ≯ s3. But by the linear ordering on time domains of paths, we have

t1 > t3 > t0, and t0 > s3, and thus we must have t3 > s3, so this case cannot happen.

? Case II.b.3.ii: dom(γ′) < dom(γ|t1) and γ′ 1 γ| t1 . In this case, there must exist a time point

s3 ∈ dom(γ′) such that γ′(s3) , γ(s3). Now set ε1 := 1
2 dX(γ(s3), γ′(s3)), so ε1 > 0 since dX is a metric,

and then proceed as in Case I to determine a parameter δ1 > 0 such that (γ′, γ| t1) < Vδ1,ε1 . We can then

conclude that (γ′, γ) < Vδ1,ε1 , as required. �

For example, if H = (X, F,G,C,D) is a hybrid system satisfying the conditions of [3], Proposi-

tion 2.4, with prefix-closed general flow map ΦH : X { CPath(H, X), then the set P := ran(ΦH) of

compact paths is deadlock-free and prefix-closed, and thus the set Z = (P ∪M(P)) ∩ CPath∞bd(H, X) is

a metrizable space under the 2-parameter uniform topology T2.

More generally, for any finite dimensional time structure, if Φ : X { CPath(T, X) is deadlock-

free and P := ran(ΦH) is prefix-closed, then the set Z = (P ∪M(P)) ∩ CPath∞bd(T, X) with the uniform

topology T2 is a metrizable space.

The following result confirms that the basic entourages Vδ,ε ∈ V2 of the uniformity on CPath(T, X)

are closed under the operations of taking prefixes and suffixes of paths, and of taking fusions of paths;

this is close to, but actually weaker than, these partial functions on the path space being uniformly

continuous w.r.t. the uniformity generated byV2 on the path space4.

Theorem 4.6 [Basic operations on compact paths within 2-parameter uniform topology]

Let S be a finite dimensional time structure with future time T , and let (X, dX) be a metric space. For

any paths γ, γ′, γ1, γ
′
1 ∈ CPath(T, X) and for any parameter pair (δ, ε) ∈ R2,

if (γ, γ′) ∈ Vδ,ε and the retiming ρ ∈ Ret(γ, γ′) witnesses this, with dev(ρ) < δ and dXsup(γ, γ′, ρ) < ε,

then for all (s, s′) ∈ ρ, we have:

1. the s/s′-prefixes: (γ|s, γ′|s′) ∈ Vδ,ε ;

2. the s/s′-suffixes: (s|γ, s′ |γ
′) ∈ Vδ,ε; and

3. the s/s′-fusions: if (γ1, γ
′
1) ∈ Vδ,ε and γ(s) = γ1(0) and γ′(s′) = γ′1(0),

then ( γ ∗s γ1, γ
′ ∗s′ γ

′
1 ) ∈ Vδ,ε.

4A partial function f : CPath(T, X)d CPath(T, X) is uniformly continuous w.r.t.V2 if there exists a function u : R2 → R2

such that for every parameter pair (δ, ε) ∈ R2, and for (δ′, ε′) = u(δ, ε), and for all γ, γ′ ∈ dom( f ), if (γ, γ′) ∈ Vδ′ ,ε′ then
( f (γ), f (γ′)) ∈ Vδ,ε, and hence dom( f ) ∩ Vδ′ ,ε′ (γ) ⊆ f −1(Vδ,ε( f (γ)). In contrast, a partial function f : CPath(T, X) d
CPath(T, X) is (merely) continuous w.r.t. the topology T2 if for each γ ∈ dom( f ) and for every parameter pair (δ, ε) ∈ R2,
there exists a pair (δ′, ε′) ∈ R2 such that for all γ′ ∈ dom( f ), if γ′ ∈ Vδ′ ,ε′ (γ) then f (γ′) ∈ Vδ,ε( f (γ)); that is, if γ′ is in the
(δ′, ε′)-tube around γ, then f (γ′) is in the (δ, ε)-tube around f (γ).
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Proof: Fix (s, s′) ∈ ρ, where dom(ρ) = dom(γ) and ran(ρ) = dom(γ′). For closure under prefixes,

consider the map ρ0 : T { T such that ρ0(t) := [0, s′] ∩ ρ(t) for all t ∈ dom(ρ0) := dom(γ) ∩ [0, s] =

dom(γ|s). Hence ran(ρ0) = dom(γ′)∩ [0, s′] = dom(γ′|s′). It is readily verified that ρ0 ∈ Ret(γ|s, γ′|s′),

and it is immediate that dev(ρ0) ≤ dev(ρ) < δ. It is also clear that dXsup(γ|s, γ′|s′ , ρ0) ≤ dXsup(γ, γ′, ρ) < ε.

Hence (γ|s, γ′|s′) ∈ Vδ,ε, as required.

For closure under suffixes, consider the paths s|γ and s′ |γ
′ with dom(s|γ) = σ−s(dom(γ)) ∩ T and

dom(s′ |γ
′) = σ−s′(dom(γ′)) ∩ T . Now for each t′ ∈ dom(s′ |γ

′) with t′ > 0, we have s′ + t′ ∈ dom(γ′)

with s′ < s′ + t′, hence ρ−1(s′) P ρ−1(s′ + t′); in particular, s ∈ ρ−1(s′), so either s ∈ ρ−1(s′ + t′) or

else s < w for all w ∈ ρ−1(s′ + t′). Going the other way, for each t ∈ dom(s|γ) with t > 0, we have

s + t ∈ dom(γ) with s < s + t, hence ρ(s) P ρ(s + t); in particular, s′ ∈ ρ(s), so either s′ ∈ ρ(s + t) or

else s′ < v for all v ∈ ρ(s + t). Now let ρ0 : T { T be the map such that:

ρ0 := { (t, t′) ∈ dom(s|γ) × dom(s′ |γ
′) | (s + t, s′ + t′) ∈ ρ } .

Then dom(ρ0) = dom(s|γ) and ran(ρ0) = dom(s′ |γ
′), and it is readily established that ρ0 ∈ Ret(s|γ, s′ |γ

′).

It is immediate that dev(ρ0) ≤ dev(ρ) < δ. It is also clear that dXsup(s|γ, s′ |γ
′, ρ0) ≤ dXsup(γ, γ′, ρ) < ε.

