
On simulations and bisimulations
of general flow systems

Jen Davoren

Department of Electrical & Electronic Engineering
The University of Melbourne, AUSTRALIA

and

Paulo Tabuada

Department of Electrical Engineering
The University of California at Los Angeles, USA



Outline

• Introduction and motivation: logics and systems

• Foundations: time-lines, bounded paths, operations on paths

• General flow systems: definition, properties, examples, maximal
extensions

• Relationships between general flow systems

• The logic GFL?: semantics and examples of expressivity

• Semantic preservation theorem for p-bisimulation relations

• Conclusions and further work

2



Introduction and motivation

Temporal logics for non-deterministic or “branching” dynamics:

? On top of classical propositional logic (AND, OR, NOT, IMPLIES)

? 2-place operator on paths: ϕ UNTIL ψ

? 1-place operator on paths: NEXTϕ or IMMEDIATELY-AFTER-NOWϕ

? ∀ and ∃ quantification over paths: ∀ϕ and ∃ϕ

In discrete time, logic CTL? = Full Computation Tree Logic
with semantics over ω-length state sequences in Kripke models/transition
systems, successfully used for hardware and software verification and
design.
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General dynamical systems

• Want to provide infrastructure for logic-based analysis and design of systems:
semantics for the language of “full” non-deterministic temporal logic over
paths/trajectories of a class of general dynamical models.

• Want set-theoretic minimalism of Aubin’s evolutionary systems, and Willems’
behavioural systems but not restricted to Time = Integers or Reals, as want to
formalize hybrid time domains as sets of time positions (i, t) ∈ N × R+

0 .

• Want to model all variations of hybrid and hierarchical systems, and provide
framework in which models of different types can be compared.

• Want finite or bounded paths as basic objects in model.

• Want to express in temporal logic concepts such as Aubin’s notions of viability with
target and invariance with target using ∀, ∃ and UNTIL constructs.

• Want to develop notions of simulation and bisimulation that preserve the semantics
of the logic, and also allow comparison of models over differing time lines.
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Semantics in hybrid system models

Transition system semantics for hybrid systems:

path = discrete execution sequence

= “sampling” of hybrid trajectory

∃(P UNTILQ )
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Foundations: maps

Set-valued maps/relations r : X ; Y with values r(x) ⊆ Y , with
converse r−1 : Y ; X; domain dom(r) := {x ∈ X | r(x) 6= ∅};
range ran(r) := dom(r−1) ⊆ Y ; and r is total on X if dom(r) = X.

Single-valued functions r : X → Y with values r(x) = y instead of
r(x) = {y}.

Partial functions r : X 99K Y , i.e. on dom(r) ⊆ X, r is single-valued.
Write r(x) = y when x ∈ dom(r) with value y, and r(x) = UNDEF when
x /∈ dom(r).

So as sets of maps, [X → Y ] ⊆ [X 99K Y ] ⊆ [X ; Y ].
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Time domain of a bounded hybrid path
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switching times s0 := 0; si :=
∑

j<i ∆j;
dom(γ) =

⋃
i<N{i} × [si, si+1].
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Examples of time lines
Discrete time line N, non-negative half of linearly ordered abelian group Z.

Continuous time line R+
0 , non-negative half of linearly ordered abelian group R.

Hybrid time line H := N × R+
0 , non-negative quarter of Z × R,

lexicographic order: (i, t) <lex (j, s) iff i < j or (i = j and t < s).
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Discrete hybrid time line N× N, non-negative quarter of Z× Z.

Meta-hybrid time line N× N× R+
0 for hierarchical hybrid systems.

