
On two-sided approximate model-checking:

problem formulation and solution
via finite topologies �

J.M. Davoren1, T. Moor2, R.P. Goré3, V. Coulthard3,1, and A. Nerode4

1 Department of Electrical & Electronic Engineering
The University of Melbourne, VIC 3010 AUSTRALIA

davoren@unimelb.edu.au
2 Lehrstuhl für Regelungstechnik

Friedrich-Alexander-Universität, Erlangen D-91058 GERMANY
thomas.moor@rt.eei.uni-erlangen.de
3 Computer Sciences Laboratory, RSISE

The Australian National University, Canberra ACT 0200 AUSTRALIA
vaughan@discus.anu.edu.au

4 Department of Mathematics Cornell University, Ithaca NY 14853 USA
anil@math.cornell.edu

Abstract. We give a general formulation of approximate model-checking,
in which both under- and over-approximations are propagated to give
two-sided approximations of the denotation set of an arbitrarily complex
formula. As our specification language, we use the modal µ-calculus, since
it subsumes standard linear and branching temporal logics over transi-
tion systems like LTL, CTL and CTL�. We give a general construction
of a topological finite approximation scheme for a Kripke model from a
state-space discretization via an A/D-map and its induced finite topol-
ogy. We further show that under natural coherence conditions, any finite
approximation scheme can be refined by a topological one.

1 Introduction

It is now well established that exact symbolic model-checking of modal and/or
temporal logic formulas in transition system models of hybrid and real-time
systems is not computationally possible (recursively solvable) except when re-
stricted to some tightly constrained sub-classes of systems. Given these limita-
tions on exactness, a good deal of current research in formal methods for hybrid
and real-time systems is devoted to developing algorithms for approximations
of various backwards and forwards reachability operators on sets arising from
differential inclusions and equations. Such approximations are typically based on
a discretization of the state space by a finite partition or cover, e.g. consisting of
a regular array of rectangular boxes, or of convex polyhedra or ellipsoids. Recent
� Research support from Aust. Research Council, Grants DP0208553, LX0242359. We

thank Bryn Humberstone at Univ. of Melbourne for many valuable discussions.

contributions focus attention on application relevant classes of reachability rela-
tions and include algorithms for the efficient computation of over-approximations
of sets of reachable states [1–3, 8, 10].

For example, in seeking to verify a safety property of a hybrid system model,
such as expressed by “From given initial conditions, the system never reaches a
danger state”, one can use an over-approximation of the true reach-set and its
disjointness from the danger states to conclude “definitely YES” to the verifica-
tion question. Now suppose instead that one is asking control questions, such as
“From which set of states can the system be steered to reach a given target region,
and up until then, always remain within designated safe states?” Here, a guaran-
teed under-approximation of this backwards reachability set will let us identify
a set of states of which we can answer “definitely YES” to this controllability
question, with respect to the particular dynamics of the steered system.

In this paper, we address the task of giving two-sided approximate evaluations
of the denotation set �ϕ �M ⊆ X of a logic formula ϕ, where �ϕ �M is the set of
all states of a Kripke model M at which ϕ is satisfied – with M = (X,R, v),
X the state space, R ⊆ X × X the transition relation, and v : P → 2X a
valuation of atomic propositions p ∈ P as subsets of X . We consider the general
problem of constructing maps UnM and OvM which, when applied to a formula
ϕ, return explicit computable descriptions of subsets of X with the property
that UnM(ϕ) ⊆ �ϕ �M ⊆ OvM(ϕ). As our specification language, we take the
modal µ-calculus, since all the standard linear and branching temporal logics
interpreted over transition systems (LTL, and CTL and CTL�, respectively)
are subsumed by the µ-calculus. We actually work with the tense logic extension,
with modal operators for both the one-step future and past along the transition
relation, as both constructs naturally rise in control and verification problems.

Building on the foundations of Cousot and Cousot’s abstract interpretation
[5], questions of approximation and abstraction for model-checking of large but
finite state systems have been addressed by Grumberg and colleagues in [4, 6, 12].
In the recent [12], they develop a framework for abstraction using three-valued
semantics, working say with T := {yes, no, indf} (the latter abbreviating “indefi-
nite”); working over bi-relational “must-may” Kripke models M, they give a dis-
joint pair of affirmation and refutation denotation sets �ϕ �M

yes ⊆ X and �ϕ �M
no ⊆

X such that �ϕ �M
yes

∩ �ϕ �M
no

= ∅, and take �ϕ �M
indf

= X − (�ϕ �M
yes

∪ �ϕ �M
no

).
As we discuss below, the basic framework in [12] gives rise to a particular solu-
tion to our problem of two-sided approximate model-checking: given a standard
Kripke model M that is abstracted under a suitable mixed simulation relation
by a bi-relational “must-may” Kripke model N , an under-approximation set
UnM(ϕ) can be obtained from �ϕ �N

yes and an over-approximation set OvM(ϕ)
can be obtained from the set-complement of �ϕ �N

no
. The main results in [4, 6, 12]

all assume that one has available an explicit first-order description of the true
transition relation R on the concrete model M, with exact point-wise knowledge
of R. While these are reasonable assumptions for the very large but still finite
state systems considered in these papers, they are quite restrictive in the setting
of hybrid and real-time systems.

Technically, we develop a simple set-theoretic notion of a finite approxima-
tion scheme (f.a.s.) for µ-calculus formulas interpreted in a Kripke model, and
establish the naturalness of our notion by showing that a model has a maximally
refined f.a.s. if and only if it has a finite bisimulation quotient. We then give a
general construction of an f.a.s. for a Kripke model from the topology generated
from a finite cover or discretization of the state space under an A/D-map. In con-
trast to [4, 6, 12], we do not assume exact point-wise knowledge of the concrete
transition relation R in order to construct approximations of the modal/tense
operators; instead, we make do with a weaker assumption of having under- and
over-approximations of the R-reachability (post-image) operator applied to the
cells of the A/D map, which fits much better with current algorithms for ap-
proximating sets of reachable states in papers such as [1–3, 10]. We conclude the
paper by proving a comprehensiveness result that every f.a.s. satisfying natural
coherence conditions can be refined to give a topological f.a.s..