Hence (s|γ, s′ |γ
′) ∈ Vδ,ε, as required.

Finally, for closure under the fusion operation, suppose (s, s′) ∈ ρ and suppose that (γ1, γ
′
1) ∈ Vδ,ε

and γ(s) = γ1(0) and γ′(s′) = γ′1(0). Let ρ1 ∈ Ret(γ1, γ
′
1) be a witness retiming, such that with

dev(ρ1) < δ and dXsup(γ1, γ
′
1, ρ1) < ε, and suppose dom(ρ1) = dom(γ1) and ran(ρ1) = dom(γ′1). Now

consider the paths γ2 := γ ∗s γ1 and γ′2 := γ′ ∗s′ γ
′
1. Then we have dom(γ2) = dom(γ|s)∪σs(dom(γ1))

and dom(γ′2) = dom(γ′|s′) ∪ σs′(dom(γ′1)) Now let ρ2 : T { T be the map such that dom(ρ2) =

dom(γ2), and for all t ∈ dom(ρ2),

ρ2(t) :=

 [0, s′] ∩ ρ(t) if t ∈ dom(γ) ∩ [0, s)

{ t′ ∈ T | (t − s, t′ − s′) ∈ ρ1 } if s + t ∈ dom(γ1) .

So ρ2 is formed by glueing together the restriction of the retiming ρ to [0, s] × [0, s′] with the s/s′-

translation of the retiming ρ1 from dom(γ1) to dom(γ′1). One then verifies that ran(ρ2) = dom(γ′2), and

that ρ2 ∈ Ret(γ2, γ
′
2). Now we have dev(ρ) < δ and dev(ρ1) < δ, with ρ2 formed from a disjoint union

of a restriction of ρ and a translated version of ρ1. It then follows that we have dev(ρ2) < δ as well.

Moreover, since dXsup(γ, γ′, ρ) < ε and dXsup(γ1, γ
′
1, ρ1) < ε, we can also conclude that dXsup(γ2, γ

′
2, ρ2) <

ε, as required. �

We now turn to spaces Z ⊆ CPath∞(T, X) = CPath(T, X) ∪ Ext(CPath(T, X)) containing both

compact paths and limit continuous paths, and the subspace CPath∞cl (T, X). Starting from the the 2-

parameter uniform structure on bounded paths, the key idea is that since a limit path is just the union

of a chain of longer and longer compact prefixes, we should look at closeness of longer and longer

compact prefixes, and thus we should introduce a third parameter which references the time position
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up to which two limit paths are required to be (δ, ε)-close.

Theorem 4.7 [3-parameter uniform topology on path spaces]

Let S be a finite dimensional time structure with future time T , let (X, dX) be a metric space, and let Z ⊆

CPath∞(T, X) be any set of paths, compact or limit. For the parameter space R2 × T := R>0 ×R>0 × T,

define for each triple (δ, ε, t) ∈ R2 × T the relation Uδ,ε,t : Z { Z as follows:

Uδ,ε,t :=
{
(η, η′) ∈ Z × Z | (η| t, η′| t) ∈ Vδ,ε

}
.

Then for all (δ, ε) ∈ R2, for all compact paths γ ∈ Z ∩ CPath(T, X) with bγ = max(dom(γ)), and for

all paths η ∈ Z,

Vδ,ε(γ) ⊆
⋂
t>bγ

Uδ,ε,t(γ) and Uδ,ε,0(η) = { η′ ∈ Z | dX(η(0), η′(0)) < ε } ⊆
⋂
t∈T

Uδ,ε,t(η)

and for all (δ, ε, t), (δ1, ε1, t1), (δ2, ε2, t2) ∈ R2 × T:

Uδ1,ε1,t1 ⊆ Uδ2,ε2,t2 when (δ1, ε1) 6 (δ2, ε2) and t1 > t2

Uδ,ε,t ⊆ Uδ1,ε1,t1 ∩ Uδ2,ε2,t2 when (δ, ε) 6 (δ1, ε1) ∧ (δ2, ε2) and t > (t1 ∨ t2)

Uδ1,ε1,t1 ◦ Uδ2,ε2,t2 ⊆ Uδ,ε,t when (δ1, ε1) + (δ2, ε2) 6 (δ, ε) and t 6 (t1 ∧ t2) .

Uδ1,ε1,t1 ◦ Uδ1,ε1,t1 ⊆ Uδ,ε,t when (δ1, ε1) 6 1
2 (δ, ε) and t 6 t1 .

Hence the family U3 := {Uδ,ε,t : Z { Z | (δ, ε, t) ∈ R2×T } constitutes a basis for a uniformity on the

path set Z. The 3-parameter uniform topology T3 on Z will be first-countable if the time structure T is

finite-dimensional, and it will be Hausdorff if Z ⊆ CPath∞(T, X) is such that for some deadlock-free

and prefix-closed set of compact paths P ⊆ CPath(T, X), we have P ⊆ Z and Z r CPath∞cl (T, X) ⊆

M(P) ∩ CPath∞bd(T, X). When the topology T3 is first-countable and Hausdorff, it is metrizable, and in

this case we can use the metric d3 : Z × Z → R+ given by:

d3(η, η′) := max{ δ0, ε0, r0 }

where

(δ0, ε0, r0) := inf
{

(δ, ε, r) ∈ (R>0)3 | ∃ t ∈ T, r = exp(−||t||T ) ∧ (η, η′) ∈ Uδ,ε,t
}
.

Proof: The verifications are straight-forward adaptations of the proof of Theorem 4.5, with the adjust-

ment that for the 3-parameter uniformity, the basic entourages are inclusion-anti-monotone in the third

parameter t ∈ T , while being inclusion-monotone in the first two parameters. For the metric d3, we

use the mapping r = exp(−||t||T ) to give a positive real-valued parameter that is also anti-monotone in

the third parameter t ∈ T , since t > t′ implies exp(−||t||T ) ≤ exp(−||t′||T ).

