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Abstract. We take the well-known intuitionistic modal logic of Fischer
Servi with semantics in bi-relational Kripke frames, and give the natural
extension to topological Kripke frames. Fischer Servi’s two interaction
conditions relating the intuitionistic pre-order (or partial-order) with the
modal accessibility relation generalise to the requirement that the rela-
tion and its inverse be lower semi-continuous with respect to the topol-
ogy. We then investigate the notion of topological bisimulation relations
between topological Kripke frames, as introduced by Aiello and van Ben-
them, and show that their topology-preserving conditions are equivalent
to the properties that the inverse-relation and the relation are lower semi-
continuous with respect to the topologies on the two models. Our first
main result is that this notion of topological bisimulation yields semantic
preservation w.r.t. topological Kripke models for both intuitionistic tense
logics, and for their classical companion multi-modal logics in the setting
of the Gödel translation. After giving canonical topological Kripke mod-
els for the Hilbert-style axiomatizations of the Fischer Servi logic and
its classical multi-modal companion logic, we show that the syntactic
Gödel translation induces a natural semantic map from the intuitionis-
tic canonical model into the canonical model of the classical companion
logic, and this map is itself a topological bisimulation.

1 Introduction

Topological semantics for intuitionistic logic and for the classical modal logic
S4 have a long history going back to Tarski and co-workers in the 1930s and
40s, predating the relational Kripke semantics for both [25,31]. A little earlier
again is the 1933 Gödel translation GT [21] of intuitionistic logic into classical
S4. The translation makes perfect sense within the topological semantics: where
� is interpreted by topological interior, the translation GT(¬ϕ) = �¬GT(ϕ)
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says that intuitionistic negation calls for the interior of the complement, and not
just the complement. In the topological semantics, a basic semantic object is the
denotation set �ϕ �M of a formula ϕ, consisting of the set of all states/worlds of
the model M at which the formula is true, and the semantic clauses of the logic
are given in terms of operations on sets of states. The intuitionistic requirement
on the semantics is that all formulas must denote open sets: that is, sets that
are equal to their own interior. Any formula ϕ partitions the state space X into
three disjoint sets: the two open sets �ϕ �M and �¬ϕ �M, and the closed set
bd(�ϕ �M), with the points in the topological boundary set bd(�ϕ �M) falsifying
the law of excluded middle, since they neither satisfy nor falsify ϕ.

For the extension from intuitionistic propositional logics to intuitionistic
modal logics, Fischer Servi in the 1970s [16,17,18] developed semantics over
bi-relational Kripke frames, and this work has generated a good deal of research
[15,20,22,29,32,36,37]. In bi-relational frames (X, �, R) where � is a pre-order
(quasi-order) for the intuitionistic semantics, and R is a binary accessibility
relation on X for the modal operators, the two Fischer Servi conditions are
equivalent to the following relation inclusions [18,29,32]:

(R−1◦ �) ⊆ (� ◦R−1) and (R ◦ �) ⊆ (� ◦ R) (1)

where ◦ is relational/sequential composition, and (·)−1 is relational inverse. Ax-
iomatically, the base Fischer Servi modal logic IK has normality axioms for
both the modal box �· and the diamond�· , as well as the additional two axiom
schemes:

FS1 : �· (ϕ → ψ) → (�·ϕ →�· ψ) and FS2 : (�·ϕ → �·ψ) → �·(ϕ → ψ) (2)

A study of various normal extensions of IK is given in [32]. Earlier, starting from
the 1950s, the intuitionistic S5 logic MIPC [30,8] was given algebraic semantics
in the form of monadic Heyting algebras [4,27,28,34,35]1 and later as bi-relational
frames with an equivalence relation for the S5 modality [5,14,28,34]. This line of
work has focused on MIPC = IK ⊕ T�·�· ⊕ 5�·�· and its normal extensions2,
and translations into intuitionistic and intermediate predicate logics. Within
algebraic semantics, topological spaces arise in the context of Stone duality, and
in [4,5,14], the focus restricts to Stone spaces (compact, Hausdorff and having
as a basis the Boolean algebra of closed-and-open sets).

In this paper, following [12], we give semantics for intuitionistic modal logic
over topological Kripke frames F = (X, T , R), where (X, T ) is a topological
space and R ⊆ X × X is an accesibility relation for the modalities; the Fisher
Servi bi-relational semantics are straight-forwardly extended from pre-orders �
on X and their associated Alexandrov topology T�, to arbitrary topological spaces

1 The additional monadic operators are ∀ and ∃ unary operators behaving as S5 box
and diamond modalities, and come from Halmos’ work on monadic Boolean algebras.

2 Here, T�·�· is the conjunction of the separate �· and �· characteristic schemes
for reflexivity, and likewise 5�·�· for Euclideanness, so together they characterize
equivalence relations.
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(X, T )3. Over topological Kripke frames, the two Fischer Servi bi-relational con-
ditions on the interaction between modal and intuitionistic semantics ((1) above)
generalize to semi-continuity properties of the relation R, and of its inverse R−1,
with respect to the topology. As for the base logic, Fischer Servi’s extension of
the Gödel translation reads as a direct transcription of the topological semantics.
The translation GT(�·ϕ ) = ��· GT(ϕ) says that the intuitionistic box requires
the interior of the classical box operator, since the latter is defined by an inter-
section and may fail to preserve open sets. In contrast, the translation clause
GT(�· ϕ ) = �· GT(ϕ) says that, semantically, the operator �· preserves open
sets. This condition is exactly the lower semi-continuity (l.s.c.) condition on the
accessibility relation, and corresponds to the first Fischer Servi bi-relational in-
clusion R−1◦ � ⊆ � ◦R−1 in (1), and it is this condition that is required to verify
topological soundness of the axiom scheme FS1 in (2)4. Similarly, Fischer Servi’s
second bi-relational inclusion R ◦ � ⊆ � ◦ R generalizes to the l.s.c. property of
the R−1 relation, where the latter is required to verify topological soundness of
the axiom scheme FS2 in (2).

The symmetry of the interaction conditions on the modal relation R and
its inverse R−1 means that we can – with no additional semantic assumptions
– lift the topological semantics to intuitionistic tense logics extending Fischer
Servi’s modal logic (introduced by Ewald in [15]), with modalities in pairs �· ,
�· , and�· , �· , for future and past along the accessibility relation. It soon becomes
clear that the resulting semantics and metatheoretic results such as completeness
come out cleaner and simpler for the tense logic than they do for the modal
logic. We can often streamline arguments involving the box modality �· by using
its adjoint diamond �· , which like �· , preserves open sets. Furthermore, with
regard to applications of interest, the flexibility of having both forwards and
backwards modalities is advantageous. For example, if X ⊆ R

n is equipped
with the Euclidean topology, and R ⊆ X × X is the reachability relation of a
continuous or hybrid dynamical system [2,3,11], then the formula �· p denotes
the set of states reachable from the p states, with p considered as a source or
initial state set, while the forward modal diamond formula�· p denotes the set of
states from which p states can be reached, here p denoting a target or goal state
set. Under some standard regularity assumptions on the differential inclusions
or equations, [2,3], the reachability relation R and its inverse will be l.s.c. (as

3 Other work giving topological semantics for intuitionistic modal logics is [36], further
investigated in [23]. This logic is properly weaker than Fischer Servi’s as its intuition-
istic diamond is not required to distribute over disjunction (hence is sub-normal).
Both the bi-relational and topological semantics in [36] and the relational spaces in
[23] have no conditions on the interaction of the intuitionistic and modal semantic
structures, and the semantic clauses for both box and diamond require application
of the interior operator to guarantee open sets.

