
rxntoarb
v. 2.22+

Christian Biscombe

12 March 2019

rxntoarb (pronounced reaction-to-arb) converts a human-readable system of chemical
reactions into a format suitable for use with arb finite volume solver. Reading from one
or more input files (with the preferred extension .rxn), rxntoarb automatically creates

• rate constant definitions (performing unit conversions where necessary),

• reaction rate expressions,

• source terms,

• transport equations for each chemical species (easily customisable by means of a
template file),

• magnitude estimates.

Other features include easy switching between ODE and PDE output and the ability to
include or exclude reactions based on regular expression matches.
rxntoarb offers several benefits:

• the reaction network is represented using intuitive syntax that is easier and faster
to read and write,

• reactions may be easily added or removed without the user having to keep track of
the effects of these changes on source terms,

• the potential for error is greatly reduced by eliminating the need for manual unit
conversions and manual entry of reaction rates and source terms.

rxntoarb requires Ruby 1.9.3 or newer. The current version of the template file (see § 2)
is designed for arb 0.60. (Older versions of the template file are available going back to
arb 0.56.)

1

Contents

1 Invocation and command-line options 3

2 File structure 3
2.1 .rxn file . 3
2.2 Template file (rxntoarbrc) . 5
2.3 .arb output file . 5
2.4 Main .arb file . 5

3 .rxn file syntax 6
3.1 options statement . 6
3.2 Comments . 7
3.3 Headers . 7
3.4 Species and region names . 7
3.5 surface region and volume region statements 8

3.5.1 Lazy region identifiers @s and @v 8
3.6 Reactions . 8

3.6.1 Irreversible reactions . 8
3.6.2 Reversible reactions . 9
3.6.3 Two-step reactions . 9
3.6.4 Michaelis–Menten reactions . 9

3.7 Kinetic parameters . 9
3.7.1 Inheritance . 10

3.8 Aliases . 10
3.9 initial species statement . 11
3.10 Metaspecies . 11
3.11 include only and exclude statements 12
3.12 substitute statement . 12

4 Template file syntax 13
4.1 Substitution sequences . 13
4.2 if rxn statement . 14
4.3 each blocks . 14

5 Future development ideas 14

6 Copyright and licence 15

2

1 Invocation and command-line options

rxntoarb is invoked as follows:

rxntoarb [options list] <rxn file list>,

where rxn file list specifies the path to at least one .rxn file and the optional
options list may include any of the following:

-d|--debug Write copious debugging output to STDERR. (Intended mainly as a de-
veloper option.)

-i|--interactive Prompt for confirmation before overwriting an existing .arb output
file.

-l|--alias-labels Use reaction aliases (§ 3.8) instead of internal reaction labelling
scheme.

-n|--none-centred Activate ODE mode: generate ODEs (no spatial dependence) rather
than PDEs. rxntoarb operates in PDE mode by default.

-o|--outfile <output file> Use output file as the .arb output file. This option is
ignored if rxn file list contains more than one .rxn file.

-t|--template <template file> Use template file as the template file.

-v|--version Print version information.

As of arb 0.58, rxntoarb is invoked automatically by arb if an INCLUDE statement (or
similar) in an arb input file references a file with the .rxn extension. This mechanism
ensures that the .arb output file generated by rxntoarb is always up-to-date with the
.rxn file. To enable options to be passed to rxntoarb via this mechanism, any of the
above command-line options may also be set within the .rxn file itself (see § 3.1).

2 File structure

Using rxntoarb with arb involves the use of four files.

2.1 .rxn file

.rxn files are input files read by rxntoarb. They contain a list of chemical reactions
together with kinetic data. The syntax used in .rxn files is defined in § 3. An example
.rxn file, reproduced in Listing 1, may be found under examples/reactions.rxn in
the rxntoarb root directory. Vim syntax highlighting for .rxn files is provided by the
file rxn.vim included in the rxntoarb root directory (type :help usr 06 in Vim for
instructions on how to set this up).