Now suppose that Z ⊆ CPath∞(T, X) is such that for some deadlock-free and prefix-closed set of

compact paths P ⊆ CPath(T, X), we have P ⊆ Z and Z r CPath∞cl (T, X) ⊆ M(P) ∩ CPath∞bd(T, X).
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To prove that the topology T3 is Hausdorff, it suffices to prove of η, η′ ∈ Z, that if η , η′, then

there exists a parameter triple (δ1, ε1, t1) ∈ R2 × T such that (η, η′) < Uδ1,ε1,t1 , which means that for all

retimings ρ ∈ Ret(η|t1 , η
′|t1) such that dev(ρ) < δ1, there exists (s1, s2) ∈ ρ such that dX(η(s1), η′(s2)) ≥

ε1. As in the proof of the Hausdorff property for Theorem 4.5, there are two cases to consider: Case

I: dom(η) = dom(η′) but there exists s1 ∈ dom(η) such that η(s1) , η′(s1); and Case II: dom(η) ,

dom(η′).

In Case I, set ε1 := 1
2 dX(η(s1), η′(s1)), so ε1 > 0 since dX is a metric. Since η′ is continuous

at the time point s1, there exists a real δ0 > 0 such that for all t ∈ dom(γ′), if || s1 − t || < δ0 then

dX(γ′(s1), γ′(t)) < ε1. Then set:

δ1 := sup
{
δ ∈ (0, δ0] | ∀t ∈ dom(η′) : || s1 − t || < δ ⇒ dX(η′(s1), η′(t)) < ε1

}
.

Now set t1 := s1 and set γ := η|t1 and γ′ := η′|t1 . Then proceed as in Case I of the proof of the

Hausdorff property for Theorem 4.5, to conclude that (γ, γ′) < Vδ1,ε1 , and hence (η, η′) < Uδ1,ε1,t1 , as

required.

In Case II, when dom(η) , dom(η′), we either have (dom(η) r dom(η′)) , ∅. or (dom(η′) r

dom(η)) , ∅; by symmetry, we can consider only the first of these. We then break into further sub-

cases, depending upon whether (a) η′ ∈ CPath∞cl (T, X), or (b) η′ ∈ M(P) ∩ CPath∞bd(T, X).

In Case II.a, when dom(η′) is norm-closed, choose any element t1 ∈ (dom(η)r dom(η′)), and then

set:

δ1 := inf
{
|| t1 − s ||T | s ∈ dom(γ′)

}
.

Since dom(η′) is closed in the norm topology on T , and t1 < dom(η′), we can conclude that δ1 > 0.

Then proceed as in Case II.a of the proof of the Hausdorff property for Theorem 4.5, with γ := η| t1 and

γ′ := η′| t1 , to derive the conclusion that (γ, γ′) < Vδ1,ε1 for suitable ε1 > 0, and hence (η, η′) < Uδ1,ε1,t1 .

In Case II.b, when η′ ∈ M(P) ∩ CPath∞bd(T, X), we know that dom(η′) is bounded but not closed

in the norm topology; set t0 := sup(dom(η′)), so t0 < dom(η′), and set s0 := sup([t0, 2t0] ∩ dom(η)).

Then proceed as in Case II.b of the proof of the Hausdorff property for Theorem 4.5, with γ := η| s0

and γ′ := η′| s0 = η
′, to derive (via three sub-sub-cases) the conclusion that (γ, γ′) < Vδ1,ε1 for suitable

ε1 > 0, and hence (η, η′) < Uδ1,ε1,s0 , to complete the proof. �

In comparison, the natural extension of the Skorokhod metric topology [17, 18, 19] on path spaces

Z ⊆ CPath∞(T, X) for finite-dimensional T can be described by a uniformity with basic entourages

USkor
δ,ε,t such that (η, η′) ∈ USkor

δ,ε,t iff there exists a bijective, single-valued retiming ρ ∈ BRet(η|t, η′|t)

such that dev(ρ) < δ and dXsup(η|t, η′|t, ρ) < ε. It follows that the resulting topology TSkor is finer than

the topology T3 considered here; i.e. T3 ⊆ TSkor.

Given a deadlock-free and prefix-closed set of compact paths P ⊆ CPath(T, X), if Z = P ∪ M(P)

then the uniform topology T3 on Z will be Hausdorff and thus metrizable.
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5 Equivalence with Other Topological Structures on Path Spaces

Goebel and Teel in [3] develop a notion of convergence for sequences of hybrid paths (compact or

limit) for the case of Euclidean space X ⊆ Rn and T = H ⊂ R2 by employing the machinery of set-

convergence for sequences of subsets of Rn, applied to paths η ∈ CPath∞(T, X) considered via their

graphs as subsets of T × X ⊂ Rn+2. (The text by Rockafellar and Wets [20] is a standard reference

on the set-convergence approach to set-valued anaylsis.) We generalize the Goebel and Teel notion of

graph convergence to Dedekind-complete and finite-dimensional future time structures T and metric

spaces X, and establish that for spaces Z ⊆ CPath∞(T, X) of paths with norm-closed time domains,

graph convergence is equivalent to convergence in the 3-parameter uniformity. The topology on the

product space T ×X inherited from the norm topology on T and the metric topology on X is equivalent

to the topology generated by the 2-parameter uniform topologyW whose basic entourages are:

Wδ,ε :=
{
((t, x), (t′, x′)) ∈ (T × X) × (T × X) | || t − t′ ||T < δ ∧ dX(x, x′) < ε

}
for each parameter pair (δ, ε) ∈ R2. Being the product of a normed space and a metric space, the

topology on T × X is also metrizable; one such metric takes the maximum of the temporal and spatial

distances, so that for all (t, x), (t′, x′) ∈ T × X, we have:

dT×X((t, x), (t′, x′)) := max
{
|| t − t′ ||T , dX(x, x′)

}
.

In [3], and also in [5, 7], this metric is used to describe the topology on T × X.

We extend the notion of set-convergence to first-countable Hausdorff uniform spaces (Z,V), with

V a basis for the uniformity. Let {Ak}k∈N be a sequence of subsets of Z. The inner limit (limit inferior)

and the outer limit (limit superior), of the sequence of sets {Ak}k∈N, are defined as follows:

lim inf
k→∞

Ak := { z ∈ Z | ∃seq. {zk}k∈N, ∀k ∈ N, zk ∈ Ak ∧ z = lim
k→∞

zk }

= { z ∈ Z | ∀V ∈ V, ∃m ∈ N, ∀k > m, Ak ∩ V(z) , ∅ }

lim sup
k→∞

Ak := { z ∈ Z | ∃seq. {zk}k∈N, ∀k ∈ N, zk ∈ Ak ∧ ∃sub-seq. {zki}i∈N, z = lim
i→∞

zki }

= { z ∈ Z | ∀V ∈ V, ∃ infinite set K ⊆ N, ∀k ∈ K, Ak ∩ V(z) , ∅ } .