4 In the algebraic setting of Monteiro and Varsavsky’s work [27] w.r.t. the logic MIPC,
a special case of the l.s.c. property is anticipated: the lattice of open sets of a topolog-
ical space is a complete Heyting algebra, and the structure yields a monadic Heyting
algebra when the space is further equipped with an equivalence relation R with the
property that the “R-saturation” or R-expansion of an open set is open.
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well as reflexive and transitive), while further assumptions are required for the
u.s.c. property (e.g. R is a closed set in the product topology on X × X).

We continue on the theme of semi-continuity properties of relations in our
second topic of investigation, namely that of topological bisimulations between
topological Kripke models. A bisimulation notion for topological spaces (X, T )
has recently been developed by Aiello and van Benthem (e.g. [1], Def. 2.1).
We show below that their forth and back topology-preserving conditions are
equivalent to the lower semi-continuity of the inverse relation and of the relation,
respectively. The first main result of the paper is that this notion of topological
bisimulation yields the semantic preservation property w.r.t. topological Kripke
models for both intuitionistic tense logics, and for their classical companion
multi-modal logics in the setting of the Gödel translation.

In the last part of the paper, we give canonical topological Kripke models for
the Hilbert-style axiomatizations of the Fischer Servi logics and their classical
companions logics – over the set of prime theories of the intuitionistic logic
and the set of ultrafilters of the companion classical logic, respectively, with
topologies on the spaces that are neither Alexandrov nor Stone. We conclude
the paper with the second main result: the syntactic Gödel translation induces
a natural semantic map from the intuitionistic canonical model to a sub-model
of the canonical model of the classical companion logic, and this map is itself a
topological bisimulation.

2 Preliminaries from General Topology

We adopt the notation from set-valued analysis [2] in writing r : X � Y to
mean both that r : X → 2Y is a set-valued map, with (possibly empty) set-values
r(x) ⊆ Y for each x ∈ X , and equivalently, that r ⊆ X × Y is a relation. The
expressions y ∈ r(x), (x, y) ∈ r and x r y are synonymous. For a map r : X � Y ,
the inverse r−1 : Y � X given by: x ∈ r−1(y) iff y ∈ r(x); the domain is
dom(r) := {x ∈ X | r(x) �= ∅}, and the range is ran(r) := dom(r−1) ⊆ Y . A
map r : X � Y is total on X if dom(r) = X , and surjective on Y if ran(r) = Y .
We write (as usual) r : X → Y to mean r is a function, i.e. a single-valued map
total on X with values written r(x) = y (rather than r(x) = {y}). For r1 : X �

Y and r2 : Y � Z, we write their relational composition as r1 ◦ r2 : X � Z
given by (r1 ◦ r2)(x) := {z ∈ Z | (∃y ∈ Y ) [(x, y) ∈ r1 ∧ (y, z) ∈ r2]}. Recall that
(r1 ◦ r2)−1 = r−1

2 ◦ r−1
1 . A pre-order (quasi-order) is a reflexive and transitive

binary relation, and a partial-order is a pre-order that is also anti-symmetric.
A relation r : X � Y determines two pre-image operators (predicate trans-

formers). The existential (or lower) pre-image is of type r−∃ : 2Y → 2X and the
universal (or upper) pre-image r−∀ : 2Y → 2X is its dual w.r.t. set-complement:

r−∃(W ) := {x ∈ X | (∃y ∈ Y )[ (x, y) ∈ r ∧ y ∈ W ]}
= {x ∈ X | W ∩ r(x) �= ∅}

r−∀(W ) := X − r−∃(Y − W ) = {x ∈ X | r(x) ⊆ W}
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for all W ⊆ Y . The operator r−∃ distributes over arbitrary unions, while r−∀ dis-
tributes over arbitrary intersections: r−∃(∅) = ∅, r−∃(Y ) = dom(r), r−∀(∅) =
X − dom(r), and r−∀(Y ) = X . Note that when r : X → Y is a function,
the pre-image operators reduce to the standard inverse-image operator; i.e.
r−∃(W ) = r−∀(W ) = r−1(W ). The pre-image operators respect relational in-
clusions: if r1 ⊆ r2 ⊆ X × Y , then for all W ⊆ Y , we have r−∃

1 (W ) ⊆ r−∃
2 (W ),

but reversing to r−∀
2 (W ) ⊆ r−∀

1 (W ). For the case of binary relations r : X � X
on a space X , the pre-images express in operator form the standard relational
Kripke semantics for the (future) diamond and box modal operators determined
by r. The operators on sets derived from the inverse relation r−1 are usually
called the post-image operators r∃, r∀ : 2X → 2Y defined by r∃ := (r−1)−∃

and r∀ := (r−1)−∀; these arise in the relational Kripke semantics for the past
diamond and box operators in tense and temporal logics. The fundamental re-
lationship between pre- and post-images is the adjoint property:

∀W1 ⊆ X, ∀W2 ⊆ Y, W1 ⊆ r−∀(W2) iff r∃(W1) ⊆ W2 . (3)
A topology T ⊆ 2X on a set X is a family of subsets of X closed under arbitrary

unions and finite intersections. The extreme cases are the discrete topology TD =
2X , and the trivial (or indiscrete) topology T∅ = {∅, X}. The interior operator
intT : 2X → 2X determined by T is given by intT (W ) :=

⋃
{U ∈ T | U ⊆ W}.

Sets W ∈ T are called open w.r.t. T , and this is so iff W = intT (W ). Let
−T := {W ⊆ X | (X − W ) ∈ T } denote the dual lattice under set-complement.
Sets W ∈ −T are called closed w.r.t. T , and this is so iff W = clT (W ), where the
dual closure operator clT : 2X → 2X is given by clT (W ) := X − clT (X − W ),
and the topological boundary is bdT (W ) := clT (W ) − intT (W ). A family of
open sets B ⊆ T constitutes a basis for a topology T on X if every open set
W ∈ T is a union of basic opens in B, and for every x ∈ X and every pair of
basic opens U1, U2 ∈ B such that x ∈ U1 ∩ U2, there exists U3 ∈ B such that
x ∈ U3 ⊆ (U1 ∩ U2).

