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With the advent of digital approaches to mental health, modern

artificial intelligence (AI), and machine learning in particular, is

being used in the development of prediction, detection and

treatment solutions for mental health care. In terms of

treatment, AI is being incorporated into digital interventions,

particularly web and smartphone apps, to enhance user

experience and optimise personalised mental health care. In

terms of prediction and detection, modern streams of abundant

data mean that data-driven AI methods can be employed to

develop prediction/detection models for mental health

conditions. In particular, an individual’s ‘digital exhaust’, the

data gathered from their numerous personal digital device and

social media interactions, can be mined for behavioural or

mental health insights. Language, long considered a window

into the human mind, can now be quantitatively harnessed as

data with powerful computer-based natural language

processing to also provide a method of inferring mental health.

Furthermore, natural language processing can also be used to

develop conversational agents used for therapeutic

intervention.
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Introduction
The field of mental health care, like a range of other

fields, has been impacted by the revolution in digital

technology and artificial intelligence (AI), with the field of

digital mental health now firmly established as well as

continued and emerging work on AI-driven solutions for

mental health [1]. AI is a broad term, encompassing a

range of techniques and approaches to developing

computational systems that perform cognitive processes

characteristic of humans, such as learning, the ability to

reason and problem solve, pattern recognition, generali-

sation, and predictive inference. This review will focus on
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three of the main ways that AI is being applied in mental

health:

� Personal sensing or digital phenotyping

� Natural language processing of clinical texts and social

media content

� Chatbots

Smartphones and digital phenotyping
Digital phenotyping [2] or personal sensing [3] involves

using sensor and usage data from personal digital devices,

particularly smartphones, to infer contextual and beha-

vioural information about an individual that can then be

used as input for machine learning methods to predict

psychological/psychometric outcomes and mental health

conditions. Apart from smartphones there has also been

work on using wearables such as smartwatches and acti-

graphy devices [4,5], and there has even been some

incipient discussion on the use of the Internet of Things

for mental health [6]. For a more general discussion of

digital phenotyping beyond this AI-relative overview, the

reader can consult the article on digital phenotyping in

this special issue [7].

Being two of the most prevalent mental health conditions,

much of the digital phenotyping research has been on

depression and anxiety. One connection that has been

researched is that between movement or physical activity

(as tracked by geolocation and accelerometer sensors) and

mental ill-health, particularly depression, as measured by

scales such as the PHQ-9. [8�,9�,10].

In terms of smartphones and screen input, recent work

suggests that keystroke dynamics of clicking, tapping,

scrolling and swiping can provide mental health clues,

without the need to linguistically analyse inputted char-

acter content. A recent publication on touchscreen typing

pattern analysis for depression detection [11��] proposes a

machine learning-based method for determining depres-

sive individuals as measured by the PHQ-9, based on

smartphone typing patterns as input.

Smartphone and other digital device sensing has been

used to study conditions other than depression and anxi-

ety, including early work on schizophrenia or psychotic

disorders [12,13�]. In [13�] the study authors found that

reductions in the number and duration of outgoing calls,

as well as number of text messages were associated with

relapses of schizophrenia.
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Smartphones have also proved to be a very effective way

to administer ecological momentary assessments for men-

tal health monitoring (EMA), providing an easy and

efficient way to send individuals repeated questionnaires

to obtain in-situ assessments of contexts, behaviours,

psychological states and moods [14–16]. Moving beyond

just assessments but retaining ecological momentariness,

the novel idea of Ecological Momentary Interventions

(EMI) is to provide momentary psychological interven-

tions or behavioural prompts delivered via personal

mobile devices during an individual’s daily life, often

informed by their responses to EMAs [17,18,19�].

The true potential for smartphone EMIs however, and

something which is yet to be fully realised, is to incorpo-

rate AI systems that can deliver contextually relevant and

personalized therapy recommendations informed by

smartphone sensing information and digital phenotyping

insights [20]. Such a system would also learn about the

individual and evolve over time, continuously improving

its responses based on user patterns and system

interactions.

Language, voice and mental health
The idea that the language we use, and our vocalisations,

can indicate our psychological states, coupled with

advances in the AI fields of natural language processing

(NLP) and audio analysis, has led to an emergence of

research on associations between language/voice charac-

teristics and mental health. Transcriptions of clinical

interviews/sessions are traditional sources of textual con-

tent for mental health language analysis. However, Inter-

net technologies such as social media, online forums and

instant messaging offer rich new sources of non-clinical

text for such analysis [21].