Both the inner and outer limit sets always exist, and are always closed sets in the uniform topology TV
(although possibly empty), and lim inf

k→∞
Ak ⊆ lim sup

k→∞
Ak. The sequence {Ak}k∈N converges to a set A if

lim sup
k→∞

Ak = A = lim inf
k→∞

Ak in which case A must be closed in the topology TV on Z, and we write

A = setlimk→∞ Ak. When setlimk→∞ Ak = ∅, the sequence is said to escape to the horizon.

In [3, 4, 8], in taking graphical limits, there is a restriction to sequences {ηk}k∈N of regular hybrid

paths (finite or limit) that are locally eventually bounded in X, which means that for all (i, t) ∈ H, there

exists m ∈ N and a compact set K ⊂ X such that for all k ≥ m and all ( j, s) ∈ dom(ηk), if ( j, s) 6 (i, t)
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then ηk(i, t) ∈ K; i.e. ran(ηk|(i,t)) ⊆ K. More generally, for finite-dimensional future time structures

T , a sequence {ηk}k∈N in CPath∞(T, X) is locally eventually bounded in X if for all t ∈ T , there exists

m ∈ N and a compact set K ⊂ X such that ran(ηk| t) ⊆ K for all k ≥ m. In the papers [3, 4, 8],

the restriction to locally eventually bounded sequences of regular hybrid paths is there for multiple

purposes: (a) to ensure that the set-limit of a sequence of graphs of hybrid paths is indeed the graph of

a hybrid path (and neither empty nor set-valued, for instance); (b) to ensure that none of the paths ηk

“blow up” to infinity with finite escape time; and (c) to give a uniform bound on the sets ran(ηk| t) for

an infinite tail of the whole sequence (in the form of the compact set K ⊂ X). In our framework, reason

(a) is a non-issue as we consider convergence only when, for some η ∈ CPath∞(T, X), we have η =
setlim
k→∞ ηk, so the set-convergence limit being empty or set-valued does not arise. Reasons (b) and (c) are

not so pressing in our framework, as we can accommodate both paths with norm-closed time domains

(which excludes maximal paths with finite escape time) and also paths that are maximal relative to a

set of compact paths (which allows the possibility of finite escape time).

We are able to establish a weaker property as a consequence of convergence in the 3-parameter

uniform topology. For finite-dimensional future time structures T , and time points t∗ ∈ T , we call

a sequence {ηk}k∈N in CPath∞(T, X) t∗-locally eventually bounded in X if there exists m ∈ N and a

compact set K ⊂ X such that for all t ∈ T with t � t∗, we have ran(ηk| t) ⊆ K for all k ≥ m.

Proposition 5.1 [Local eventual boundedness of sequences]

Suppose S is finite-dimensional and Dedekind-complete, and Z ⊆ CPath∞(T, X) is such that either

Z ⊆ CPath∞cl (T, X) or Z = P∪M(P) for some deadlock-free and prefix-closed path set P ⊆ CPath(T, X).

Let {ηk}k∈N be any sequence in Z, and let η ∈ Z.

(i) If η = lim
k→∞
ηk in the uniform topology T3 on Z, and η ∈ Z ∩ CPath∞cl (T, X),

then the sequence {ηk}k∈N is locally eventually bounded in X.

(ii) If η = lim
k→∞
ηk in the uniform topology T3 on Z, and η < CPath∞cl (T, X),

then for some t∗ ∈ T, the sequence {ηk}k∈N is t∗-locally eventually bounded in X.

Proof: For (i), suppose that η = lim
k→∞
ηk in the topology T3, and that dom(η) is norm-closed. Then fix

t ∈ T , arbitrary, and choose any (δ, ε) ∈ R2; by the convergence in the uniform topology, there exists

an m ∈ N such that ηk| t ∈ Vδ,ε(η| t) for all k ≥ m. Since dom(η) is norm-closed, we know that dom(η| t)

is norm-compact in T . Then set:

K := { x ∈ X | ∃s ∈ dom(η), s ≤ t ∧ dX(x, η(s)) ≤ ε } .

Then K is compact in X since η is continuous and dom(η| t) is compact in T . We can now conclude

that ran(ηk| t) ⊆ K for all k ≥ m. Hence the sequence {ηk}k∈N is locally eventually bounded in X.

For (ii), suppose that η = lim
k→∞
ηk in the topology T3, and that dom(η) is not norm-closed. Then

η ∈ M(P) ∩ CPath∞bd(T, X) for some deadlock-free and prefix-closed path set P ⊆ CPath(T, X). Then
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there must exist an integer n∗ ≥ 1 such that ηk ∈ M(P) ∩ CPath∞bd(T, X) for all k ≥ n∗, for otherwise,

we could not have η = lim
k→∞
ηk in T3. So η and all but finitely many of the paths ηk are maximal with

dom(ηk) norm-bounded but not norm-closed. Set t0 := sup(dom(η)), so t0 < dom(η), and for each

k ≥ n∗, set tk := sup(dom(ηk)), so tk < dom(ηk). Then set t∗ := inf{ tk | k = 0 ∨ k ≥ n∗ ≥ 1 }, which

will exist, since T is assumed to be Dedekind-complete. Now for all t ∈ T such that t � t∗, we have

t � t0 and thus η| t < η and dom(η| t) is norm-compact in T . Then choose any (δ, ε) ∈ R2 and take K

as the compact set as in Case I. By the convergence in the uniform topology, can then conclude that

there exists an m ∈ N such that for all t � t∗, we have ran(ηk| t) ⊆ K for all k ≥ m. Thus the sequence

{ηk}k∈N is t∗-locally eventually bounded in X. �

Collins, in [5, 7], proposes the compact-open topology Tco on spaces of prefix-free or maximal

paths; in our framework, this means sets of paths Z = M(P) for some P ⊆ CPath(T, X). Since we

restrict to time structures S that are finite dimensional, Part 4 of Theorem 2.2, gives that for each

t ∈ T , the closed interval [0, t] is compact in Tnorm. The topology Tc.o. has as a basis the family of all

sets:

B(η, t, δ, ε) := { η′ ∈ Z | η|t ⊆ Wδ,ε(η′) ∧ η′|t ⊆ Wδ,ε(η) }

for η ∈ Z, t ∈ T , and pairs (δ, ε) ∈ R2. Then η = lim
k→∞
ηk in the compact-open topology Tc.o. iff for all

t ∈ T and (δ, ε) ∈ R2, there exists an integer m ∈ N such that for all k ≥ m, we have ηk ∈ B(η, t, δ, ε).