The purely topological notion of continuity for a function f : X → Y is that
the inverse image f−1(U) is open whenever U is open. Analogous notions for
relations/set-valued maps were introduced by Kuratowski and Bouligand in the
1920s. Given two topological spaces (X, T ) and (Y, S), a map R : X � Y is
called: lower semi-continuous (l.s.c.) if for every S-open set U in Y , R−∃(U)
is T -open in X ; upper semi-continuous (u.s.c.) if for every S-open set U in
Y , R−∀(U) is T -open in X ; and (Vietoris) continuous if it is both l.s.c. and
u.s.c. [2,7,24,33]. The u.s.c. condition is equivalent to R−∃(V ) is T -closed in
X whenever V is S-closed in Y . Moreover, we have: R : X � Y is l.s.c. iff
R−∃(intS(W )) ⊆ intT (R−∃(W )) for all W ⊆ Y ; and R : X � Y is u.s.c.
iff R−∀(intS(W )) ⊆ intT (R−∀(W )) for all W ⊆ Y ([24], Vol. I, §18.I, p.173).
The two semi-continuity properties reduce to the standard notion of continuity
for functions R : X → Y . Both semi-continuity properties are preserved under
relational composition, and also under finite unions of relations.

We note the subclass of Alexandrov topologies because of their correspon-
dence with Kripke relational semantics for classical S4 and intuitionistic logics.
e.g. [1,26]. A topological space (X, T ) is called Alexandrov if for every x ∈ X ,
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there is a smallest open set U ∈ T such that x ∈ U . In particular, every
finite topology (i.e. only finitely many open sets) is Alexandrov. There is a
one-to-one correspondence between pre-orders on X and Alexandrov topologies
on X . Any pre-order � on X induces an Alexandrov topology T� by taking
intT�(W ) := (�)−∀(W ), which means U ∈ T� iff U is upwards-�-closed. In
particular, T� is closed under arbitrary intersections as well as arbitrary unions,
and −T� = T�. Conversely, for any topology, define a pre-order �T on X ,
known as the specialisation pre-order : x �T y iff (∀U ∈ T ) [x ∈ U ⇒ y ∈ U ].
For any pre-order, �T� = �, and for any topology, T�T = T iff T is Alexandrov
(e.g. see [1], pp. 893-894). For further concepts in topology, see, e.g. [33].

3 Intuitionistic Modal and Tense Logics, and Their
Classical Companion Logics: Syntax and Topological
Semantics

Fix a countably infinite set AP of atomic propositions. The propositional lan-
guage L0 is generated from p ∈ AP using the connectives ∨, ∧, → and the
constant ⊥. As usual, define further connectives: ¬ϕ := ϕ → ⊥ and ϕ1 ↔ ϕ2 :=
(ϕ1 → ϕ2)∧(ϕ2 → ϕ1), and � := ⊥ → ⊥. Let L0,� be the mono-modal language
extending L0 with the addition of the unary modal operator �. A further modal
operator � can be defined as the classical dual: �ϕ := ¬�¬ϕ.

For the intuitionistic modal and tense languages, let Lm (Lt) be the modal
(tense) language extending L0 with the addition of two (four) modal operators
�· and �· (and �· and �·) , generated by the grammar:

ϕ ::= p | ⊥ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 |�· ϕ | �·ϕ ( |�· ϕ | �·ϕ )

for p ∈ AP . Likewise, for the classical topological modal and tense logics, let Lm
�

(Lt
�) be the modal (tense) language extending L0,� with the addition of �· and

�· (and �· and �·).
The original Gödel translation [21], as a function GT : L0 → L0,�, simply

prefixes � to every subformula of a propositional formula. Reading the S4 � as
topological interior, this means we force every propositional formula to intuition-
istically denote an open set. In Fischer Servi’s extension of the Gödel translation
[18,16], the clauses for the propositional fragment are from a variant translation
used by Fitting [19], who shows it to be equivalent to Gödel’s original ([19], Ch.
9, # 20). Define the function GT : Lt → Lt

� by induction on formulas as follows:

GT(p) := �p for p ∈ AP
GT(ϕ1 → ϕ2) := � (GT(ϕ1) → GT(ϕ2)) GT(⊥) := ⊥
GT(ϕ1 ∨ ϕ2) := GT(ϕ1) ∨ GT(ϕ2) GT(ϕ1 ∧ ϕ2) := GT(ϕ1) ∧ GT(ϕ2)

GT(�· ϕ ) :=�· GT(ϕ) GT(�· ϕ ) :=�· GT(ϕ)
GT(�·ϕ ) := ��· GT(ϕ) GT(�·ϕ ) := ��· GT(ϕ)

In topological terms, the only clauses in the translation where it is essential
to have an explicit � to guarantee openness of denotation sets are for atomic



168 J.M. Davoren

propositions, for implication →, and for the box modalties �· and �· . There is no
such need in the clauses for ∨ and ∧ because finite unions and finite intersections
of open sets are open. For the diamond modalties, the semi-continuity conditions
that R and its inverse R−1 are both l.s.c. ensure that the semantic operators
R−∃ and R∃ interpretting �· and �· must preserve open sets. We now explain
this generalization, which was first presented in [12].

The bi-relational semantics of Fischer Servi [16,17], and Plotkin and Stirling
[29,32] are over Kripke frames F = (X, �, R), where � is a pre-order on X and
R : X � X is the modal accessibility relation. Using the induced Alexandrov
topology T�, a bi-relational Kripke frame F is equivalent to the topological
frame (X, T�, R). A set is open in T� exactly when it is �-persistent or upward-
�-closed. The four bi-relational conditions identified in [29], and also familiar
as the forth (“Zig”) and back (“Zag”) conditions for bisimulations (e.g. [6], Ch.
2), can be cleanly transcribed as semi-continuity conditions on the relations
R : X � X and R−1 : X � X with respect to the topology T�.

Definition 1. Let F = (X, �, R) be a bi-relational frame. Four conditions ex-
pressing interaction between � and R are identified as follows:

Zig(�, R) : if x � y and xR x′ then (∃y′ ∈ X)
[

y R y′ and x′ � y′ ]

Zag(�, R) : if x � y and y R y′ then (∃x′ ∈ X)
[

xRx′ and x′ � y′ ]

Zig(�, R−1) : if x � y and x′R x then (∃y′ ∈ X)
[

y′ R y and x′ � y′ ]

Zag(�, R−1) : if x � y and y′ R y then (∃x′ ∈ X)
[

x′R x and x′ � y′ ]

y

x′

R

x

R

y′

y

x′

R

x

R

y′

y

x′

R

x

R

y′

y

x′

R

x

R

y′

Zig(�, R) Zag(�, R) Zig(�, R−1) Zag(�, R−1)

From earlier work [9], we know these bi-relational conditions correspond to semi-
continuity properties of R with respect to the Alexandrov topology T�.