Properties characteristic of language disturbance, such as

impoverished vocabulary, semantic incoherence and

reduced syntactic complexity are indicators of severe

mental illness, particularly schizophrenia/psychosis. Such

properties can be quantified using NLP techniques and

the resulting figures used as inputs to machine-learning

models for mental health classification/prediction. An

early research instance used semantic coherence and

syntactic complexity to predict later psychosis develop-

ment with 100% accuracy (n = 34) [22]. Recent research

by the same team [23��] applied the same natural lan-

guage processing approach to a larger dataset, developing

a similar machine-learning classifier that had an 83%

accuracy in predicting psychosis onset and a 72% accuracy

in discriminating the speech of recent-onset psychosis

patients from that of healthy individuals. Whilst in a sense

such research simply adds to the long-observed associa-

tion between language disturbance and severe mental

illness, the development of such automated tools offers a

precise, scalable and rapidly executable means for detec-

tion/prediction.
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The newsfeeds and forums of services such as Facebook,

Twitter and Reddit provide a rich source of material for

input into natural language processing systems. By ana-

lysing linguistic features in social media content, it is

possible to generate machine learning models that can be

used to infer an individual’s mental health earlier than

traditional approaches. Recent work continues research

that started to appear after the advent of social media on

analysing posted content for signs of mental health issues,

with most of this research focusing on depression

[24–28,29��]. In [29��], the Facebook posts of a relatively

large patient cohort were analysed to predict, with an

accuracy approximately matching screening surveys,

depression as recorded in their electronic medical records.

The researchers found that language predictors of depres-

sion include emotional (sadness), interpersonal (loneli-

ness, hostility), and cognitive (preoccupation with the

self, rumination) processes. There has also been recent

notable work on the detection of psychosis [30] and

suicidal ideation/risk [31,32]. Facebook themselves have

implemented a machine learning system to identify post

content that indicates people who might be at risk of self-

harm [33]. Beyond the natural language processing of

text, work on the audio analysis of paralinguistic or

acoustic (e.g. volume, pitch and intonation) aspects of

speech using AI has shown that such properties of speech

can also be computationally analysed to infer mental

health information [34].

Chatbots and virtual agents
A chatbot is a computer program that mimics conversation

with users via a chat interface, either text or voice based.

The underlying system can be based on a variety of

foundations, ranging from a set of simple rule-based

responses and keyword matching to sophisticated NLP

techniques [35,36]. The history of chatbots is intimately

tied with psychology. Apart from the interesting philo-

sophical and psychological questions they raise, the first

well-established chatbot, ELIZA was actually pro-

grammed (in 1966) to simulate a Rogerian psychothera-

pist [37]. Recent reviews indicate that a few dozen

chatbots have been developed, for a range of conditions,

including depression, autism and anxiety. User satisfac-

tion with chatbots is good and preliminary evidence for

efficacy is reasonably favourable [38,39].

The simplest of these chatbots can be used as conversa-

tional search assistants or recommendation system inter-

faces, leading users to relevant mental health information

or therapy content after a basic and brief dialogical

interaction [40]. Whilst the arrival of an AI agent capable

of replicating a human therapist is not on the near horizon,

if at all, more advanced AI agents incorporating sophisti-

cated NLP are able to simulate a modest conversation

employing therapeutic techniques. Whilst not intended

to replace the human therapist, such therapeutic chatbots

can provide their own form of interaction with users.
Current Opinion in Psychology 2020, 36:112–117
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They can be available at any time to communicate, can be

used by individuals who experience stigma or discomfort

with seeing a therapist, and can be accessed by those with

limited access to traditional mental health services.

Three of the most prominent therapeutic mental health

chatbots that have emerged over the last few years are

Woebot [41], Wysa [42] and Tess [43]. Woebot delivers

cognitive behavioural therapy in the form of brief, daily

conversations and mood tracking to help clients with

depression and anxiety. A randomized controlled trial

study to determine the feasibility, acceptability, and

preliminary efficacy of Woebot found that after two

weeks of use, the Woebot group experienced a significant

reduction in depression, as measured by the PHQ-9,

compared to the information-only control group, who

were provided with an NIMH e-book on depression

and did not experience an overall reduction. However,

both groups significantly reduced anxiety as measured by

the Generalized Anxiety Disorder scale (GAD-7) [44].

