## Biography

Daniel graduated from The University of Melbourne with a BE (Mechatronics) / BCS in 2003, and then went on to complete his PhD (Aeronautics) at the California Institute of Technology in 2009. Then he was a postdoctoral scholar researching climate physics at the NASA Jet Propulsion Laboratory before joining the department as Lecturer in 2012.## Research interests

Daniel is interested in interdisciplinary research centred around fluid mechanics, including large-eddy simulation and modelling, direct numerical simulation, wall-bounded turbulence (especially over roughness), turbulent convection and planetary boundary layers. Daniel's research is fundamental in nature, aimed at developing and improving the predictive tools used in engineering and meteorology.Turbulence is prevalent in engineering and nature but despite a century of research, the prediction of turbulent flows remains a challenge. Advances at the fundamental level are therefore necessary and, towards this end, Daniel's research distils the complexity of turbulent flows into simple yet essential configurations that, aided by simulation and modelling, yield insights into the inner workings of turbulence.

## Open positions

"The purpose of computing is insight, not numbers." R. W. HammingSeeking motivated individuals with background in engineering, mathematics or physics to conduct computational research in a collaborative environment on the following projects (updated Nov 2020):

### Riblets drag reduction (summer undergrad, PhD, postdoc)

Robust surface micro-grooves designed for aircraft drag reduction### Flow control (summer undergrad)

Novel strategies that alter the space–time structure of near-wall turbulence### Sea-wave drag (summer undergrad, PhD, postdoc)

Accurate drag predictions due to turbulence over dynamic roughness### Rough-wall heat transfer (summer undergrad, PhD, postdoc)

Closing in on physics-accurate models for practical surface conditions## Present members

### Jeremy Wong

PhD 2019–: Advancing the flow physics behind the drag of riblets.### Kevin Zhong

PhD 2019–: Turbulent heat transfer over practical surface conditions.### Michael Xie

PhD 2018–: Turbulent flow over surfaces with spatially varying roughness.## Past members

### Tanvir Saurav

MPhil 2018–2020: Effect of solidity on momentum and heat transfer of rough-wall turbulent flows. MPhil thesis### Tom Jelly

Postdoc 2020: Understanding rough-wall flows and turbulent mixing for improved models.Present: University of Melbourne, Australia

### Sebastian Endrikat

PhD 2017–2020: Effects of riblet shape on drag reduction in turbulent flow. PhD thesis### Amirreza Rouhi

Postdoc 2017–2019: Turbulent flow over surfaces with spatially varying roughness.Present: Nottingham Trent University, UK

### Davide Modesti

Postdoc 2018–2019: Tailoring aircraft surface textures to minimise drag.Present: TU Delft, The Netherlands

### Melissa Kozul

PhD 2014–2018: The turbulent boundary layer studied using novel numerical frameworks. PhD thesisPresent: University of Melbourne, Australia

### Michael MacDonald

PhD 2013–2017: Numerical simulation of turbulent flows over rough surfaces. PhD thesisPostdoc 2017: Tailoring aircraft surface textures to minimise drag.

Present: University of Auckland, New Zealand

### Chong Shen Ng

MPhil 2012–2013: Direct numerical simulation of turbulent natural convection bounded by differentially heated vertical walls. MPhil thesisPhD 2014–2017: Boundary layer and bulk dynamics in vertical natural convection. PhD thesis

Present: The Data Analysis Bureau, UK

## Refereed journal articles

- I. Marusic, D. Chandran, A. Rouhi, M. K. Fu, D. Wine, B. Holloway, D. Chung & A. J. Smits (2021)

An energy-efficient pathway to turbulent drag reduction.

*Nature Communications*12:5805 DOI:10.1038/s41467-021-26128-8 - M. Li, C. M. de Silva, D. Chung, D. I. Pullin, I. Marusic & N. Hutchins (2021)

Experimental study of a turbulent boundary layer with a rough-to-smooth change in surface conditions at high Reynolds numbers.