Proposition 1. ([9]) Let F = (X, �, R) be a bi-relational frame, with T� it
induced topology. The conditions in each row below are equivalent.

1. Zig(�, R) (R−1◦ �) ⊆ (� ◦R−1) R is l.s.c. in T�
2. Zag(�, R) (� ◦ R) ⊆ (R ◦ �) R is u.s.c. in T�
3. Zig(�, R−1) (R ◦ �) ⊆ (� ◦ R) R−1 is l.s.c. in T�
4. Zag(�, R−1) (� ◦R−1) ⊆ (R−1◦ �) R−1 is u.s.c. in T�

The Fischer Servi interaction conditions between the intuitionistic and modal
relations, introduced in [17] and used in [15,18,22,29,32], are the first and third
bi-relational conditions Zig(�, R) and Zig(�, R−1). In Kripke frames meeting
these conditions, one can give semantic clauses for the diamond and box that are
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natural under the intuitionistic reading of the restricted ∃ and ∀ quantification
with respect to R-successors. More precisely, the resulting logic is faithfully em-
bedded into intuitionistic first-order logic by the standard modal to first-order
translation, and a natural extension of the Gödel translation faithfully embeds
it into the classical bi-modal logic combining S4� with K or extensions.

Since the Fischer Servi interaction conditions for the forward or future modal
operators �· and �· for R require the same l.s.c. property of both R and R−1,
this means that, at no extra cost in semantic assumptions, we can add on the
backward or past modal operators �· and �· for R−1, and obtain the desired
interaction condition for R−1 for free.

Definition 2. A topological frame is a structure F = (X, T , R) where (X, T ) is
a topological space and R : X � X is a binary relation. F is an l.s.c. topological
frame if both R and R−1 are l .s .c. in T . A model over F is a structure M =
(F , v) where v : AP � X is an atomic valuation relation. A model M is an
open model if for each p ∈ AP, the denotation set v(p) is open in T . For open
models M over l .s .c. frames F , the intuitionistic denotation map �·�M

I : Lt � X
(or �·�M

I : Lm � X) is defined by:

�p�M
I := v(p) for p ∈ AP �⊥�M

I := ∅

�ϕ1 → ϕ2�
M
I := intT ((X − �ϕ1�

M
I ) ∪ �ϕ2�

M
I )

�ϕ1 ∨ ϕ2�
M
I := �ϕ1�

M
I ∪ �ϕ2�

M
I �ϕ1 ∧ ϕ2�

M
I := �ϕ1�

M
I ∩ �ϕ2�

M
I

��· ϕ�M
I := R−∃(�ϕ�M

I ) ��·ϕ�M
I := intT

(
R−∀(�ϕ�M

I )
)

��· ϕ�M
I := R∃(�ϕ�M

I ) ��·ϕ�M
I := intT

(
R∀(�ϕ�M

I )
)

A formula ϕ ∈ Lt (or ϕ ∈ Lm ) is int-modal-top valid in an open model M,
written M � ϕ , if �ϕ�M

I = X, and is int-modal-top valid in an l .s .c. frame F =
(X, T , R), written F � ϕ , if M � ϕ for all open models M over F . Formula
ϕ is satisfiable in M if �ϕ�M

I �= ∅, and ϕ is falsifiable in M if �ϕ�M
I �= X. Let

IK
t
T ( IK

m
T ) be the set of all ϕ ∈ Lt (ϕ ∈ Lm ) such that F � ϕ in every

l .s .c. topological frame F .

The property that every denotation set �ϕ �M
I is open in T follows immediately

from the openness condition on v(p), the l.s.c. properties of R−∃ and R∃, and
the extra interior operation in the semantics for →, �· and �· .

Definition 3. For the tense (modal) language Lt
� ( and Lm

� ), we define the
classical denotation map �·�M : Lt

� � X ( �·�M : Lm
� � X ) with respect to ar-

bitrary topological models M = (X, T , R, v), where v : AP � X is unrestricted.
The map �·�M is defined the same way as �·�M

I for atomic p ∈ AP, ⊥, ∨, ∧, �·
and �· , but differs on the following clauses:

�ϕ1 → ϕ2�
M := (X − �ϕ1�

M) ∪ �ϕ2�
M ��ϕ �M := intT (�ϕ �M)

��·ϕ�M := R−∀ (�ϕ�M) ��·ϕ�M := R∀ (�ϕ�M)

A formula ϕ ∈ Lt
� (or ϕ ∈ Lm

� ) is modal-top valid in M, written M |= ϕ, if
�ϕ�M = X, and is modal-top valid in a topological frame F = (X, T , R), written
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F |= ϕ, if M |= ϕ for all models M over F . Let K
t
T (Km

T) be the set of all
ϕ ∈ Lt

� (ϕ ∈ Lm
� ) such that F |= ϕ for every topological frame F . Let K

t
LSC

(Km
LSC) be the set of all ϕ ∈ Lt

� (ϕ ∈ Lm
� ) such that F |= ϕ in every l .s .c.

topological frame F .

For Fischer Servi’s extension of Gödel’s translation, Definitions 2 and 3 imply
that for any model M = (F , v) over an l.s.c. topological frame F , if M′ = (F , v′)
is the variant open model with v′(p) := intT (v(p)), then ∀ϕ ∈ Lt:

�ϕ�M′

I = �GT(ϕ) �M = ��GT(ϕ) �M. (4)

Consequently, we have semantic faithfulness, as well as the openness property:
for all ϕ ∈ Lt, the formula GT(ϕ) ↔ �GT(ϕ) is in K

t
LSC.

Proposition 2. [Extended Gödel translation: semantic faithfulness]
For all ϕ ∈ Lt, ϕ ∈ IK

t
T iff GT(ϕ) ∈ K

t
LSC.

The semi-continuity conditions can be cleanly characterized in the companion
classical multi-modal logics, as given in [13].

Proposition 3. [[13] Modal characterization of semi-continuity conditions]
Let F = (X, T , R) be a topological frame and let p ∈ AP. In the following table,
the conditions listed across each row are equivalent.

(1.) R is l .s .c. in T F |=�·�p → ��· p F ��·�p ↔ ��·�p
(2.) R is u.s .c. in T F |= �·�p → ��·p
(3.) R−1 is l .s .c. in T F |= ��·p → �·�p F ��·�p ↔ ��·�p
(4.) R−1 is u.s .c. in T F |= ��· p →�·�p

4 Topological Bisimulations

Aiello and van Benthem’s notions of topological simulation and bisimulation
between classical S4 topological models are as follows.

