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1 What’s new?

12/12/10 The GNU GPL’d sparse linear solver UMFPACK written by Tim Davis is
now interfaced to arb. An easy download and setup script is included.

25/11/10 The run procedure has been simplified for version 0.24. Basically you don’t
have to run setup equations separately anymore - all meta-programming,
compilation and running is handled by the single command ‘./arb’, run from
the working directory.

2 What is arb?

arb solves arbitrary partial differential equations on unstructured meshes using
the finite volume method. The code is written in fortran95, with some meta-
programming done in perl with help from maxima.

The primary strengths of arb are:

• All equations and variables are defined using ‘maths-type’ expressions writ-
ten by the user, and hence can be easily tailored to each application;

• All equations are solved simultaneously using a Newton-Raphson method,
so implicitly discretised equations can be solved efficiently; and
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• The unstructured mesh over which the equations are solved can be com-
ponsed of all sorts of convex polygons/polyhedrons.

arb requires a UNIX type environment to run, and has been tested on both the
Apple OsX and ubuntu linux platforms. Certain third party programs are used
by arb:

• A fortran compiler; ifort and gfortran are supported;

• maxima;

• perl;

• A sparse matrix linear solver: UMFPACK, pardiso and (currently a single)
Harwell Subroutine Library routines are supported;

• Some general linear algebra routines: Lapack and the Numerical Recipes
in Fortran Library are supported;

• gmsh; and

• The core unix routines tar, gzip and rsync.

Further details about how to get and install this software are given in section 3.2.

arb is copyright Dalton Harvie (2009,2010), but released under the GNU General
Public License (GPL). Further details of this license can be found in the license
directory once the code has been unpacked.

3 Working with arb

3.1 Managing arb’s files

All routine setup, compiling and running of arb is conducted from a working
directory which contains a specific structure of files and subdirectories. Two rou-
tines, pack and unpack, are provided to automate the process of ‘transporting’
arb and creating this required file/subdirectory structure.
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3.1.1 Unpacking the code

To create a new version of arb, a new working directory should have been obtained
containing the four files

• archive.tar.gz

• unpack

• README

• LICENSE

Using the command

./unpack

from within this directory will unpack the archive, creating the necesary file/sub-
directory structure.

If you’re impatient to get things going (who isn’t?), you next need to check that
the required third-party software is installed, as detailed in secion 3.2.

3.1.2 The working directory and file structure

Once the archive is unpacked the working directory will contain the following
subdirectories and files/links:

• src directory: contains the main fortran source code of arb, and the
makefile necessary to build everything (except for the contributed li-
braries). It also contains the meta-programming perl script setup equations.pl

and a template file equations module.f90 which are used to create the
fortran file equations module.f90 within build which is specific to each
problem.

• src equations/contributed directory: This directory may/should/can
contain contributed third party code that can be used by arb, along with
associated interface modules — for example, linear solver routines. There
is a separate subdirectory for each package. Each directory contains error
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handling modules that handle runtime cases where the third party routines
are not available, and also some brief installation instructions. Most direc-
tories work on the drop-box principle — if the required files are available
then they will be included in the arb executable.

• build directory: all building is done within this directory.

• tmp directory: temporary files are stored within this directory, including the
file setup/debug which is used for debugging the equation setup.

• output directory: output files from a simulation are placed in here.

• misc directory: contains miscellaneous files — right now a simple script
create mesh which builds a .msh file from any .geo file in the working
directory.

• doc directory: contains documentation including this manual.

• gmsh directory: generally the gmsh structure (.geo) and mesh (.msh)
files are stored in this directory. Examples that are detailed in this manual
(section 6) are stored in the gmsh/manual subdirectory.

• examples directory: example problem-specific files equations.in and
constants.in are stored here. Examples that are detailed in this manual
(section 6) are stored in the examples/manual subdirectory.

• packer directory: contains various files specific to the pack and unpack
operations. A history file within this directory records the distribution
history of the specific code version.

• license directory: contains license details, including the (GNU GPL) li-
cense under which arb is released.

• equations.in and constants.in files: these files and an associated
.msh or .geo file contain all the problem-specific information required for
a particular simulation. equations.in is read by setup equations when
creating the equation-specific fortran code equations module.f90 within
build. constants.in is read by both setup equations and by the
executable fortran code arb. It contains constant and numerical simulation
data which can be (mainly) edited without requiring arb to be recompiled.

• arb script: this shell script is a wrapper script for setting-up, making and
running arb. You can pass options to this script to control the compilation
process — for example choose between the gnu and intel compilers. It also
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performs simulation restart file management (not implemented!). This
script works out when the equation meta-programming has to be redone
or not, and when recompilation is necessary. So if in doubt, just type
arb.....

• pack file: this shell script is used to pack up a simulation.

3.1.3 Packing the code

To pack a simulation ready to transport or backup, use the command

./pack

from within the working directory. This will create a subdirectory with a name of
the form arb [date] [version] which contains all files necessary to run arb.
Following the command with a name, as in

./pack a_name

will create the archive in a subdirectory named a name instead of the default.

The script pack accepts a number of options. By default only files within the
examples or gmsh directories that are specific to this manual are included in
the archive. The options --example, --gmsh, --misc or --all specify that all
files within either the example, gmsh, misc or all three directories are contained
within the archive. Including the gmsh option may be necessary to transport a
particular .msh or .geo mesh file with the other files. Also, by default only source
code within the src/contributed directory that is not subject to a non-free
third party license is included in the archive. Using the options --contributed
or --all causes all files in these directories to be archived. Using --distribute

means that no third party software is included in the archive. The option --build

means that all files in the build directory will be included in the archive. This
may be useful if you want to transport the simulation to another machine that
may not have maxima installed (for example).

Other options to pack include --notar and --help.

3.2 Checking for prerequisit software

A number of third-party applications must be installed in order to use arb.
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3.2.1 Maxima

Equation generation is performed using the Maxima Computer Algebra system.
It is released under the GNU General Public License (GPL) and is available for
free.

To check whether you have it installed already try typing maxima. If the program
is installed you will enter a symbolic maths environment. Then check that the
command load(f90); finds these libraries, and then quit using quit();.