Structure of paper : Section 2 contains preliminaries from mathematics and
logic. In Section 3, we formulate a general notion of a finite approximation
scheme, and of refinements of schemes. Section 4 gives the basics of covers,
A/D maps, and their Alexandroff topologies. The main results are in Section 5,
and Section 6 gives a brief summary and discussion.

2 Preliminaries

2.1 Mathematical preliminaries

We write r : X � Y to mean both that r : X → 2Y is a set-valued map, with
(possibly empty) set-values r(x) ⊆ Y for each x ∈ X , and equivalently, that
r ⊆ X × Y is a relation. (Total and single-valued) functions r : X → Y are
a special case of set-valued maps. We write r−1 : Y � X for the relational
inverse/converse; dom(r) := {x ∈ X | r(x) �= ∅} and ran(r) := dom(r−1).
For maps r1 : X � Y and r2 : Y � Z, we write their relational composition as
r1•r2 : X � Z given by (r1•r2)(x) := {z ∈ Z | (∃y ∈ Y) [y ∈ r1(x) ∧ z ∈ r2(y)]},
in sequential left-to-right application order.

A relation r : X � Y determines two pre-image operators (predicate trans-
formers): the existential pre-image function r−∃ : 2Y → 2X and the set-theoretic
dual universal pre-image r−∀ : 2Y → 2X . Formally,

r−∃(W) := {x ∈ X |W ∩ r(x) �= ∅}
r−∀(W) := X − r−∃(Y −W) = {x ∈ X | r(x) ⊆W}

forW ⊆ Y . The corresponding adjoint pair of post-image operators r∀, r∃ : 2X →
2Y are given by r∀ := (r−1)−∀ and r∃ := (r−1)−∃, respectively. The adjoint
relationships are: r−∃(W) ⊆ V iff W ⊆ r∀(V) and r∃(V) ⊆ W iff V ⊆ r−∀(W),
for all V ⊆ X and W ⊆ Y .

Recall that a topology T ⊆ 2X on a set X is a family of subsets of X that
is closed under arbitrary unions and finite intersections. So T is a distributive
lattice of sets. The interior operator intT : 2X → 2X determined by T is given
by intT (W) :=

⋃
{U ∈ T | U ⊆W}. Sets W ∈ T are called open w.r.t. T , and

this is so iff W = intT (W). A sub-family of open sets B ⊆ T constitutes a basis
for the topology T on X if every open set W ∈ T is a union of basic opens
in B, and for every x ∈ X and every pair of basic opens U1, U2 ∈ B such that
x ∈ U1 ∩ U2, there exists U3 ∈ B such that x ∈ U3 ⊆ (U1 ∩ U2).

A topology T onX is called Alexandroff if for every x ∈ X , there is a smallest
open set U ∈ T such that x ∈ U . In particular, every finite topology (i.e. only
finitely many open sets) is Alexandroff. There is a one-to-one correspondence
between pre-orders on X and Alexandroff topologies on X . Any pre-order �
on X induces an Alexandroff topology T� by taking intT�(W) := (�)−∀(W),
which means U ∈ T� iff U is upwards-�-closed, and V is closed in T� iff V is
downwards-�-closed, and clT�(W) = (�)−∃(W). Conversely, for any topology,
define a pre-order �T on X , known as the specialisation pre-order : x �T y iff
(∀U ∈ T) [x ∈ U ⇒ y ∈ U]. For any pre-order, �T� = �, and for any topology,
T�T = T iff T is Alexandroff.

Given two topological spaces (X, T) and (Y,S), a relation R : X � Y is
called: lower semi-continuous (l.s.c.) if for every S-open set U in Y , R−∃(U)
is T -open in X ; upper semi-continuous (u.s.c.) if for every S-open set U in Y ,
R−∀(U) is T -open in X ; and continuous if it is both l.s.c. and u.s.c. [9].

2.2 Logic preliminaries: syntax

Fix a finite set P of atomic propositions, and let Var be a countable set of propo-
sitional variables. Let F t

µ(P) be the µ-calculus (fixed-point) language generated
by the grammar:

ϕ ::= p | z | ⊥ | � | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �· ϕ | �· ϕ | µz.ϕ

where p ∈ P , z ∈ Var , and a least fixed-point formula µz.ϕ is well-formed only
when every occurrence of the variable z within ϕ occurs within the scope of an
even number of negations. A formula ϕ is a sentence of the language F t

µ(P) if
every occurrence of a propositional variable in ϕ is bound by (within the scope
of) a fixed-point operator µ; let Lt

µ(P) denote the set of all such sentences.
The superscript t indicates our use of tense logic, with the temporally dual

future and past modal diamond operators�· and�· operators, respectively, and
their negation-dual box operators �·ϕ := ¬�· ¬ϕ and �·ϕ := ¬�· ¬ϕ. A formula
�· ϕ is read “At some state in the future, ϕ will hold”, while �· ϕ is read “At
some state in the past, ϕ has held”.

For formulas ϕ, ψ ∈ F t(P), and propositions p ∈ P , we write ϕ[p := ψ] to
mean the formula resulting from the simultaneous substitution of ψ for each
occurrence of p in ϕ. Likewise, for propositional variables z ∈ Var , we write
ϕ[z := ψ] to mean the formula resulting from the simultaneous substitution of
ψ for each occurrence of z in ϕ that is not bound by a µ, and with preliminary
renaming of any occurrences of z in ψ that are bound by a µ. The µ operator is
a least fixed-point constructor, and its dual greatest fixed-point constructor ν is
defined by νz.ϕ := ¬µz.¬ϕ[z := ¬z].