Wysa employs several methods such as cognitive beha-

vioural therapy, behavioural reinforcement and mindful-

ness to help clients with depression. A preliminary study

of Wysa [45�] showed that the group of users with high

engagement had a significantly higher average improve-

ment of the PHQ-9 measure compared with the group of

users with low engagement. In user-provided feedback

responses, a modest 68% found the app experience help-

ful and encouraging. Tess appears to have the most

published research out of all these chatbot options [46].

Similar in nature to the Woebot study, a recent study to

assess the feasibility and efficacy of Tess [47��] showed

improvements in depression and anxiety in a cohort of

college students. The Tess user group had statistically

significant differences over the control group (which was

also provided with the same NIMH e-book on depres-

sion) for measures of PHQ-Q, GAD-7 as well as the

Positive and Negative Affect Scale (PANAS).

Chatbots for mental health show promise, however fur-

ther work is required to obtain stronger findings and

validate them in larger samples and across longer dura-

tions. Apart from the technical sophistication of language

processing techniques, work on mental health chatbots

will also need to consider the aspect of affective and

empathic AI [48,49]. Beyond textual chatbots, virtual

therapy agents with an avatar representation such as

ELLIE, which can also process nonverbal signals, extend

the ambit and abilities of AI therapy agents [50].

Finally, there are ethical dimensions to consider in

deploying AI agents for mental health [51�,52�]. It is also

important to realise the limitations of chatbots, and that

they can serve as complements or supplements, rather

than replacements for professionally trained human ther-

apists. Responses to emergencies such as disclosures of

immediate harm or suicidal ideation are limited and
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sometimes dangerously inappropriate, as one test of

Woebot and Wysa demonstrated [53]. Such scenarios

need to be handled outside of the chatbot. Linguistic

detection of problems beyond the bot’s purview should at

least be followed by the immediate presentation of con-

tact information for live help, a further possibility being to

notify a relevant other.

Supplementary topics
Before ending, it is worth quickly mentioning two current

topics involving AI.

Ethics and AI mental health research

Mental health care is already a field that by its nature

raises particular ethical and legal considerations as well as

the need for regulation. The development of AI and its

increasing application to an array of sectors, including

mental health, has brought with it the need to ethically

scrutinise and regulate this application. Thus, we are now

at a new intersection point, where the combination of AI

and mental health raises its own novel considerations

[54�].

If not kept in check, AI could exacerbate traditional

ethical problems in mental health care. Furthermore,

AI brings in its own ethical issues such as fairness,

inclusiveness, transparency, accountability, privacy, secu-

rity, reliability and safety [55]. A recent editorial article

[56], which touches upon some of these themes, raises the

issue of patient and public involvement in AI mental

health research. It makes the interesting case that

patients, service users and carers should participate as

‘domain experts’ in the design, research and development

of AI mental health solutions.

The digital therapeutic alliance

The therapeutic alliance, the relationship that develops

between a therapist and a patient, is a significant factor in

the outcome of psychological therapy. As mental health-

care starts to increasingly adopt digital technologies and

AI, offering therapeutic interventions that may not

involve human therapists, the notion of the therapeutic

alliance in digital mental healthcare requires exploration.

The term digital therapeutic alliance (DTA) is a broad

one that can apply to a range of types of digital mental

health care. In its simplest sense it could apply to the

alliance between client and therapist in the case of

therapy sessions conducted via e-mail, online chat or

videoconferencing. The more interesting cases however

are those involving a human client and a computerised

therapeutic intervention, whether that be a smartphone/

web app or sophisticated conversational agent. The

human interaction aspect of conversational agents was

touched upon earlier. However, given their central pres-

ence in current digital mental health, it is the notion of a

DTA in terms of app interventions that has generated
www.sciencedirect.com
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attention in recent years. The two main considerations are

how can such a DTA be measured and how can it be

fostered in apps? Some attempts have been made to

devise or test measures, but thus far even the most

developed of these attempts have largely just taken an

existing measure such as the Working Alliance Inventory

or Agnew Relationship Measure and made some adjust-

ments to suit the digital app context [57�,58�]. Whatever

measures of the DTA do emerge from research into

constructing purpose-built measures for digital mental

health interventions, it is most likely the case that the

incorporation of artificial intelligence will be crucial to

fostering it.
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