Definition 4. [[1], Definition 2.1] Let (X1, T1) and (X2, T2) be two topological
spaces, let v1 : AP � X1 and v2 : AP � X2 be valuations of atomic propositions,
and let M1 = (X1, T1, v1) and M2 = (X2, T2, v2) be topological models.
A relation B : X1 � X2 is a topo-bisimulation between M1 and M2 if
(i.a) ∀x ∈ X1, ∀y ∈ X2, ∀p ∈ AP , if xB y and x ∈ v1(p) then y ∈ v2(p) ;
(i.b) ∀x ∈ X1, ∀y ∈ X2, ∀p ∈ AP , if xB y and y ∈ v2(p) then x ∈ v1(p) ;
(ii.a) ∀x ∈ X1, ∀y ∈ X2, ∀U ∈ T1, if xB y and x ∈ U

then ∃V ∈ T2 with y ∈ V and ∀y′ ∈ V, ∃x′ ∈ U such that x′ B y′ ;
(ii.b) ∀x ∈ X1, ∀y ∈ X2, ∀V ∈ T2, if xB y and y ∈ V

then ∃U ∈ T1 with x ∈ U and ∀x′ ∈ U, ∃y′ ∈ V such that x′ B y′ .
If only conditions (i.a) and (ii.a) hold of a relation B : X1 � X2, then B is
called a topo-simulation of M1 by M2.
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Proposition 4. Given a map B : X1 � X2 between (X1, T1) and (X2, T2),
(1.) B satisfies condition (ii.a) of Definition 4 iff B−1 is l.s.c.;
(2.) B satisfies condition (ii.b) of Definition 4 iff B is l.s.c..

Proof. By rewriting in terms of the pre- and post-image set operators, it is easy
to show that conditions (ii.a) and (ii.b) are equivalent to the following:

(ii.a�) ∀U ∈ T1, B∃(U) ⊆ intT2

(
B∃(U)

)

(ii.b�) ∀V ∈ T2, B−∃(V ) ⊆ intT1

(
B−∃(V )

)

Clearly, (ii.a�) says that B∃(U) is open in X2 whenever U open in X1, while
(ii.b�) says that B−∃(V ) is open in X1 whenever V open in X2. �
For the appropriate notion of topological bisimulation between topological
Kripke models for the intuitionistic and classical companion modal and tense
logics under study here, we need to put together the topology-preserving con-
ditions (ii.a) and (ii.b) above with the standard clauses for preservation of the
modal/tense semantic structure.

Definition 5. Let M1 = (X1, T1, R1, v1) and M2 = (X2, T2, R2, v2) be two
topological models. A map B : X1 � X2 will be called a tense topo-bisimulation
between M1 and M2 if for all atomic p ∈ AP:

(i.a) B∃(v1(p)) ⊆ v2(p) (i.b) B−∃(v2(p)) ⊆ v1(p)
(ii.a) B−1 : X2 � X1 is l .s .c. (ii.b) B : X1 � X2 is l .s .c.
(iii.a) (B−1 ◦ R1) ⊆ (R2 ◦ B−1) (iii.b) (B ◦ R2) ⊆ (R1 ◦ B)
(iv.a) (B−1 ◦ R−1

1 ) ⊆ (R−1
2 ◦ B−1) (iv.b) (B ◦ R−1

2 ) ⊆ (R−1
1 ◦ B)

If only conditions (i.a), (ii.a) and (iii.a) hold of the map B : X1 � X2, then B
is called a modal topo-simulation of M1 by M2; if all but conditions (iv.a) and
(iv.b) hold, then B is a modal topo-bisimulation between M1 and M2.

Combining all the conditions (iii) and (iv), one obtains two equalities:
(R1 ◦ B) = (B ◦ R2) and (R2 ◦ B−1) = (B−1 ◦ R1). The set-operator form of the
semantic preservation conditions are:

B∃(�ϕ �M1
I ) ⊆ �ϕ �M2

I and B−∃(�ϕ �M2
I ) ⊆ �ϕ �M1

I (5)

and likewise for classical denotation maps �ϕ �Mi . We will also use the dual
versions under the adjoint equivalence (3). These are:

�ϕ �M1
I ⊆ B−∀(�ϕ �M2

I ) and �ϕ �M2
I ⊆ B∀(�ϕ �M1

I ) (6)

and likewise for �ϕ �Mi . Note also that B−1 : X2 � X1 being l.s.c. has a further
equivalent characterization: intT1(B

−∀(W )) ⊆ B−∀(intT2(W )), for all W ⊆ X2;
this is a generalization of the characterization for binary relations on a single
space X that is formalized in Proposition 3, Row (3.).

What we discover is that exactly the same notion of a bisimulation between
models yields the same semantic preservation property for both the intuitionistic
and the classical semantics. Otherwise put, the specifically topological require-
ment that the operators B∃ and B−∃ preserve open sets is enough to push
through the result for intuitionistic modal and tense logics.
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Theorem 1. [Semantic preservation for tense topo-bisimulations] Let M1 =
(X1, T1, R1, v1) and M2 = (X2, T2, R2, v2) be any two topological models, and let
B : X1 � X2 be a tense topo-bisimulation between M1 and M2.

(1.) If M1 and M2 are open and l .s .c., then for all x ∈ X1 and y ∈ X2:

xB y implies (∀ϕ ∈ Lt ) [ x ∈ �ϕ �M1
I ⇔ y ∈ �ϕ �M2

I ]

(2.) For all x ∈ X1 and y ∈ X2:

xB y implies (∀ϕ ∈ Lt
� ) [ x ∈ �ϕ �M1 ⇔ y ∈ �ϕ �M2 ]

Proof. The proof proceeds as usual, by induction on the structure of formulas,
to establish the two inclusions displayed in (5), or their analogs for the classical
denotation maps. The base case for atomic propositions is given by conditions
(i.a) and (i.b). For the classical semantics in Part (2.), the argument is com-
pletely standard for the propositional and modal/tense operators, and the case
for topological � is made in [1]. For the intuitionistic semantics in Part (1.), we
give the cases for implication → and for box �· . Assume the result holds for ϕ1
and ϕ2 in Lt. In particular, from Assertions (5) and (6), we have:

(X1 − �ϕ1�
M1
I ) ⊆ (X1 − B−∃(�ϕ1�

M2
I )), and �ϕ2�

M1
I ⊆ B−∀(�ϕ2 �M2

I ). Now:
B∃ (�ϕ1 → ϕ2 �M1

I )
= B∃ (intT1 ( (X1 − �ϕ1�

M1
I ) ∪ �ϕ2�

M1
I ))

⊆ B∃ (
intT1

(
X1 − B−∃(�ϕ1�

M2
I ) ∪ B−∀(�ϕ2�

M2
I )

))
by induction hypothesis

= B∃ (
intT1

(
B−∀(X2 − �ϕ1�

M2
I ) ∪ B−∀(�ϕ2�

M2
I )

))
by duality B−∀ / B−∃

⊆ intT2

(
B∃ (

B−∀(X2 − �ϕ1�
M2
I ) ∪ B−∀(�ϕ2�

M2
I )

))
by B−1 being l.s.c.