Higher-dimensional time lines for systems with multiple time scales.
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Foundations: time lines

Let (L, <, 0) be a linear order with least element 0 and no largest element. We will
call L a (future) time line if the following three conditions are satisfied:
(i) L is Dedekind-complete, i.e. sup’s and inf ’s exist for non-empty bounded subsets;
(ii) there exists a linearly ordered abelian group (L, <, +, 0) such that (L, <, +, 0)

is a linearly ordered sub-semigroup of L, and L ⊆ {l ∈ L | l > 0};
(iii) L is equipped with an extended metric function dL : (L × L) → R+∞

0 together
with a continuous order-preserving total function (a fibering map) p : L → M into a
countable linear order (M, <M) such that,
(a) for each m ∈ M , the fibre p−1(m) ⊆ L is a metric space under dL;
(b) for all m, m′ ∈ M , a ∈ p−1(m), b ∈ p−1(m′) : dL(a, b) < ∞ iff m = m′;
(c) for all a, b, c ∈ L, a 6 c, dL(a, c) < ∞,

dL(a, c) = dL(a, b) + dL(b, c) iff a 6 b 6 c;
(d) for all a, b, c ∈ L, dL(b, c) = dL(a + b, a + c).
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Foundations: time lines

For any linear order (L,<), and for any subset T ⊆ L, the T -successor
partial function succT : T 99K T is defined by:

∀a, b ∈ T, succT (a) = b ⇔ [ a < b ∧ (∀t ∈ T ) t 6 a ∨ b 6 t ] .

For any time line L, and any initial subset T ⊆ L with 0 ∈ T , define the
progress set Pro(T ) ⊂ T by:

Pro(T ) := { t ∈ T | t > 0 ∧ (∀s ∈ ran(succT )) t 6 s }

Hence if 0 ∈ dom(succT ) then Pro(T ) = {succT (0)}; if 0 /∈ dom(succT )
but ran(succT ) 6= ∅ then Pro(T ) = (0, sT ] where sT := min(ran(succT ));
if T is everywhere dense, so ran(succT ) = ∅, then Pro(T ) = T − {0}.
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Foundations: time lines

From the group L, a time line L has a family of order-isomorphisms
{σ+a}a∈L such that σ+0 = idL and for each a ∈ L, the right a-shift
σ+a : L → L is given by σ+a(l) := l + a, and with inverse σ−a :=
(σ+a)−1 : [a,∞) → L the left a-shift.

A subset T ⊆ L will be called <-unbounded if for all a ∈ L, there exists
t ∈ T such that t > a, and <-bounded otherwise.

For any subset T ⊆ L, define the set’s total duration dur(T ) ∈ R+∞
0 as follows:

dur(T ) :=
∑

m∈M

sup
{
dL(t, t′) | t ∈ T ∩ p−1(m) ∧ t′ ∈ T ∩ p−1(m)

}
A subset T ⊆ L will be called duration-bounded if dur(T ) < ∞, and duration-
unbounded otherwise.
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Bounded time domains and paths

Given a time line L, define a bounded time domain in L to be a subset
T ⊂ L such that T is a finite union of closed and duration-bounded
intervals, of the form T =

⋃
n<N [an, bn] with N ∈ N+, a0 = 0, bN−1 =

bT := max(T ), and an 6 bn < an+1 6 bn+1 for all n < N − 1, and
d(an, bn) <∞ for all n < N .

Let BT(L) ⊂ 2L be the set of all bounded time domains in L. Over any
set X 6= ∅, define:

BI(L) := {T ∈ BT(L) | (∃b ∈ L)T = [0, b] }
Path(L,X) := { γ : L 99K X | dom(γ) ∈ BT(L) }
IPath(L,X) := { γ : L 99K X | dom(γ) ∈ BI(L) }

A path is a partial function whose domain is a bounded time domain.
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Operations on paths
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Partial order on paths

Given a time line L, the set BT(L) is partially ordered via the linear
ordering on L: for T, T ′ ∈ BT(L), we say T ′ is an ordered extension of
T , and (re-using notation),
we write T < T ′, iff T ⊂ T ′ and t < t′ for all t ∈ T and all t′ ∈ T ′ − T .

