
Capstone Project - Software Development Project
Assessment Guidelines∗

February 15, 2018

1 Scope

These guidelines are intended to apply to 25 point ”software development” projects, as
available in the MIT and the older MEDC and MSSE. It is not intended that a given
project code be designated as a software development project, but rather that a supervisor
and student can agree that the project will include a software deliverable and therefore
will be assessed as a software development project.

Information about research projects (as opposed to sofware development projects) is
provided in the separate document 2018 Guide to Research Projects.

2 Rationale for Software Development Projects

These marking guidelines are specific to Capstone Projects involving significant software
development – called Software Development Projects. Such projects are distinct to Re-
search Projects, as Software Development Projects do not necessarily involve research –
marking guidelines specific to Research Projects, such as contribution and publishability,
are not entirely sensible for Software Development Projects. Having said this, Software
Development Projects will almost certainly address research needs, for example in the form
of a reusable tool or utility that analyzes research data, a simulator, or an experimental
software system used as a proof of concept. The emphasis of the Software Development
Project is therefore as much as demonstrating a clear understanding of the objectives of
the software to be developed and establishing that such objectives were met, as it is in the
quality of the developed software itself.

As further specific distinction from a Research Project, the Software Development
Project produces software as one of the assessable outcomes. If software was not expected
to be delivered as part of the project then the assessment could be largely focused on the

∗This document was created by Aaron Harwood. Updated by James Bailey on 14 Feb. 2018

1



written report. For example, the student in a Software Development Project does not sim-
ply analyze data or run a simulation as they may in a Research Project, but must develop
and provide the software that does the analysis or that is the simulator itself. The software
must be provided in a way that it is generally reusable by other staff and students. In
some cases, for example when a simulator exists but which may be complex in nature, the
student may produce the configuration files and environment as the outcome of the Soft-
ware Development Project that enables others to readily undertake an otherwise complex
simulation process in a reusable way. In this way the project does not necessarily result
in software par se but in environments, testbeds and other moderately complex system
infrastructure that demonstrates equivalent software development abilities. For example
the collation of various complex data sets, such as spatial data or social network data, into
appropriate databases and the establishment of procedures for data access and processing
may well be an acceptable Software Development Project.

3 Assessment Components

In addition to the usual assessment items considered in a Research Project, the Software
Development Project includes one more item, and thereby the following assessment items
are what might typically be included in the assessment of a Software Development Project:

• end-of-semester oral presentation (10%). Due date is the same as per the oral pre-
sentation for research projects.

• end-of-semester report (45%). The end-of-semester report could be a final report (in
a final semester) or a progress report (if the project extends to another semester).
Due date is the same as per the end-of-semester report for research projects.

• software (45%). Due date is the same as for the end-of-semester report.

In this way, a 25 point Software Development Project, that might otherwise involve a
thesis of 6,000 to 8,000 words without software being produced, now involves a thesis of
3,000 to 4,000 words with a 45% software assessment item.

4 Thesis Structure

Depending on the exact goals of the project, two possible thesis structures can be consid-
ered:

• a conventional Research Project thesis

• a software engineering thesis

2



The structure, and the assessment guidelines, for a conventional Research Project thesis
is explained in the separate document 2018 Guide to Research Projects.

In this case the thesis treats the project from the perspective of addressing a research
question whereby the delivery of a software product is warranted as a key contribution.
For example a proof of concept might be undertaken from this perspective. For a software
engineering thesis the structure is derived from an applicable software engineering method-
ology, usually one including use cases, requirements, design, implementation and testing.
For example a research tool or utility might be undertaken from this perspective.

5 Software Assessment Criteria

The assessment of software is a rocky road, requiring considerable time (especially if a
demonstration is included) and reasonable practical experience. It is understandable that
assessment of software is often avoided in favour of a written report that details the soft-
ware. Build environments, third party libraries, languages and complex system support
such as databases, web systems and Internet services can quickly overwhelm an unprepared
examiner.

To aid the software examiner, one or more of the following criteria may be applied to
arrive at a final assessment mark. Note that some of these some assessment criteria (e.g.
building the software) would be treated as PASS/FAIL hurdles in deriving an overall mark.

• coverage of objectives

– low (0% to 64%): very little if any of the objectives appear to be met in any
clear way

– medium (65% to 74%): the objectives have been met, at least in part but clearly
not in entirety and/or there are some clear deficiencies or aspects that fall short

– high (75% to 100%): all of the objectives have been addressed, with few cases
that may be questionable and/or additional aspects explored

• usability

– low (0% to 64%): very little to any of the software is intuitive to use, there are
little or no instructions, excessive effort is required to make use of the software

– medium (65% to 74%): can be used with some effort, outcomes are as expected
in most cases but there are some aspects that are confusing and/or need more
effort than warranted

– high (75% to 100%): generally easy to use, very few unexpected outcomes

• technology choices

– low (0% to 64%): no or little ability to make use of appropriate third party
libraries or systems, inappropriate/ill-suited choices of technology,