Note that this is a modification of the standard compact-open topology on spaces of total continuous

functions η : T → X, which declares η and η′ to be (K, ε)-close if the range of η restricted to the

compact subset K of T is contained in an ε-neighbourhood of η′ within X, and symmetrically, the

range of η′ restricted to K is contained in an ε-neighbourhood of η within X. The modification is

required to accommodate partial functions with differing time domains, and the non-total-ness of paths

as functions means that the usual concept of uniform convergence (for sequences of total functions on

a common domain) does not straight-forwardly apply.

In proving the equivalence of the various notions of convergence for sequences of continuous paths,

we need a condition on time structures T and path sets Z ⊆ CPath∞cl (T, X) that guarantees the existence

of certain supremums and infimums, but is weaker than the assumption that T is Dedekind-complete,

since Dedekind-completeness excludes the Zeno time structure QB × R. We will say that a path set

Z ⊆ CPath∞cl (T, X) is rich enough over time T when the following condition holds:

for all paths η ∈ Z, the following points exist in dom(η) :

for each t ∈ T, the point:

rt := sup{s ∈ dom(η) | s 6 t}

and for each δ > 0 such that || s ||T ≥ δ for some s ∈ dom(η), the point:

rδ := inf{s ∈ dom(η) | || s ||T ≥ δ} .

This weaker condition is satisfied by sets of continuations of Zeno trajectories when modelled as paths
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with time QB × R as discussed in Section 2.

Theorem 5.2 [Equivalence of concepts of convergence for sequences of continuous paths]

Let S be a finite-dimensional time structure with future time T , and suppose the time granularity

gr(S , u) = 0. Let (X, dX) be a metric space with a distinguished state x0, so that (0, x0) is a reference

point in T × X, and further suppose that the space granularity of X is 0, in the sense that for all x ∈ X,

we have inf{dX(x, y) | y , x} = 0. Let Z ⊆ CPath∞cl (T, X) be a path set such that Z is rich enough over

time T . Then for all paths η ∈ Z and for all sequences of paths {ηk}k∈N within Z, the following five

conditions are equivalent:

(1) η = lim
k→∞
ηk in the 3-parameter Hausdorff uniform topology T3 on Z;

(2) η = setlim
k→∞ ηk as graphs in the product topology on T × X;

(3) η = lim
k→∞
ηk in the compact-open topology Tc.o. on Z.

(4) ∀ open sets O in T × X, if η ∩ O , ∅ then ∃m1 ∈ N, ∀k ≥ m1, ηk ∩ O , ∅, and

∀ compact sets K in T × X, if η ∩ K = ∅ then ∃m2 ∈ N, ∀k ≥ m2, ηk ∩ K = ∅;

(5) ∀(δ, ε) ∈ R2, ∀(α, β) ∈ R2, ∃m ∈ N, ∀k ≥ m, the following two set-inclusions hold in T × X:

η ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(ηk)) and ηk ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(η)) .

Since topologies on first-countable Hausdorff spaces are uniqely determined by the notion of conver-

gence of sequences, the topologies T3 and Tc.o. on Z coincide.

Proof: We will first prove the equivalence of (2) and (4), which is the open set/compact set “hit-and-

miss criteria” for set-convergence, generalizing Theorem 4.5 of the Rockafellar and Wets text [20]. We

will then prove the equivalence of (2) and (5), which generalizes Theorem 4.10 of [20] and Lemma 4.2

of [3], and then finally prove the equivalence of (1) and (5). The equivalence of (3) and (5) is straight-

forward, and will be omitted. We require the assumptions that both T and X have granularity 0 in only

some of the proofs, namely (2)⇒ (5), (5)⇒ (2), and (5)⇒ (1).

[(2) ⇒ (4)] Suppose that (2) holds, and thus lim supk→∞ ηk ⊆ η ⊆ lim infk→∞ ηk in T × X, with

η , ∅ and η a closed set in T × X. Now fix an open set O in T × X, and suppose that η ∩ O , ∅.

Pick any (t, x) ∈ η ∩ O, and then there must exist an entourage Wδ,ε ∈ W such that the basic open

Wδ,ε(t, x) ⊆ O. But then by the definition of the inner limit, there exists an m1 ∈ N such that for all

k ≥ m1, we have ηk ∩Wδ,ε(t, x) , ∅, and hence ηk ∩ O , ∅, as required. Then fix a compact set K in

T × X, and suppose that η ∩ K = ∅. Now consider an arbitrary element (t, x) ∈ K; we claim there is

some basic open Wδ,ε(t, x) such that the set F(t, x) := {k ∈ N | ηk∩Wδ,ε(t, x) , ∅} is of finite cardinality.
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To see this, suppose the claim did not hold; then by the definition of the outer limit, we would have

(t, x) ∈ lim supk→∞ ηk and hence (t, x) ∈ η ∩ K, contradicting the supposition that η ∩ K = ∅. Now the

family of basic opens {Wδ,ε(t, x)}(t,x)∈K forms an open cover of K and thus there exists a finite subcover

given by {Wδ,ε(t, x)}(t,x)∈A where A ⊆ K is finite. Then let F = ∪(t,x)∈AF(t, x), which is also finite. Now

choose m2 ∈ N such that m2 is strictly greater than all elements in F. Hence for all k ≥ m2, we have

ηk ∩ K = ∅, as required.