⊆ intT2

(
B∃ (

B−∀ ( (X2 − �ϕ1�
M2
I ) ∪ �ϕ2�

M2
I )

))
by monotonicity of B−∀

⊆ intT2 ( (X2 − �ϕ1�
M2
I ) ∪ �ϕ2�

M2
I ) by adjoint property

= �ϕ1 → ϕ2 �M2
I

Verifying that B−∃ (�ϕ1 → ϕ2 �M2
I ) ⊆ �ϕ1 → ϕ2 �M1

I proceeds similarly, us-
ing from the induction hypothesis: (X2 − �ϕ1�

M2
I ) ⊆ (X2 − B∃(�ϕ1�

M1
I )), and

�ϕ2�
M2
I ⊆ B∀(�ϕ2 �M1

I ).
For the �· case:

��·ϕ �M1
I

= intT1

(
R−∀

1 (�ϕ �M1
I )

)

⊆ intT1

(
R−∀

1

(
B−∀ (�ϕ �M2

I )
))

by induction hypothesis
⊆ intT1

(
B−∀ (

R−∀
2 (�ϕ �M2

I )
))

since R1 ◦ B = B ◦ R2

⊆ B−∀ (
intT2

(
R−∀

2 (�ϕ �M2
I )

))
by B−1 being l.s.c. (dual B−∀ form)

= B−∀ (�ϕ �M2
I )

The argument for �· symmetrically appeals to B being l.s.c. (dual B∀ form). �

In a sequel paper, [10], we give a partial converse (Hennessy-Milner type result)
by proving that a certain class of open l.s.c. models has the property that for
any two models M1 and M2 in the class, there is a total and surjective tense
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topo-bisimulation B between them that maximally preserves the intuitionistic
semantics, in the sense that for all x ∈ X1 and y ∈ X2:

xB y iff (∀ϕ ∈ Lt ) [ x ∈ �ϕ �M1
I ⇔ y ∈ �ϕ �M2

I ] .

5 Axiomatizations and Canonical Models

Let IPC ⊆ L0 be the set of intuitionistic propositional theorems, and abusing
notation, let IPC also denote a standard axiomatisation for that logic. Likewise,
let S4�⊆ L0,� be the set of theorems of classical S4, and let S4� also denote
any standard axiomatisation of classical S4. To be concrete, let S4� contain
all instances of classical propositional tautologies in the language L0,�, and the
axiom schemes:

N� : �� T� : �ϕ → ϕ

R� : �(ϕ1 ∧ ϕ2) ↔ �ϕ1 ∧ �ϕ2 4� : �ϕ → ��ϕ

and be closed under the inference rules of modus ponens (MP), uniform sub-
stitution (Subst) (of formulas for atomic propositions), and �-monotonicity
(Mono�): from ϕ1 → ϕ2 infer �ϕ1 → �ϕ2.

On notation, for any axiomatically presented logic Λ in a language L, set of
formulas A ⊆ L and formula ϕ ∈ L, we write A �Λ ϕ to mean that there exists
a finite set {ψ1, . . . , ψn} ⊆ A of formulas such that (ψ1 ∧ · · · ∧ ψn) → ϕ is a
theorem of Λ (allowing n = 0 and ϕ is a theorem of Λ). The relation �Λ ⊆ 2L×L
is the consequence relation of Λ. We will abuse notation (as we have with IPC
and S4�) and identify Λ with its set of theorems: i.e. Λ = {ϕ ∈ L | ∅ �Λ ϕ }.

Let IK be the axiomatic system of Fischer Servi [18,15,22], which is equivalent
to an alternative axiomatisation given in [29,32]; IK also goes by the name FS
in [22] and [20,37,38]. IK has as axioms all instances in the language Lm of the
axiom schemes of IPC, and further axiom schemes:

R�· :�· (ϕ ∨ ψ) ↔ (�· ϕ ∨�·ψ) N�· : ¬�·⊥
R�· : �·(ϕ ∧ ψ) ↔ (�·ϕ ∧ �·ψ) N�· : �·�
F1�·�· :�· (ϕ → ψ) → (�·ϕ →�· ψ) F2�·�· : (�· ϕ → �·ψ) → �·(ϕ → ψ)

and is closed under the inference rules (MP) and (Subst), and the rule (Mono�· ):
from ϕ1 → ϕ2 infer �· ϕ1 →�·ϕ2, and likewise (Mono�·).

With regard to notation for combinations of modal logics, we follow that of
[20]. If Λ1 and Λ2 are axiomatically presented modal logics in languages L1 and
L2 respectively, then the fusion Λ1 ⊗Λ2 is the smallest multi-modal logic in the
language L1 ⊗ L2 containing Λ1 and Λ2, and closed under all the inference rules
of Λ1 and Λ2, where L1⊗L2 denotes the least common extension of the languages
L1 and L2. If Λ is a logic in language L, and Γ is a finite list of schemes in L, then
the extension Λ⊕Γ is the smallest logic in L extending Λ, containing the schemes
in Γ as additional axioms, and closed under the rules of Λ. The basic system in
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[37], under the name IntK, is such that: IK = IntK ⊕ F1�·�· ⊕ F2�·�· . The
latter two schemes were identified by Fischer Servi in [18]5.

For the extension to tense logics with forwards and backwards modalities, let
IKt be Ewald’s [15] deductive system, which is the fusion of IK�·�· := IK with
the “mirror” system IK�·�· having axiom schemes R�· , N�· , R�· , N�· , F1�·�·
and F2�·�· , and inference rules (Mono�· ) and (Mono�·), which is then further
extended with four axiom schemes expressing the adjoint property (Assertion (3))
of the operators interpreting the tense modalities:

Ad1 : ϕ → �·�· ϕ Ad2 : ϕ → �·�· ϕ Ad3 :�·�·ϕ → ϕ Ad4 :�·�·ϕ → ϕ

Thus IKt := (IK�·�· ⊗ IK�·�·) ⊕ Ad1 ⊕ Ad2 ⊕ Ad3 ⊕ Ad4.
We now identify the companion classical logics. Let K�· be the minimal nor-

mal modal logic (over a classical propositional base), and let (S4�⊗K�·) be the
bi-modal fusion of S4� and K�· , and let KmLSC := (S4� ⊗ K�·) ⊕ (�·�ϕ →
��·ϕ) ⊕ (��·ϕ → �·�ϕ) be the extension of (S4� ⊗ K�·) with characteristic
modal schemes for the R-l.s.c. and R−1-l.s.c. frame conditions, from Proposi-
tion 3 (and as identified in [16]). Likewise, Kt := (K�· ⊗ K�·) ⊕ Ad1 ⊕ Ad2
is the minimal normal tense logic, and KtLSC := (S4� ⊗ Kt) ⊕ (�·�ϕ →
��·ϕ) ⊕ (�·�ϕ → ��· ϕ), here using instead the tense scheme for R−1-l.s.c.
from Proposition 3.