3

Listing 1 An example .rxn file (examples/reactions.rxn)

1 ! Blood plasma coagulation biochemistry

2 ! Ref: Jordan and Chaikof (2011), Biophys. J. 101: 276-286

3 ! File created by Christian Biscombe, 2017-08-19

5 # Fluid-phase reactions

6 volume_region domain

7 VIII@v {IIa@v}-> VIIIa@v; kcat=0.9 s-1, KM=0.20 uM

8 V@v {IIa@v}-> Va@v; kcat=0.23 s-1, KM=0.072 uM

9 VII@v {Xa@v}-> VIIa@v; kcat=15.2 s-1, KM=1.2 uM # CB corrected erroneous kcat in ref.

10 VII@v {IIa@v}-> VIIa@v; kcat=0.061 s-1, KM=2.7 uM

11 IIa@v + ATIII@v -> ; k=6.8d-3 uM-1 s-1

12 IXa@v + ATIII@v -> ; k=9.9d-6 uM-1 s-1 # CB corrected erroneous k in ref.

13 Xa@v + ATIII@v -> ; k=2.6d-3 uM-1 s-1 # reaction mistakenly omitted in ref.

14 Xa@v + TFPI@v <=> TFPI:Xa@v; ka=16 uM-1 s-1, kd=3.3d-4 s-1

15 Va@v {APC@v}-> ; kcat=0.58 s-1, KM=0.025 uM

16 VIIIa@v {APC@v}->

17 V@v {Xa@v}-> Va@v; kcat=0.046 s-1, KM=0.01 uM

19 # Reactions occurring on both TF patch and TM patch

20 surface_regions TF_patch, TM_patch

21 II@v {Va:Xa@s}-> IIa@v; kcat=33 s-1, KM=0.21 uM

22 X@v {VIIIa:IXa@s}-> Xa@v; kcat=20 s-1, KM=0.16 uM

23 Va@v + Xa@v <=> Va:Xa@s; ka=100 uM-1 s-1, kd=0.01 s-1 # units inconsistent!

24 VIIIa@v + IXa@v <=> VIIIa:IXa@s; ka=100 uM-1 s-1, kd=0.01 s-1 # units inconsistent!

26 # Reactions occurring on TF patch only

27 surface_region TF_patch

28 X@v {TF:VIIa@s}-> Xa@v; kcat=1.2 s-1, KM=0.45 uM

29 IX@v {TF:VIIa@s}-> IXa@v; kcat=0.34 s-1, KM=0.17 uM

30 VIIa@v + TF@s <=> TF:VIIa@s; ka=100 uM-1 s-1, kd=0.06 s-1

31 TF:VIIa@s + TFPI:Xa@v <=> TF:VIIa:TFPI:Xa@s; ka=10 uM-1 s-1, kd=1.1d-3 s-1

33 # Reactions occurring on TM patch only

34 surface_region TM_patch

35 PC@v {IIa:TM@s}-> APC@v; kcat=5.58 s-1, KM=0.7 uM

36 IIa@v + TM@s <=> IIa:TM@s; ka=100 uM-1 s-1, kd=0.01 s-1

38 initial_species [II, V, VII, VIIa, VIII, IX, X, PC, ATIII, TFPI]@domain

39 initial_species TF@TF_patch, TM@TM_patch

2.2 Template file (rxntoarbrc)

Template files store arb code that needs to be included for each chemical species defined
in a .rxn file. The extended (non-arb) syntax used in template files is defined in § 4.
rxntoarb uses the following hierarchy to determine the path of the template file:

1. If rxntoarb is invoked with the -t flag, the specified template file is used.

2. If a file with the name rxntoarbrc exists within the working directory from which
rxntoarb is called, it is used as the template file.

3. The default rxntoarbrc located in the rxntoarb root directory is used otherwise.

The default rxntoarbrc should provide an adequate starting point in most cases. However,
the user may wish to alter the (simulation-specific) boundary conditions listed beneath
the comment ‘# set boundary conditions here’ or to define new per-species OUTPUT
variables. In this case, the default template should be copied to the working directory
and modified there.

2.3 .arb output file

The output of rxntoarb is an .arb output file, which contains arb code metaprogrammed
from the contents of the .rxn file. The .arb output file will have the same basename as
the .rxn file unless overridden by the -o flag.

2.4 Main .arb file

The .arb output file generated by rxntoarb contains arb code describing chemical species
and the reactions occurring between them, but it is not sufficient to run a complete arb
simulation. Additional code related to mesh setup, solver options, equations governing
fluid flow, time-stepping, etc. should be included in a separate .arb file, referred to as the
main .arb file. It is this main .arb file (and not the .arb output file) that should be run
through arb.
The main .arb file should have the following characteristics to interface cleanly with

the .arb output file:

• An INCLUDE LOCAL statement to include the .arb output file must be present.

