arb

code version 0.23

Dalton Harvie

October 20, 2010

1 What is arb?

arb solves arbitrary partial differential equations on unstructured meshes using
the finite volume method. The code is written in fortran95, with some meta-
programming done in perl with help from maxima.

The primary strengths of arb are:
e All equations and variables are defined using ‘maths-type’ expressions writ-
ten by the user, and hence can be easily tailored to each application;

e All equations are solved simultaneously using a Newton-Ralphson method,
so implicitly discretised equations can be solved efficiently; and

e The unstructured mesh over which the equations are solved can be com-

ponsed of all sorts of convex polygons/polyhedrons.

arb requires a UNIX type environment to run, and has been tested on both the
Apple OsX and ubuntu linux platforms. Certain third party programs are used
by arb:

e A fortran compiler; ifort and gfortran are supported;

e maxima;

e perl;

http://maxima.sourceforge.net/

e A sparse matrix linear solver: pardiso and various Harwell Subroutine Li-
brary routines are supported;

e Some general linear algebra routines: Lapack and the Numerical Recipes
in Fortran Library are supported;

e gmsh; and

e The core unix routines tar, gzip and rsync.

Further details about how to get and install this software are given in section 2.2.

arb is copyright Dalton Harvie (2009,2010), but released under the GNU General
Public License (GPL). Further details of this license can be found in the license
directory once the code has been unpacked.

2 Working with arb

2.1 Managing arb’s files

All routine setup, compiling and running of arb is conducted from a working
directory which contains a specific structure of files and subdirectories. Two rou-
tines, pack and unpack, are provided to automate the process of ‘transporting’
arb and creating this required file/subdirectory structure.

2.1.1 Unpacking the code

To create a new version of arb, a new working directory should have been obtained
containing the four files

e archive.tar.gz

e unpack

e README

e LICENSE

Using the command

http://www.pardiso-project.org/
http://geuz.org/gmsh/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

./unpack

from within this directory will unpack the archive, creating the necesary file/sub-
directory structure.

2.1.2 The working directory and file structure

Once the archive is unpacked the working directory will contain the following
subdirectories and files/links:

e src directory: contains the main fortran source code of arb, and the
makefile necessary to build it. Within this directory is a contributed
subdirectory which should/may contain contributed third party code along
with associated arb interface modules, as well as other error handling mod-
ules that handle runtime cases where the third party routines are not avail-
able.

e src_equations directory: contains the perl script setup_equations.pl
and a template file equations_module.f90. These files are used to create
the fortran file equations module.f90 within src which is specific to
each problem.

e obj directory: the fortran source code (arb) is built within this directory.

e tmp directory: temporary files are stored within this directory, including the
file debug which is used for debugging the equation setup.

e output directory: output files from a simulation are placed in here.
e doc directory: contains documentation including this manual.

e gmsh directory: generally the gmsh structure (.geo) and mesh (.msh)
files are stored in this directory. Examples that are detailed in this manual
(section 5) are stored in the gmsh/manual subdirectory.

e examples directory: example problem-specific files equations.in and
constants. in are stored here. Examples that are detailed in this manual
(section 5) are stored in the examples/manual subdirectory.

e packer directory: contains various files specific to the pack and unpack
operations.

e license directory: contains license details, including the (GNU GPL) li-
cense under which arb is released.

e equations.in and constants.in files: these files and an associated
.msh file contain all the problem-specific information required for a partic-
ular simulation. equations.in is read by setup_equations when cre-
ating the equation-specific fortran code equations module.f90 within
src. constants.in is read by both setup_equations and by the exe-
cutable fortran code arb. It contains constant and numerical simulation
data which can be (mainly) edited without requiring arb to be recompiled.

e setup_equations link: thisis a link to the perl exectuable setup_equations.pl
within src_equations. This allows the equations to be setup from the
working directory.

e arb script: this shell script is a wrapper script for making and running the
arb exectuable. Amoung other things, it performs simulation restart (not
implemented) and scratch file management.

e pack file: this shell script is used to pack up a simulation.

2.1.3 Packing the code

To pack a simulation ready to transport or backup, use the command
./pack

from within the working directory. This will create a subdirectory with a name of
the form arb_[date] _[version] which contains all files necessary to run arb.
Following the command with a name, as in

./pack a_name

will create the archive in a subdirectory named a_name instead of the default.

The script pack accepts a number of options. By default only files within the
examples or gmsh directories that are specific to this manual are included in the
archive. The options --example, —-gmsh or —-all specify that all files within
either the example, gmsh or both directories are contained within the archive,
rather than just those in the manual subdirectories. Including the gmsh option

4

may be necessary to transport a particular .msh or .geo mesh file with the other
files. Also, by default only source code within the src/contributed directory
that is not subject to a third party license is included in the archive. Using
the options ——contributed or —-all causes all files in these directories to be
archived.

Other options to pack include —-notar and --help.

2.2 Checking for prerequisit software

A number of third-party applications must be installed in order to use arb.

2.2.1 Maxima

Equation generation is performed using the Maxima Computer Algebra system,
so if you are going to alter the file equations.in and run setup_equations
this software will need to be installed. It is released under the GNU General
Public License (GPL) and is available for free.

To check whether you have it installed already try typing maxima. If the pro-
gram is installed you will enter a symbolic maths environment, from which the
command quit(); quits. Otherwise on ubuntu linux maxima can be installed
using apt-get install maxima. On OsX maxima can be installed using the
macports software, using port install maxima. Alternatively, a precompiled
version for the mac is available from sourceforge (this is the much easier op-
tion as of 9/8/10) - if using this package you will need to get the executable
command (ie, Maxima. app/Contents/Resources/bin/maxima) into your path
somehow.

2.2.2 Perl

Most likely you already have a version of perl installed.