If there is a something missing then on ubuntu linux the command apt-get

install maxima maxima-share should sort things out. On OsX maxima can
be installed using the macports software, using port install maxima. Al-
ternatively, a precompiled version for the mac is available from sourceforge,
and really this is the much easier way of getting things going. If you do
use the binary version then you’ll need to get the executable command (ie,
Maxima.app/Contents/Resources/bin/maxima) into your path.

3.2.2 Perl

Most likely you already have a version of perl installed.

3.2.3 A fortran compiler and the lapack libraries

Two different compilers have been tested with arb. The Intel Fortran compiler
ifort is probably the faster of the two. It also includes the Intel Maths Kernel
library which itself includes the excellent Pardiso routines (see section below)
and lapack libraries: however this compiler is not free except on linux and even
then, only under specific non-commercial circumstances. The non-commercial
download site for ifort is here. Make sure you install both the compiler and MKL
(Math Kernel Libraries).

The GNU compiler gfortran is an easier option to get going, and is freely
available on both the OsX and linux platforms. It does not include the Par-
diso routines but with the new interface to the UMFPACK routines this isn’t a
tremendous disadvantage.

On ubuntu linux gfortran and the lapack/blas libraries can be installed with the
command apt-get install gfortran liblapack-dev libblas-dev. On
OsX gfortran can be installed using the macports software and the command
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port install gfortran. Binary versions of gfortran are also be available
from the web for OsX, for example from here. Binaries are easier to install,
but check that once installed the gfortran executable is in your path - that is,
typing gfortran at the command line should find the compiler. I think that the
lapack/blas libraries get installed on OsX when you install the Xcode development
tools.

Compiler choice is made automatically by the arb script (defaulting to ifort

if it exists, otherwise using gfortran). This can be overwritten with the arb

options --compiler-gnu or --compiler-intel.

ifort versions of 11.1.069 and newer (not version 2011 yet) have been tested
on both linux and OsX. gfortran version 4.2.4 on ubuntu 8.04 doesn’t seem
to work on some computers (internal compiler error) whereas version 4.4.3 on
ubuntu 10.04 does. Version 4.6 on osX also works fine. On ubuntu 8.04 you
could try downloading a newer binary version of gfortran but I haven’t tried
this.

3.2.4 Pardiso

The pardiso sparse linear matrix solver is included as part of the Intel Math Kernel
Library which is packaged with the Intel Fortran compiler (see above).

If using the intel compiler then this solver will automatically become available
(check the initial output when running arb to see if this has been found).

3.2.5 UMFPACK

The UMFPACK sparse linear solver is part of the suitesparse collection of sparse
matrix routines written by Prof. Tim Davis. It is written in c and released under
the GNU GPL (see conditions here).

UMFPACK depends on ‘METIS - Serial Graph Partitioning and Fill-reducing
Matrix Ordering’. METIS is freely available but not free distributable. For more
details see the conditions here.

The installation process for the UMFPACK/METIS combination has been au-
tomated so that it can be easily used with arb. To install these packages and
compile them in a form that is suitable for arb:
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cd src/contributed/suitesparse

make

The make command will download the latest version of UMFPACK and ver-
sion 4.0 of METIS (using wget), and then compile these libraries using the gcc
compiler. A wrapper script for using UMFPACK from fortran (included with
UMFPACK) will also be compiled. The files will be placed in the src/contribut-
ed/suitesparse directory, so will not overwrite any alternative suitesparse or metis
libraries already on your system. You need to have gcc installed on your system.

If all goes well the following files will be placed in src/contributed/suitesparse to
be used by arb:

libamd.a

libcamd.a

libccolamd.a

libcholmod.a

libcolamd.a

libmetis.a

libumfpack.a

umf4_f77wrapper.o

All of these files are required for UMFPACK to successfully run.

Note that the compilation is dependent on the type of machine architecture and
the libraries will need to be remade if transferred from one machine to another -
do a make clean and then a make again.

To remove the compiled libraries and files type

make clean

This will leave only the downloaded files (ready to be reused). To remove the
suitesparse and metis downloads as well, type

make clean_all

arb has been tested with the following combinations of umfpack and metis:

• UMFPACK.tar.gz 02-Jun-2010 11:46 and metis-4.0.tar.gz (4.0.1)
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3.2.6 Harwell Subroutine Library

TODO.

3.2.7 Numerical Recipes in Fortran 77

TODO.

3.2.8 Gmsh

While not integral to the arb code, the mesh and data format which arb uses
is that developed for gmsh. Gmsh is a mesh element generator which can be
run using scripts or via a graphical interface and can be used for post-processing
(visualisation) too. Gmsh uses the GNU General Public License (GPL).

There is some great introductory material available on the gmsh website on the
use of this program, particularly these online screencasts.

3.3 Running a simulation

3.3.1 The super quick guide: A heat conduction simulation

Once the code is unpacked you should be left in the working directory. Copy the
three required input files from the examples directory, and create the .msh file
using:

cp examples/manual/heat_conduction_around_ellipse/*.in .

cp examples/manual/heat_conduction_around_ellipse/*.geo .

misc/create_msh 2 1

The last command accepts two arguments; the first is the number of dimensions,
while the second controls the relative cell size — the smaller the parameter, the
smaller the mesh element size and greater the number. The file surface.msh

should now be present in the working directory.

Next edit the file constants.in to specify your choice of linear solver. If you
are using the intel compiler with MKL libraries a sensible choice is:
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LINEAR_SOLVER "INTEL_PARDISO" # pardiso solver contained

in intel mkl library

If using the gnu compiler then you’ll probably need to use the UMFPACK routines:

LINEAR_SOLVER "SUITESPARSE_UMF" # suitesparse umf solver

(UMFPACK) by Timothy A. Davis

Now type

./arb

If all goes well the simulation will run and output will be produced in the directory
output. To view the output type

gmsh output/output.msh

You should see the temperature field around a heated ellipse.

3.3.2 A more detailed guide: Newtonian fluid flow

The information about running a simulation here is presently out of date, but
there is some useful info about the mesh and input file structure.

To discuss the working method in more detail we use the example of steady-state
flow of a Newtonian fluid around a cylinder that is contained in a 2d channel.