• Any variables used in the template file but not created by rxntoarb must be
defined.

• Replacements for any flags (strings delimited by double angle brackets <<>>) used in
the template file should be defined. The default rxntoarbrc contains the following
flags:

– <<specieshighorderadvection>>: whether to use high-order advection for
chemical species; should be either 1 (true) or 0 (false; default). If false, low-
order advection will be used.

5

– <<zeroinitialvolumeconcentrations>>: whether to set species concentra-
tions to zero initially in volume regions; should be either 1 (true) or 0 (false;
default). If false, species concentrations will be set equal to their boundary
values (see below) throughout volume regions.

– <<calculatediffusivities>>: whether species diffusivities should be calcu-
lated using a correlation based on molecular weight; should be either 1 (true)
or 0 (false; default). If true, molecular weights must be defined for all volume
species (see below). If false, diffusivities must be defined for all volume species
(see below).

• Species-specific physical parameters, currently only molecular weights or diffusivities,
should be defined as CONSTANTs. Molecular weight variable names must follow
the convention <MW speciesname>. Diffusivity variable names must follow the
convention <D speciesname>. Molecular weights of complexes (two or more species
bound to each other) need not be defined: they will be calculated automatically as
the sum of the molecular weights of the components.

• Boundary concentrations of all species present initially should be defined as
CONSTANTs after the .arb output file is included (because this file sets the boundary
concentrations of all species to zero by default). For surface species, the boundary
concentration corresponds to the initial concentration of that species. For volume
species, the boundary concentration will generally be the concentration of that spe-
cies on the boundary where it enters the volume. Boundary concentration variable
names must follow the convention <c speciesname@region 0> for species located
in volume regions and <s speciesname@region 0> for species located on surface
regions.

An example (skeleton) main .arb file may be found under examples/main.arb in the
rxntoarb root directory.

3 .rxn file syntax

3.1 options statement

The options listed in § 1 may also be set within a .rxn file using an options statement,
which (if used) should appear near the top of the file. The syntax for setting options
exactly mirrors the command-line invocation. For example, the following code activates
ODE mode and sets the template file to my template file:

options -n -t my_template_file

Note that options set using an options statement take precedence over options set on
the command line.

6

3.2 Comments

Comments begin with the # character and continue until the end of the line. Comments
may appear anywhere in the .rxn file. Full-line comments (e.g. line 5 in Listing 1) are
ignored by rxntoarb. Comments appearing after the parameter list of a reaction (e.g.
line 9) are carried over into the .arb output file, where they appear after the CONSTANT
expressions that define the relevant kinetic parameters. Such end-of-line comments are a
good place to cite references from which parameter values have been taken.

3.3 Headers

Lines beginning with a bang (!) are called headers (e.g. lines 1–3). Headers are a type of
comment designed primarily to store metadata about the reaction network (title, author,
date, description etc.). Headers may appear anywhere in the .rxn file (but it is intended
that they appear only at the top). All headers will be collected together as comments
at the top of the .arb output file. A line showing the date and time at which the .arb
output file was generated and the version of rxntoarb used will be appended to the
header automatically.

3.4 Species and region names

Chemical species have the general form speciesname@region. The speciesname de-
scribes the chemical identity of the species; the @region specifies the arb region on/in
which that species is present. (Note that @ is not part of the region name, but rather acts
to separate the species and region names.) Chemical species are declared by including
them in a reaction (see § 3.6).
Species and region names may not contain any of the characters <>"#& or the character

sequences {{ or }} (restrictions inherited from arb). rxntoarb also requires that species
and region names not contain any of the characters ,;@ or any of the substitution
sequences or extended syntax used in template files (see § 4). Colons (:) within species
names are intended to separate the components of a complex (e.g. TFPI:Xa in line 14 is
a complex of TFPI and Xa), but this interpretation only comes into play in calculating
the molecular weight of complexes. The use of arb-style angle bracket delimiters (<>) is
necessary for species names only if they begin with digits (which would otherwise be
interpreted as a stoichiometric coefficient), and necessary for region names only if they
contain characters other than letters, digits, and underscores.
Two lazy region identifiers, @s and @v, are predefined (see § 3.5.1). These identifiers

interact with surface region and volume region statements. As such, s and v should
not be used as user-defined region names.
When rxntoarb is called with the -n flag, ODE mode is activated. In this mode, all

species and reactions are assumed to have no spatial dependence and hence region names
effectively become part of the species name.
It is permissible to omit @region identifiers throughout the .rxn file under two circum-

stances:

7

• No surface region or volume region statements appear. In this case all species
and reactions will be assumed to have no spatial dependence, i.e. ODE mode will
be assumed.