2.3 Logic preliminaries: semantics

A Kripke model for the language F t
µ(P) is a structure M = (X,R, v), where X

is any non-empty set, R : X � X is a binary relation, and v : P � X is a set-
valued map (atomic valuation). A variable assignment in M is a set-valued map
ξ : Var � X . A model M and a variable assignment ξ together determine the
(classical, two-valued) denotation map � · �M

ξ : F t
µ(P) � X , defined by induction

on formulas:

� p �M
ξ := v(p) � z �M

ξ := ξ(z)
�⊥ �M

ξ := ∅ �� �M
ξ := X

�¬ϕ �M
ξ := X − �ϕ �M

ξ

�ϕ1 ∨ ϕ2 �M
ξ := �ϕ1 �M

ξ ∪ �ϕ2 �M
ξ �ϕ1 ∧ ϕ2 �M

ξ := �ϕ1 �M
ξ ∩ �ϕ2 �M

ξ

��· ϕ �M
ξ := R−∃(�ϕ �M

ξ) ��· ϕ �M
ξ := R∃(�ϕ �M

ξ)

�µz.ϕ �M
ξ :=

⋂
{W ∈ 2X | �ϕ �M

ξ[z/W] ⊆W }

where ξ[z/W] is the assignment that is the same as ξ except for assigning
the set W to the variable z. For sentences ϕ ∈ Lt

µ(P), the denotation set is
independent of the variable assignment: �ϕ �M

ξ1
= �ϕ �M

ξ2
for any two assign-

ments ξ1, ξ2 : Var � X . Thus a model determines a (sentence) denotation
map � · �M : Lt

µ(P) � X by �ϕ �M := �ϕ �M
ξ for any assignment ξ. A sentence

ϕ ∈ Lt
µ(P) is true (respectively, satisfiable) in a model M if �ϕ �M = X (respec-

tively, �ϕ �M �= ∅).
Let M = (X,R, v) and N = (Z, S, u) be two Kripke models for the tense

language F t
µ(P). A relation h : X � Z constitutes a simulation (respectively,

tense simulation) of model M by model N if:
− the set inclusion h∃(v(p)) ⊆ u(p) holds for each p ∈ P , and
− the relational inclusion (h−1 •R) ⊆ (S • h−1) holds (respectively, the

relational inclusion (R • h) ⊆ (h • S) also holds).
A relation h : X � Z is a bisimulation (respectively, tense bisimulation) between
models M and N if h : X � Z is a simulation (respectively, tense simulation)
of M by N , and additionally h−1 : Z � X is a simulation (respectively, tense
simulation) of N by M. In particular, for a single model M = (X,R, v), if h
is an equivalence relation on X , then h is a tense bisimulation between M and
itself iff for each equivalence class V of h, both R−∃(V) and R∃(V) are (possibly
empty) unions of h-equivalence classes, and for each atomic p ∈ P , the set v(p)
is a (possibly empty) union of h-equivalence classes.

2.4 Logic preliminaries: three-valued semantics

Let T := {yes, no, indf} denote a set of three values, with partial order � defined
by indf � ω and ω � ω for all ω ∈ T. A three-valued must-may Kripke model (in
[7, 12], a Kripke modal transition system or KMTS) for the language F t

µ(P) is a
structure M = (X,Rmust, Rmay, vyes, vno), where X is any non-empty set, Rmust

and Rmay are two binary relations on X with Rmust ⊆ Rmay, and vyes, vno :
P � X are atomic valuations such that vyes(p) ∩ vno(p) = ∅. A (standard)

Kipke model M = (X,R, v) can be viewed as a three-valued must-may Kripke
model in which R = Rmust = Rmay and v(p) = vyes(p) = X − vno(p). A
three-valued Kripke model M naturally determines two standard Kripke models
Mun := (X,Rmust, vyes) where vun(p) := vyes(p), and Mov := (X,Rmay, vov)
where vov (p) := X − vno(p), for all atomic p ∈ P .

Extending [12], §2.2, a three-valued must-may Kripke model M determines
three sentence denotation maps � · �M

ω : Lt
µ(P) � X , one for each of the three

values ω ∈ T, defined by induction on sentences:

� p �M
yes := vyes(p) � p �M

no := vno(p)
�⊥ �M

yes = �� �M
no := ∅ �� �M

yes = �⊥ �M
no := X

�¬ϕ �M
yes := �ϕ �M

no �¬ϕ �M
no := �ϕ �M

yes

�ϕ1 ∨ ϕ2 �M
yes := �ϕ1 �M

yes ∪ �ϕ2 �M
yes �ϕ1 ∨ ϕ2 �M

no := �ϕ1 �M
no ∩ �ϕ2 �M

no

�ϕ1 ∧ ϕ2 �M
yes := �ϕ1 �M

yes ∩ �ϕ2 �M
yes �ϕ1 ∧ ϕ2 �M

no := �ϕ1 �M
no ∪ �ϕ2 �M

no

��· ϕ �M
yes := R−∃

must(�ϕ �M
yes) ��· ϕ �M

no := R−∀
may(�ϕ �M

no)
��· ϕ �M

yes := R∃
must(�ϕ �M

yes) ��· ϕ �M
no := R∀

may(�ϕ �M
no)

�µz.ϕ �M
yes :=

⋃
λ<ηM

W (λ) �µz.ϕ �M
no :=

⋂
λ<ηM

V (λ)

and �ϕ �M
indf := X−(�ϕ �M

yes∪�ϕ �M
no) for all sentences ϕ ∈ Lt

µ(P). For the fixed-
point constructor, one appeals as in [12] to the alternative iterative formulation
of the Tarski fixed-point theorem for monotone operators on a complete lattice.
The iteration bound ηM is the ordinal of the cardinality of 2X ; the affirming
iteration sets W (λ) are defined by W (0) := ∅, and W (η) :=

⋃
λ<η W

(λ) for limit
ordinals η ≤ ηM, and for successor ordinals,W (λ+1) :=

(
�ϕ �M

yes

)
ξ
, where ξ is any

variable assignment such that ξ(z) = W (λ) (z is the sole free variable in ϕ). The
refuting iteration sets V (λ) are defined by V (0) := X , and V (η) :=

⋂
λ<η V

(λ) for
limit ordinals η ≤ ηM, and for successor ordinals, V (λ+1) := (� ϕ̃ �M

no)ξ, where ξ
is any assignment such that ξ(z) = V (λ) and ϕ̃ := ¬ϕ[z := ¬z].