There are 5 basic steps to setting up and running an arb simulation:

1. Create a mesh: Geometry definition and mesh creation can be per-
formed in gmsh. The domain geometry details are stored in a .geo file,
which can be created by hand (file editing) or with the help of the gmsh
GUI. An example .geo file is included in Section 6.1 for the considered
case of the 2d channel containing a cylinder. This file is included in the
gmsh/manual/2d channel with cylinder/ directory.

Once a geometry (.geo file) has been created, gmsh can mesh this to
produce a .msh file which is the file that is read in by arb. For the
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considered test case place the generated mesh file surface.msh in the
gmsh/manual/2d channel with cylinder/ directory. When creating a
3D mesh be sure to optimise the mesh after creation (greatly improves
mesh quality).

arb uses the concept of ‘regions’ to locate various equations (for example
boundary conditions, domain equations etc) and these must be defined in
the .geo file prior to meshing. Regions have names that are delimited
by the < and > signs: for example <inlet> and <outlet> (generally any
user-defined names are delimited this way in arb).

In the example geometry file the boundary regions <inlet>, <outlet> and
<cylinder> have all been defined as physical entities. The area region
of <flow domain> which contains all mesh cells within the flow domain
has also been created. This region is necessary as by default, gmsh does
not write out mesh cells to a mesh file unless they are part of a physical
entity. Note that certain region names are reserved: see section 4.3 for
more details.

2. Edit equations.in and constants.in: Aside from the mesh file, all in-
formation that is specific to a simulation is contained in these two .in files.
equations.in is read only by the setup equations perl script when per-
forming the fortran ‘meta-programming’. constants.in is also read by
this perl script, but is also read by the arb fortran executable each time a
simulation is run. In general physical constants that would change regularly
between similar simulations should be defined in constants.in as their
values can be changed without having to rerun the meta-programming
script setup equations. On the other hand all equations, which are pro-
cessed by maxima via setup equations, must be defined in equations.in.
Hence any change to equations.in requires setup equations to be re-
run and the fortran executable arb remade.

Note that some simulation specific information such as the mesh file name,
newton solver convergence tolerance, number of newton iteration steps and
dimensions of the physical problem are defined in the constants.in file
and read directly by the arb executable: Hence these can be changed with-
out reruning setup equations or recompiling arb. Similarly any region
definitions contained in constants.in are only read by the arb exectuable
and can be changed without rerunning setup equations.

Section 6.1 gives example equations.in and constants.in files for the
considered test case of steady-state fluid flow around a cylinder. These files
are given in examples/manual/steady state channel flow with cylinder

and should be copied to the working directory. The quoted string after the
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READ GMSH keyword in constants.in should refer to the location of the
mesh file, relative to the working directory.

Further details regarding the syntax of both equations.in and constants.in

can be found in Sections 4 and 5.

3. Run setup equations: From the working directory running

./setup_equations

reads both equations.in and constants.in, and using maxima, creates
the fortran source code file src/equations module.f90. setup equations

writes some progress information to the screen - if all goes well this output
will end with the statement ‘success’.

If the script is not successful then errors in the equations.in and constants.in

files will need to be found and corrected. Aside from the screen output,
more debugging information is written by setup equations to the file
tmp/debug. Other files in the tmp directory trace the interaction between
the perl script and maxima.

4. Compile and run arb: The arb script in the working directory is a
‘wrapper’ for handling the running of arb. Typing

./arb -q -m &

from the working directory will remove old output files, compile arb (make
option -m), run arb and direct the output to output/output.scr (quiet
option -q), all in the background (&).

Other options to the arb run script include -d to make with debugging
options and run in a debugging environment, and -c to continue from a
previous run (not implemented yet).

5. View results: arb produces a file output/output.msh which can be
opened by gmsh for viewing. This file includes the mesh information as
well as variable data, so can be passed to arb as an input .msh file for sub-
sequent simulations (although only mesh read, not data read, is currently
implemented).

12



4 Inside arb

4.1 Code structure

4.2 Mesh structure

arb uses an unstructured mesh composed of cell elements that are separated
by face elements. The dimension of the domain cell elements is specified in
constants.in using the DIMENSIONS keyword. The dimension of the face ele-
ments is always 1 less than that of the domain cell elements. arb has been coded
to be able to handle any poly-sided cells, however in practice it has only been
tested to date (v0.23) with tetrahedron in 3D, triangles in 2D and lines in 1D:
these are the default element geometries created by gmsh.

Boundary cells are created by arb after a mesh has been imported. They have a di-
mension that is 1 less than that of the domain cells, so have no volume/area/width
in 3D/2D/1D, respectively. Each boundary cell has the same geometry, and is
conincident with, a boundary face. Hence, a mesh has the same number of
boundary faces as boundary cells.

4.3 Regions

Regions are sets of mesh elements that are used to locate user-defined variables
and equations. Each region may contain only mesh elements of the same centring
(that is, either cell or face elements, but not both). Regions can be defined by
the user directly in gmsh when the mesh is generated, or via statements in the
constants.in file that are interpreted when arb is run. There are also several
generic system generated regions. Region names must be delimited by the <>

characters, but apart from these two characters their names may contain any
non-alphanumeric characters.

4.3.1 Defining regions via gmsh

Regions are specified in gmsh by defining and then naming physical entities. To
do this via the gmsh GUI:

• Add a physical entity (under the physical groups tab) by selecting various
elemental entities.
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• Edit the geometry file (using the edit tab) and change the physical entity’s
name from the numerical name given by gmsh to the required <> delimited
name suitable for arb.

• Save the .geo file.

• Reload the .geo file again (using the reload tab). If you now check under
the visibility menu the physical entity will be visible.

4.3.2 Defining regions within the constants.in file

Currently there are two types of region specification statements that can be used
in the constants.in file:

Compound region:

CELL_REGION <name > "COMPOUND +<region1 >+<region2 >-<

region3 >" # comments

FACE_REGION <name > "COMPOUND <region1 >-<region2 >" #

comments

A compound region is defined using other existing regions. All regions that
are used in the definition (ie, <region1>, <region2> and <region3> in the
above examples) must have the (same) centring that is specified by the REGION

keyword. If a + sign precedes a region name in the list of regions, then all the
mesh elements that are in the following region are added to the new compound
region, if they are not already members. If a - sign precedes a region name in
the list of regions, then all the mesh elements that are in the following region are
removed from the new compound region, if they are (at that stage) members of
the new compound region. If no sign immediately precedes a region name in the
defining list then a + sign is assumed. When constructing a compound region
arb deals with each region in the defining list sequentially; so whether a mesh
element is included in the compound region or not may depend on the order that
the regions are listed.