• Exactly one surface or volume region is specified by either a surface region or
volume region statement. In this case all species and reactions will be assumed to
be located on/in that region.

3.5 surface region and volume region statements

The surface region and volume region keywords (both optionally plural) are used to
specify arb regions on/in which chemical species are present and reactions occur. The
keywords should be followed by a comma-separated list of region names (conforming to
the naming rules stipulated in § 3.4). If rxntoarb is called without the -n flag (PDE
mode), surface regions will be assumed to be two-dimensional and volume regions will be
assumed to be three-dimensional. If rxntoarb is called with the -n flag (ODE mode),
then the dimensionality of regions is ignored.
surface region and volume region statements apply to all reactions subsequently

defined in the .rxn file, unless and until overridden by another surface region or
volume region statement.

3.5.1 Lazy region identifiers @s and @v

The lazy region identifiers @s and @v are shorthand references to the surface and volume
regions specified by the previous surface region and volume region statements. For ex-
ample, the surface regions statement in line 20 specifies two surface regions, TF patch

and TM patch. References to @s in lines 21–24 will therefore be interpreted by rxntoarb

as references to both TF patch and TM patch, whilst references to @v will be interpreted
as references to the volume region domain specified by the volume region statement in
line 6. In line 27, the new surface region statement overrides the previous one so that
references to @s in lines 28–31 will be interpreted as references to TF patch only.

3.6 Reactions

Four types of reactions are recognised, as described below. Reactions may be entered in
any order in the .rxn file, subject to the condition that the lazy region identifiers @s and @v

will take their value(s) from the previous surface region and volume region statements.
With the exception of Michaelis–Menten reactions (whose kinetics are governed by the
Michaelis–Menten equation), all reaction rates are assumed to be described by mass
action kinetics.

3.6.1 Irreversible reactions

Irreversible reactions take the form

reactant list -> product list.

8

https://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics
https://en.wikipedia.org/wiki/Law_of_mass_action
https://en.wikipedia.org/wiki/Law_of_mass_action

reactant list consists of one or more species, separated by spaces and the character +
(the spaces are mandatory so that + can also be used in species names, e.g. for ions).
Stoichiometric coefficients (if any) should immediately precede the species name, option-
ally separated from it by a space or the . or * characters. Non-integer stoichiometric
coefficients are not supported. product list is similar except that it may be empty, in
which case the products of the reaction are discarded (not tracked in the arb simulation).
For readability, spaces around the reaction arrow -> are recommended (but not mandat-
ory). The kinetic parameter k describing the rate of the reaction must either be specified
or inherited (see § 3.7). Examples of irreversible reactions are shown in lines 11–13.

3.6.2 Reversible reactions

Reversible reactions take the form

reactant list <=> product list.

product list must not be empty for a reversible reaction. The kinetic parameters ka
and kd describing the rates of the forward and reverse reactions must either be specified
or inherited (see § 3.7). Examples of reversible reactions are shown in lines 23–24.

3.6.3 Two-step reactions

Two-step reactions consist of a reversible reaction followed by an irreversible reaction:

reactant list <=> intermediate list -> product list.

intermediate list must not be empty but product list may be empty (which implies
that the products are not tracked in the arb simulation). The kinetic parameters ka, kd,
and k describing the rates of the forward and reverse reactions in the first step and the
irreversible reaction in the second step must either be specified or inherited (see § 3.7).

3.6.4 Michaelis–Menten reactions

Michaelis-Menten reactions take the form

substrate {enzyme}-> product list.

Exactly one substrate and one enzyme must be specified. product list may be empty
(which implies that the products are not tracked in the arb simulation). The Michaelis–
Menten parameters KM and kcat must either be specified or inherited (see § 3.7). Examples
of Michaelis–Menten reactions are shown in lines 7–10.