Let M = (X,Rmust, Rmay, vyes, vno) and N = (Z, Smust, Smay, uyes, uno) be
three-valued must-may Kripke models. A relation h : X � Z is a mixed simula-
tion (respectively, mixed tense simulation) of model M by model N , or model
N is a three-valued abstraction of M under h [7, 12] if: (a) h : X � Z is a sim-
ulation (respectively, tense simulation) of Mov by Nov ; and (b) h−1 : Z � X
is a simulation (respectively, tense simulation) of Nun by Mun . In particular, if
M = (X,R, v) is a standard Kripke model, and N is a three-valued abstraction
of M under mixed tense simulation h : X � Z, then for each p ∈ P , we have
the two-sided approximation inclusions h−∃(uyes(p) ⊆ v(p) ⊆ h−∀(Z − vno(p))
for the atomic denotation sets v(p) in the concrete model M. Consequently, it
follows by induction on sentences that if N is a finite three-valued abstraction
of M under h, then for all µ-calculus sentences ϕ ∈ Lt

µ(P), we have:

h−∃(�ϕ �N
yes) ⊆ �ϕ �M ⊆ h−∀(Z − �ϕ �N

no) (1)

3 Finite approximation schemes for model-checking

We begin by developing a generic notion of a scheme for approximate evaluation
of �ϕ �M which makes central the task of fulfilling the two-sided approximation
inclusions.

Definition 1. [Schemes for approximate model-checking]
Given a Kripke model M = (X,R, v) for the language F t

µ(P) generated from a
finite set P of atomic propositions, a finite approximation scheme (f.a.s.) for M
over P is a pair of structures Σ = (Σun , Σov) with Σun = (Aun ,un, kun) and
Σov = (Aov ,ov, kov), where Aun and Aov are non-empty finite sets, and the
functions un : Lt

µ(P) → Aun and kun : Aun → 2X , and ov : Lt
µ(P) → Aov and

kov : Aov → 2X , are such that for all sentences ϕ ∈ Lt
µ(P):

kun (un(ϕ)) ⊆ �ϕ �M ⊆ kov (ov(ϕ)) (2)

The following diagram indicates the types of the maps (but it is not a commu-
tative diagram):

The idea is that elements a ∈ Aun or a ∈ Aov are abstract or symbolic rep-
resentatives for state sets W ⊆ X , and the concretization maps kun : Aun → 2X

and kov : Aov → 2X realize or decode the abstract representation. The proposi-
tional and modal operators on sentences should be semantically interpreted via
un and ov by functions on the finite sets Aun or Aov . More specifically, these
functions should constitute the semantics of computer programs implementing
specific approximation algorithms for the various operators/functions on 2X :
the Boolean set-theoretic operations and the relational pre-/post-image opera-
tors R−∃, R∃ : 2X → 2X , and the least fixed points of ⊆-monotone operators
F : 2X → 2X built up from them.

Note that, as for the work on abstraction via three-valued must-may models
in [7, 12], our two-sided approach of giving both under- and over-approximation
values does provide substantial information about the unknown or unknowable
denotation set �ϕ �M. When we have values for both kov (ov(ϕ)) and kun (un(ϕ))
from an f.a.s.Σ, then we know the true set �ϕ �M lies somewhere in between, and
the set difference kov (ov(ϕ))− kun (un(ϕ)) is the set of all states in X at which
the sentence ϕ does not have a determinate truth value under Σ. In contrast,
if one has only a one-sided approximation scheme returning values Over(�ϕ �M)
and satisfying the single inclusion �ϕ �M ⊆ Over(�ϕ �M), then one has no further
knowledge of accuracy when, prima facie, the exact set �ϕ �M is not known.

Clearly, there are better and worse approximation schemes, where the natural
notion of “better” for a scheme is to return set values closer to that of the exact
denotation set. We also identify further desirable properties of schemes, such as
a scheme Σ behaving “reasonably” or “coherently”.

Definition 2. Given two finite approximation schemes Σ1 = (Σ1
un , Σ

1
ov) and

Σ2 = (Σ2
un , Σ

2
ov) for a model M over P , we say that Σ2 is a refinement of Σ1,

and we write Σ1 � Σ2, if for all sentences ϕ ∈ Lt
µ(P):

k1
un

(
un1(ϕ)

)
⊆ k2

un

(
un2(ϕ)

)
⊆ �ϕ �M ⊆ k2

ov

(
ov2(ϕ)

)
⊆ k1

ov

(
ov1(ϕ)

)
A refinement is proper, written Σ1 < Σ2, if for some sentence ϕ ∈ Lt

µ(P),
either k1

un

(
un1(ϕ)

)
⊂ k2

un

(
un2(ϕ)

)
, or k2

ov

(
ov2(ϕ)

)
⊂ k1

ov

(
ov1(ϕ)

)
.

Two f.a. schemes Σ1 and Σ2 will be called bijectively equivalent if there ex-
ist two bijective functions fun : ran(un1) → ran(un2) and fov : ran(ov1) →
ran(ov2), such that for all ϕ ∈ Lt

µ(P), k1
un

(
un1(ϕ)

)
= k2

un

(
fun(un1(ϕ))

)
,

k2
un

(
un2(ϕ)

)
= k1

un

(
f−1
un (un2(ϕ))

)
, k1

ov

(
ov1(ϕ)

)
= k2

ov

(
fov (ov1(ϕ))

)
, and

k2
ov

(
ov2(ϕ)

)
= k1

ov

(
f−1
ov (ov2(ϕ))

)
.

An f.a.s. Σ is non-degenerate if both Aun and Aov have at least two elements,
and un(�) �= un(⊥) and ov(�) �= ov(⊥). A non-degenerate f.a.s. Σ is:
− trivial if both Aun and Aov have exactly two elements;
− extremal-coherent if kun (un(�)) = X, and kov (ov(⊥)) = ∅;
− full if ran(un) = Aun and ran(ov) = Aov ;
− substitution-coherent if for all sentences ϕ, ψ1, ψ2 ∈ Lt

µ(P), and all p ∈ P ,
if un(ψ1) = un(ψ2) then un (ϕ[p := ψ1]) = un (ϕ[p := ψ2]), and
if ov(ψ1) = ov(ψ2) then ov (ϕ[p := ψ1]) = ov (ϕ[p := ψ2]);

− exact if kun (un(ϕ)) = �ϕ �M = kov (ov(ϕ)), for all sentences ϕ ∈ Lt
µ(P).

Henceforth, we will treat as equal any two schemes that are bijectively equivalent.
Let FAS(M, P) denote the set of all extremal-coherent and substitution-coherent
f.a.s. for M over P .