At region:

CELL_REGION <name > "AT x1 x2 x3" # comments

FACE_REGION <name > "AT x1 x2 x3" # comments
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This statement defines a region that contains one cell or one face mesh element.
The element chosen lies closest to the point (x1,x2,x3). The values x1, x2
and x3 can be real or double precision floats.

4.3.3 System generated regions

The following regions are generated by arb at the start of a simulation. The
names cannot be used for user-defined regions:

region name description
<all cells> all cells
<domain> internal domain cells
<boundary cells> cells located on the boundary
<all faces> all faces
<domain faces> internal domain faces
<boundaries> faces located on the boundary

Additionally, there are a number of system regions which may be used in user-
written expressions (see section 5) which specify sets of mesh elements relative
to the current position. These names cannot be used for user-defined regions
either:

region name rel. to description
<celljfaces> cell faces that surround the current cell
<nobcelljfaces> cell faces that surround the current cell, unless the

current cell is on a boundary. In that instance
move to the neighbouring domain cell and then
cycle around the surrounding face cells.

<cellicells> cell cells that are local to the current cell (more
than just the adjacent cells)

<faceicells> face cells that are local to the current face (more
than just the adjacent cells)

<adjacentcellicells> cell cells that are strictly adjacent to the current
cell

<adjacentfaceicells> face cells that are strictly adjacent to the current
face (always two)

15



<upwindfaceicells> face the cell that is upwind of the face, used
when performing faceave[advection] aver-
aging (see section 5. Not really a user region.

<downwindfaceicells> face the cell that is downwind of the face, used
when performing faceave[advection] aver-
aging (see section 5. Not really a user region.

<cellkernel[l=0]> cell surrounding faces used in a cell averaging kernel
(see section 5. Not really a user region.

<cellkernel[l=1-3]> cell surrounding cells used in cell derivative kernels
(see section 5. Not really a user region.

<cellkernel[l=4]> cell surrounding nodes used in a cell averaging ker-
nels (see section 5. Not really a user region.

<facekernel[l=0-6]> face surrounding cells used in face averaging and
derivative kernels (see section 5. Not really a
user region.

<noloop> face/cell dummy region which specifies no elements.

4.4 Variable types

There are six types of user defined variables: constant, transient, dependent, inde-
pendent, equation and output. Each of these are stored in arb using the same gen-
eral data structure (fortran type var). Any of these variables can be defined by
a user-written expression in equations.in which is read by setup equations

and interpreted by maxima. Additionally, the constant type may be defined in
constants.in and there given (only) a numerical value. Along with the user
defined variables, there are also system defined variables which can be used in
user-written expressions.

All variables have an associated compound variable type (scalar, vector or tensor)
which is used mainly for output purposes.

Details of both the user and system defined variables are given in this section.

4.4.1 Constant type variable defined in equations.in

Synopsis:

Constant variables are evaluated once at the start of a simulation. If defined
in equations.in they are defined using an expression which may contain only
system variables and other constants — in the latter case the constants must
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have been defined in either the constants.in file or previously (above) in the
equations.in file.

Defining statements:

CELL_CONSTANT <name > [multiplier*units] "expression" ON

<region > options # comments

FACE_CONSTANT <name > [multiplier*units] "expression" ON

<region > options # comments

NONE_CONSTANT <name > [multiplier*units] "expression"

options # comments

CONSTANT <name > [multiplier*units] "expression" options

# comments

Statement components:

• (CELL |FACE |NONE |)CONSTANT (required): This keyword specifies the
centring of the variable. Constants that have cell or face centring vary
over the simulation domain, and have values associated with each cell or
face, respectively (subject to the region statement, below). None centred
constants have one value that is not linked to any spatial location. If
the centring specifier is omitted from the keyword (as in CONSTANT) then
none centring is assumed (ie., keyword CONSTANT is equivalent to keyword
NONE CONSTANT).

• <name> (required): Each variable must have a unique name, delimited
by the < and > characters. Besides these characters, the variable may
contain spaces and any other non-alphanumeric characters. If the name
ends with a direction index, as in <u[l=1]> or <gradp [l=3]>, then the
variable is considered to be a component of a three dimensional vector
compound. Similarly, if the name ends with a double direction index,
as in <tau[l=1,3]>, the variable is considered to be a component of a
three by three tensor compound. Components of compounds that are not
explicitly defined are given a zero value (when used in dot and double dot
products for example). All defined components that are members of the
same compound must be of the same variable type, have the same centring,
be defined over the same region and have the same units and multiplier.
Certain names are reserved for system variables (see section 4.4.9).

• multiplier (optional): When reading in numerical constants, each value
is multiplied by this value. At present not in use in equations.in.
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• units (optional): A string which specifies the units for the variable. At
present this string is not interpreted by the code at all and the user must
ensure that the units used are consistent.

• "expression" (required): When a constant is defined in equations.in,
this double-quoted expression is used to specify the value of the constant.
As they may contain system variables and also other constants, they may
vary throughout the domain. For more details regarding the syntax of these
expressions, see section 5.

• ON <region> (optional): This part of the statement determines over what
region the variable should be defined. It is only applicable for cell and face
centred variables, and must in these cases refer to a region that has the
same centring as the variable. If ommitted then by default a cell centred
constant will be defined on <all cells> and a face centred constant on
<all faces>. Note that refering to a variable value outside of its region
of definition will produce an error when running arb.

• options (optional): This is a comma separated list of options. Valid
options for the constant variable type include:

– componentoutput: This component to be written to output.msh.
Default is nocomponentoutput for constants.

– compoundoutput: The compound variable that is component is a
member of to be written to output.msh. If the compound is cell
centred then the data is output at cell and node centres (which
looks better than only cell centred data when rendered). Default
is nocompoundoutput for constants.

• comments (optional): Anything written beyond the # is regarded as a
comment.