2.2.3 A fortran compiler

Two different compilers have been tested with arb. The Intel Fortran compiler
ifort is the preferable of the two as it includes the Intel Maths Kernel library

http://maxima.sourceforge.net/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.macports.org/
http://sourceforge.net/projects/maxima/files/
http://software.intel.com/en-us/intel-compilers/

which itself includes the Pardiso routines (see next section), and is generally the
faster of the two: however this compiler is not free except on linux and even
then, under specific circumstances.

The gnu compiler gfortran is free and is available on both the OsX and linux
platforms. However, it does not include the Pardiso routines. On ubuntu linux it
can be installed with apt-get install gfortran. On OsX it can be installed
using port install gfortran. Binary versions of gfortran may also be
available.

Compiler choice needs to be specified in src/makefile prior to compiling arb.
If using gfortran set the variable

compiler = gnu
near the top of the file. If using the intel compiler set
compiler = intel

instead. ifort versions of 11.1.069 and newer have been tested on both linux
and OsX. gfortran version 4.2 on ubuntu 8.04 doesn't seem to work (internal
compiler error) whereas version 4.6 on osX does.

2.2.4 Pardiso

Pardiso is a sparse linear matrix solver and is at present the best method available
within arb to invert the Newton-Ralphson Jacobian matrix. This solver is included
as part of the Intel Math Kernel Library which is packaged with the Intel Fortran
compiler (see above).

If using the intel compiler then this solver will automatically become available
(check output of make command for confirmation).

2.2.5 Harwell Subroutine Library

TODO.

http://www.pardiso-project.org/
http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://www.hsl.rl.ac.uk/

2.2.6 Numerical Recipes in Fortran 77

TODO.

2.2.7 Gmsh

While not integral to the arb code, the mesh and data format which arb uses
is that developed for gmsh. Gmsh is a mesh element generator which can be
run using scripts or via a graphical interface and can be used for post-processing
(visualisation) too. Gmsh uses the GNU General Public License (GPL).

There is some great introductory material available on the gmsh website on the
use of this program, particularly these online screencasts.

2.3 Running a simulation

There are 5 basic steps to running an arb simulation. To demonstrate we show
how to simulate the steady-state flow of a Newtonian fluid around a cylinder that
is contained in a 2d channel:

1. Create a mesh: Geometry definition and mesh creation can be per-
formed in gmsh. The domain geometry details are stored in a .geo file,
which can be created by hand (file editing) or with the help of the gmsh
GUI. An example .geo file is included in Section 5.1 for the considered
case of the 2d channel containing a cylinder. This file is included in the
gmsh/manual/2d_channel with _cylinder/ directory.

Once a geometry (.geo file) has been created, gmsh can mesh this to
produce a .msh file which is the file that is read in by arb. For the
considered test case place the generated mesh file surface.msh in the
gmsh/manual/2d_channel with_cylinder/ directory. When creating a
3D mesh be sure to optimise the mesh after creation (greatly improves
mesh quality).

arb uses the concept of ‘regions’ to locate various equations (for example
boundary conditions, domain equations etc) and these must be defined in
the .geo file prior to meshing. Regions have names that are delimited
by the < and > signs: for example <inlet> and <outlet> (generally any
user-defined names are delimited this way in arb).

http://www.nr.com/
http://geuz.org/gmsh/
http://www.gnu.org/licenses/gpl.html
http://geuz.org/gmsh/
http://geuz.org/gmsh/screencasts/

In the example geometry file the boundary regions <inlet>, <outlet> and
<cylinder> have all been defined as physical entities. The area region
of <flow domain> which contains all mesh cells within the flow domain
has also been created. This region is necessary as by default, gmsh does
not write out mesh cells to a mesh file unless they are part of a physical
entity. Note that certain region names are reserved: see section 3.3 for
more details.

2. Edit equations.in and constants.in: Aside from the mesh file, all in-
formation that is specific to a simulation is contained in these two . in files.
equations.in is read only by the setup_equations perl script when per-
forming the fortran ‘meta-programming’. constants.in is also read by
this perl script, but is also read by the arb fortran executable each time a
simulation is run. In general physical constants that would change regularly
between similar simulations should be defined in constants.in as their
values can be changed without having to rerun the meta-programming
script setup_equations. On the other hand all equations, which are pro-
cessed by maxima via setup_equations, must be defined in equations.in.
Hence any change to equations. in requires setup_equations to be re-
run and the fortran executable arb remade.

Note that some simulation specific information such as the mesh file name,
newton solver convergence tolerance, number of newton iteration steps and
dimensions of the physical problem are defined in the constants. in file
and read directly by the arb executable: Hence these can be changed with-
out reruning setup_equations or recompiling arb. Similarly any region
definitions contained in constants. in are only read by the arb exectuable
and can be changed without rerunning setup_equations.

Section 5.1 gives example equations.in and constants.in files for the
considered test case of steady-state fluid flow around a cylinder. These files

are given in examples/manual/steady_state_channel flow with cylinder
and should be copied to the working directory. The quoted string after the
READ GMSH keyword in constants.in should refer to the location of the
mesh file, relative to the working directory.

Further details regarding the syntax of both equations.in and constants.in
can be found in Sections 3 and 4.

3. Run setup_equations: From the working directory running

./setup_equations

reads both equations.in and constants.in, and using maxima, creates
the fortran source code file src/equations module.f90. setup_equations
writes some progress information to the screen - if all goes well this output
will end with the statement ‘success’.

If the script is not successful then errors in the equations.in and constants.in
files will need to be found and corrected. Aside from the screen output,

more debugging information is written by setup_equations to the file
tmp/debug. Other files in the tmp directory trace the interaction between

the perl script and maxima.

. Compile and run arb: The arb script in the working directory is a
‘wrapper’ for handling the running of arb. Typing

./arb -q -m &

from the working directory will remove old output files, compile arb (make
option -m), run arb and direct the output to output/output.scr (quiet
option -q), all in the background (&).

Other options to the arb run script include -d to make with debugging
options and run in a debugging environment, and -c to continue from a
previous run (not implemented yet).