Likewise, the path set Pathε(L,X) is partially ordered:
γ < γ′ iff γ ⊂ γ′ and dom(γ) < dom(γ′)

in which case we say the path γ′ is a (proper) extension of γ.

The path extension ordering and point-concatenation are related as
follows:
γ < γ′ iff γ′ = γ∗xγ

′′ for some γ′′ ∈ Path(L,X) andx ∈ X with γ′′ 6= θx
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General flow systems

Definition: Let (L,<, 0) be a time line, and let X 6= ∅ be an arbitrary
value space. A general flow system over X with time line L is a set-
valued map Φ: X ; Path(L,X) satisfying, for all x ∈ dom(Φ), for all
γ ∈ Φ(x), and for all t ∈ dom(γ):

(GF0) initialization: γ(0) = x

(GF1) suffix-closure or time-invariance: t|γ ∈ Φ(γ(t))

(GF2) point-concatenation-closure: ∀ γ′ ∈ Φ(γ(t)), γ|t ∗ γ′ ∈ Φ(x)

17



Examples of general flow systems

• State-machines (discrete-time transition systems), incl. input-state-output (Mealy)
state machines

• Differential equations or inclusions (continuous time), incl. input-state-output
control systems

• Aubin’s evolutionary systems (continuous time or discrete time)

• Willems’ time-invariant state behaviours (continuous time or discrete time)

• Hybrid automata, switched continuous systems (hybrid time, discrete hybrid time)

• Impulse differential inclusions (hybrid time)

• Stochastic hybrid systems (hybrid time, discrete hybrid time)

• Meta-hybrid automata (time line N × N × R+
0 )
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Properties of general flow systems

• Φ is reflexive if θx ∈ Φ(x) for all x ∈ dom(Φ);
• Φ is deadlocked at x if Φ(x) = {θx} ;
• Φ is deadlock-free if not deadlocked at any x ∈ X;
• Φ is prefix-closed if γ|t ∈ Φ(x)

for all x ∈ dom(Φ), γ ∈ Φ(x) and t ∈ dom(γ);
• Φ is deterministic if ∀x ∈ dom(Φ), set Φ(x) linearly ordered by <;
• Φ is <-unbounded if ∀x ∈ dom(Φ), path set Φ(x) is <-unbounded;
• Φ is point-controllable if for all x′, x′′ ∈ dom(Φ), there exists γ ∈ Φ(x′)
and t ∈ dom(γ) such that γ(t) = x′′;
• Φ is path-controllable if for all x, x′, x′′ ∈ dom(Φ) and for all γ′ ∈ Φ(x),
if x′ = γ′(bγ′), then for all γ′′ ∈ Φ(x′′), there exists γ ∈ Φ(x′) and t ∈
dom(γ) such that (γ′ ∗x′ γ|t ∗x′′ γ

′′) ∈ Φ(x).
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Infinitary extensions

For a time line L, let κ = |L|, and let LO(κ) be the set of all limit ordinals
ν ≤ κ with ν 6= 0. For any path set P ⊆ Pathε(L,X), define the
limit-extension of P:

Ext(P)
:= {β ∈ [L 99K X] | (∃ν ∈ LO(κ)) (∃γ ∈ [ν → Path(L,X)] ) (∀n < ν)

γn := γ(n) ∧ γn ∈ P ∧ (∀n′ < ν) (n < n′ ⇒ γn < γn′)
∧ β =

⋃
m<ν γm

}
Define EPath(L,X) := Ext ( Pathε(L,X) ).

Limit paths are unions of strictly-extending chains of paths, where the
chains are of limit ordinal length less than or equal to that of line L.
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Maximal extensions

For any path set P ⊆ Pathε(L,X), define the maximal extension of P to
be the limit path set M(P), with M(P) ⊆ Ext(P) ⊆ EPath(L,X) where:

M(P) := {α ∈ Ext(P) | (∀γ ∈ P ) α ≮ γ }

A path set P ⊆ Pathε(L,X) will be called maximally extendible if for all
γ ∈ P, there exists α ∈ M(P) such that γ < α.