*Journal of Fluid Mechanics*923:A18 DOI:10.1017/jfm.2021.577 - P. Berghout, P. A. Bullee, T. Fuchs, S. Scharnowski, C. J. Kähler, D. Chung, D. Lohse & S. G. Huisman (2021)

Characterizing the turbulent drag properties of rough surfaces with a Taylor–Couette set-up.

*Journal of Fluid Mechanics*919:A45 DOI:10.1017/jfm.2021.413 - D. Modesti, S. Endrikat, N. Hutchins & D. Chung (2021)

Dispersive stresses in turbulent flow over riblets.

*Journal of Fluid Mechanics*917:A55 DOI:10.1017/jfm.2021.310 - J. I. Ibrahim, G. Gómez-de-Segura, D. Chung & R. García-Mayoral (2021)

The smooth-wall-like behaviour of turbulence over drag-altering surfaces: a unifying virtual-origin framework.

*Journal of Fluid Mechanics*915:A56 DOI:10.1017/jfm.2021.13 - I. Jacobi, D. Chung, S. Duvvuri & B. J. McKeon (2021)

Interactions between scales in wall turbulence: phase relationships, amplitude modulation and the importance of critical layers.

*Journal of Fluid Mechanics*914:A7 DOI:10.1017/jfm.2020.770 - S. Endrikat, D. Modesti, R. García-Mayoral, N. Hutchins & D. Chung (2021)

Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers.

*Journal of Fluid Mechanics*913:A37 DOI:10.1017/jfm.2021.2 - A. Rouhi, D. Lohse, I. Marusic, C. Sun & D. Chung (2021)

Coriolis effect on centrifugal buoyancy-driven convection in a thin cylindrical shell.

*Journal of Fluid Mechanics*910:A32 DOI:10.1017/jfm.2020.959 - D. Chung, N. Hutchins, M. P. Schultz & K. A. Flack (2021)

Predicting the drag of rough surfaces.

*Annual Review of Fluid Mechanics*53:439–471 DOI:10.1146/annurev-fluid-062520-115127 - S. Endrikat, D. Modesti, M. MacDonald, R. García-Mayoral, N. Hutchins & D. Chung (2021)

Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels.

*Flow, Turbulence and Combustion*107:1–29 DOI:10.1007/s10494-020-00224-z - P. Berghout, R. Verzicco, R. J. A. M. Stevens, D. Lohse & D. Chung (2020)

Calculation of the mean velocity profile for strongly turbulent Taylor–Couette flow at arbitrary radius ratios.

*Journal of Fluid Mechanics*905:A11 DOI:10.1017/jfm.2020.739 - M. Kozul, R. J. Hearst, J. P. Monty, B. Ganapathisubramani & D. Chung (2020)

Response of the temporal turbulent boundary layer to decaying free-stream turbulence.

*Journal of Fluid Mechanics*896:A11 DOI:10.1017/jfm.2020.320 - D. Wangsawijaya, R. Baidya, D. Chung, I. Marusic & N. Hutchins (2020)

The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows.

*Journal of Fluid Mechanics*894:A7 DOI:10.1017/jfm.2020.262 - D. Bakhuis, R. Ezeta, P. Berghout, P. A. Bullee, D. Tai, D. Chung, R. Verzicco, D. Lohse, S. G. Huisman & C. Sun (2020)

Controlling secondary flow in Taylor–Couette turbulence through spanwise-varying roughness.

*Journal of Fluid Mechanics*883:A15 DOI:10.1017/jfm.2019.878 - M. MacDonald, N. Hutchins, D. Lohse & D. Chung (2019)

Heat transfer in rough-wall turbulent thermal convection in the ultimate regime.

*Physical Review Fluids*4:071501(R) DOI:10.1103/PhysRevFluids.4.071501 - P. Berghout, X. Zhu, D. Chung, R. Verzicco, R. J. A. M. Stevens & D. Lohse (2019)

Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness.

*Journal of Fluid Mechanics*873:260–286 DOI:10.1017/jfm.2019.376 - M. Li, C. M. de Silva, A. Rouhi, R. Baidya, D. Chung, I. Marusic & N. Hutchins (2019)

Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers.