[(4)⇒ (2)] Suppose that (4) holds; we will then establish the two inclusions η ⊆ lim infk→∞ ηk and

lim supk→∞ ηk ⊆ η in T × X. For the first of these inclusions, suppose that (t, x) ∈ η and thus x = η(t);

we want to show that (t, x) ∈ lim infk→∞ ηk. Now consider an arbitrary basic open neighbourhood

Wδ,ε(t, x) of (t, x), for some parameter pair (δ, ε) ∈ R2. Then since (t, x) ∈ η ∩Wδ,ε(t, x) and (4) holds,

there exists some m1 ∈ N such that ηk ∩ Wδ,ε(t, x) , ∅ for all k ≥ m1. By the definition of the inner

limit, we can then conclude that (t, x) ∈ lim infk→∞ ηk, as required. For the second inclusion, we prove

the contrapositive: if (t, x) < η then (t, x) < lim supk→∞ ηk. So suppose that (t, x) < η, and also suppose,

toward a contradiction, that (t, x) ∈ lim supk→∞ ηk. Then by the definition of the outer limit, there exists

a sequence {(tk, xk)}k∈N such that (tk, xk) ∈ ηk for all k ∈ N (so xk = ηk(tk)) and there is a sub-sequence

{(tki , xki)}i∈N such that (t, x) = limi→∞(tki , xki). Since η is closed set in T × X and (t, x) < η, we claim

there is some integer m0 ∈ N such that (tki , xki) < η for all i ≥ m0. To see this, suppose the claim did not

hold; then we would have (tki , xki) ∈ η for infinitely many i ∈ N, and thus η would contain a sequence

converging to (t, x), to give (t, x) ∈ C. Now consider the set K := {(t, x)} ∪ { (tki , xki) | i ≥ m0 }. This

set K is compact in T × X because it is Cauchy-complete and totally-bounded, within a metricizable

space. The Cauchy-completeness of K is trivial, and to verify the totally-bounded property for K, we

use the convergence of the sub-sequence {(tki , xki)}i∈N to (t, x) in the uniformity: for every parameter

pair (δ, ε) ∈ R2, there is an n ≥ m0 such that (tki , xki) ∈ Wδ,ε(t, x) for all i ≥ n, so we can find a finite set

of indices I ⊆ {m0,m0 + 1, . . . , n} such that the family {Wδ,ε(t, x) } ∪ {Wδ,ε(tki , xki) | i ∈ I } is a finite

cover of Wδ,ε basic opens. Then since K is compact and η ∩ K = ∅, we can conclude from (3) that

there exists some integer m2 such that ηk ∩ K = ∅ for all k ≥ m2, which is a clear contradiction with

(tki , xki) ∈ ηki ∩ K. Thus, it must be the case that (t, x) < lim supk→∞ ηk, as required.

[(2) ⇒ (5)] Suppose that (2) holds, and thus so does (4), and we have lim supk→∞ ηk ⊆ η ⊆

lim infk→∞ ηk, with η , ∅ and η a closed set in T × X. Fix two parameter pairs (δ, ε) ∈ R2 and

(α, β) ∈ R2. To prove the first inclusion for (5), suppose, for a contradiction, that for all m ∈ N, there

exists km ≥ m such that η∩ cl(Wα,β(0, x0))r cl(Wδ,ε(ηkm)) , ∅. Thus we can choose a sequence of time

points {tm}m∈N in dom(η) such that for all m ∈ N, we have (tm, η(tm)) ∈ cl(Wα,β(0, x0)) and (tm, η(tm)) <

cl(Wδ,ε(ηkm)), and we also have km+1 > km. Moreover, the sequence {tm}m∈N can be chosen so that it

converges to a limit, with (t̂, x̂) = limk→∞(tm, η(tm)) in the uniform topology on T × X. Since η is a

closed set in T × X, we can conclude that (t̂, x̂) ∈ η, and thus x̂ = η(t̂) = limm→∞ η(tm). Since (2) holds,

we have η ⊆ lim infk→∞ ηk and thus (t̂, x̂) ∈ lim infk→∞ ηk. Since both T and X have granularity 0, we

can set δ? := 1
2 min(δ, α) and ε? := 1

2 min(ε, β). Applying condition (3) to the open neighbourhood

O = Wδ?,ε?(t̂, x̂)) of (t̂, x̂) in T × X, as well as using the convergence (t̂, x̂) = limk→∞(tm, η(tm)), we can
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find a sufficiently large integer m? ∈ N such that for k? := km? , we have both ηk? ∩Wδ?,ε?(t̂, x̂)) , ∅

and (tm? , η(tm?)) ∈ Wδ?,ε?(t̂, x̂)). From the second condition, we can conclude that || t̂ − tm? || < δ?
and dX(x̂, η(tm?) < ε?, while from the first condition, we can conclude that there exists a time point

s? ∈ dom(ηk?) such that || t̂ − s? || < δ? and dX(x̂, ηk?(s?) < ε?. Applying the triangle inequalities for

norms and metrics, we then have || tm? − s? || < 2δ? < δ and that dX(η(tm?), ηk?(s?) < 2ε? < ε. But

now we have (tm? , η(tm?)) ∈ Wδ,ε(s?, ηk?(s?)), contradicting the fact that (tm? , η(tm?)) < cl(Wδ,ε(ηk?)).

Thus there exists an integer n1 ∈ N such that η ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(ηk)) for all k ≥ n1.

To prove the second inclusion for (5), suppose, for a contradiction, that for all m ∈ N, there exists

km ≥ m such that ηkm ∩ cl(Wα,β(0, x0)) r cl(Wδ,ε(η)) , ∅. In this case, we get a sub-sequence of paths

{ηkm}m∈N with km+1 > km and a sequence of points {(tm, ηkm(tm))}m∈N in T × X such that for all m ∈ N,

we have (tm, ηkm(tm)) ∈ cl(Wα,β(0, x0)) and (tm, ηkm(tm)) < cl(Wδ,ε(η)). Moreover, since the sequence

{(tm, ηkm(tm))}m∈N is bounded by the compact set cl(Wα,β(0, x0)) in T × X, it contains a sub-sequence

convergent in the uniform topology on T × X; let (t, x) be the limit of this convergent sub-sequence.