3.7 Kinetic parameters

Kinetic parameters are entered as a comma-separated list on the same line as the reaction
they describe, separated from the reaction itself by a semicolon (;). Kinetic parameters
may be entered in any order. The following parameter names are recognised:

9

• k,

• ka (synonyms kf and kon),

• kd (synonyms kr and koff),

• KM (synonym Km),

• kcat.

Kinetic parameter values may be entered in two forms. In the first form (used throughout
the example .rxn file), a numerical value together with appropriate physical units are
specified. The numerical value and each individual unit should be separated by spaces.
SI prefixes immediately precede the unit name. Exponents on units should immediately
follow the unit name, optionally preceded by the ^ character. More information on unit
entry is given in the accompanying documentation for the convert units program, which
provides a command-line interface to the Units module that accompanies rxntoarb.
Where necessary, rxntoarb performs unit conversions so that parameter values in the
.arb output file are expressed in SI base units. Unit consistency checking is also performed
with warning messages issued if reaction rates have inconsistent or unexpected units.
(Such warnings are produced by lines 23–24.)

Alternatively, kinetic parameter values may be specified as strings, delimited by either
single or double quotes. Strings may contain arbitrary arb code. This feature is useful in
conjunction with aliases (see § 3.8) or for expressing one kinetic parameter in terms of
others. The downside is that unit consistency checking is not possible.

3.7.1 Inheritance

Sometimes the same kinetic parameters will apply to a group of closely related reactions.
Kinetic parameters from one ‘parent’ reaction can be assigned to any number of ‘child’
reactions by placing the children directly below the parent and indenting them by at
least one space. An example of inheritance is shown in lines 15–16: the reaction in line 16
inherits the kinetic parameters from line 15. The advantage of inheritance is that kinetic
parameters for the group of reactions need only be entered in one place.

3.8 Aliases

Any non-indented reaction may be preceded by an alias, which runs from the beginning
of the line until a colon (:) followed by a (mandatory) space is encountered. Aliases serve
two purposes. Firstly, they may be used to provide descriptive names for reactions. If
rxntoarb is invoked with the -l flag, these names will be used throughout the .arb output
file in place of the automatic labels (derived from species names) otherwise generated
by rxntoarb. Secondly, aliases provide a convenient way to refer to kinetic parameters
defined elsewhere in the .rxn file. For example, lines 15–16 could alternatively be written

15 Va_inactivation: Va@v {APC@v}-> ; kcat=0.58 s-1, KM=0.025 uM

16 VIIIa@v {APC@v}-> ; kcat="<kcat_Va_inactivation>", KM="<KM_Va_inactivation>"

10

In this case, the values of kcat and KM specified in line 15 (alias Va inactivation) have
been assigned to the reaction in line 16.

3.9 initial species statement

An initial species statement is used to declare which species are present initially in
the arb simulation. This information is used by rxntoarb to estimate the magnitudes
of the concentrations of all species based on the concentrations of the precursor species
from which they are derived.
The initial species keyword should be followed by a comma-separated list of species

together with their associated regions, as shown in line 39. If multiple species on/in
the same region are present initially, the array notation shown in line 38 may be used.
(Note that lines 38 and 39 have been separated only for aesthetic reasons; they could be
combined into a single line.) Any species appearing in an initial species statement
but otherwise not appearing in the .rxn file will be ignored.
See § 2.4 for details on how boundary concentrations must be specified in the main

.arb file.

3.10 Metaspecies

A ‘metaspecies’ is a group of entities that behaves like a single entity in a reaction. For
instance, when coagulation factors X and Xa bind to phospholipid membranes composed
of phosphatidylcholine and phosphatidylserine (70:30 mixture), they occupy 106 and 52
phospholipid head groups, respectively.1 These binding reactions should not be written
as

X@v + 106PL@s <=> X@s; ka=..., kd=... # INCORRECT!

Xa@v + 52PL@s <=> Xa@s; ka=..., kd=... # INCORRECT!

because under mass action kinetics, the rates of the reactions as written above would be
proportional to the concentration of PL@s raised to the power of 106 and 52, respectively,
which is not what is wanted. Instead, binding sites should be entered using the following
square bracket notation to represent a metaspecies:

X@v + [106PL@s] <=> X@s; ka=..., kd=...