*Journal of Fluid Mechanics*872:472–491 DOI:10.1017/jfm.2019.351 - A. Rouhi, D. Chung & N. Hutchins (2019)

Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes.

*Journal of Fluid Mechanics*866:450–486 DOI:10.1017/jfm.2019.84 - M. MacDonald, N. Hutchins & D. Chung (2019)

Roughness effects in turbulent forced convection.

*Journal of Fluid Mechanics*861:138–162 DOI:10.1017/jfm.2018.900 - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2018)

Secondary motion in turbulent pipe flow with three-dimensional roughness.

*Journal of Fluid Mechanics*854:5–33 DOI:10.1017/jfm.2018.570 - D. Krug, X. Zhu, D. Chung, I. Marusic, R. Verzicco & D. Lohse (2018)

Transition to ultimate Rayleigh–Bénard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions.

*Journal of Fluid Mechanics*851:R3 DOI:10.1017/jfm.2018.561 - D. Chung, J. P. Monty & N. Hutchins (2018)

Similarity and structure of wall turbulence with lateral wall shear stress variations.

*Journal of Fluid Mechanics*847:591–613 DOI:10.1017/jfm.2018.336 - M. MacDonald, A. Ooi, R. García-Mayoral, N. Hutchins & D. Chung (2018)

Direct numerical simulation of high aspect ratio spanwise-aligned bars.

*Journal of Fluid Mechanics*843:126–155 DOI:10.1017/jfm.2018.150 - C. S. Ng, A. Ooi, D. Lohse & D. Chung (2018)

Bulk scaling in wall-bounded and homogeneous vertical natural convection.

*Journal of Fluid Mechanics*841:825–850 DOI:10.1017/jfm.2018.102 - D. I. Pullin, N. Hutchins & D. Chung (2017)

Turbulent flow over a long flat plate with uniform roughness.

*Physical Review Fluids*2:082601(R) DOI:10.1103/PhysRevFluids.2.082601 - I. Gat, G. Matheou, D. Chung & P. E. Dimotakis (2017)

Incompressible variable-density turbulence in an external acceleration field.

*Journal of Fluid Mechanics*827:506–535 DOI:10.1017/jfm.2017.490 - C. S. Ng, A. Ooi, D. Lohse & D. Chung (2017)

Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection.

*Journal of Fluid Mechanics*825:550–572 DOI:10.1017/jfm.2017.387 - M. MacDonald, D. Chung, N. Hutchins, L. Chan, A. Ooi & R. García-Mayoral (2017)

The minimal-span channel for rough-wall turbulent flows.

*Journal of Fluid Mechanics*816:5–42 DOI:10.1017/jfm.2017.69 - D. Krug, D. Chung, J. Philip & I. Marusic (2017)

Global and local aspects of entrainment in temporal plumes.

*Journal of Fluid Mechanics*812:222–250 DOI:10.1017/jfm.2016.786 - M. MacDonald, L. Chan, D. Chung, N. Hutchins & A. Ooi (2016)

Turbulent flow over transitionally rough surfaces with varying roughness densities.

*Journal of Fluid Mechanics*804:130–161 DOI:10.1017/jfm.2016.459 - M. Kozul, D. Chung & J. P. Monty (2016)

Direct numerical simulation of the incompressible temporally developing turbulent boundary layer.

*Journal of Fluid Mechanics*796:437–472 DOI:10.1017/jfm.2016.207 - K. Owen, R. A. Dunlop, J. P. Monty, D. Chung, M. J. Noad, D. Donnelly, A. W. Goldizen & T. Mackenzie (2016)

Detecting surface-feeding behavior by rorqual whales in accelerometer data.

*Marine Mammal Science*32:327–348 DOI:10.1111/mms.12271 - D. Chung, I. Marusic, J. P. Monty, M. Vallikivi & A. J. Smits (2015)

On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows.

*Experiments in Fluids*56:141 DOI:10.1007/s00348-015-1994-7 - D. Chung, L. Chan, M. MacDonald, N. Hutchins & A. Ooi (2015)

A fast direct numerical simulation method for characterising hydraulic roughness.