The refinement relation � defines a partial order on the set FAS(M, P), under
our standing convention of identifying bijectively equivalent schemes. There is
a unique trivial f.a.s. Σ∅ that is non-degenerate, extremal-coherent, full, and
substitution-coherent: each of Aun and Aov have exactly two elements, and take
un(ϕ) = un(⊥) for all sentences ϕ �= �; ov(ϕ) = ov(�) for all sentences ϕ �= ⊥;
kun (un(⊥)) = ∅ = kov (ov(⊥)); and kun (un(�)) = X = kov (ov(�)). This
scheme Σ∅ is the �-minimal element of the set FAS(M, P).

Regarding �-maximal schemes in FAS(M, P), it is intuitively plausible that
any scheme short of exact can always be further refined. The following result
confirms the intuition: having an exact scheme is equivalent to having a finite
bisimulation quotient.

Proposition 1. For a model M over P , the following are equivalent:
(a.) there is an �-maximal scheme in FAS(M, P);
(b.) there is an exact scheme in FAS(M, P);
(c.) M has a finite tense bisimulation quotient.

So for infinite models M that don’t have finite bisimulation quotients, there
will no maximal schemes in FAS(M, P) under the refinement partial order �.
This is a typical situation for hybrid systems and real-time systems, where the
state-space is the product of a finite set and a real vector space.

As noted in the introduction, and developed in Section 2.4 leading to Equa-
tion 1, abstraction via three-valued must-may Kripke models in [12, 7] naturally
gives rise to a finite approximation scheme.

Proposition 2. If Z is a finite set, and N = (Z, Smust, Smay, uyes, uno) is a
three-valued must-may Kripke model that gives an abstraction of a standard
Kripke model M = (X,R, v) under map h : X � Z, then ΣN is in FAS(M, P),
where ΣN := (ΣN

un , Σ
N
ov) with ΣN

un = (Aun ,un, kun) and ΣN
ov = (Aov ,ov, kov),

where: un(ϕ) := �ϕ �N
yes, and ov(ϕ) := X − �ϕ �N

no; Aun := ran(un) ⊆ 2Z and
Aov := ran(ov) ⊆ 2Z ; and kun := h−∃ and kov := h−∀.

In the remainder of the paper, we focus on finite approximation schemes
that arise from finite topologies T on the state space X of the target concrete
model M. We say that Σ ∈ FAS(M, P) is topological with respect to a topology
T on X if for each sentence ϕ ∈ Lt

µ(P), the set kun(un(ϕ)) is T -open, and
kun(un(ϕ)) ⊆ intT (�ϕ �M), and on the other side, kov (ov(ϕ)) is T -closed, and
clT (�ϕ �M) ⊆ kov (ov(ϕ)).

4 Covers, A/D maps and their Alexandroff topologies

An initial study of covers, A/D maps (analog-to-digital maps) and their topolo-
gies was made by Nerode and Kohn in [11]. In this section, we build on that work
to develop just enough of the general topology of A/D maps and their Alexan-
droff spaces for use in addressing the task of building approximation schemes.

Definition 3. A cover of a set X is any total relation α : X � S. We call S
the index set or observation set of the cover. The cells of α are the subsets
α−1(s) of X; define Cells(α) := {α−1(s) ∈ 2X | s ∈ ran(α)}. Let Tα be the
topology generated by α, i.e. the smallest subset of 2X containing Cells(α) and
closed under arbitrary unions and finite intersections.

The totality condition on α ensures that X =
⋃

s∈S α
−1(s), so the cells of α

do constitute a cover of X in the usual sense. In general, the α-cells constitute a
sub-basis for the topology Tα; i.e. every open set is a union of finite intersections
of α-cells. In the special case where α : X → S is actually a function, then α
can be thinned, by eliminating any excess elements of S, to give a surjective
quotient map. In this case, the α-cells constitute a partition of X , and we have
the “classical collapse” of Tα to a complete Boolean algebra.

Definition 4. Given covers α : X � S and β : X � T , we say α is refined by
β, and write α � β if there exists a map θ : S � T such that α = β • θ−1.

This means α � β iff each α-cell indexed by s ∈ ran(α) breaks up into a
union of β-cells indexed by t ∈ θ(s): α−1(s) =

⋃
{β−1(t) | t ∈ θ(s)}. Thus

α � β iff Tα ⊆ Tβ . The transfer map θ describes how each cell/observation
s of the original α is broken up into a union of β cells or converted into a set
of observations θ(s) ⊆ T . So β allows us to make at least as many distinctions
between states in X , as does α.

The refinement relation � is a pre-order on the collection (proper class) of
all covers of X . One can have equi-refinements α � β and β � α for distinct
covers α : X � S and β : X � T , related by transfer maps θ0 : S � T and
θ1 : T � S such that α = α • θ−1

1 • θ−1
0 and β = β • θ−1

0 • θ−1
1 , and having the

same topology Tα = Tβ on X .
For any cover α, we can find a minimally coarse refinement α′ such that

Tα = Tα′ and the α′-cells constitute a basis for the topology Tα: take the closure
under non-empty finite intersections of the family Cells(α). In our application to
finite discretization and approximation, our interest is in finite covers: if Cells(α)
has finite cardinality k, then for such a topological refinement α′, the cardinality
of Cells(α′) is bounded by 2k − 1, and the cardinality of Tα = Tα′ is bounded by
22k−1.

Definition 5. An A/D map on a set X is a cover α : X � N such that the
converse map α−1 is injective and the family Cells(α) is finite and constitutes
a minimal basis for the topology Tα. Let Zα := ran(α) ⊂ N be the finite range
and let A := α−1 : N � X denote the converse map, so A(z) ⊆ X is the α-cell
indexed by z ∈ Zα. Let ADmap(X) denote the set of all A/D maps on X.