Xa@v + [52PL@s] <=> Xa@s; ka=..., kd=...

rxntoarb interprets the metaspecies as single entities so that the rates of these reactions
are proportional to the concentrations of the respective binding sites (equal to the
concentration of PL@s divided by 106 and 52, respectively). The source term for PL@s is
handled sensibly too.
As metaspecies behave like any other chemical species, they may be preceded by a

stoichiometric coefficient if necessary (e.g. 2[106PL@s]).

1 Hathcock et al. (2005), Biochemistry 44: 8187.

11

http://dx.doi.org/10.1021/bi050338b

3.11 include only and exclude statements

include only and exclude are used to selectively include or exclude regions or reactions
in the .arb output file. Both keywords must be followed either by (i) a whitespace-free
text string for simple text matching or (ii) a valid Ruby regular expression for more
complex matches. (Regular expressions are useful for specifying alternate match patterns,
forcing the statement to respect word boundaries, or preventing end-of-line comments
from being scanned. The Regexp option i, which enables case-insensitive matching, is the
only Regexp option recognised by rxntoarb.) For the statement to operate on a region,
the region name must be preceded by the @ character. For example, if it is desired to
run the example in Listing 1 without the TM patch region, then the following statement
should be issued near the top of the .rxn file:

exclude /@TM_patch|APC/

This statement excludes all reactions occurring on the TM patch as well as all fluid-phase
reactions involving APC (which is not present initially and is only produced on the
TM patch).
include only and exclude statements apply to all lines subsequently defined in the

.rxn file, unless and until overridden by another include only or exclude statement.
End-of-line comments are scanned by default, effectively enabling the user to define their
own keywords to select/deselect subsets of reactions. To prevent end-of-line comments
from being scanned, use a regular expression beginning with ^[^#]*.

3.12 substitute statement

A substitute statement2 performs code replacements. It is particularly useful when
metaspecies appear in more than one reaction (although its use is not limited to this
application). Carrying on the example from § 3.10, suppose it is decided that factors X
and Xa should both bind to 79 phospholipid head groups (79 is the average of 106 and
52). To avoid repeating the constant 79 in multiple locations, a pointer S@s to the binding
site metaspecies is defined via a substitute statement as follows:

substitute /\bS@s\b/ [79PL@s]

X@v + S@s <=> X@s; ka=..., kd=...

Xa@v + S@s <=> Xa@s; ka=..., kd=...

When the above code is parsed, all instances of S@s below the substitute statement
will be replaced internally by [79PL@s]. (Including \b in the regular expression ensures
that only complete matches are replaced; other species that happen to contain S@s—
e.g. PS@s—will not be affected.)
In general, the substitute keyword takes two space-separated arguments. The first

argument must either be (i) a whitespace-free text string for simple text matching or (ii) a
valid Ruby regular expression for more complex matches. (The Regexp option i, which
enables case-insensitive matching, is the only Regexp option recognised by rxntoarb.)

2 The substitute statement extends and replaces the let statement that appeared in versions 2.7–2.17.

12

The second argument is taken to be any text following the first argument (excluding
end-of-line comments starting with the # character). All subsequent instances of text
matching the first argument will be replaced with the second argument.
In principle, substitute statements could be used to override any aspect of the syntax

described in this manual. Judiciousness is strongly advised.

4 Template file syntax

rxntoarb template files (called rxntoarbrc by default) store arb code that needs to be
included for each species. A range of substitutions are performed on the original template
file to generate unique code for each species. Template files contain extended (non-arb)
syntax that is handled by rxntoarb as detailed below.

4.1 Substitution sequences

rxntoarb performs substitutions on the following character sequences (all delimited by
forward slashes), which must therefore not appear in any species or region names:

• /c/ (concentration of the species),

• /species/ (species name),

• /region/ (region name),

• /source region/ (region name),

• /CENTRING/ (NONE|FACE|CELL depending on species location),

• /centring/ (none|face|cell depending on species location),

• /units/ (’’|mol m-2|mol m-3 depending on species location),

• /MW/ (molecular weight of the species),

• /associatedfaces(region)/ (region consisting of faces associatedwith the re-
gion),

• /associatedcells(region)/ (region consisting of cells associatedwith the re-
gion),

• /domainof(region)/ (region consisting of cells in domainof the region).