*Journal of Fluid Mechanics*773:418–431 DOI:10.1017/jfm.2015.230 - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2015)

A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime.

*Journal of Fluid Mechanics*771:743–777 DOI:10.1017/jfm.2015.172 - C. S. Ng, A. Ooi, D. Lohse & D. Chung (2015)

Vertical natural convection: application of the unifying theory of thermal convection.

*Journal of Fluid Mechanics*764:349–361 DOI:10.1017/jfm.2014.712 - E. K. W. Poon, A. S. H. Ooi, M. Giacobello, G. Iaccarino & D. Chung (2014)

Flow past a transversely rotating sphere at Reynolds numbers above the laminar regime.

*Journal of Fluid Mechanics*759:751–781 DOI:10.1017/jfm.2014.570 - G. Matheou & D. Chung (2014)

Large-eddy simulation of stratified turbulence. Part II: application of the stretched-vortex model to the atmospheric boundary layer.

*Journal of the Atmospheric Sciences*71:4439–4460 DOI:10.1175/JAS-D-13-0306.1 - D. Chung & G. Matheou (2014)

Large-eddy simulation of stratified turbulence. Part I: a vortex-based subgrid-scale model.

*Journal of the Atmospheric Sciences*71:1863–1879 DOI:10.1175/JAS-D-13-0126.1 - D. Chung, J. P. Monty & A. Ooi (2014)

An idealised assessment of Townsend's outer-layer similarity hypothesis for wall turbulence.

*Journal of Fluid Mechanics*742:R3 DOI:10.1017/jfm.2014.17 - C. S. Ng, D. Chung & A. Ooi (2013)

Turbulent natural convection scaling in a vertical channel.

*International Journal of Heat and Fluid Flow*44:554–562 DOI:10.1016/j.ijheatfluidflow.2013.08.011 - K. Sušelj, J. Teixeira & D. Chung (2013)

A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization.

*Journal of the Atmospheric Sciences*70:1929–1953 DOI:10.1175/JAS-D-12-0106.1 - B. Ganapathisubramani, N. Hutchins, J. P. Monty, D. Chung & I. Marusic (2012)

Amplitude and frequency modulation in wall turbulence.

*Journal of Fluid Mechanics*712:61–91 DOI:10.1017/jfm.2012.398 - D. Chung, G. Matheou & J. Teixeira (2012)

Steady-state large-eddy simulations to study the stratocumulus to shallow-cumulus cloud transition.

*Journal of the Atmospheric Sciences*69:3264–3276 DOI:10.1175/JAS-D-11-0256.1 - D. Chung & G. Matheou (2012)

Direct numerical simulation of stationary homogeneous stratified sheared turbulence.

*Journal of Fluid Mechanics*696:434–467 DOI:10.1017/jfm.2012.59 - D. Chung & J. Teixeira (2012)

A simple model for stratocumulus to shallow-cumulus cloud transitions.

*Journal of Climate*25:2547–2554 DOI:10.1175/JCLI-D-11-00105.1 - G. Matheou, D. Chung, L. Nuijens, B. Stevens & J. Teixeira (2011)

On the fidelity of large-eddy simulation of shallow precipitating cumulus convection.

*Monthly Weather Review*139:2918–2939 DOI:10.1175/2011MWR3599.1 - D. Chung & B. J. McKeon (2010)

Large-eddy simulation of large-scale structures in long channel flow.

*Journal of Fluid Mechanics*661:341–364 DOI:10.1017/S0022112010002995 - D. Chung & D. I. Pullin (2010)

Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence.

*Journal of Fluid Mechanics*643:279–308 DOI:10.1017/S0022112009992801 - D. Chung & D. I. Pullin (2009)

Large-eddy simulation and wall modelling of turbulent channel flow.

*Journal of Fluid Mechanics*631:281–309 DOI:10.1017/S0022112009006867

## Fully refereed conference proceedings

- S. Wang, Y. Xia, W. Abu Rowin, I. Marusic, R. Sandberg, D. Chung, N. Hutchins, K. Tanimoto & T. Oda (2020)

Heat transfer coefficient estimation for turbulent boundary layers.