An A/D map α determines a topology Tα on X that has only a finite number
of open sets, and is thus Alexandroff. Further clarifying the definition, by min-
imal basis we mean that any proper sub-family of Cells(α) fails to constitute a
basis for Tα, which implies that no α-cell A(z) is the union of two or more strictly
smaller open sets of Tα. To see this, suppose otherwise, so A(z) = U1∪U2 where
U1, U2 ∈ Tα are both proper subsets of A(z). Since Cells(α) is a basis, each Ui is
a union of basic opens in Cells(α). But then Cells(α) − {A(z)} will be a proper
sub-family constituting a basis for Tα, contradicting the minimality of Cells(α)
as a basis. In particular, no α-cell is disconnected, by being a disjoint union of
two smaller open sets of Tα. The requirement that A = α−1 be injective simply
means that there is no redundancy in Zα: z �= w implies A(z) �= A(w).

A pair of maps α, β ∈ ADmap(X) are equi-refinements α � β and β � α
iff there exists a bijective function τ : Zα → Zβ such that A(z) = B(τ(z))
and B(w) = A(τ−1(w)) for all z ∈ Zα and w ∈ Zβ. Hence we can consider
the set ADmap(X) to be partially ordered by the refinement relation �, up to
re-labeling of cell indices via bijective functions.

In signal processing, analog-to-digital conversion is almost invariably modeled
by a finite partition of the analog state space. This gives single-valued and total
functions α : X → N with finite range, where the α-cells are partition blocks
(and so will trivially form a minimal basis for the Boolean algebra Tα). One of
the arguments in [11] is that in looking for continuity in the process of analog-to
digital conversion, one won’t find it in the Euclidean topology on the analog state
space, so look instead at the finite topology on that space generated by the cells
of an A/D map. The definition of an A/D map here is essentially equivalent to
that in [11], which also briefly considers the non-finite case; there, a generalized
A/D map has as its cells the fully join-irreducible elements in the lattice of open
sets of an Alexandroff topology, which is equivalent to requiring the cells form a
minimal basis.

For α ∈ ADmap(X), we will write �α and ≈α, respectively, for the pre-order
�Tα onX , and equivalence relation ≈Tα := (�Tα ∩ �Tα) on X determined by Tα.
We will also write intα and clα for intTα and clTα . Let sα : X → X/≈α be the
Stone T0 quotient map sα(x) := [x]≈α mapping x to its topological equivalence
class [x]≈α ⊆ X . The following result gives clean characterizations of the ≈α-
classes, and of the topological operators intα and clα.

Proposition 3. Let α : X � Zα be any non-trivial A/D map on X.

(1.) The function F : X/≈α→ Zα defined by

F (sα(x)) = z iff sα(x) = A(z) −
⋃

{A(w) | A(w) ⊂ A(z) }

is a bijection, hence the function qα : X → Zα defined by qα(x) := F (sα(x))
is surjective. Let Qα := q−1

α : Zα � X denote the converse map. Then for
all z ∈ Zα, we have Qα(z) ⊆ A(z), and Qα(z) is the ≈α partition block with
the property that x ∈ Qα(z) iff A(z) is the smallest α-cell containing x.

(2.) The finite quotient space (Zα, Tq) under the surjection qα : X → Zα from
(X, Tα) has as its specialization pre-order z � w iff A(w) ⊆ A(z).

(3.) For each z ∈ Zα, the α-cell A(z) satisfies A(z) =
⋃
{ Qα(w) | z � w };

equivalently, α = � • qα and A = Qα • �.
(4.) The topological operators of Tα are expressible in terms of unions of ≈α

equivalence classes. Specifically, for subsets W ⊆ X:

intα(W) =
⋃
{Qα(z) | A(z) ⊆W }

clα(W) =
⋃
{Qα(z) | A(z) ∩W �= ∅ }

bdα(W) =
⋃
{Qα(z) | A(z) ∩W �= ∅ and A(z) ∩ (X −W) �= ∅ }

(3)

(5.) The maps have the following semi-continuity properties respect to (X, Tα)
and (Zα, Tq):
− qα : X → Zα is both l.s.c. and u.s.c., and a continuous function;
− Qα = q−1

α : Zα � X is both l.s.c. and u.s.c., and thus continuous;
− α : X � Zα is l.s.c.; and
− A = α−1 : Zα � X is u.s.c.

In Figure 1, we illustrate an A/D map α on a bounded region of R
2, where

the α-cells A(z) consist of the following four types of sets:

basic larger squares: Sq(i, j) for i < 9 and j < 14

horizontal overlaps: HO(i, j) := Sq(i, j) ∩ Sq(i, j + 1) for i < 9 and j < 13

vertical overlaps: VO(i, j) := Sq(i, j) ∩ Sq(i+ 1, j) for i < 8 and j < 14

diagonal overlaps: DO(i, j) := HO(i, j) ∩ VO(i, j) for i < 8 and j < 13

Take the index set Zα ⊂ N to be the result of some coding of pairs and pairs
of pairs. For this example, Zα has cardinality 459; more generally, for a regular
cover α of a bounded region of R

2 such as this, of size N ×M , the cardinality
of Zα will be at most 3k2, where k = max{N,M}.

Fig. 1. Example of A/D map α from regular cover of bounded region of R
2.

5 Topological f.a.s. from A/D maps

We will use an A/D map α and its topology Tα to construct a topological
finite approximation scheme Σα for a concrete Kripke model M = (X,R, v).
To satisfy the conditions that kun(un(ϕ)) is Tα-open and kov (ov(ϕ)) is Tα-
closed, we will need to enforce various semi-continuity properties on relations
Sun , Sov : Zα � Zα used in the approximation of R modal/tense operators, and
need to draw on semi-continuity properties established in Proposition 3.

In what follows, we are given a model M = (X,R, v), and we need to
have available an A/D map α ∈ ADmap(X) and a pair of operators on sets
upoα, opoα : Cells(α) → 2X such that upoα(A(z)) ⊆ R∃(A(z)) ⊆ opoα(A(z)) for
every α-cell A(z) ∈ Cells(α). Moreover, we must be able to determine by finite
computation whether A(w) ⊆ upoα(A(z)) and whether A(w)∩opoα(A(z)) �= ∅.
So for example, if all the cells of the A/D map as well as the approximated values
of upoα and opoα on cells are all first-order definable in a decidable structure
(such as R as a real-closed field), then the computational pre-conditions will be
met.
Definition 6. For a Kripke model M = (X,R, v) over P , a triple (α, upoα, opoα)
will be called A/D adequate if α : X � Zα is a non-degenerate A/D map on X,
and the operators on sets upoα, opoα : Cells(α) → 2X satisfy:
(i) for all p ∈ P , either v(p) = ∅, or there exists z ∈ Zα such that A(z) ⊆ v(p);
(ii) for all z, w ∈ Zα, if A(z) ⊆ A(w) (i.e. w � z), then

upoα(A(z)) ⊆ upoα(A(w)), and opoα(A(z)) ⊆ opoα(A(w));
(iii) upoα(A(z)) ⊆ R∃(A(z)) ⊆ opoα(A(z)) for every α-cell A(z) ∈ Cells(α);
(iv) for all z, z′, w ∈ Zα, if A(z′) ⊆ A(z) and A(w) ⊆ upoα(A(z)), then there

exists w′ ∈ Zα such that A(w′) ⊆ A(w) ∩ upoα(A(z′)).