Given a general flow system Φ: X ; Path(L,X), define the maximal
extension of Φ to be the map MΦ: X ; EPath(L,X) given by
(MΦ)(x) := M(Φ(x)) for all x ∈ dom(MΦ) := dom(Φ).

A general flow system Φ will be called maximally extendible if for all
x ∈ dom(Φ), the path set Φ(x) is maximally extendible.
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Maximal extensions

Theorem: [Assume the Axiom of Choice.] For any set P ⊆ Pathε(L,X),

P is maximally extendible iff P is <-unbounded.

Hence for any general flow system Φ: X ; Path(L,X),

Φ is maximally extendible
iff Φ is <-unbounded
iff Φ is deadlock-free.

If Φ is deadlock-free, then:
Φ is deterministic iff MΦ is a partial function.
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Reachability (bi-)simulations

First, capture the “time-abstract” simulation and bisimulation notion for
transition system representations of hybrid, continuous and discrete
systems (used in current finite bisimulation results e.g. o-minimal HA).

Definition: Given time lines L1 and L2, possibly different, and
Φ1 : X1 ; Path(L1, X1), Φ2 : X2 ; Path(L2, X2), R : X1 ; X2 is
a reachability simulation (or r-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆
dom(R) and for all x1, x

′
1 ∈ X1 and for all x2 ∈ X2 such that (x1, x2) ∈ R,

if ∃ γ1 ∈ Φ1(x1) and t1 ∈ dom(γ1) such that t1 > 0 and x′1 = γ1(t1),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) and a time point t2 ∈ dom(γ2) such that
t2 > 0 and x′2 = γ2(t2) and (x′1, x

′
2) ∈ R.

A map R : X1 ; X2 is a reachability bisimulation (or r-bisimulation)
between Φ1 and Φ2 if both R and R−1 are r-simulations.
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Reachability (bi-)simulations

if (x1, x2) ∈ R and ∃ γ1 ∈ Φ1(x1) and t1 ∈ dom(γ1) s.t. t1 > 0 and
x′1 = γ1(t1),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) and a time point t2 ∈ dom(γ2) s.t. t2 > 0
and x′2 = γ2(t2) and (x′1, x

′
2) ∈ R.

x1   

x ° t = ( )1 11' x ° t2 = ( )22'

x2

° Î© (x )1 11 ° Î© (x )2 22

( , )Î1 2x x R' '

( , )    x x ÎR1 2

t > 01 t > 02 
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Progress (bi-)simulations
Next, a slightly stronger notion of simulation and bisimulation which requires some
“matching” of time points along paths, but not an exact matching, so still can compare
systems over different time lines, like r-(bi-)simulations.

Definition: Given time lines L1 and L2, possibly different, and
Φ1 : X1 ; Path(L1, X1), Φ2 : X2 ; Path(L2, X2), R : X1 ; X2 is a
progress simulation (or p-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆ dom(R)
and for all x1, x

′
1 ∈ X1 and for all x2 ∈ X2 such that (x1, x2) ∈ R,

if ∃ γ1 ∈ Φ1(x1) and t1 ∈ Pro(dom(γ1)) such that x′1 = γ1(t1),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) and t2 ∈ Pro(dom(γ2)) such that
x′2 = γ2(t2) and (x′1, x

′
2) ∈ R, and ∀ intermediate times s2 ∈ (0, t2] ∩

dom(γ2), ∃ s1 ∈ (0, t1] ∩ dom(γ1) such that (γ1(s1), γ2(s2)) ∈ R.