. View results: arb produces a file output/output.msh which can be
opened by gmsh for viewing. This file includes the mesh information as
well as variable data, so can be passed to arb as an input .msh file for sub-
sequent simulations (although only mesh read, not data read, is currently
implemented).

3 Inside arb

3.1 Code structure

3.2 Mesh structure

arb uses an unstructured mesh composed of cell elements that are separated
by face elements. The dimension of the domain cell elements is specified in
constants.in using the DIMENSIONS keyword. The dimension of the face ele-
ments is always 1 less than that of the domain cell elements. arb has been coded
to be able to handle any poly-sided cells, however in practice it has only been
tested to date (v0.23) with tetrahedron in 3D, triangles in 2D and lines in 1D:
these are the default element geometries created by gmsh.

Boundary cells are created by arb after a mesh has been imported. They have a di-
mension that is 1 less than that of the domain cells, so have no volume/area/width
in 3D/2D/1D, respectively. Each boundary cell has the same geometry, and is
conincident with, a boundary face. Hence, a mesh has the same number of
boundary faces as boundary cells.

3.3 Regions

Regions are sets of mesh elements that are used to locate user-defined variables
and equations. Each region may contain only mesh elements of the same centring
(that is, either cell or face elements, but not both). Regions can be defined by
the user directly in gmsh when the mesh is generated, or via statements in the
constants.in file that are interpreted when arb is run. There are also several
generic system generated regions. Region names must be delimited by the <>
characters, but apart from these two characters their names may contain any
non-alphanumeric characters.

3.3.1 Defining regions via gmsh

Regions are specified in gmsh by defining and then naming physical entities. To
do this via the gmsh GUI:

e Add a physical entity (under the physical groups tab) by selecting various
elemental entities.

10

e Edit the geometry file (using the edit tab) and change the physical entity’s
name from the numerical name given by gmsh to the required <> delimited
name suitable for arb.

e Save the .geo file.

e Reload the .geo file again (using the reload tab). If you now check under
the visibility menu the physical entity will be visible.

3.3.2 Defining regions within the constants.in file

Currently there are two types of region specification statements that can be used
in the constants. in file:

Compound region:

CELL_REGION <name> "COMPOUND +<regionl>+<region2>-<
region3>" # comments

FACE_REGION <name> "COMPOUND <regionl>-<region2>" #
comments

A compound region is defined using other existing regions. All regions that
are used in the definition (ie, <regionl>, <region2> and <region3> in the
above examples) must have the (same) centring that is specified by the REGION
keyword. If a + sign precedes a region name in the list of regions, then all the
mesh elements that are in the following region are added to the new compound
region, if they are not already members. If a - sign precedes a region name in
the list of regions, then all the mesh elements that are in the following region are
removed from the new compound region, if they are (at that stage) members of
the new compound region. If no sign immediately precedes a region name in the
defining list then a + sign is assumed. When constructing a compound region
arb deals with each region in the defining list sequentially; so whether a mesh
element is included in the compound region or not may depend on the order that
the regions are listed.

At region:

CELL_REGION <name> "AT x1 x2 x3" # comments
FACE_REGION <name> "AT x1 x2 x3" # comments

11

This statement defines a region that contains one cell or one face mesh element.
The element chosen lies closest to the point (x1,x2,x3). The values x1, x2
and x3 can be real or double precision floats.

3.3.3 System generated regions

The following regions are generated by arb at the start of a simulation. The
names cannot be used for user-defined regions:

region name description

<all cells> all cells

<domain> internal domain cells
<boundary cells> cells located on the boundary
<all faces> all faces

<domain faces> internal domain faces
<boundaries> faces located on the boundary

Additionally, there are a number of system regions which may be used in user-
written expressions (see section 4) which specify sets of mesh elements relative
to the current position. These names cannot be used for user-defined regions

either:

region name rel. to description

<celljfaces> cell faces that surround the current cell

<nobcelljfaces> cell faces that surround the current cell, unless the
current cell is on a boundary. In that instance
move to the neighbouring domain cell and then
cycle around the surrounding face cells.

<cellicells> cell cells that are local to the current cell (more
than just the adjacent cells)

<faceicells> face cells that are local to the current face (more
than just the adjacent cells)

<adjacentcellicells> cell cells that are strictly adjacent to the current
cell

<adjacentfaceicells> face cells that are strictly adjacent to the current

face (always two)

12

<upwindfaceicells>

<downwindfaceicells>

<cellkernel [1=0]>
<cellkernel[1=1-3]>
<cellkernel [1=4]>

<facekernel [1=0-6]>

<noloop>

face

face

cell
cell
cell

face

face/cell

the cell that is upwind of the face, used
when performing faceave[advection] aver-
aging (see section 4. Not really a user region.
the cell that is downwind of the face, used
when performing faceave[advection] aver-
aging (see section 4. Not really a user region.
surrounding faces used in a cell averaging kernel
(see section 4. Not really a user region.
surrounding cells used in cell derivative kernels
(see section 4. Not really a user region.
surrounding nodes used in a cell averaging ker-
nels (see section 4. Not really a user region.
surrounding cells used in face averaging and
derivative kernels (see section 4. Not really a
user region.

dummy region which specifies no elements.

3.4 Variable types

There are six types of user defined variables: constant, transient, dependent, inde-
pendent, equation and output. Each of these are stored in arb using the same gen-
eral data structure (fortran type var). Any of these variables can be defined by
a user-written expression in equations.in which is read by setup_equations
and interpreted by maxima. Additionally, the constant type may be defined in
constants.in and there given (only) a numerical value. Along with the user
defined variables, there are also system defined variables which can be used in

user-written expressions.

All variables have an associated compound variable type (scalar, vector or tensor)
which is used mainly for output purposes.

Details of both the user and system defined variables are given in this section.

3.4.1 Constant type variable defined in equations.in

Synopsis:

Constant variables are evaluated once at the start of a simulation. If defined
in equations.in they are defined using an expression which may contain only
system variables and other constants — in the latter case the constants must

13

have been defined in either the constants.in file or previously (above) in the
equations.in file.