The first adequacy condition (i) says that α has to be fine enough to fit a cell
inside every non-empty atomic denotation set. Condition (ii) asks that the oper-
ators upoα and opoα should be inclusion-monotone on α-cells, and (iii) requires

Fig. 2. Finite relation Sα
un from A/D map α and known operator upoα on α-cells.

Fig. 3. Finite relation Sα
ov from A/D map α and known operator opoα on α-cells.

that they give correct approximations of the post-image operator R∃ applied
to α-cells. Condition (iv) amounts to asking for a semi-continuity property of a
relation on the finite index set Zα derived from upoα.

Proposition 4. [Construction of finite approximating Kripke models]
Given a Kripke model M = (X,R, v) over P , suppose (α, upoα, opoα) is A/D
adequate for M. Define two finite Kripke models Nα

un = (Zα, S
α
un , uun) and

Nα
ov = (Zα, S

α
ov , uov) by:

Sα
un(z) := {w ∈ Zα | A(w) ⊆ upoα(A(z))} uov(p) := {z ∈ Zα | A(z) ∩ v(p) �= ∅}
Sα

ov (z) := {w ∈ Zα | A(w) ∩ opoα(A(z)) �= ∅} uun(p) := {z ∈ Zα | A(z) ⊆ v(p)}

Consider the set Zα equipped with the quotient topology Tq = T�. Then the maps
Sun : Zα � Zα and S−1

un : Zα � Zα are both l.s.c. and each atomic set uun(p) is
Tq-open, and the maps Sov : Zα � Zα and S−1

ov : Zα � Zα are both u.s.c. and
each atomic set uov(p) is Tq-closed.

In Figures 2 and 3, we illustrate the process of “blockifying” a pair of known
approximating operators upoα and opoα through an A/D map α to produce the
relations Sα

un and Sα
ov in the models Nα

un and Nα
ov , as defined in Proposition 4.

Proposition 5. [Topological f.a.s. from A/D maps]
Given a Kripke model M = (X,R, v) for Lt

µ(P), suppose (α, upoα, opoα) is A/D
adequate for M, and let Nα

un = (Zα, S
α
un , uun) and Nα

ov = (Zα, S
α
ov , uov) be the

finite models defined in Proposition 4. Define two maps un : Lt
µ(P) → 2Zα and

ov : Lt
µ(P) → 2Zα by mutual induction on sentences:

un(p) := uun(p) ov(p) := uov (p)
un(⊥) := ∅ ov(⊥) := ∅

un(�) := Zα ov(�) := Zα

un(¬ϕ) := Zα − ov(ϕ) ov(¬ϕ) := Zα − un(ϕ)
un(ϕ1 ∨ ϕ2) := un(ϕ1) ∪ un(ϕ2) ov(ϕ1 ∨ ϕ2) := ov(ϕ1) ∪ ov(ϕ2)
un(ϕ1 ∧ ϕ2) := un(ϕ1) ∩ un(ϕ2) ov(ϕ1 ∧ ϕ2) := ov(ϕ1) ∩ ov(ϕ2)

un(�· ϕ) := (Sα
un)−∃(un(ϕ)) ov(�· ϕ) := (Sα

ov)−∃(ov(ϕ))
un(�· ϕ) := (Sα

un)∃(un(ϕ)) ov(�· ϕ) := (Sα
ov)∃(ov(ϕ))

un(µz.ϕ) :=
⋃

n≤Kα
un(ϕn) ov(µz.ϕ) :=

⋃
n≤Kα

ov(ϕn)

where ϕ0 := ⊥ and ϕn+1 := ϕ[z := ϕn] and the iteration bound is Kα := |Tq|.
Then Σα := (Σα

un , Σ
α
ov) is in FAS(M, P), and is a topological f.a.s. with

respect to the finite topology Tα on X, where Σα
un := (T�,un, kα

un) and Σα
ov :=

(T�,ov, kα
ov), and kα

un : T� → 2X and kα
ov : T� → 2X are given by kα

un := q−1
α

and kα
ov := q−1

α .
In addition, if β ∈ ADmap(X), α � β, (β, upoβ , opoβ) is A/D adequate for

M, and upoα(B(w)) ⊆ upoβ(B(w)) ⊆ R∃(B(w)) ⊆ opoβ(B(w)) ⊆ opoα(B(w))
for all β-cells B(w) for w ∈ Zβ, then Σα � Σβ.

This work emerged from a study by the authors of topological semantics
for intuitionistic modal and tense logics, and their relationship under the Gödel
translation to classical multi-modal logics equipped with additional S4 modal
operators � and � interpreted by topological interior and closure, respectively.
In the light of this background, we are led to consider Gödel-inspired translation
maps from the base language Lt

µ(P) into a multi-modal extension, which allows
us to formally express and reason about not only the “real thing”, but also our
under- and over-approximations.

Let L�
�(P) be the multi-modal language which extends Lt(P) (the tense

language generated from P without the µ operator) by the addition of further
pairs of tense diamonds, �·◦ and �·◦, and �·• and �·•, and a plain box modality
�. As before, we treat →, �, and the now three pairs of tense box modalities �·
and �· , �· ◦ and �·◦, and �· • and �·•, as all classically definable.

Proposition 6. Given a Kripke model M = (X,R, v) over P , suppose the triple
(α, upoα, opoα) is A/D adequate for M, and let Nα

un = (Zα, S
α
un , uun), and

Nα
ov = (Zα, S

α
ov , uov) be the finite models defined in Proposition 4.