In what follows, we will deal generically with extensions IK ⊕ Γ or IKt ⊕ Γ
for subsets Γ of the five axiom schemes below or their �·-�· mirror images:

T�·�· : (�·ϕ → ϕ) ∧ (ϕ →�· ϕ) B�·�· : (ϕ → �·�·ϕ) ∧ (�·�·ϕ → ϕ)

D�· :�·�
4�·�· : (�·ϕ → �·�·ϕ) ∧ (�·�· ϕ →�· ϕ) 5�·�· : (�·�·ϕ → �·ϕ) ∧ (�· ϕ → �·�· ϕ)

(7)
where the schemes characterize, in turn, the properties of relations R : X � X of
reflexivity, symmetry, totality (seriality), transitivity and Euclideanness, and the
mirror image scheme characterize relations R such that R−1 has the property6.
For a set Γ of schemes, let C(Γ ) be the set of all formulas ϕ ∈ Lt that are
int-modal-top valid in every l.s.c. topological frame whose relation R has the
properties corresponding to the schemes in Γ , and let C�(Γ ) be the set of all
formulas ϕ ∈ Lt

� that are modal-top valid in every topological frame whose
relation R has the properties corresponding to the schemes in Γ .

The topological soundness of IKt and of KtLSC are easy verifications. For
example, the soundness of the Fischer Servi scheme F1�·�· is equivalent to the
assertion that, for all open sets U, V ∈ T :

R−∃ (intT (−U ∪ V )) ⊆ intT

(
−intT (R−∀(U)) ∪ R−∃(V )

)
.

5 The intuitionistic modal logics considered in [36] and [23] are yet weaker sub-systems:
they have the normality schemes R�· and N�· for �· , but �· is sub-normal – they
include the scheme N�· , but R�· is replaced by (�·ϕ ∧�· ψ) → �· (ϕ ∧ ψ).

6 Note that R has reflexivity, symmetry or transitivity iff R−1 has the same property,
so the mirrored tense schemes T�·�· , B�·�· and 4�·�· are semantically equivalent
to their un-mirrored modal versions.
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The inclusion R−∃ (intT (−U ∪ V )) ⊆ intT

(
R−∃(−U ∪ V )

)
follows from R be-

ing l.s.c. Applying distribution over unions, duality, and monotonicity, we can
get intT

(
R−∃(−U ∪ V )

)
⊆ intT

(
−intT (R−∀(U)) ∪ R−∃(V )

)
, so we are done. R

being l.s.c. is also used for soundness of the adjoint axioms Ad2 and Ad3.
From Proposition 2 and topological completeness in Proposition 6 below, we

can derive deductive faithfulness of the extended Gödel translation.

Proposition 5. [Extended Gödel translation: deductive faithfulness]
Let Γ be any finite set of schemes in Lt from the list in (7) above.
For all ϕ ∈ Lt, ϕ ∈ IKt ⊕ Γ iff GT(ϕ) ∈ KtLSC ⊕ Γ .

This result can also be derived from a general result for (an equivalent) Gödel
translation given in [38], Theorem 8, on the faithful embedding of modal logics
L = IntK ⊕ Γ1 (including IK ⊕ Γ = IntK ⊕ F1�·�· ⊕ F2�·�· ⊕ Γ ) into bi-
modal logics in the interval between (S4�⊗K�·)⊕GT(Γ1) and (Grz�⊗K�·)⊕
GT(Γ1) ⊕ mix, where Grz� = S4� ⊕ � (�(ϕ → �ϕ) → ϕ) → ϕ and mix =
(��·ϕ ↔ �·ϕ) ∧ (�·�ϕ ↔ �ϕ). We have restricted the schemes in Γ to those
from a “safe” list of relational properties that don’t require translating, since
the schemes characterize the same relations in the intuitionistic and classical
semantics.

Recall that for a logic Λ in a language L with deductive consequence relation
�Λ, a set of formulas x ⊆ L is said to be Λ-consistent if x �Λ ⊥ ; x is Λ-
deductively closed if x �Λ ϕ implies ϕ ∈ x for all formulas ϕ ∈ L; and x
is maximal Λ-consistent if x is Λ-consistent, and no proper superset of x is Λ-
consistent. A set x ⊆ L is a prime theory of Λ if Λ ⊆ x, and x has the disjunction
property, and is Λ-consistent, and Λ-deductively closed.

Completeness w.r.t. bi-relational frames for IK and IKt is proved in [18,32]
and [15] by building a canonical model over the state space Xip defined to be the
set of all sets of formulas x ⊆ Lt that are prime theories of IKt. The space Xip is
partially ordered by inclusion, so we have available an Alexandrov topology T⊆.
One then defines the modal accessibility relation R0 in an “almost classical” way,
the only concession to intuitionistic semantics being clauses in the definition for
both �· and �· . As verified in [18] and [32] for the modal logic, and [15] for the
tense logic, the relations R0 and R−1

0 satisfy the frame conditions Zig(⊆, R0)
and Zig(⊆, R−1

0 ). So we get an l.s.c. topological frame F0 = (Xip, T⊆, R0), and
with the canonical valuation u : AP � Xip given by u(p) = {x ∈ Xip | p ∈ x};
one then proves of the model M0 = (F0, u) the “Truth Lemma”: for all ϕ ∈ Lt

and x ∈ Xip, x ∈ �ϕ�M0
I iff ϕ ∈ x.

Adapting [1], Sec. 3, on classical S4, to the classical companion logics here,
we can go beyond pre-orders by equipping the space of maximal consistent sets
of formulas with a topology that is neither Alexandrov nor Stone, but rather is
the intersection of those two topologies.

Proposition 6. [Topological soundness and completeness]
Let Γ be any finite set of axiom schemes from Lt from the list in (7) above.
(1.) For all ψ ∈ Lt

�, ψ is a theorem of KtLSC ⊕ Γ iff ψ ∈ K
t
LSC ∩ C�(Γ ).

(2.) For all ϕ ∈ Lt, ϕ is a theorem of IKt ⊕ Γ iff ϕ ∈ IK
t
T ∩ C(Γ ).
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In what follows, we use IL and L�, respectively, as abbreviations for the ax-
iomatically presented logics IKt ⊕ Γ and KtLSC ⊕ Γ . Taking soundness as
established, we sketch completeness by describing the canonical models.

For the classical companion L�, define a model M� = (Y�m, S�, Q�, v�):

Y�m := {y ⊆ Lt
� | y is a maximal L�-consistent set of formulas};

S� is the topology on Y�m which has as a basis the family
{ V (�ψ) | ψ ∈ Lt

� } where V (�ψ) := {y ∈ Y�m | �ψ ∈ y};
Q� : Y�m � Y�m defined for all y ∈ Y�m by

Q�(y) := { y′ ∈ Y�m | {�· ψ | ψ ∈ y′} ⊆ y and {�· ψ | ψ ∈ y} ⊆ y′ } ;
v� : AP � Y�m defined for all p ∈ AP by v�(p) := {y ∈ Y�m | p ∈ y}.