Then by the definition of the outer limit, we have (t, x) ∈ lim supk→∞. Since (2) holds, we have

lim supk→∞ ηk ⊆ η, and thus (t, x) ∈ η, and hence x = η(t). But since (tm, ηkm(tm)) < cl(Wδ,ε(η)) for all

m ∈ N, we can also conclude of the accumulation point (t, x) that (t, x) < Wδ,ε(η), in contradiction with

the fact that (t, x) ∈ η. Thus there exists an integer n2 ∈ N such that ηk ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(η))

for all k ≥ n2. To complete the proof of (5), take m := max(n1, n2), and we are done.

[(5) ⇒ (2)] Suppose that (5) holds. To prove (2), we will establish the two inclusions η ⊆

lim infk→∞ ηk and lim supk→∞ ηk ⊆ η in T × X. For the first of these inclusions, suppose that (t, x) ∈ η

and thus x = η(t); we want to show that (t, x) ∈ lim infk→∞ ηk. From the definition of the inner limit,

it suffices to show that for an arbitrary basic open neighbourhood Wδ,ε(t, x) of (t, x), there exists an

m ∈ N such that ηk ∩ Wδ,ε(t, x) , ∅ for all k ≥ m. Since both T and X have granularity 0, con-

sider any parameter pairs (δ1, ε1) ∈ R2 and (δ2, ε2) ∈ R2 such that δ1 < δ, ε1 < ε, δ2 > || t ||T and

ε2 > dX(x0, x), and thus (t, x) ∈ η∩ cl(Wδ2,ε2(0, x0)). Since (5) holds, there exists an integer m ∈ N such

that η ∩ cl(Wδ2,ε2(0, x0)) ⊆ cl(Wδ1,ε1(ηk)) ⊆ Wδ,ε(ηk) for all k ≥ m. Hence (t, x) ∈ Wδ,ε(ηk) for all k ≥ m,

as required to establish that (t, x) ∈ lim infk→∞ ηk.

For the second inclusion for (2), fix an arbitrary element (t, x) ∈ lim supk→∞ ηk; we want to show

that (t, x) ∈ η. It suffices to show that (t, x) ∈ Wδ,ε(η) for an arbitrary basic entourage Wδ,ε in T × X;

since η is a closed set, it will then follow that (t, x) ∈ η. Again, since both T and X have granularity

0, we can choose parameter pairs (δ1, ε1) ∈ R2 and (δ2, ε2) ∈ R2 such that cl(Wδ1,ε1(η)) ⊆ Wδ,ε(η),

δ2 > || t ||T and ε2 > dX(x0, x). Since (t, x) ∈ lim supk→∞ ηk, there exists a sub-sequence of paths {ηki}i∈N

such that (t, x) ∈ ηki ∩ cl(Wδ2,ε2(0, x0)) for all i ∈ N. Since (5) holds, there exists an integer m ∈ N such

that ηk ∩ cl(Wδ2,ε2(0, x0)) ⊆ cl(Wδ1,ε1(η)) ⊆ Wδ,ε(η) for all k ≥ m. So choosing an i such that ki ≥ m, we

can conclude that (t, x) ∈ Wδ,ε(η), as required.

[(1) ⇒ (5)] Suppose that (1) holds, hence for all (δ1, ε1, t1) ∈∈ R2 × T , there exists an integer

m1 ∈ N such that ηk ∈ Uδ1,ε1,t1(η) for all k ≥ m1. To prove (5), fix parameter pairs (δ, ε) ∈ R2 and

(α, β) ∈ R2. Now set δ1 := min(δ, α), ε1 := min(ε, β) and t1 := inf{s ∈ dom(η) | || s ||T ≥ 2α};
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then t1 exists and t1 ∈ dom(η), since Z is rich enough over T . Then let the integer m1 be such that

ηk ∈ Uδ1,ε1,t1(η) for all k ≥ m1. We claim that this m1 will also provide a witness to establish the two

inclusions for (5) for (δ, ε) and (α, β). So fix an arbitrary index k ≥ m1, and since ηk ∈ Uδ1,ε1,t1(η),

there exists compact prefixes γ 6 η and γk 6 ηk such that γ = η|t1 and γk = ηk|t1 and (γ, γk) ∈ Vδ,ε.

Thus there exists a retiming ρ : dom(γ) { dom(γk) such that dev(ρ) < δ1 and dXsup(γ, γk, ρ) < ε1.

To establish the first inclusion η ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(ηk)), fix (s, x) ∈ η ∩ cl(Wα,β(0, x0)). Now

choose a time point sk ∈ ρ(s), so sk ∈ dom(γk). Then we have || s || ≤ α and || s − sk ||T < δ1 ≤ δ.

Hence by the traingle inequality, we have || sk ||T ≤ || s ||T + || sk − s ||T ≤ α + δ1 ≤ 2α ≤ || t1 ||T , and

so we can conclude that sk 6 t1. Hence we have dX(x, ηk(sk)) = dX(γ(s), γk(sk)) < ε1 ≤ ε. We can

thus conclude that (s, x) ∈ Wδ,ε(sk, ηk(sk)) and hence (s, x) ∈ cl(Wδ,ε(ηk)), as required. To establish the

second inclusion ηk∩cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(η)), fix (sk, x) ∈ ηk∩cl(Wα,β(0, x0)). Hence sk ∈ dom(ηk)

and x = ηk(sk) and || sk ||T ≤ α < || t1 ||T , so that sk ∈ dom(γk) and x = γk(sk). Now choose any time

point s ∈ ρ−1(sk), so that s ∈ dom(γ), || s − sk ||T < δ, and || s ||T ≤ || sk ||T + || s − sk ||T ≤ || t1 ||T . We

then have dX(x, η(s)) = dX(γk(sk), γ(s)) < ε1 ≤ ε. Thus we can conclude that (sk, x) ∈ Wδ,ε(s, η(s)), and

hence (sk, x) ∈ cl(Wδ,ε(η)), as required.

[(5)⇒ (1)] Suppose that (5) holds. To establish the convergence (1) in the 3-parameter uniformity

U, fix an arbitrary triple (δ1, ε1, t1) ∈ R2 × T ; we need to exhibit an integer m ∈ N such that ηk ∈

Uδ1,ε1,t1(η) for all k ≥ m1. Since both T and X have granularity 0, we can choose parameter pairs

(δ, ε), (α, β) ∈ R2 such that δ < δ1, ε < ε1, α := || t1 ||T + 2δ and β := dX(x0, η(t0)) + 2ε where

t0 := sup{s ∈ dom(η) | s 6 t1} = max{s ∈ dom(η) | s 6 t1}, since Z is rich enough over T . Applying

(5) to these parameter pairs, which have δ ≤ 1
2α and ε ≤ 1

2β, we can conclude that there exists an

m1 ∈ N such that for k ≥ m1, we have:

η ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(ηk)) and ηk ∩ cl(Wα,β(0, x0)) ⊆ cl(Wδ,ε(η)) .