Examples:

CELL_CONSTANT <test constant > "<cellx[l=1] >^2" ON <

boundaries > # a test

FACE_CONSTANT <test constant 2> [m] "<facex[l=2]>" #

another test
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4.4.2 Constant type variable defined in constants.in

Synopsis:

Constant variables defined in constants.in are set to numerical values read
directly by the arb executable, rather than expressions interpreted by maxima.

Defining statements:

CELL_CONSTANT <name > [multiplier*units] value ON <region

> options # comments

FACE_CONSTANT <name > [multiplier*units] value ON <region

> options # comments

NONE_CONSTANT <name > [multiplier*units] value options #

comments

CONSTANT <name > [multiplier*units] value options #

comments

Statement components:

The components of these statements are the same as in section 4.4.1 with the
exception of:

• value (required): A numerical value of real or double precision type.

Examples:

CONSTANT <mu> [Pa.s] 1.0d-3 # fluid viscosity

NONE_CONSTANT <rho > [997* kg/m^3] 1.0 # fluid density

4.4.3 Constant type variable defined per region in constants.in

Synopsis:

This definition can be used in the constants.in file to assign different nu-
merical values to either a cell or face centred constant in specific regions. Two
statements are required for this type of constant definition: The first defines
the list of regions where the next constant will be set (REGION LIST) and
the second defines the constant and sets/lists the corresponding numerical val-
ues ((CELL |FACE )REGION CONSTANT). The region names in the REGION LIST
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statement must have the same centring as the following REGION CONSTANT state-
ment. Furthermore, the <region> over which the constant is defined must
include all of the regions listed within the previous REGION LIST statement.

Defining statements:

REGION_LIST <region1 > <region2 > ... <regionN > # comments

CELL_REGION_CONSTANT <name > [multiplier*units] value1

value2 ... valueN ON <region > options # comments

FACE_REGION_CONSTANT <name > [multiplier*units] value1

value2 ... valueN ON <region > options # comments

Statement components:

The components of these statements are the same as in section 4.4.1 with the
exception of:

• <region1> <region2> ... <regionN> (required): A list of regions that
have the same centring as the following REGION CONSTANT statement.

• value1 value2 ... valueN (required): A list of numerical values for the
constant, corresponding in a one-to-one fashion with the list of regions
given in the previous REGION LIST statement.

Examples:

REGION_LIST <inlet > <outlet > # some face regions

FACE_REGION_CONSTANT <electric field > [V/m] 10 20. ON <

boundaries >

4.4.4 Transient type variable defined in equations.in

Synopsis:

These will be implemented for version 0.3 (transient).

4.4.5 Dependent type variable defined in equations.in

Synopsis:
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Dependent variables depend on the independent variables and other previously
defined (ie, above in the file) dependent variables.

Defining statements:

CELL_DEPENDENT <name > [multiplier*units] "expression" ON

<region > options # comments

FACE_DEPENDENT <name > [multiplier*units] "expression" ON

<region > options # comments

NONE_DEPENDENT <name > [multiplier*units] "expression"

options # comments

DEPENDENT <name > [multiplier*units] "expression" options

# comments

Statement components:

Along with the information presented in section 4.4.1, the following applies to
dependent variables:

• (CELL |FACE |NONE |)DEPENDENT (required): If no centring is specified
then none centring is assumed.

• "expression" (required): This is an expression for the dependent variable
in terms of constant, transient, independent, previously defined dependent
(appearing above in equations.in) and system variables.

• ON <region> (optional): If ommitted then by default a cell centred de-
pendent will be defined on <all cells> and a face centred dependent on
<all faces>.

• options (optional): This is a comma separated list of options. Valid
options for dependent variables (as well as those given in section 4.4.1)
include:

– noderivative: Normally the derivative of this variable’s expression
is calculated with respect to each independent variable (the Jacobian)
when performing the Newton-Raphson solution procedure. Including
this option sets this derivative to zero. This may be required for func-
tions for which the derivative cannot be calculated or for functions
that undergo step changes (not continuous) which are not ammeni-
able to solution via the Newton-Raphson procedure. Using this option
will usually slow convergence.
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– positive/negative: Including one of these options causes the code
to check the sign of the dependent variable. This is particularly useful
for quantities like concentrations that are only physically meaningful
when being positive. By using an expression such as "1-<con>" and
including the option positive an upper limit for a variable can also
be enforced.

Examples:

FACE_DEPENDENT <tau[l=1,1]> "<p> - <mu >*2.d0*facegrad[l

=1](<u[l=1]>)" compoundoutput

CELL_DEPENDENT <graddivp[l=1]> "celldivgrad[l=1](<p>)" #

divergence based pressure gradient

4.4.6 Independent type variable defined in equations.in

Synopsis:

Independent variables are those upon which the equations and dependent vari-
ables ultimately depend.

Defining statements:

CELL_INDEPENDENT <name > [multiplier*units] magnitude "

expression" ON <region > options # comments

FACE_INDEPENDENT <name > [multiplier*units] magnitude "

expression" ON <region > options # comments

NONE_INDEPENDENT <name > [multiplier*units] magnitude "

expression" options # comments

INDEPENDENT <name > [multiplier*units] magnitude "

expression" ON <region > options # comments

Statement components:

Along with the information presented in section 4.4.5, the following applies to
independent variables:

• (CELL |FACE |NONE |)INDEPENDENT (required): If no centring is speci-
fied then cell centring is assumed.
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• magnitude (required): An order of magnitude estimate (postive and greater
than zero real or double precision value) must be specified for all indepen-
dent variables. This magnitude is used when checking on the convergence
of the solution.

• "expression" (required): For an independent variable the expression
specifies the variable’s initial value. The expression may contain con-
stants, previously defined (initial) dependent values (those appearing above
in equations.in) and system variables.

• ON <region> (optional): If ommitted then by default a cell centred inde-
pendent will be defined on <all cells> and a face centred independent
on <all faces>.

• options (optional): The noderivative option is not applicable for inde-
pendent variables.

Examples:

CELL_INDEPENDENT <u[l=1]> 1.d0 "<u_av >" # a velocity

component

CELL_INDEPENDENT <p> [] 1.d0 "1.d0 -<cellx[l=1]>" #

pressure

NONE_INDEPENDENT <p_in > [Pa] 1.d0 "1.d0" # the pressure

at the inlet

4.4.7 Equation type variable defined in equations.in

Synopsis:

Equation variables represent the equations to be satisfied. The equation expres-
sions should be formulated so that when the equation is satisfied, the expression
equals zero. The number of equations must equal the number of independent
variables. Furthermore, for the system to be well posed the equations must be
independent (no single equation can be made from a combination of the other
equations).