Defining statements:

CELL_CONSTANT <name> [multiplier*units] "expression" ON
<region> options # comments

FACE_CONSTANT <name> [multiplierx*units] "expression" ON
<region> options # comments

NONE_CONSTANT <name> [multiplier*units] "expression"
options # comments

CONSTANT <name> [multiplier*units] "expression" options
comments

Statement components:

e (CELL_|FACE_|NONE_|)CONSTANT (required): This keyword specifies the
centring of the variable. Constants that have cell or face centring vary
over the simulation domain, and have values associated with each cell or
face, respectively (subject to the region statement, below). None centred
constants have one value that is not linked to any spatial location. If
the centring specifier is omitted from the keyword (as in CONSTANT) then
none centring is assumed (ie., keyword CONSTANT is equivalent to keyword
NONE_CONSTANT).

e <name> (required): Each variable must have a unique name, delimited
by the < and > characters. Besides these characters, the variable may
contain spaces and any other non-alphanumeric characters. If the name
ends with a direction index, as in <u[1=1]> or <gradp [1=3]>, then the
variable is considered to be a component of a three dimensional vector
compound. Similarly, if the name ends with a double direction index,
as in <tau[1=1,3]>, the variable is considered to be a component of a
three by three tensor compound. Components of compounds that are not
explicitly defined are given a zero value (when used in dot and double dot
products for example). All defined components that are members of the
same compound must be of the same variable type, have the same centring,
be defined over the same region and have the same units and multiplier.
Certain names are reserved for system variables (see section 3.4.9).

e multiplier (optional): When reading in numerical constants, each value
is multiplied by this value. At present not in use in equations.in.

14

e units (optional): A string which specifies the units for the variable. At
present this string is not interpreted by the code at all and the user must
ensure that the units used are consistent.

e "expression" (required): When a constant is defined in equations.in,
this double-quoted expression is used to specify the value of the constant.
As they may contain system variables and also other constants, they may
vary throughout the domain. For more details regarding the syntax of these
expressions, see section 4.

e ON <region> (optional): This part of the statement determines over what
region the variable should be defined. It is only applicable for cell and face
centred variables, and must in these cases refer to a region that has the
same centring as the variable. If ommitted then by default a cell centred
constant will be defined on <all cells> and a face centred constant on
<all faces>. Note that refering to a variable value outside of its region
of definition will produce an error when running arb.

e options (optional): This is a comma separated list of options. Valid
options for the constant variable type include:

— componentoutput: This component to be written to output.msh.
Default is nocomponentoutput for constants.

— compoundoutput: The compound variable that is component is a
member of to be written to output.msh. If the compound is cell
centred then the data is output at cell and node centres (which
looks better than only cell centred data when rendered). Default
is nocompoundoutput for constants.

e comments (optional): Anything written beyond the # is regarded as a
comment.

Examples:

CELL_CONSTANT <test constant> "<cellx[1l=1]>"2" ON <
boundaries> # a test

FACE_CONSTANT <test constant 2> [m] "<facex[1l=2]>" #
another test

15

3.4.2 Constant type variable defined in constants.in

Synopsis:

Constant variables defined in constants.in are set to numerical values read
directly by the arb executable, rather than expressions interpreted by maxima.

Defining statements:

CELL_CONSTANT <name> [multiplier*units] value ON <region
> options # comments

FACE_CONSTANT <name> [multiplier*units] value ON <region
> options # comments

NONE_CONSTANT <name> [multiplier*units] value options #
comments

CONSTANT <name> [multiplier*units] value options #
comments

Statement components:

The components of these statements are the same as in section 3.4.1 with the
exception of:

e value (required): A numerical value of real or double precision type.

Examples:

CONSTANT <mu> [Pa.s] 1.0d-3 # fluid viscosity
NONE_CONSTANT <rho> [997*kg/m~3] 1.0 # fluid density

3.4.3 Constant type variable defined per region in constants.in

Synopsis:

This definition can be used in the constants.in file to assign different nu-
merical values to either a cell or face centred constant in specific regions. Two
statements are required for this type of constant definition: The first defines
the list of regions where the next constant will be set (REGION_LIST) and
the second defines the constant and sets/lists the corresponding numerical val-
ues ((CELL_|FACE_)REGION_CONSTANT). The region names in the REGION_LIST

16

statement must have the same centring as the following REGION_CONSTANT state-
ment. Furthermore, the <region> over which the constant is defined must
include all of the regions listed within the previous REGION_LIST statement.

Defining statements:

REGION_LIST <regionl> <region2> ... <regionN> # comments

CELL_REGION_CONSTANT <name> [multiplier*units] valuel
value2 ... valueN ON <region> options # comments

FACE_REGION_CONSTANT <name> [multiplier*units] valuel
value2 ... valueN ON <region> options # comments

Statement components:
The components of these statements are the same as in section 3.4.1 with the
exception of:

e <regionl> <region2> ... <regionN> (required): A list of regions that

have the same centring as the following REGION_CONSTANT statement.

e valuel value2 ... valueN (required): A list of numerical values for the
constant, corresponding in a one-to-one fashion with the list of regions
given in the previous REGION LIST statement.

Examples:

REGION_LIST <inlet> <outlet> # some face regions
FACE_REGION_CONSTANT <electric field> [V/m] 10 20. ON <
boundaries>

3.4.4 Transient type variable defined in equations.in
Synopsis:

These will be implemented for version 0.3 (transient).

3.4.5 Dependent type variable defined in equations.in

Synopsis:

17

Dependent variables depend on the independent variables and other previously
defined (ie, above in the file) dependent variables.