Additionally, all arb statements of the form ON <region> are deleted in ODE mode.

13

4.2 if rxn statement

if rxn statements are used to conditionally include arb code depending on whether a
species is located on a surface, in a volume, or has no location (ODE mode). if rxn

statements take the form

if rxn(location=region list){if clause}{else clause}.

The term in parentheses determines the scope of the if rxn statement. location must
be one of none, surface, or volume. The optional region list limits the scope of the
if rxn statement to only the named regions, and should be a comma-separated list of
region names (arb-style angle bracket delimiters are optional). The code contained in the
mandatory if clause is retained for all species defined within the scope of the if rxn

statement and deleted otherwise. The code contained in the optional else clause is
retained for all species outside the scope of the if rxn statement and deleted otherwise.
Both if clause and else clause may span multiple lines. Nested brace pairs within
clauses are allowed but nested if rxn statements are not permitted.

4.3 each blocks

each blocks are used to apply a particular boundary condition to multiple surface regions
bounding a volume region, and hence must reside within if rxn(volume) statements.
each blocks take the Ruby-inspired form

[region list].each { |loopvar| expression }.

The mandatory region list, which specifies the volume-region-bounding surface regions
for which the expression in the block will be retained, should be a comma-separated
list of region names (arb-style angle bracket delimiters are optional). Each of these region
names (stripped of angle brackets, if any) will be passed to the block, where they are
accessed through the (user-named) variable |loopvar| (vertical bars mandatory). In
region list, the shorthand * may be used to represent all volume-region-bounding
surface regions on which reactions are occurring.
each blocks may span multiple lines. Nested brace pairs within each blocks are allowed

but nested each blocks are not permitted.

5 Future development ideas

No guarantees, just some ideas! Contact the author if there is a capability you think
rxntoarb should have.

• Support (two-way) conversion between .rxn format and SBML and/or CellML. As
of 25 October 2017:

– It is very difficult to translate certain features of .rxn syntax into SBML (e.g.
string parameters, aliases, metaspecies).

14

http://sbml.org/Basic_Introduction_to_SBML
https://www.cellml.org/

– Converting from SBML to .rxn is also tricky because of the relatively uncon-
strained format of KineticLaw objects.

– Installing the Ruby bindings for libSBML involves hacking with the (broken)
libSBML makefile.

For these reasons, support for SBML is unlikely in the near future unless a real
need arises.

• Allow subsets of reactions to occur at different ‘runlevels’, e.g. to simulate sequential
reaction steps. Would be handy if pre-equilibration steps could be run through arb
automatically. (Currently this can be achieved by making use of include only and
writing a wrapper script.)

• LATEX output of reactions. (Could defer to COPASI or SBML2LaTeX if SBML
support implemented.)

• Graphical output of reaction network diagrams. (Could defer to COPASI or Cyto-
scape if SBML support implemented.)

6 Copyright and licence

rxntoarb source code and documentation © 2016–2019 Christian Biscombe.
rxntoarb is contributed to arb finite volume solver (in which copyright is held by

Dalton Harvie) under the same licence terms as that project. At the time of writing, arb
is released under the terms of the GNU General Public License (version 3) as published
by the Free Software Foundation.

15

http://copasi.org/Support/Features/
http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX/
http://copasi.org/Support/Features/
http://www.cytoscape.org/
http://www.cytoscape.org/

	1 Invocation and command-line options
	2 File structure
	2.1 .rxn file
	2.2 Template file (rxntoarbrc)
	2.3 .arb output file
	2.4 Main .arb file

	3 .rxn file syntax
	3.1 options statement
	3.2 Comments
	3.3 Headers
	3.4 Species and region names
	3.5 surface_region and volume_region statements
	3.5.1 Lazy region identifiers @s and @v

	3.6 Reactions
	3.6.1 Irreversible reactions
	3.6.2 Reversible reactions
	3.6.3 Two-step reactions
	3.6.4 Michaelis–Menten reactions

	3.7 Kinetic parameters
	3.7.1 Inheritance

	3.8 Aliases
	3.9 initial_species statement
	3.10 Metaspecies
	3.11 include_only and exclude statements
	3.12 substitute statement

	4 Template file syntax
	4.1 Substitution sequences
	4.2 if_rxn statement
	4.3 each blocks

	5 Future development ideas
	6 Copyright and licence