*Proceedings of the 22nd Australasian Fluid Mechanics Conference*213, Brisbane DOI:10.14264/3969498 - Y. Xia, W. Abu Rowin, T. Jelly, D. Chung, I. Marusic & N. Hutchins (2020)

An investigation of cold-wire spatial resolution using a DNS database.

*Proceedings of the 22nd Australasian Fluid Mechanics Conference*216, Brisbane DOI:10.14264/c2cbd77 - M. X. Xie, D. Chung & N. Hutchins (2020)

Turbulent flow over spanwise-varying roughness in a minimal streamwise channel.

*Journal of Physics: Conference Series*1522:012018 DOI:10.1088/1742-6596/1522/1/012018 - D. Modesti, S. Endrikat, R. García-Mayoral, N. Hutchins & D. Chung (2019)

Contribution of dispersive stress to skin friction drag in turbulent flow over riblets.

*Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena*5B-7, Southampton PDF - M. Li, C. M. de Silva, R. Baidya, D. Chung, I. Marusic & N. Hutchins (2019)

Experimental study of a high Reynolds number turbulent boundary layer evolving over a rough-to-smooth change in surface condition.

*Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena*7B-4, Southampton PDF - D. D. Wangsawijaya, C. M. de Silva, R. Baidya, D. Chung, I. Marusic & N. Hutchins (2019)

The instantaneous structure of turbulent boundary layers over surfaces with spanwise heterogeneity.

*Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena*7B-5, Southampton PDF - A. Rouhi, D. Chung & N. Hutchins (2019)

Roughness and Reynolds number effects on the flow past a rough-to-smooth step change.

In: R. Örlü*et al.*(eds.) Progress in Turbulence VIII. iTi 2018.*Springer Proceedings in Physics*226:81–86 DOI:10.1007/978-3-030-22196-6_13 - M. L. Mogeng, C. M. de Silva, R. Baidya, A. Rouhi, D. Chung, I. Marusic & N. Hutchins (2018)

Recovery of a turbulent boundary layer following a rough-to-smooth step-change in the wall condition.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*585, Adelaide PDF - S. Endrikat, D. Modesti, R. García-Mayoral, N. Hutchins & D. Chung (2018)

Kelvin–Helmholtz rollers in turbulent flow over riblets.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*586, Adelaide PDF - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2018)

Numerical investigation of secondary flows in a turbulent pipe flow with sinusoidal roughness.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*595, Adelaide PDF - D. D. Wangsawijaya, C. M. de Silva, R. Baidya, D. Chung, I. Marusic & N. Hutchins (2018)

Secondary flow over surfaces with spanwise heterogeneity.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*625, Adelaide PDF - D. Saini, D. Chung & R. D. Sandberg (2018)

Direct numerical simulations of centrifugal buoyancy induced flow in a closed rotating cavity.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*632, Adelaide PDF - A. Rouhi, D. Chung, I. Marusic, D. Lohse & C. Sun (2018)

Centrifugal buoyancy driven turbulent convection in a thin cylindrical shell.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*654, Adelaide PDF - M. X. Xie, A. Rouhi, D. Chung & N. Hutchins (2018)

Direct numerical simulation of turbulent flow over spanwise-varying roughness.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*666, Adelaide PDF - D. Modesti, S. Endrikat, R. García-Mayoral, N. Hutchins & D. Chung (2018)

Form-induced stress in turbulent flow over riblets.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*670, Adelaide PDF - R. Newton, D. Chung & N. Hutchins (2018)

An experimental investigation into the breakdown of riblet drag reduction at post-optimal conditions.

*Proceedings of the 21st Australasian Fluid Mechanics Conference*738, Adelaide PDF - G. Gómez-de-Segura, C. T. Fairhall, M. MacDonald, D. Chung & R. García-Mayoral (2018)

Manipulation of near-wall turbulence by surface slip and permeability.

*Journal of Physics: Conference Series*1001:012011 DOI:10.1088/1742-6596/1001/1/012011 - M. MacDonald, A. Ooi, N. Hutchins & D. Chung (2017)

Direct numerical simulation of high aspect ratio spanwise-aligned bars.