Defining statements:

CELL_DEPENDENT <name> [multiplierx*units] "expression" ON
<region> options # comments

FACE_DEPENDENT <name> [multiplier*units] "expression" ON
<region> options # comments

NONE_DEPENDENT <name> [multiplier*units] "expression"
options # comments

DEPENDENT <name> [multiplier*units] "expression" options
comments

Statement components:

Along with the information presented in section 3.4.1, the following applies to
dependent variables:

(CELL_|FACE_|NONE_|)DEPENDENT (required): If no centring is specified
then none centring is assumed.

e "expression" (required): This is an expression for the dependent variable
in terms of constant, transient, independent, previously defined dependent
(appearing above in equations.in) and system variables.

e ON <region> (optional): If ommitted then by default a cell centred de-
pendent will be defined on <all cells> and a face centred dependent on
<all faces>.

e options (optional): This is a comma separated list of options. Valid
options for dependent variables (as well as those given in section 3.4.1)
include:

— noderivative: Normally the derivative of this variable's expression
is calculated with respect to each independent variable (the Jacobian)
when performing the Newton-Ralphson solution procedure. Including
this option sets this derivative to zero. This may be required for func-
tions for which the derivative cannot be calculated or for functions
that undergo step changes (not continuous) which are not amme-
niable to solution via the Newton-Ralphson procedure. Using this
option will usually slow convergence.

18

— positive/negative: Including one of these options causes the code
to check the sign of the dependent variable. This is particularly useful
for quantities like concentrations that are only physically meaningful
when being positive. By using an expression such as "1-<con>" and
including the option positive an upper limit for a variable can also
be enforced.

Examples:

FACE_DEPENDENT <tau[l=1,1]> "<p> - <mu>*2.d0*facegrad[l
=11 (<u[1=1]>)" compoundoutput

CELL_DEPENDENT <graddivp[l=1]1> "celldivgrad[l=1](<p>)" #
divergence based pressure gradient

3.4.6 Independent type variable defined in equations.in

Synopsis:

Independent variables are those upon which the equations and dependent vari-
ables ultimately depend.

Defining statements:

CELL_INDEPENDENT <name> [multiplier*units] magnitude "
expression" ON <region> options # comments

FACE_INDEPENDENT <name> [multiplier*units] magnitude "
expression" ON <region> options # comments

NONE_INDEPENDENT <name> [multiplier*units] magnitude "
expression" options # comments

INDEPENDENT <name> [multiplier*units] magnitude "
expression" ON <region> options # comments

Statement components:

Along with the information presented in section 3.4.5, the following applies to
independent variables:

e (CELL_|FACE_|NONE_|) INDEPENDENT (required): If no centring is speci-
fied then cell centring is assumed.

19

e magnitude (required): An order of magnitude estimate (postive and greater
than zero real or double precision value) must be specified for all indepen-
dent variables. This magnitude is used when checking on the convergence
of the solution.

e "expression" (required): For an independent variable the expression
specifies the variable's initial value. The expression may contain con-
stants, previously defined (initial) dependent values (those appearing above
in equations.in) and system variables.

e ON <region> (optional): If ommitted then by default a cell centred inde-
pendent will be defined on <all cells> and a face centred independent
on <all faces>.

e options (optional): The noderivative option is not applicable for inde-
pendent variables.

Examples:

CELL_INDEPENDENT <u[l=1]> 1.d0 "<u_av>" # a velocity
component

CELL_INDEPENDENT <p> [] 1.d0 "1.d0-<cellx[1l=1]>" #
pressure

NONE_INDEPENDENT <p_in> [Pa] 1.d0 "1.d0" # the pressure
at the inlet

3.4.7 Equation type variable defined in equations.in

Synopsis:

Equation variables represent the equations to be satisfied. The equation expres-
sions should be formulated so that when the equation is satisfied, the expression
equals zero. The number of equations must equal the number of independent
variables. Furthermore, for the system to be well posed the equations must be
independent (no single equation can be made from a combination of the other
equations).

Defining statements:

CELL_EQUATION <name> [multiplier*units] "expression" ON
<region> options # comments

20

FACE_EQUATION <name> [multiplier*units] "expression" ON
<region> options # comments

NONE_EQUATION <name> [multiplier*units] "expression"
options # comments

EQUATION <name> [multiplier*units] "expression" options
comments

Statement components:
Along with the information presented in section 3.4.5, the following applies to
equation variables:

e (CELL_|FACE_|NONE_|)EQUATION (required): If no centring is specified

then none centring is assumed.

e "expression" (required): For an equation variable the expression should
equal zero when the equation is satisfied. The expression may contain
constant, transient, dependent, independent and system variables.

e ON <region> (optional): If ommitted then by default a cell centred equa-
tion will be defined on <domain> and a face centred equation on <boundaries>.

Examples:

CELL_EQUATION <continuity> "celldiv(<u_f>)" ON <domain>
continuity

FACE_EQUATION <outlet noslip> "dot(<u[l=:]>,<facetangll[l
=:]1>)" ON <outlet> # no component tangential to
outlet

NONE_EQUATION <p_in for flowrate> "<u_av_calc>-<u_av>" #

set flowrate through inlet to give required average

velocity

3.4.8 Output type variable defined in equations.in

Synopsis:

Output variables are evaluated once convergence of the solution has been reached:
They are only for output purposes.

Defining statements:

21

CELL_OUTPUT <name> [multiplier*units] "expression" ON <
region> options # comments

FACE_OUTPUT <name> [multiplier*units] "expression" ON <
region> options # comments

NONE_OUTPUT <name> [multiplier*units] "expression"
options # comments

OUTPUT <name> [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 3.4.5, the following applies to
output variables:

e (CELL_|FACE_|NONE_|)OUTPUT (required): If no centring is specified then
none centring is assumed.

e "expression" (required): For an output variable the expression may con-
tain constant, transient, dependent, independent, equation and system
variables.

e ON <region> (optional): If ommitted then by default a cell centred output
variable will be defined on <all cells> and a face centred output variable
on <all faces>.

e options (optional): The noderivative option is not applicable for out-
put variables (this option is implicitly set anyway for these variables).