Map R : X1 ; X2 is a progress bisimulation (or p-bisimulation) between Φ1 and Φ2

if both R and R−1 are p-simulations.
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Progress (bi-)simulations

if (x1, x2) ∈ R and ∃ γ1 ∈ Φ1(x1) and t1 ∈ Pro(dom(γ1)) s.t. x′1 = γ1(t1),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) and t2 ∈ Pro(dom(γ2)) s.t. x′2 = γ2(t2)
and (x′1, x

′
2) ∈ R, and ∀ s2 ∈ (0, t2] ∩ dom(γ2), ∃ s1 ∈ (0, t1] ∩ dom(γ1)

such that (γ1(s1), γ2(s2)) ∈ R.

x1   
( , )    x x ÎR1 2

x ° t = ( )11 1' x ° t2 = ( )22'

"s Ç °  (0, 22 Î t ]   dom2 ( )

t  ÎPro(dom2 ( ))°2
t  ÎPro(dom(° ))1 1

$ Î t ]   dom1s Ç °  (0, 11 ( )

( 1° ( ), ( ))Î2s ° s R1 2
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x2

° Î© (x )1 11 ° Î© (x )22 2
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Timed (bi-)simulations

Finally, the strongest notion that requires the two systems to have the
same time lines, and exact matching along paths.

Definition: Given Φ1 : X1 ; Path(L,X1) and
Φ2 : X2 ; Path(L,X2) over the same time line L, a relationR : X1 ; X2

is a timed simulation (t-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆ dom(R),
and for all x1, x

′
1 ∈ X1, and x2 ∈ X2 such that (x1, x2) ∈ R, and for all

times t > 0,
if ∃ γ1 ∈ Φ1(x1) such that x′1 = γ1(t),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) such that x′2 = γ2(t) and

dom(γ2) = dom(γ1) and (γ1(s), γ2(s)) ∈ R for all s ∈ dom(γ2) ∩ [0, t].

A relation R : X1 ; X2 is a timed bisimulation (or t-bisimulation)
between Φ1 and Φ2 if both R and R−1 are t-simulations.
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Timed (bi-)simulations

if (x1, x2) ∈ R and ∃ γ1 ∈ Φ1(x1) s.t. x′1 = γ1(t),
then ∃ x′2 ∈ X2 and γ2 ∈ Φ2(x2) s.t. x′2 = γ2(t) and (x′1, x

′
2) ∈ R,

and dom(γ2) = dom(γ1) and ∀ s ∈ [0, t] ∩ dom(γ1), it holds that
(γ1(s), γ2(s)) ∈ R.

x1   

x ° t = ( )11' x ° t = ( )22'

x2

° Î© (x )1 11
° Î© (x )2 22

( , )Î1 2x x R' '

( , )    x x ÎR1 2

L = 1 L2 t> 0

dom °( ) 1  =  dom °( )2

"s Î t] Ç  dom °  [0, ( ),1 ( ( ), ( ))Î1 2° s ° s R
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Examples of simulation relationships

1. Discrete-time det. system Φ1 : X1 ; Path(N, X1) over space X1 :=
{q1, q2, q3, q4} generated by δ : X1 → X1 with δ(qk) := qk+1 for k = 1, 2, 3
and δ(q4) = q1.

2. Continuous-time det. system Φ2 : X2 ; Path(R+
0 , X2) over space

X2 := R2 − {(0, 0)} given by diff. equation: ẋ1 = x2 and ẋ2 = −x1.
So Φ2(x1, x2) = {γ : [0, b] → X2 | b ≥ 0 ∧ (∀t ∈ dom(γ)) γ(t) =
(x1 cos(t) + x2 sin(t), x2 cos(t)− x1 sin(t))}; paths correspond to circular
motion in clockwise direction, with radius r =

√
x2

1 + x2
2.
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Examples of simulation relationships
Then consider the relation R : X1 ; X2 given by:

R(q1) = {(x1, x2) ∈ X2 | x1 6 0 ∧ x2 > 0} North-west quadrant
R(q2) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 > 0} North-east quadrant
R(q3) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 < 0} South-east quadrant
R(q4) = {(x1, x2) ∈ X2 | x1 < 0 ∧ x2 6 0} South-west quadrant

x    1

R(q )   4 R(q )   3

R(q )   2R(q )   1q    1

©    1 ©2q    2

q4

x2

( , )½ ½

( , )Ö½ 0

( ,- )½ ½

Then R is r-simulation of discrete Φ1 by cont. Φ2, but not p-simulation.
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q1 q2 q3 q4

3. Hybrid time system: timed automaton H over space X3 :=⋃
k∈K{qk}×[0, (ak+1)π

2 ], where z is (sole) clock variable and for k ∈ K =
{1, 2, 3, 4}, ak > 0 are fixed real constants, and Φ3 : X3 ; Path(H, X3)
its general flow.

Then consider the relation S : X3 ; X2 defined for all z ∈ R+
0 by:

S(q1, z) = {(x1, x2) ∈ X2 | x1 6 0 ∧ x2 > 0 ∧ z = a1
π
2 arctan(

x1
x2

)}
S(q2, z) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 > 0 ∧ z = a2

π
2 arctan(

−x2
x1

)}
S(q3, z) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 < 0 ∧ z = a3

π
2 arctan(

−x2
x1

)}
S(q4, z) = {(x1, x2) ∈ X2 | x1 < 0 ∧ x2 6 0 ∧ z = a4

π
2 arctan(

x1
x2

)}
Then S is a p-bisimulation between hybrid system Φ3 and continuous
system Φ2, but it cannot be a t-bisimulation.
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Syntax of the logic GFL?

(Same syntax as CTL?.) Let Prp be a non-empty countable (finite or
infinite) set of atomic propositions. The temporal logic language F(Prp)
consists of the set of all formulas ϕ generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 Uϕ2 | Xϕ | ∀ϕ

Define logical constants true, > def= p ∨ ¬ p, for any p ∈ Prp, and false,
⊥ def= ¬>. The other propositional (Boolean) connectives are defined in
a standard way, and the path quantifier ∀ has a classical negation dual
∃, as follows:

ϕ1 ∧ ϕ2
def= ¬ (¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2

def= ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ∃ϕ def= ¬∀¬ϕ
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Semantics of GFL?

A general flow logic model for the proposition set Prp is a structure
M = (X,L,Φ,P), where:

• X 6= ∅ is the state space, of arbitrary non-zero cardinality;

• L is a time line;

• Φ is a deadlock-free general flow system Φ : X ; Path(L,X) over
the space X, with time line L;

• P : Prp ; X maps each p ∈ Prp to a set P(p) ⊆ X of states.

The maximal path space of M is MPath(M) := ran(MΦ).
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Semantics of GFL?

For ϕ ∈ F(Prp) and maximal limit path η ∈ MPath(M), the relation
“ϕ is satisfied along path η in model M”, written M, η |= ϕ, is defined
by induction on the structure of formulas, with p ∈ Prp:

M, η |= p iff η(0) ∈ P(p)
M, η |= ¬ϕ iff M, η 2 ϕ

M, η |= ϕ1 ∨ ϕ2 iff M, η |= ϕ1 or M, η |= ϕ2

M, η |= ϕ1 Uϕ2 iff ∃ t ∈ dom(η), t > 0 such that M, t|η |= ϕ2 and
∀s ∈ [0, t) ∩ dom(η), M, s|η |= ϕ1

M, η |= Xϕ iff ∃ t ∈ Pro(dom(η)) such that
∀s ∈ (0, t] ∩ dom(η), M, s|η |= ϕ

M, η |= ∀ϕ iff ∀η′ ∈ MΦ(η(0)), M, η′ |= ϕ
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Semantics of GFL?