3



– medium (65% to 74%): reasonable choices of technology but lacking in the
capacity to integrate/make use of them, perhaps some choices could have been
better in hindsight

– high (75% to 100%): excellent choices of technology and clearly established
ability to use them with few if any caveats

• application of computing knowledge

– low (0% to 64%): no or little demonstration of anything other than basic pro-
gramming skills, frequent use of superfluous and inappropriate programming
approaches

– medium (65% to 74%): a reasonable demonstration of computer science knowl-
edge in terms of data structures, algorithms and other applicable theory, but
largely piecemeal without sophistication

– high (75% to 100%): can apply computer science knowledge when and where
appropriate showing sophistication, a high level of appreciation for programming
intricacies

• quality of source code

– low (0% to 64%): extremely hard to read, little or no attention to code for-
matting, lack of logical organization, little or no appreciation of coding and
commenting practices

– medium (65% to 74%): reasonable clarity and code can be followed with some
effort, comments help to understand the code, logical organization may be lack-
ing in some ways and there may be a number of questionable expressions

– high (75% to 100%): a high standard of coding and commenting is evident, the
code is easy to read and appears clear to maintain, ready to be open sourced

• building and installation

– low (0% to 64%): very difficult or impossible to build without modifications,
frequent build problems, little or no instructions and more or less unable to
install in any reasonable way

– medium (65% to 74%): can be built and installed with some effort, problems
occurred but can be overcome with minor changes or clarifications to instruc-
tions

– high (75% to 100%): straight forward and easy to build and install, little or no
effort required (works out of the box)

4



6 Selection of Criteria and Weighting

To provide the greatest scope for the application of these guidelines, it is recognized that
the assessment criteria are not always all applicable to the project under consideration.
Projects that involve user interface design may not have an need to assess the application
of computing knowledge. There are two ways to approach this:

• The examiner makes a case by case argument/statement for each criteria that is
judged relevant, based on the examiner’s expert opinion.

• The supervisor indicates to the examiner which of the criteria are to be applied; and
these criteria may be negotiated with the student at the beginning of the project. If
source code of any kind is to be delivered then it would be expected that the majority
of the criteria, including quality of source code and building and installation, will be
included.

Some criteria such as building and installation may be given less weight than others. For
example the building and installation is sometimes a mere case of succeeding, for example
in the case of a Java program that compiles without bother, without any real effort. In
these cases a mark of 100% for this criteria is clearly less important. The criteria can be
considered as a Pass/Fail hurdle, in that the software will not be assessed unless it can be
built and installed.

From time to time it may be useful to update the list of criteria.

7 Independent examination

In this case the examiner sits alone to examine the software. This is suitable for software
such as tools and utilities where test cases can be applied. It may or may not be suitable
for software that requires a web server or a database to be installed; it will depend on
the examiner’s resolve. Independent testing is the most reliable form of testing since the
examiner’s confidence that the software is genuinely usable is evident from a successful
examination process.

7.1 Assisted examination

In this case the examiner asks for assistance from the student during the examination of
the software, perhaps including questions directed at clarifying aspects of the assessment.
This breaks from the tradition of students not knowing their examiners. The examination
proceeds more or less as an independent examination however the student is available to
expedite the examination in cases which may otherwise be lengthy. For example where a
building or installation procedure is tedious, or requires specific build tools, or where login
credentials may be needed.

5



7.2 Demonstration

In this case the examiner requires the student to demonstrate everything required to un-
dertake the assessment. The examiner asks the student to proceed through the various
aspects of the examination. Again, this breaks from the tradition of students not knowing
their examiners. For complicated systems this may be the only real option, for example if
a system is run on external resources such as a supercomputer in another organization.

7.3 Software Considerations

As well as considering the structure of the thesis, it is prudent to outline general expec-
tations and/or scope of the structure of the software. If the software is to be genuinely
usable by other staff and students then there is certainly something to be said. It is not the
intention here to mandate specific practices, technologies or systems, since doing so can
readily eliminate possibilities and quickly become outdated. It is also unwise to prescribe
specifics concerning management of code and other secondary processes and practices, as
these things can easily consume copious amounts of student time to address; in sometimes
what is an otherwise time limited single semester. For example it may be nice to consider
that all software be developed using the ‘autoconf‘ methodology, which is a standard prac-
tice for UNIX environments and portability across OSes, but this is not currently taught in
the Department and it would require too much time to address on a case by case basis. It is
also not the best choice for all kinds of software development. The conclusion is that these
matters of management are best left to the discretion of the supervisor and the student.

Having said this, expectations and scope are especially important with respect to ex-
amining software. If the examiners cannot independently examine the software on their
own office desktop then there is very likely a large barrier to be overcome. The testing of
some software may require login credentials to, for example, a specific server or cloud. It
might require administration privileges or special networking support. In these cases the
examination can quickly escalate to requiring a demonstration.