We will prove that the integer m1 + 1 witnesses convergence for the triple (δ1, ε1, t1). So fix k > m1,

so k ≥ 1; we want to prove that (γ, γk) ∈ Vδ1,ε1 , where γ := η|t1 and γk := ηk|t1 . First, set tk := sup{s ∈

dom(ηk) | s 6 t1}; then tk exists and tk ∈ dom(ηk) since Z is rich enough over T . Hence tk > 0

and dom(γ) = [0, t0] ∩ dom(η) and dom(γk) = [0, tk] ∩ dom(ηk), and both || t0 ||T ≤ || t1 ||T ≤ α and

|| tk ||T ≤ || t1 ||T ≤ α. Next, we seek to define a retiming map ρ : dom(γ) { dom(γk) such that for all

s ∈ dom(γ) and sk ∈ dom(γk), if (s, sk) ∈ ρ then ||s − sk||T ≤ δ < δ1 and dX(γ(s), γk(sk)) ≤ ε < ε1.

Now, we have γ ⊆ η ∩ cl(Wα,β(0, x0)) and γk ⊆ ηk ∩ cl(Wα,β(0, x0)), hence γ ⊆ cl(Wδ,ε(ηk)) and

γk ⊆ cl(Wδ,ε(η)). Thus we have:

∀s ∈ dom(γ), ∃sk ∈ dom(ηk) : || s − sk ||T ≤ δ ∧ dX(γ(s), ηk(sk)) ≤ ε

and ∀sk ∈ dom(γk), ∃s ∈ dom(η) : || s − sk ||T ≤ δ ∧ dX(η(s), γk(sk)) ≤ ε .

Further observe that if s ∈ dom(γ) and sk ∈ dom(ηk) and || s − sk ||T ≤ δ, then we have || sk ||T ≤

|| s ||T + || s− sk ||T ≤ || t1 ||T +δ < α and thus sk ∈ dom(γk), and likewise, if sk ∈ dom(γk) and s ∈ dom(η)
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and || s − sk ||T ≤ δ, then we have || s ||T < α and thus s ∈ dom(γ). Hence we have:

∀s ∈ dom(γ), ∃sk ∈ dom(γk) : || s − sk ||T ≤ δ ∧ dX(γ(s), ηk(sk)) ≤ ε

and ∀sk ∈ dom(γk), ∃s ∈ dom(γ) : || s − sk ||T ≤ δ ∧ dX(η(s), γk(sk)) ≤ ε .

It is then straight-forward to construct a total and surjective set-valued map ρ : dom(γ){ dom(γk) that

enforces the non-strict (δ, ε) closeness constraint and also meets the conditions of a being retiming.

The idea is to break up the bounded time domains dom(γ) and dom(γk) into a finite union of linearly-

ordered closed intervals with overlapping end-points, each of length at most δ, and define ρ piecewise.

This completes the proof. �

In [8], an abstract hybrid system over a state space X ⊆ Rn, with X open in Rn, is a set of hybrid

paths S ⊆ CPath∞(H, X) satisfying the following three conditions:

(B1) for all η ∈ S , ran(η) ⊂ X;

(B2) for all η ∈ S and all (i, t) ∈ dom(η), (i,t)|η ∈ S ; and

(B3) for all sequences {ηk}k∈N within S that are locally eventually bounded in X, and

for all η ∈ CPath∞(H, X), if η = setlim
k→∞ ηk as graphs in T × X, then η ∈ S .

In [8], the suffix- or translation-invariance condition (B2) is claimed to “... reduce to the standard

semi-group property under further existence and uniqueness conditions”; what is most likely intended

there is closure under fusion or point-concatenation, as in the third condition for general flows:

(B2+) for all η ∈ S , for all (i, t) ∈ dom(η), and for all η′ ∈ S ,

if η′(0, 0) = η(i, t) then η ∗(i,t) η′ ∈ S .

In the light of Theorem 5.2 and Proposition 5.1, we then have the following.

Proposition 5.3 Given a state space X ⊆ Rn, with X open in Rn, and a set S ⊆ CPath∞(H, X),

if S is closed in the uniform topology T3 on CPath∞(H, X) and S = ran(Φ) ∪ ran(MΦ) for some

general flow Φ : X { CPath(H, X) such that dom(γ) is regular for all γ ∈ ran(Φ),

then S is an abstract hybrid system in the sense of [8].

6 Conclusion

This paper makes several contributions:

• formulating a quite general notion of a time structure that accommodates all the “pathologies”

of hybrid dynamics;

• developing a uniform topology on general hybrid path spaces that (a) generalizes Skorokhod-

type topologies by allowing set-valued retiming maps instead of bijective single-valued retiming
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maps, and (b) gives explicit quantitative measures of closeness of paths with respect to three pa-

rameters: one temporal for signal domains, one spatial for signal values, and a third quantifying

the duration for which finite prefixes of the signals are close with respect to the first two param-

eters;

• proving that the path operations of prefix, suffix and fusion all respect the uniformity structure;

and

• proving the equivalence of this uniform topology with a compact-open topology on path spaces

associated with graph-convergence for hybrid paths, for finite-dimensional time and path spaces

that have norm-closed time domains.

Directions for further enquiry include the following:

• semi-continuity and compactness properties of general flows Φ : X { CPath(T, X) and their

maximal extensions MΦ : X { Ext(CPath(T, X)), relating to [3, 4, 7, 8];

• enriching the syntax and semantics of the temporal logic GFL? [13, 14] in order to express in

the logic both topological and dynamical properties of general flow systems;

• pursuing in a topological extension of GFL? the idea put forth in [26, 27] that for robust satis-

faction of a temporal logic formula, the path denotation set for the formula should be open in a

topology on the path space, so the set contains an open tube around each of the paths within it.
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