Defining statements:

CELL_EQUATION <name > [multiplier*units] "expression" ON

<region > options # comments
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FACE_EQUATION <name > [multiplier*units] "expression" ON

<region > options # comments

NONE_EQUATION <name > [multiplier*units] "expression"

options # comments

EQUATION <name > [multiplier*units] "expression" options

# comments

Statement components:

Along with the information presented in section 4.4.5, the following applies to
equation variables:

• (CELL |FACE |NONE |)EQUATION (required): If no centring is specified
then none centring is assumed.

• "expression" (required): For an equation variable the expression should
equal zero when the equation is satisfied. The expression may contain
constant, transient, dependent, independent and system variables.

• ON <region> (optional): If ommitted then by default a cell centred equa-
tion will be defined on <domain> and a face centred equation on <boundaries>.

Examples:

CELL_EQUATION <continuity > "celldiv(<u_f >)" ON <domain >

# continuity

FACE_EQUATION <outlet noslip > "dot(<u[l=:]>,<facetang1[l

=:]>)" ON <outlet > # no component tangential to

outlet

NONE_EQUATION <p_in for flowrate > "<u_av_calc >-<u_av >" #

set flowrate through inlet to give required average

velocity

4.4.8 Output type variable defined in equations.in

Synopsis:

Output variables are evaluated once convergence of the solution has been reached:
They are only for output purposes.

Defining statements:
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CELL_OUTPUT <name > [multiplier*units] "expression" ON <

region > options # comments

FACE_OUTPUT <name > [multiplier*units] "expression" ON <

region > options # comments

NONE_OUTPUT <name > [multiplier*units] "expression"

options # comments

OUTPUT <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.4.5, the following applies to
output variables:

• (CELL |FACE |NONE |)OUTPUT (required): If no centring is specified then
none centring is assumed.

• "expression" (required): For an output variable the expression may con-
tain constant, transient, dependent, independent, equation and system
variables.

• ON <region> (optional): If ommitted then by default a cell centred output
variable will be defined on <all cells> and a face centred output variable
on <all faces>.

• options (optional): The noderivative option is not applicable for out-
put variables (this option is implicitly set anyway for these variables).

Examples:

NONE_OUTPUT <F_drag > [N] "facesum(<facearea >*dot(<

facenorm[l=:]>,<tau[l=:,1]>) ,<cylinder >)" # force on

object in axial direction

4.4.9 System variables

4.5 Simulation options

4.6 Data visualisation
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5 Expression language reference

Sorry - there’s lots missing in this section!

5.1 Operators

5.1.1 celldiv: Divergence calculated around a cell

Summary: Uses Gauss’ theorem to calculate the divergence of a face centred
component around a cell.

Statement:

celldiv[options](face centred expression)

Centring:

Operator is cell centred, contents of operator is face centred.

Details:

Using Gauss’ theorem to evaluate divergences around cells is probably the defining
characteristic of Finite Volume methods. celldiv performs this operation.

To discretise the divergence of a vector u over a cell within the domain, Gauss’
theorem gives∫

Vcell
∇ · udV∫

Vcell
dV

=
1

Vcell

∫
Scell

ncell · udS =
1

Vcell

∑
j

(ncell · nj)(u · nj)Sj

where Vcell and Scell are the volume and total surface area of the cell, respectively,
ncell is a unit normal pointing outward from the cell, nj is a normal associated
with surrounding face j, and the sum is conducted over all faces (index j) which
surround the cell. Taking the divergence of a vector results in a scalar. The
above vector divergence is represented by celldiv as

celldiv(dot(<u[l=:]>,<facenorm[l=:]>))

where in this case the vector u is represented by the three component vari-
ables <u[l=1]>, <u[l=2]> and <u[l=3]>, and the unit normal associated with
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the face j, nj, is given by the system component variables <facenorm[l=1]>,
<facenorm[l=2]> and <facenorm[l=3]>.

Note that the region used by arb in performing the sum
∑

j is <nobcelljfaces>.
This relative region specifies all faces that surround a given cell, unless that
cell is a boundary cell. As boundary cells are not fully surrounded by faces
Gauss’ theorem can not be applied. Hence, if the operator celldiv is used at a
boundary cell then the region <nobcelljfaces> is taken relative (moved) to the
closest domain cell that is adjacent the boundary cell, so this is where celldiv

becomes evaluated. Physically it is inadvisable to use an equation that involves
a divergence at a boundary cell anyway.

Options:

• noderivative: No derivatives with respect to the independent variables
for the Newton-Raphson Jacobian are calculated for this operator (and its
contents).

Examples:

CELL_EQUATION <continuity > "celldiv(<u_f >)" ON <domain >

# continuity equation

CELL_EQUATION <momentum[l=1]> "celldiv(<J_f[l=1]>)" ON <

domain > # momentum conservation in direction l=1

CELL_EQUATION <momentum[l=2]> "celldiv(<J_f[l=2]>)" ON <

domain > # momentum conservation in direction l=2
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5.1.2 cellgrad or facegrad: Gradient evaluated at a cell or face

5.1.3 celldivgrad: Gradient evaluated at a cell calculated via a diver-
gence

5.1.4 cellave or faceave: Interpolation of a quantity from one cen-
tring to another

5.1.5 celllimiter: Gradient limiter for ensuring advection stability

5.1.6 cellif or faceif or noneif: If conditional statement

5.1.7 cellsum or facesum: Sum performed over a region of elements

5.1.8 cellmax or facemax or nonemax: Picks the maximum from a
region of elements

5.1.9 cellmin or facemin or nonemin: Picks the minimum from a region
of elements

5.1.10 celldelta or facedelta: A delta function to identify specific
regions
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6 Example applications

6.1 Incompressible steady-state Newtonian flow through a
2D channel containing a cylinder with set inlet veloci-
ties

Listing 1: ../../gmsh/manual/channel with cylinder/surface.geo

// 2d_channel_with_cylinder

lc = 0.05; // charateristic mesh length variable

// setup domain boundaries

Point (1) = {0, 0, 0, lc/2};