As noted in [1], the topology S� on Y�m is the intersection the “default” Alexan-
drov topology from the canonical relational Kripke model, and the standard
Stone topology on Y�m which has as a basis all sets of the form V (ψ) for all
formulas ψ ∈ Lt

�, not just the V (�ψ) ones. Moreover, the space (Y�m, S�) is
compact and dense-in-itself (has no isolated points). Verification that Q� and
Q−1

� are l.s.c. reduces to establishing that for all ψ ∈ Lt
�:

Q−∃
� (V (�ψ)) = V (��·�ψ) and Q∃

�(V (�ψ)) = V (��·�ψ).

The “Truth Lemma” is y ∈ �ϕ�M� iff ψ ∈ y, for all ψ ∈ Lt
� and y ∈ Y�m.

For the intuitionistic logic IL, define an open model M� = (Xip, Tsp, R�, u�):

Xip := {x ⊆ Lt | x is a prime IL-theory };
Tsp is the topology on Xip which has as a basis the family

{ U(ϕ) | ϕ ∈ Lt } where U(ϕ) := {x ∈ Xip | ϕ ∈ x};
R� : Xip � Xip defined for all x, x′ ∈ Xip by R� := R0; i.e. xR� x′ iff

{�· ψ | ψ ∈ x′} ⊆ x and {ψ | �·ψ ∈ x} ⊆ x′ and
{�· ψ | ψ ∈ x} ⊆ x′ and {ψ | �·ψ ∈ x′} ⊆ x ;

u� : AP � Xip defined for all p ∈ AP by u�(p) := U(p).

Here, the toplogical space (Xip, Tsp) has a spectral topology (e.g. [33], Sec.4),
which means it is compact and T0; the family of compact and open sets in Tsp
gives a basis for the toplogy; and Tsp is sober, i.e. for every completely prime
filter F of Tsp, there exists a (unique) point x ∈ Xip such that F = Fx :=
{U ∈ Tsp | x ∈ U}, the filter of neighbourhoods of x. The hardest parts of the
verification are the l.s.c. properties for R� and R−1

� , and the task reduces to
establishing that for all ϕ ∈ Lt:

R−∃
� (U(ϕ)) = U(�· ϕ) and R∃

�(U(ϕ)) = U(�· ϕ)

To prove the right-to-left inclusions, a recursive Henkin-style construction can
be used to produce a prime IL-theory x′ such that xR� x′ and ϕ ∈ x′, to
derive x ∈ R−∃

� (U(ϕ)) given x ∈ U(�· ϕ), and symmetrically for the R∃
�(U(ϕ))

inclusion. The required “Truth Lemma” is x ∈ �ϕ�M�
I iff ϕ ∈ x for all ϕ ∈ Lt

and x ∈ Xip.
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6 Topological Bisimulation Between Canonical Models

The Gödel translation is a syntactic function GT : Lt → Lt
�, which naturally

gives rise to a semantic relationship between the canonical model spaces Xip and
Y�m. Define a set-valued map G : Xip � Y�m by:

G(x) := { y ∈ Y�m | GT(x) ⊆ y }

Note that the image GT(x) of an intuitionistic prime theory x ∈ Xip will in
general have many classical maximal consistent extensions y ∈ Y�m.

Let M∗
� = (Y�m, S∗

�, Q�, v∗�) be the open and l.s.c. model obtained from M�
by taking S∗

� to be the proper sub-topology of S� having as a basis the open
sets { V (�GT(ϕ)) | ϕ ∈ Lt }7, with valuation v∗�(p) := intS∗

�
(v�(p)) = V (�p).

Theorem 2. The maps G : Xip � Y�m and G−1 : Y�m � Xip are such that:
(1.) both G and G−1 are l .s .c. with respect to Tsp and S∗

�;
(2.) both G and G−1 are total and surjective;
(3.) R� ◦ G = G ◦ Q� and Q� ◦ G−1 = G−1 ◦ R�; and
(4.) G∃(u�(p)) ⊆ v�(p) and G−∃(v�(p)) ⊆ u�(p) for all atomic p ∈ AP.
Hence G is a tense topo-bisimulation between M� and M∗

�.

Proof. For Part (1.), the l.s.c. properties, we need only look at the basic opens
in Tsp and S∗

�. Using the openness theorem �GT(ϕ) ↔ GT(ϕ), it is readily
established that for all ϕ ∈ Lt:

G−∃(V (�GT(ϕ))) = U(ϕ) and G∃(U(ϕ)) = V (�GT(ϕ)).

For Part (2.), the totality of G, note that every prime theory x ∈ Xip is IL-
consistent, hence the image GT(x) ⊆ L� is L�-consistent, and so has a maximal
L�-consistent superset y ⊇ GT(x) with y ∈ Y�m, by Lindenbaum’s Lemma. For
the surjectivity of G (equivalently, the totality of G−1), define as follows the
(proper) subset G∗ of formulas L�-equivalent to the image under GT of some
�-free formula: G∗ := {ψ ∈ Lt

� | (∃ϕ ∈ Lt) �L� ψ ↔ GT(ϕ) }. Now for any
maximal L�-consistent theory y ∈ Y�m, define the subset y∗ := y ∩ G∗. Define
Xm

ip := {x0 ∈ Xip | (∀x ∈ Xip) x0 � x } to be the (proper) subset of prime IL
theories that are ⊆-maximal. Then every x0 ∈ Xm

ip is a maximal IL-consistent
theory, and is also a classical L�-consistent theory that is maximal within the
�-free language Lt. So by the deductive faithfulness of the Gödel translation,
for every y ∈ Y�m, there is a maximal x0 ∈ Xm

ip such that GT(x0) = y∗, and
hence GT(x0) ⊆ y. Hence G is surjective. The verifications for the remaining
Parts (3.) and (4.) are somewhat lengthy, but straight-forward. �
In a sequel [10], we return to the intuitionistic canonical model M�, and use
it to give a Hennessy-Milner type result on maximal topological bisimulations
preserving the intuitionistic semantics. For both the intuitionistic and classical
7 M∗

� will be an l.s.c. model, as Q� and Q−1
� will still be l.s.c. w.r.t. the sub-topology

S∗
�; using Q−∃

� (V (�ψ)) = V (��· �ψ) and Q∃
�(V (�ψ)) = V (��· �ψ) and the open-

ness property GT(ϕ) ↔ �GT(ϕ), we have Q−∃
� (V (�GT(ϕ))) = V (�GT(�· ϕ)) and

Q∃
�(V (�GT(ϕ))) = V (�GT(�· ϕ)).
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semantics, the classes of models identified have suitable ‘saturation’ properties
w.r.t. the semantics, and the maximal topo-bisimulations are constructed via
natural maps into the canonical models. Within these Hennessy-Milner classes,
we identify some subclasses of models of continuous, discrete and hybrid dynam-
ical systems.
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