Examples:

NONE_OUTPUT <F_drag> [N] "facesum(<facearea>*dot (<
facenorm[l=:]>,<taull=:,1]1>) ,<cylinder>)" # force on
object in axial direction

3.4.9 System variables
3.5 Simulation options

3.6 Data visualisation

22

4 Expression language reference

4.1 Operators

4.1.1 celldiv: Divergence calculated around a cell

Summary: Uses Gauss’ theorem to calculate the divergence of a face centred
component around a cell.

Statement:

celldiv[options] (face_centred_expression)

Centring:

Operator is cell centred, contents of operator is face centred.

Details:

Using Gauss' theorem to evaluate divergences around cells is probably the defining
characteristic of Finite Volume methods. celldiv performs this operation.

To discretise the divergence of a vector u over a cell within the domain, Gauss'

theorem gives

fV 1 vV udV 1 1
ce = cell * dS — cell * . . . S
Iy, v Veen /Sccnn L Vi ;(n 1 n;)(u-n;)S;

where V.o and S.e are the volume and total surface area of the cell, respectively,
Theenn IS @ Unit normal pointing outward from the cell, 2, is a normal associated
with surrounding face j, and the sum is conducted over all faces (index j) which
surround the cell. Taking the divergence of a vector results in a scalar. The
above vector divergence is represented by celldiv as

celldiv(dot (<ul[l=:]>,<facenorm[l=:]>))

where in this case the vector u is represented by the three component vari-
ables <u[1=1]>, <u[1=2]> and <u[1=3]>, and the unit normal associated with
the face j, n;, is given by the system component variables <facenorm[1=1]>,
<facenorm[1=2]> and <facenorm[1=3]>.

Note that the region used by arb in performing the sum Zj is <nobcelljfaces>.
This relative region specifies all faces that surround a given cell, unless that

23

cell is a boundary cell. As boundary cells are not fully surrounded by faces
Gauss' theorem can not be applied. Hence, if the operator celldiv is used at a
boundary cell then the region <nobcelljfaces> is taken relative (moved) to the
closest domain cell that is adjacent the boundary cell, so this is where celldiv
becomes evaluated. Physically it is inadvisable to use an equation that involves
a divergence at a boundary cell anyway.

Options:

e noderivative: No derivatives with respect to the independent variables
for the Newton-Ralphson Jacobian are calculated for this operator (and its
contents).

Examples:

CELL_EQUATION <continuity> "celldiv(<u_f>)" ON <domain>
continuity equation

CELL_EQUATION <momentum[1l=1]> "celldiv(<J_f[1=1]1>)" ON <
domain> # momentum conservation in direction 1=1

CELL_EQUATION <momentum[1=2]> "celldiv(<J_f[1=2]>)" ON <
domain> # momentum conservation in direction 1=2

24

4.1.2

4.1.3

41.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10

cellgrad or facegrad: Gradient evaluated at a cell or face

celldivgrad: Gradient evaluated at a cell calculated via a diver-
gence

cellave or faceave: Interpolation of a quantity from one cen-
tring to another

celllimiter: Gradient limiter for ensuring advection stability
cellif or faceif or noneif: If conditional statement
cellsum or facesum: Sum performed over a region of elements

cellmax or facemax or nonemax: Picks the maximum from a
region of elements

cellmin or facemin or nonemin: Picks the minimum from a region
of elements

celldelta or facedelta: A delta function to identify specific
regions

25

5 Example applications

5.1 Incompressible steady-state Newtonian flow through a
2D channel containing a cylinder with set inlet veloci-
ties

Listing 1: ../../gmsh/manual/channel_with_cylinder/surface.geo

// 2d_channel_with_cylinder
lc = 0.05; // charateristic mesh length variable

// setup domain boundaries

Point (1) = {0, 0, 0, 1c/2};

Point (15) = {0.2, 0, 0, 1lc/4};
Point (2) = {2.2, 0, 0, 1lc} ;
Point (3) = {2.2, 0.41, 0, 1lc} ;
Point (16) = {0.2, 0.41, 0, 1lc/4};
Point (4) = {0, 0.41, 0, 1lc/2} ;

Line (1) = {1,15%} ;
Line (15) = {15,2} ;
Line (2) {2,3%} ;
Line (3) {3,16} ;
Line (16) = {16,4} ;
Line(4) = {4,1} ;

// create an elementary entity that is the domain
boundary
Line Loop(5) = {1,15,2,3,16,4} ;

// create the physical entities for the inlet and output
which become the arb regions

Physical Line("<inlet>") = {4};

Physical Line("<outlet>") = {2};

// create the cylinder
Point (5) {0.2, 0.15, 0, 1lc/4}%};
Point (6) = {0.25, 0.2, 0, 1lc/4};
0
0

Point (7) = {0.2, 0.25, 0, 1lc/4};
Point (8) = {0.15, 0.2, , lc/47%};
Point (9) = {0.2, 0.2, 0, 1lc/4};

26

4 1616 <cylinder> 3 3

<inlet> V14 @ <flow domail>) ‘2;<out1et>
i Tty 2
Y
IZ X

Figure 1: Geometry and resulting mesh from the surface.geo file for the flow
through a 2d channel containing a cylinder problem.