Point (15) = {0.2, 0, 0, lc/4};

Point (2) = {2.2, 0, 0, lc} ;

Point (3) = {2.2, 0.41, 0, lc} ;

Point (16) = {0.2, 0.41, 0, lc/4};

Point (4) = {0, 0.41, 0, lc/2} ;

Line (1) = {1 ,15} ;

Line (15) = {15 ,2} ;

Line (2) = {2,3} ;

Line (3) = {3 ,16} ;

Line (16) = {16 ,4} ;

Line (4) = {4,1} ;

// create an elementary entity that is the domain

boundary

Line Loop (5) = {1,15,2,3,16,4} ;

// create the physical entities for the inlet and output

which become the arb regions

Physical Line("<inlet >") = {4};

Physical Line("<outlet >") = {2};

// create the cylinder

Point (5) = {0.2, 0.15, 0, lc/4};

Point (6) = {0.25 , 0.2, 0, lc/4};

Point (7) = {0.2, 0.25, 0, lc/4};

Point (8) = {0.15 , 0.2, 0, lc/4};

Point (9) = {0.2, 0.2, 0, lc/4};
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Figure 1: Geometry and resulting mesh from the surface.geo file for the flow
through a 2d channel containing a cylinder problem.

Ellipse (7) = {5, 9, 9, 6};

Ellipse (8) = {6, 9, 9, 7};

Ellipse (9) = {7, 9, 9, 8};

Ellipse (10) = {8, 9, 9, 5};

// create an elementary entity that is the cylinder

boundary

Line Loop (11) = {7, 8, 9, 10};

// create the physical entity for the cylinder boundary

which becomes the arb region

Physical Line("<cylinder >") = {7, 8, 9, 10};

// all of the flow domain must be included as a physical

entity to be output under gmsh

Plane Surface (12) = {5, 11};

Physical Surface("<flow domain >") = {12};

Listing 2: ../../examples/manual/steady state channel flow with cylinder/constants.in

# arb finite volume solver

# Copyright 2009 ,2010 Dalton Harvie (daltonh@unimelb.edu

.au)

#

# arb is released under the GNU GPL. For full details

see the license directory.

#

#

-------------------------------------------------------------------

# file constants.in

VERSION 0.24
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#

-------------------------------------------------------------------

# user -defined constants

# REGION_LIST line has the ordered names of any regions

(quoted)

# (CELL_|FACE_)REGION_CONSTANT sets a constant that

varies with region and has the form: <name > [

multiplier*units] value_for_region_1 ..

value_for_region_n options # comments

# (CELL_|FACE_|NONE_ |) CONSTANT sets a constant specific

to one region or no regions and has the form: <name >

[multiplier*units] value ON <region > options #

comments

# physical data

CONSTANT <mu> [Pa.s] 1.d-3 # viscosity of liquid

CONSTANT <rho > [kg/m^3] 1.d0 # density

CONSTANT <u_av > [m/s] 0.2d0 # average inlet velocity

# numerical data

CONSTANT <C_{Rhie -Chow}> [] 1.0d+0 # multiplier for Rhie

-Chow -type pressure oscillation control

CONSTANT <adv_limiter > [] 1.d0 # multiplier used to

limit gradients when calculating advection fluxes

#

-------------------------------------------------------------------

# system constants

NEWTRESTOL 1.d-12 # convergence criterion for newton

solver

NEWTSTEPMAX 20 # maximum number of steps for newton

solver

#

-------------------------------------------------------------------

# geometry

# CELL_REGION/FACE_REGION specified by: <name > "location
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string" # comments

# where location string could be: "AT x1 x2 x3" for a

single point closest to these coordinates

# where location string could be: "COMPOUND +<a region

>-<another region >" for a + and - compound region

list

FACE_REGION <walls > "COMPOUND <boundaries >-<inlet >-<

outlet >"

# DIMENSIONS is the number of dimensions used in the

problem

DIMENSIONS 2

# READ_GMSH instructs arb to read a gmsh file

#READ_GMSH "gmsh/manual/channel_with_cylinder/surface.

msh"

READ_GMSH "surface.msh"

# linear solver that is used to invert jacobian

#LINEAR_SOLVER "HSL_MA28" # hsl archive direct solver

#LINEAR_SOLVER "INTEL_PARDISO" # pardiso solver

contained in intel mkl library

#LINEAR_SOLVER "INTEL_PARDISO_OOC" # pardiso solver

contained in intel mkl library

LINEAR_SOLVER "SUITESPARSE_UMF" # suitesparse umf solver

(UMFPACK) by Timothy A. Davis

#

-------------------------------------------------------------------

Listing 3: ../../examples/manual/steady state channel flow with cylinder/equations.in

# arb finite volume solver

# Copyright 2009 ,2010 Dalton Harvie (daltonh@unimelb.edu

.au)

#

# arb is released under the GNU GPL. For full details

see the license directory.

#

#

-------------------------------------------------------------------
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# file equations.in

VERSION 0.24

#

----------------------------------------------------------------------------

# statement reference

# (CELL_|FACE_|NONE|) CONSTANT <name > [units] "expression

(involving only constants)" ON <region > options #

comments

# (CELL_|FACE_|NONE|) TRANSIENT <name > [units] magnitude

"expression" ON <region > options # comments

# (CELL_|FACE_|NONE|) DEPENDENT <name > [units] magnitude

"expression" ON <region > options # comments

# (CELL_|FACE_|NONE|) INDEPENDENT <name > [units] "

expression (initial value)" ON <region > options #

comments

# (CELL_|FACE_|NONE|) EQUATION <name > [units] "expression

(equation equaling zero)" ON <region > options #

comments

# (CELL_|FACE_|NONE|) OUTPUT <name > [units] "expression"

ON <region > options # comments

# options include:

# noderivative - for DEPENDENT , EQUATION

# positive ,negative - for DEPENDENT , INDEPENDENT ,

EQUATION

# harmonic - for CONSTANT , TRANSIENT , DEPENDENT ,

INDEPENDENT

# compoundoutput/nocompoundoutput - for ALL

# componentoutput/nocomponentoutput - for ALL

# independent variables used for flow problems

CELL_INDEPENDENT <u[l=1]> [] 1.d0 "<u_av >" # velocity

component

CELL_INDEPENDENT <u[l=2]> [] 1.d0 "0.d0" # velocity

component

CELL_INDEPENDENT <p> [] 1.d0 "1.d0 -<cellx[l=1]>" #

pressure

# total stress tensor

FACE_DEPENDENT <tau[l=1,1]> "<p> - <mu >*2.d0*facegrad[l
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=1](<u[l=1]>)" compoundoutput