*Proceedings of the 10th International Symposium on Turbulence and Shear Flow Phenomena*9A-5, Chicago PDF - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2017)

Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe.

*Journal of Physics: Conference Series*822:012011 DOI:10.1088/1742-6596/822/1/012011 - N. George, A. Ooi, K. Moinuddin, G. Thorpe, I. Marusic & D. Chung (2016)

Direct numerical simulation of a turbulent line plume in a confined region.

*Proceedings of the 20th Australasian Fluid Mechanics Conference*668, Perth PDF - C. S. Ng, A. Ooi & D. Chung (2016)

Potential energy in vertical natural convection.

*Proceedings of the 20th Australasian Fluid Mechanics Conference*727, Perth PDF - M. MacDonald, D. Chung, N. Hutchins, L. Chan, A. Ooi & R. García-Mayoral (2016)

The minimal channel: a fast and direct method for characterising roughness.

*Journal of Physics: Conference Series*708:012010 DOI:10.1088/1742-6596/708/1/012010 - D. Chung, M. MacDonald, L. Chan, N. Hutchins & A. Ooi (2015)

A fast and direct method for characterizing hydraulic roughness.

*Proceedings of the 9th International Symposium on Turbulence and Shear Flow Phenomena*2A-1, Melbourne PDF - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2015)

Investigation of a turbulent flow from the transitionally rough regime to the fully rough regime.

*Proceedings of the 9th International Symposium on Turbulence and Shear Flow Phenomena*2A-3, Melbourne PDF - J. Philip, I. Bermejo-Moreno, D. Chung & I. Marusic (2015)

Characteristics of the entrainment velocity in a developing wake.

*Proceedings of the 9th International Symposium on Turbulence and Shear Flow Phenomena*9C-5, Melbourne PDF - L. Chan, M. MacDonald, D. Chung, N. Hutchins & A. Ooi (2014)

Numerical simulation of a rough-wall pipe from the transitionally rough regime to the fully rough regime.

*Proceedings of the 19th Australasian Fluid Mechanics Conference*319, Melbourne PDF - M. Kozul & D. Chung (2014)

Direct numerical simulation of the incompressible temporally developing turbulent boundary layer.

*Proceedings of the 19th Australasian Fluid Mechanics Conference*332, Melbourne PDF - M. MacDonald, D. Chung, N. Hutchins, L. Chan, A. Ooi, G. I. Park & B. Pierce (2014)

A comprehensive DNS database to investigate measures of roughness and LES wall models.

*Proceedings of the 15th Center for Turbulence Research Summer Program*445–455, Stanford University PDF - C. S. Ng, D. Chung & A. Ooi (2012)

Direct numerical simulation of natural convection in a vertical channel.

*Proceedings of the 18th Australasian Fluid Mechanics Conference*222, Launceston PDF

## Additional research outputs (including non-traditional research outputs)

- G. Matheou, D. Chung & J. Teixeira (2017)

Large-eddy simulation of a stratocumulus cloud.

Physical Review Fluids 2:090509 DOI:10.1103/PhysRevFluids.2.090509 - G. Matheou & D. Chung (2012)

Direct numerical simulation of stratified turbulence.

Physics of Fluids 24:091106 DOI:10.1063/1.4747156

## Awards

- N. Kasagi Award (2019)

"For novel numerical simulations and insightful analysis to answer fundamental questions in turbulence"

11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK - Gallery of Fluid Motion Award (2016)

Visual aesthetic and technical insight of poster (co-authors: G. Matheou, J. Teixeira)

American Physical Society Division of Fluid Dynamics Meeting, Portland - Milton Van Dyke Award (2011)

Visual aesthetic and technical insight of poster (co-author: G. Matheou)

American Physical Society Division of Fluid Dynamics Meeting, Baltimore - W. F. Ballhaus Prize (2009)

Outstanding aeronautics doctoral dissertation

Graduate Aerospace Laboratories California Institute of Technology - R. B. Chapman Memorial Award (2009)

Distinguished hydrodynamics research

Division of Engineering and Applied Science California Institute of Technology