The following aspects are important to keep in mind and discuss at the beginning of a
software development project:

• source code – The software should be deliverable as source code. It is recommended
that this be in the form of a self contained directory structure that is self descrip-
tive, with appropriate named directories and concise textual information files (for
example ‘README.txt‘, ‘COMPILING.txt‘ and ‘INSTALL.txt‘) at the root direc-
tory, and delivered as a single archive file that can be unarchived by the examiner
and inspected.

• build environment – Source code is often intimately attached to a build environment.
The requirements and procedures for building the software should be contained along
with the source code in an obvious place for the examiner to find. In many cases the
source code directory structure is itself a kind of project defined by a build environ-
ment, for example an Eclipse Project or an iOS Application. If the software cannot

6



be built independently by the examiner then there is significant doubt surrounding
its genuine re-usability. At the very least the build process should be examined by
demonstration.

• execution – Tools and utilities generally have a single executable that may well be
supplied along with the source code. More complex systems, for example real-time
analysis of streaming data, may require a number of processes to be started. Nev-
ertheless these things should be clear for a third party (the examiner) to execute.
Generally speaking the instructions given with the source code should be a step-by-
step, ”run this command”, ”edit this configuration file”, ”double click this”, style.

• operating system – The operating system requirements should not be prohibitive.
Generally speaking the operating system should be available to staff and students;
i.e. UNIX, Windows or Mac. At the very least the supervisor should be in a position
to be able to examine the software on systems available to them. In some cases the
software may be developed for an embedded system such as a mobile device or sensor
and the hardware should be available to the Department.

• third party libraries and systems – Similar to cited publications, all third party
libraries and systems should be readily accessible and either without charge or as
part of a package that the Department has access to. In some cases, for example
where a Google or Twitter subscription is required to use a third party service, this
can be problematic and may require examination by demonstration.

8 Roles and Responsibilities for Student and Super-

visor

A software development project is a significant undertaking and the interaction of student
and supervisor is an important component of the research process. That interaction can
be greatly facilitated if both the student and the supervisor have a clear understanding
of their respective roles and responsibilities. It is good to agree on those expectations
up-front at the commencement of the supervisory relationship. Some things to discuss
include frequency and format of meetings, preparation required before meetings, degree of
direction to be given by the supervisor, frequency of submission of intermediate writing,
timing of turn around on feedback. There are no right or wrong answers to these issues
but it is vital that all concerned are clear of what to expect at the start of the process.

8.1 The Integrity of the Project Report

The integrity of the report rests on it being the students work; therefore supervision should
be supportive but also at arms length. It is neither ethical nor reasonable for the super-
visor to conduct the project or write the report. Therefore the student should have no
expectation that the supervisor will overly assist with the work. In particular:

7



• The supervisor must not collect or analyse the data.

• The supervisor must not write or heavily edit the report. The University of Mel-
bourne PhD Handbook defines editing as the detailed and extensive correction of
problems in writing style and of mechanical inaccuracy (as opposed to giving general
guidelines about problems). Just as with a PhD, this is not acceptable supervision
practice during Masters. Although the supervisor should provide commentary on
writing style and presentation, it is not the supervisors task to write the report, or
any part thereof.

8.2 Roles and Responsibilities of the Student

The student should initiate many of the activities in the supervision of a software devel-
opment project, in particular the administration activities. Responsibilities of the student
include:

• Selecting a software develpment project topic

• Informing the course Coordinator of the topic selected

• Preparing a software development project proposal

• Maintaining progress as documented in the software development project proposal

• Negotiating alterations to the proposal with the supervisor

• Meeting regularly with the supervisor (it is advisable to maintain a diary entry that
summarises each meeting email this to your supervisor after each meeting)

• Raising any issues or problems with the supervisor at an early date

• Ensuring that the writing style and presentation of the report is appropriate

• Copying, binding and submission of the report as outlined above.

• Reporting on progress to supervisor at the end of each semester

• Demonstrating the software to supervisor and possibly examiner(s), as required.

8.3 Roles and Responsibilities of the Supervisor

The supervisor should meet regularly with the student and provide assistance and monitor
progress. Responsibilities of the supervisor include:

• Negotiating a suitable software development project topic with the student

8



• Assisting the student to prepare the software development project proposal

• Guiding the student to appropriate reference material

• Checking that the work contained in the proposal looks feasible and appropriate

• Meeting regularly with the student

• Informing the course Coordinator if the student fails to attend scheduled meetings
without reason

• Checking for writing style and presentation problems

• Acting as an examiner for Masters reports and projects

• Where appropriate, encouraging the student to publish their research or make their
software open source

• Monitor progress of student for each semester

8.4 Difficulties relating to the student/supervisor relationship

The majority of student/supervisor relationships are supportive and rewarding, for both
parties. Difficulties may arise from time to time, and these difficulties can interfere with
progress. It is important that any issues are resolved respectfully and quickly - there is
no time to waste in a relatively short project! If either the student or the supervisor has
concerns that they are unable to resolve within supervision, they should discuss these with
the course Co-ordinator who will aim to assist in moving the situation forward. If this
proves unsatisfactory, then the matter should be discussed with the Head of Department.

9