FACE_DEPENDENT <tau[l=1,2]> "- <mu >*( facegrad[l=2](<u[l

=1]>)+facegrad[l=1](<u[l=2]>))"

FACE_DEPENDENT <tau[l=2,2]> "<p> - <mu >*2.d0*facegrad[l

=2](<u[l=2]>)"

FACE_DEPENDENT <tau[l=2,1]> "<tau[l=1,2]>"

# a Rhie -Chow -type correction is applied to the face

velocities

CELL_DEPENDENT <graddivp[l=1]> "celldivgrad[l=1](<p>)" #

pressure gradient calculated via a divergence (

consistent with momentum conservation)

CELL_DEPENDENT <graddivp[l=2]> "celldivgrad[l=2](<p>)" #

pressure gradient calculated via a divergence (

consistent with momentum conservation)

FACE_DEPENDENT <p_error > "facegrad(<p>) - dot(<graddivp[

l=:]>,<facenorm[l=:]>)" # difference between face

centred and cell divergence type gradient at face and

normal to the face

FACE_DEPENDENT <u_f_{correction}> "-<C_{Rhie -Chow}>*

facedelta(<domain faces >)*facemin(<facedx >^2/<mu>,

sqrt(<facedx >/(<rho >* facemax(abs(<p_error >) ,1.d-6)))

)*<p_error >" compoundoutput # the Rhie -Chow type

velocity correction , only applied (nonzero) on the

domain faces

# flux of mass (volume) and momentum components over

each face

FACE_DEPENDENT <u_f > "dot(<u[l=:]>,<facenorm[l=:]>) + <

u_f_{correction }>" # volume (velocity) transport

FACE_DEPENDENT <J_f[l=1]> "dot(<facenorm[l=:]>,<tau[l

=:,1]>)+<rho >* faceave[advection ](<u[l=1]>,<u_f >,<

adv_limiter >)*<u_f >" compoundoutput # component of

momentum transport from stress and advection

FACE_DEPENDENT <J_f[l=2]> "dot(<facenorm[l=:]>,<tau[l

=:,2]>)+<rho >* faceave[advection ](<u[l=2]>,<u_f >,<

adv_limiter >)*<u_f >" # component of momentum

transport from stress and advection

# conservation equations solved over each domain cell (

finite volume method)

CELL_EQUATION <continuity > "celldiv(<u_f >)" ON <domain >

# continuity
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CELL_EQUATION <momentum[l=1]> "celldiv(<J_f[l=1]>)" ON <

domain > # momentum component

CELL_EQUATION <momentum[l=2]> "celldiv(<J_f[l=2]>)" ON <

domain > # momentum component

# boundary conditions on nonslip walls

FACE_EQUATION <wall noflux > "<u_f >" ON <walls > # no flux

normal to walls

FACE_EQUATION <wall noslip > "dot(<u[l=:]>,<facetang1[l

=:]>)" ON <walls > # nonslip

FACE_EQUATION <wall p extrapolation > "dot(<graddivp[l

=:]>,<facenorm[l=:]>)" ON <walls > # extrapolate

pressure to the wall using zero gradient normal to

wall

# boundary conditions on outlet - fully developed flow

FACE_EQUATION <outlet fully developed > "facegrad(dot(<u[

l=:]>,cellave[lastface](<facenorm[l=:]>)))" ON <

outlet > # normal velocity component is fully

developed

FACE_EQUATION <outlet noslip > "dot(<u[l=:]>,<facetang1[l

=:]>)" ON <outlet > # no component tangential to

outlet

FACE_EQUATION <outlet p> "<p>" ON <outlet > # specified

uniform (zero) pressure

# boundary conditions on inlet - fully developed flow

FACE_EQUATION <inlet fully developed > "facegrad(dot(<u[l

=:]>,cellave[lastface](<facenorm[l=:]>)))" ON <inlet >

# normal velocity component is fully developed

FACE_EQUATION <inlet noslip > "dot(<u[l=:]>,<facetang1[l

=:]>)" ON <inlet > # no component tangential to inlet

# set velocity distribution corresponding to fully

developed Cartesian flow

FACE_EQUATION <inlet flowrate > "<u_f >+6.d0*<u_av >*<cellx

[l=2] >*(0.41d0-<cellx[l=2]>) /(0.41 d0^2)" ON <inlet > #

specified velocity distribution

# alternatively , set uniform inlet pressure giving

required average velocity

#NONE_DEPENDENT <u_av_calc > "facesum(-<u_f >*<facearea >,<

inlet >)/facesum(<facearea >,<inlet >)" # calculate
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average velocity directed into the domain

#NONE_INDEPENDENT <p_in > [Pa] 1.d0 "1.d0" # define the

pressure at inlet

#NONE_EQUATION <p_in for flowrate > "<u_av_calc >-<u_av >"

# set flowrate through inlet to give required average

velocity

#FACE_EQUATION <inlet flowrate > "<p>-<p_in >" ON <inlet >

# apply specified pressure over inlet

# calculate drag and lift on object

NONE_OUTPUT <F_drag > [N] "facesum(<facearea >*dot(<

facenorm[l=:]>,<tau[l=:,1]>) ,<cylinder >)" # force on

object in axial direction

NONE_OUTPUT <F_lift > [N] "facesum(<facearea >*dot(<

facenorm[l=:]>,<tau[l=:,2]>) ,<cylinder >)" # force on

object in vertical direction

NONE_OUTPUT <C_drag > "2.d0*<F_drag >/(<rho >*<u_av >^2*0.1

d0)" # drag coefficient

NONE_OUTPUT <C_lift > "2.d0*<F_lift >/(<rho >*<u_av >^2*0.1

d0)" # lift coefficient

#

-------------------------------------------------------------------
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