Ellipse (7) By B 8, Gp
Ellipse (8) B, 8, 8, s
Ellipse (9) {7, 9, 9, 8};

Ellipse(10) = {8, 9, 9, 5};

// create an elementary entity that is the cylinder
boundary
Line Loop(11) = {7, 8, 9, 10};

// create the physical entity for the cylinder boundary
which becomes the arb region
Physical Line("<cylinder>") = {7, 8, 9, 10};

// all of the flow domain must be included as a physical
entity to be output under gmsh

Plane Surface(12) = {5, 11};

Physical Surface("<flow domain>") = {12};

Listing 2: ../../examples/manual /steady_state_channel_flow_with_cylinder/constants.in

arb finite volume solver

Copyright 2009,2010 Dalton Harvie (daltonh@unimelb.edu
.au)

#

arb is released under the GNU GPL. For full details
see the license directory.

file constants.in
VERSION 0.23

27

user-defined constants

REGION_LIST line has the ordered names of any regions
(quoted)

(CELL_|FACE_)REGION_CONSTANT sets a constant that
varies with region and has the form: <name> [
multiplier*units] value_for_region_1
value_for_region_n options # comments

(CELL_|FACE_|NONE_|)CONSTANT sets a constant specific
to one region or no regions and has the form: <name>
[multiplier*units] value ON <region> options #
comments

physical data

CONSTANT <mu> [Pa.s] 1.d-3 # viscosity of liquid
CONSTANT <rho> [kg/m~3] 1.d0 # density

CONSTANT <u_av> [m/s] 0.2d0 # average inlet velocity

numerical data
CONSTANT <C_{Rhie-Chow}> [] 1.0d+0 # multiplier for Rhie
-Chow-type pressure oscillation control

CONSTANT <adv_limiter> [] 1.d0 # multiplier used to
limit gradients when calculating advection fluxes

system constants
NEWTRESTOL 1.d-12 # convergence criterion for newton
solver

NEWTSTEPMAX 20 # maximum number of steps for newton
solver

geometry

CELL_REGION/FACE_REGION specified by: <name> "location

28

string" # comments
where location string could be: "AT x1 x2 x3" for a
single point closest to these coordinates
where location string could be: "COMPOUND +<a region
>-<another region>" for a + and - compound region
list

FACE_REGION <walls> "COMPOUND <boundaries>-<inlet>-<
outlet >"

DIMENSIONS is the number of dimensions used in the
problem
DIMENSIONS 2

READ_GMSH instructs arb to read a gmsh file
READ_GMSH "gmsh/manual/channel_with_cylinder/surface.msh

linear solver that is used to invert jacobian

#LINEAR_SOLVER "HSL_MA28" # hsl archive direct solver

LINEAR_SOLVER "INTEL_PARDISO" # pardiso solver contained
in intel mkl library

Listing 3: ../../examples/manual /steady_state_channel_flow_with_cylinder/equations.in

arb finite volume solver

Copyright 2009,2010 Dalton Harvie (daltonh@unimelb.edu
.au)

#

arb is released under the GNU GPL. For full details
see the licemnse directory.

file equations.in
VERSION 0.23

statement reference
(CELL_|FACE_|NONE|)CONSTANT <name> [units] "expression
(involving only constants)" ON <region> options #
comments
(CELL_|FACE_|NONE|) TRANSIENT <name> [units] magnitude
"expression" ON <region> options # comments
(CELL_|FACE_|NONE|)DEPENDENT <name> [units] magnitude
"expression" ON <region> options # comments
(CELL_|FACE_|NONE|) INDEPENDENT <name> [units] "
expression (initial value)" ON <region> options #
comments
(CELL_|FACE_|NONE|)EQUATION <name> [units] "expression
(equation equaling zero)" ON <region> options #
comments
(CELL_|FACE_|NONE|)OUTPUT <name> [units] "expression"
ON <region> options # comments

options include:
noderivative - for DEPENDENT, EQUATION
positive ,negative - for DEPENDENT, INDEPENDENT,

EQUATION

harmonic - for CONSTANT, TRANSIENT, DEPENDENT,
INDEPENDENT

compoundoutput/nocompoundoutput - for ALL

componentoutput/nocomponentoutput - for ALL

independent variables used for flow problems

CELL_INDEPENDENT <u[l=1]> [] 1.d0 "<u_av>" # velocity
component

CELL_INDEPENDENT <u[l1=2]> [] 1.d0 "0.d0" # velocity
component

CELL_INDEPENDENT <p> [] 1.d0 "1.d0-<cellx[1l=1]>" #
pressure

total stress tensor

FACE_DEPENDENT <taul[l=1,1]> "<p> - <mu>*2.d0*facegradl[l
=1](<u[1=1]1>)" compoundoutput

FACE_DEPENDENT <tau[l=1,2]> "- <mu>*(facegrad[1=2](<u[l
=1]>)+facegrad[1=1] (<ul[l=2]>))"

FACE_DEPENDENT <tau[l1=2,2]> "<p> - <mu>*2.dO0*facegrad[l
=2] (<u[1=2]>)"

30

FACE_DEPENDENT <taul[l=2,1]1> "<taul[l=1,2]>"

a Rhie-Chow-type correction is applied to the face
velocities

CELL_DEPENDENT <graddivp[1l=1]1> "celldivgrad[1l=1](<p>)" #

pressure gradient calculated via a divergence (
consistent with momentum conservation)

CELL_DEPENDENT <graddivp[1=2]> "celldivgrad[1=2](<p>)" #

pressure gradient calculated via a divergence (
consistent with momentum conservation)

FACE_DEPENDENT <p_error> "facegrad(<p>) - dot(<graddivpl[
l1=:]1>,<facenorm[1l=:]>)" # difference between face
centred and cell divergence type gradient at face and

normal to the face

FACE_DEPENDENT <u_f_{correction}> "-<C_{Rhie-Chowl}>*
facedelta(<domain faces>)*facemin(<facedx>"2/<mu>,
sqrt (<facedx>/(<rho>*xfacemax (abs(<p_error>) ,1.d-6)))
)*<p_error>" compoundoutput # the Rhie-Chow type
velocity correction, only applied (nonzero) on the
domain faces

flux of mass (volume) and momentum components over
each face

FACE_DEPENDENT <u_f> "dot(<ul[l=:]>,<facenorm[l=:]>) + <
u_f_{correction}>" # volume (velocity) transport

FACE_DEPENDENT <J_f[1=1]> "dot(<facenorm[l=:]>,<taull
=:,1]>)+<rho>xfaceave [advection] (<ul[l=1]>,<u_f>,<
adv_limiter >)*<u_f>" compoundoutput # component of
momentum transport from stress and advection