Define a multi-relational topological model M�
α := (X, Tα, R,R

α
un , R

α
ov , v) for the

language L�
�(P), with intα interpreting �, relation R interpreting�· and�· , and

relations Rα
un interpreting �·◦ and �·◦, and Rα

ov interpreting �·• and �·•, where:

Rα
un := qα • Sα

un • q−1
α and Rα

ov := qα • Sα
ov • q−1

α

Then there are two Gödel-like translation maps UT,OT: Lt
µ(P) → L�

�(P) such
that the approximation values generated by the f.a.s. Σα are (classically) ex-
pressible in L�

�(P), over the model M�
α, in the sense that, for all sentences

ϕ ∈ Lt
µ(P):

q−1
α (un(ϕ)) = �UT(ϕ) �M�

α and q−1
α (ov(ϕ)) = �OT(ϕ) �M�

α

M�
α |= UT(ϕ) → ϕ and M�

α |= ϕ → OT(ϕ)

M�
α |= UT(ϕ) ↔ � UT(ϕ) and M�

α |= OT(ϕ) ↔ � OT(ϕ)

The mutually recursive translation maps are defined as follows:

UT(p) := �p OT(p) := �p

UT(⊥) := ⊥ OT(⊥) := ⊥
UT(�) := � OT(�) := �

UT(¬ϕ) := ¬OT(ϕ) OT(¬ϕ) := ¬UT(ϕ)
UT(ϕ1 ∨ ϕ2) := UT(ϕ1) ∨ UT(ϕ2) OT(ϕ1 ∨ ϕ2) := OT(ϕ1) ∨ OT(ϕ2)
UT(ϕ1 ∧ ϕ2) := UT(ϕ1) ∧ UT(ϕ2) OT(ϕ1 ∧ ϕ2) := OT(ϕ1) ∧ OT(ϕ2)

UT(�· ϕ) := �·◦ UT(ϕ) OT(�· ϕ) := �·• OT(ϕ)
UT(�· ϕ) := �·◦ UT(ϕ) OT(�· ϕ) := �·• OT(ϕ)

UT(µz.ϕ) :=
∨

n≤Kα
UT(ϕn) OT(µz.ϕ) :=

∨
n≤Kα

OT(ϕn)

where the iteration bound is Kα = |Tq|.

For example, in the extended language L�
�(P), the formula OT(ϕ)∧¬UT(ϕ)

denotes in M�
α the set of all states x ∈ X that do not have a determinate truth

value under the scheme Σα.
We conclude the paper with a comprehensiveness result: from any finite ap-

proximation scheme Σ ∈ FAS(M, P), we can construct an A/D map α and a
topological f.a.s. Σα that is a refinement of the given scheme Σ.

Proposition 7. [Comprehensiveness of topological finite approximation schemes]
Given any f.a.s. Σ ∈ FAS(M, P) for a model M = (X,R, v), there exists an
A/D map α : X � Zα, and a pair of finite models Nα

un = (Zα, S
α
un , uun) and

Nα
ov = (Zα, S

α
ov , uov) which determine a topological finite approximation scheme

Σα, as given in Proposition 5, such that Σ � Σα.
Moreover, the A/D map α and the models Nα

un and Nα
ov are such that the con-

struction and conclusions of Proposition 6 hold of them.

6 Conclusions

This paper gives clear focus to the problem of approximate model-checking in
modal and tense logics, calling for two-sided approximations propogated to ar-
bitrarily complex formulas. We have developed a generic notion of a finite ap-
proximation scheme for a model, and of a partial ordering on such schemes, and
we have established the naturalness of the notion by proving that a model has
a maximally refined finite approximation scheme if and only if it has a finite
bisimulation quotient. We then gave a general construction of finite approxi-
mation schemes from A/D maps and their finite topologies plus a pair of basic
approximation operators defined on the cells of the A/D map. We showed this
sub-class of topological schemes to be comprehensive in the sense that, given any
finite approximation scheme Σ satisfying minimal coherence conditions, we can
construct an A/D map α and a topological finite approximation scheme Σα that
refines the given scheme Σ. Future work will investigate efficient implementation
for reasonable classes of continuous dynamics based on [10, 1–3, 8].

References

1. R. Alur, T. Dang, and F. Ivancic. Progress on reachability analysis of hybrid
systems. In Hybrid Systems: Computation and Control (HSCC’03), LNCS 2623,
pages 20–35. Springer.

2. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.
In Computer Aided Verification 2002, LNCS 2404, pages 365–370. Springer.

3. A. Chutinam and B. Krogh. Computational techniques for hybrid system verifica-
tion. IEEE Transactions on Automatic Control, 48:64–75, 2003.

4. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Trans. on Prog. Lang. and Systems, 16(5):1512–, 1994.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction of fixpoints. In Proc. 4th ACM Symp
on Principles of Prog Lang (POPL’77), pages 238–252. ACM Press, 1977.

6. D.Dams, R.Gerth, and O.Grumberg. Abstract interpretation of reactive systems.
ACM Trans on Prog Langs and Systems (TOPLAS), 19(2), 1997.

7. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking us-
ing modal transition systems. In Proc International Conf on Concurrency (CON-
CUR 2001), LNCS 2154, pages 426–440. Springer-Verlag, 2001.

8. B.H Krogh and O. Stursberg. Efficient representation and computation of reachable
sets for hybrid systems. In Hybrid Systems: Computation and Control (HSCC’03),
volume 2623 of LNCS, pages 498–513. Springer, 2003.

9. K. Kuratowski. Topology. Academic Press, 1966. (Vol 1, 1966; Vol 2, 1968.).
10. A.B. Kurzhanski and P. Varaiya. Reachability analysis for uncertain systems—

the ellipsoidal technique. Control and optimization. Dyn. Contin. Discrete Impuls.
Syst. Ser. B Appl. Algorithms, 9(3):347–367, 2002.

11. A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, con-
trollability, observability. In R. L. Grossman, editor, Hybrid Systems (HSI), LNCS
736, pages 297–316. Springer-Verlag, 1993.

12. S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In Proc
Int Conf on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), LNCS 2988, pages 546 – 560. Springer, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