For formulas ϕ ∈ F(Prp), the maximal path denotation set Jϕ KM ⊆
MPath(M), and the state denotation set Jϕ KM

st ⊆ X, are defined by:

Jϕ KM := { η ∈ MPath(M) | M, η |= ϕ }
Jϕ KM

st := {x ∈ X | ∃η ∈ MΦ : M, η |= ϕ and x = η(0) }

For a logic model M ∈ GF(Prp), state x in the state space of M, and
for formulas ϕ ∈ F(Prp), we say:

• ϕ is satisfied in M at state x, if x ∈ Jϕ KM
st ;

• ϕ is satisfiable in M, if Jϕ KM
st 6= ∅ (equivalently, Jϕ KM 6= ∅);

• ϕ is true in M, written M |= ϕ , if M, η |= ϕ for every η ∈ MPath(M).

37



Expressing properties in GFL?

• As in CTL?, safety, liveness, fairness.

• Event-sequence behaviour of hybrid trajectories.

• Aubin’s notion of viability with target and invariance with target .

• Point-controllability and path-controllability (via a rule scheme).

• Determinism (via a formula scheme): ∃ϕ → ∀ϕ.
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GFL? preservation by p-bisimulations

Definition: Fix a set of atomic propositions Prp, and for i = 1, 2, let
Mi = (Xi, Li,Φi,Pi) be a logic model for proposition set Prp, with
Φi : Xi ; Path(Li, Xi) a (deadlock-free) general flow system.
A relation R : X1 ; X2 is a p-simulation of model M1 by model M2 if:
(i) relation R is a p-simulation of Φ1 by Φ2; and
(ii) for each atomic proposition p ∈ Prp, and for all x1 ∈ X1 and x2 ∈ X2,

if x1Rx2 and x1 ∈ P1(p), then x2 ∈ P2(p).

A relation R : X1 ; X2 is a p-bisimulation between model M1 and
model M2 if R is a p-simulation of M1 by M2, and R−1 is a p-simulation
of M2 by M1.
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GFL? preservation by p-bisimulations

Theorem: Fix a set of atomic propositions Prp, and for i = 1, 2, let
Mi = (Xi, Li,Φi,Pi) be two logic models over propositions Prp, and
suppose B : X1 ; X2 is a p-bisimulation between M1 and M2. Then
for all x1 ∈ X1 and x2 ∈ X2,

if x1B x2, then for all ϕ ∈ F(Prp),
[
x1 ∈ Jϕ KM1

st ⇔ x2 ∈ Jϕ KM2
st

]
.

Corollary: If B : X1 ; X2 is a p-bisimulation between M1 and M2, and
both B and B−1 are total maps (on X1 and X2, respectively), then for
all formulas ϕ ∈ F(Prp), M1 |= ϕ iff M2 |= ϕ .

Example: atomic props Prp = {q1, q2, q3, q4}. Model M2 over X2 with
one system Φ2, with continuous time L2 = R+

0 , and model M3 over X3

with one system Φ3, with hybrid time L3 = H, are p-bisimilar. Consider
formula ϕ = ∀ (q1Uq2 ∧ q2Uq3 ∧ q3Uq4 ∧ q4Uq1).
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Conclusions and further work

• Have developed new bisimulation concept that is adequate to preserve semantics
of a temporal logic that (a) concides with well-known logic CTL? for discrete time,
and (b) is rich enough to capture hybrid dynamics (and more) in their full complexity.

• Existing results on decidability of model-checking via finite bisimulations for certain
classes of systems only apply to fragment of logic GFL? because they are only r-
bisimulations, and not p-bisiumlations. More work to see what extensions possible.

• To express properties with topological or metric content (e.g. stability, robustness),
need to both enrich logic with topological/metric operators, and then to enrich
concept of (bi-)simulation accordingly (to preserve whatever structure there is).

• Notions of δ-approximate p-(bi-)simulations also to be examined.
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