FACE_DEPENDENT <J_f[1=2]> "dot(<facenorm[l=:]>,<taull
=:,2]>)+<rho>*xfaceave [advection] (<u[l=2]>,<u_£f>,<
adv_limiter >)*<u_f>" # component of momentum
transport from stress and advection

conservation equations solved over each domain cell (
finite volume method)

CELL_EQUATION <continuity> "celldiv(<u_f>)" ON <domain>
continuity

CELL_EQUATION <momentum[1l=1]> "celldiv(<J_f[1=1]>)" ON <
domain> # momentum component

CELL_EQUATION <momentum[1=2]> "celldiv(<J_f[1=2]>)" ON <
domain> # momentum component

31

boundary conditions on nonslip walls

FACE_EQUATION <wall noflux> "<u_f>" ON <walls> # no flux
normal to walls

FACE_EQUATION <wall noslip> "dot(<ul[l=:]1>,<facetangl[l
=:]>)" ON <walls> # nonslip

FACE_EQUATION <wall p extrapolation> "dot (<graddivpl[l
=:]>,<facenorm[1=:]>)" ON <walls> # extrapolate
pressure to the wall using zero gradient normal to
wall

boundary conditions on outlet - fully developed flow

FACE_EQUATION <outlet fully developed> "facegrad(dot (<ul
1=:]1>,cellave[lastface] (<facenorm[1l=:]>)))" ON <
outlet> # normal velocity component is fully
developed

FACE_EQUATION <outlet noslip> "dot(<ul[l=:]1>,<facetangl[l
=:]>)" ON <outlet> # no component tangential to
outlet

FACE_EQUATION <outlet p> "<p>" ON <outlet> # specified
uniform (zero) pressure

boundary conditions on inlet - fully developed flow

FACE_EQUATION <inlet fully developed> "facegrad(dot(<ul[l
=:]>,cellave[lastface] (<facenorm[1l=:]1>)))" ON <inlet>
normal velocity component is fully developed

FACE_EQUATION <inlet noslip> "dot(<ul[l=:]>,<facetangl [l
=:]>)" ON <inlet> # no component tangential to inlet

set velocity distribution corresponding to fully
developed Cartesian flow
FACE_EQUATION <inlet flowrate> "<u_f>+6.d0*<u_av>*<cellx
[1=2]>%(0.41d0-<cellx[1=2]1>)/(0.41d0"2)" ON <inlet> #
specified velocity distribution

alternatively, set uniform inlet pressure giving
required average velocity

#NONE_DEPENDENT <u_av_calc> "facesum(-<u_f>*<facearea>,<
inlet>)/facesum(<facearea>,<inlet>)" # calculate
average velocity directed into the domain

#NONE_INDEPENDENT <p_in> [Pa] 1.d0 "1.d0" # define the
pressure at inlet

#NONE_EQUATION <p_in for flowrate> "<u_av_calc>-<u_av>"
set flowrate through inlet to give required average

32

velocity
#FACE_EQUATION <inlet flowrate> "<p>-<p_in>" ON <inlet>
apply specified pressure over inlet

calculate drag and 1lift on object

NONE_OUTPUT <F_drag> [N] "facesum(<facearea>*dot (<
facenorm[l=:]>,<taull=:,1]>) ,<cylinder>)" # force on
object in axial direction

NONE_OUTPUT <F_1ift> [N] "facesum(<facearea>*dot (<
facenorm[1l=:]>,<taull=:,2]>) ,<cylinder>)" # force on
object in vertical direction

NONE_OUTPUT <C_drag> "2.d0*<F_drag>/(<rho>*<u_av>"2%0.1
d0)" # drag coefficient

NONE_OUTPUT <C_lift> "2.d0*<F_lift>/(<rho>*<u_av>"2*0.1
do)" # 1ift coefficient

33

	1 What is arb?
	2 Working with arb
	2.1 Managing arb's files
	2.1.1 Unpacking the code
	2.1.2 The working directory and file structure
	2.1.3 Packing the code

	2.2 Checking for prerequisit software
	2.2.1 Maxima
	2.2.2 Perl
	2.2.3 A fortran compiler
	2.2.4 Pardiso
	2.2.5 Harwell Subroutine Library
	2.2.6 Numerical Recipes in Fortran 77
	2.2.7 Gmsh

	2.3 Running a simulation

	3 Inside arb
	3.1 Code structure
	3.2 Mesh structure
	3.3 Regions
	3.3.1 Defining regions via gmsh
	3.3.2 Defining regions within the constants.in file
	3.3.3 System generated regions

	3.4 Variable types
	3.4.1 Constant type variable defined in equations.in
	3.4.2 Constant type variable defined in constants.in
	3.4.3 Constant type variable defined per region in constants.in
	3.4.4 Transient type variable defined in equations.in
	3.4.5 Dependent type variable defined in equations.in
	3.4.6 Independent type variable defined in equations.in
	3.4.7 Equation type variable defined in equations.in
	3.4.8 Output type variable defined in equations.in
	3.4.9 System variables

	3.5 Simulation options
	3.6 Data visualisation

	4 Expression language reference
	4.1 Operators
	4.1.1 celldiv: Divergence calculated around a cell
	4.1.2 cellgrad or facegrad: Gradient evaluated around a cell or face
	4.1.3 celldivgrad: Gradient evaluated around a cell calculated via a divergence
	4.1.4 cellave or faceave: Interpolation of quantity from one centring to another
	4.1.5 celllimiter: Gradient limiter for ensuring advection stability
	4.1.6 cellif or faceif or noneif: If conditional statement
	4.1.7 cellsum or facesum: Sum performed over a region of elements
	4.1.8 cellmax or facemax or nonemax: Picks the maximum from a region of elements
	4.1.9 cellmin or facemin or nonemin: Picks the minimum from a region of elements
	4.1.10 celldelta or facedelta: A delta function to identify specific regions

	5 Example applications
	5.1 Incompressible steady-state Newtonian flow through a 2D channel containing a cylinder with set inlet velocities

