
A

ciForager: Incrementally Discovering Regions of Correlated Change
in Evolving Graphs

JEFFREY CHAN and JAMES BAILEY and CHRISTOPHER LECKIE, University of Melbourne
MICHAEL HOULE, National Institute of Informatics

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications-Data Mining

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Dynamic graph mining, correlated change, shortest path distance, con-
nected components, fault detection

1. INTRODUCTION
There is growing interest in the data mining community with regard to the discovery of
important patterns in dynamic graphs. The focus in this area has included analysing
how global properties of graphs change with time [Leskovec et al. 2005], detecting
anomalous changes in evolving graphs [Shoubridge et al. 2002], and analysing com-
munity evolution in social networks [Kumar et al. 2003].

One important and natural type of pattern for dynamic graphs is the discovery
of compact subgraphs which evolve in a similar manner over time [Chan et al.
2008][Chan et al. 2009]. Such patterns are known as regions of correlated change and
the region discovery problem involves grouping together similar sequences of changes
that occur i) over the same period of time (are temporally correlated) and ii) within the
same region of the graph (are spatially correlated). Each group of changes is called a
region of correlated change. These regions provide a compact profile of the change
behaviour of a dynamic graph and can allow the user to focus on significant trends,
rather than being confused by a multitude of (possibly noisy) individual changes. Fur-
thermore, further processing and linking of regions can aid in fault diagnosis, where
the goal is to infer underlying ‘faults’ which are responsible for the evolution of a dy-
namic graph.
Application areas: One interesting potential application is in the field of medical
imaging. Different parts of the human brain become excited under different stimuli
[Clare 1997]. However, it may be difficult to determine which regions of the brain
are changing in a significant manner, for a given sequence of stimuli. One can rep-
resent the brain as a dynamic graph, with vertices corresponding to different points
on the brain, and edges corresponding to points that are close to each other. Vertices
are present at a particular time if the activity level is above an excitation minimum.
Seeking correlated vertex changes, a region of correlated change in this dynamic 3D

Correspondence email: jeffrey.chan@unimelb.edu.au
Author’s addresses: J. Chan and J. Bailey and C. Leckie, Department of Computing and Information Systems,
University of Melbourne, Australia;
M. Houle, National Institute of Informatics, Tokyo, Japan.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4681/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 J. Chan et al.

graph then represents a set of vertices that have correlated heightened activity and
are geometrically close to each other. Therefore, the discovery of regions of correlated
changes is equivalent to finding cohesive regions of the brain being excited at the same
time.

Another important area of application is the inference of unknown alliances and
communities in online virtual worlds [Thon et al. 2008]. Finding these communities
can be used to better understand the interactions and needs of players, make intelli-
gent computer agents more realistic, making the game more enjoyable for the human
players, and allow new players to better understand the social dynamics of the game
world and see if they wish to join some of the existing communities and alliances.

As an example, consider an online strategy game called Travian1 with multiple
servers around the world. Each server hosts a number of game worlds, and each world
consists of about 30,000 players each. Players control villages, can attack and trade
with other villages, and can form alliances with each other. Because travelling long
distances takes a long time, all these social activities tend to be restricted to local
neighbourhoods, particularly in the case of attacks. In addition, players tend to attack
as an alliance, typically against another alliance. If we represent a game world as a
dynamic graph, with vertices representing the villages and edges representing an at-
tack from one of the incident villages against the other incident village, then correlated
edge behaviour within a local neighbourhood can indicate the villages of one alliance
attacking the villages of another alliance. Therefore, we can find regions of correlated
change in the dynamic graph representing the attacks and use these regions to dis-
cover the alliances.

A third application area is multi-layered computer networks [Steinder and Sethi
2004], where the goal is to identify underlying faults that affect the dynamic behavior
of the network. We demonstrate the fault diagnosis application using the Border Gate-
way Protocol Internet routing network. In particular, we discover regions of correlated
change representing failure events in the European parts of the network during the
landfall of Hurricane Katrina in 2005.

Other potential areas of application include the tracking of groups of objects, like
animal migration, in spatio-temporal databases [Elnekave et al. 2007] and detecting
flash crowds at websites based on the fluctuating popularity of individual webpages
accessed [Arlitt and Jin 1999].

We next provide a more concrete example, to help explain the notion of regions of
correlated change. Note that we regard a region as a set of edges (as opposed to a set
of vertices) 2.
Illustrative Example To illustrate the concept of regions of correlated change, con-
sider an example of five sequential snapshots of a dynamic graph, shown in Figure 1.
The regions of correlated change in this dynamic graph are highlighted in Figure 1f.
Consider the set of edges in region A. The edges in region A are either all present, or
all absent over each of the five snapshots. This is an example of correlated temporal
behaviour. In addition, consider the shortest path distance between the edges in re-
gion A - all the distances are relatively close. This is an example of spatial correlation.
Because the edges of region A have correlated temporal behaviour as well as spatial
correlation, they form a region of spatio-temporal correlated change.

In contrast, note that the edge e4,5 is assigned to a separate region B. Edge e4,5 has
the same temporal behaviour as the edges in region A, but it is assigned to region B
because of the difference in spatial correlation. The shortest path distances from e4,5 to

1www.travian.com
2Structure changes in vertices induce structure changes in all the incident edges, hence there is no decrease
in the information we can discover from just analysing changes to edges.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:3

(a) Snapshot 1, G1. (b) Snapshot 2, G2. (c) Snapshot 3, G3.

(d) Snapshot 4, G4. (e) Snapshot 5, G5. (f) Union graph of snapshots.

Fig. 1: An example of a dynamic graph with five snapshots. Bold edges highlight
edges that have experienced change in the five snapshots. The changed edges be-
longing to each region are circled and labelled in Figure 1f.

the edges of region A (e1,2, e2,3, e15,16) are large in comparison to the distances between
e1,2, e2,3 and e15,16. Although the edges of regions A and B are temporally correlated,
they are not spatially correlated, and therefore form two distinct regions. The regions
of Figure 1, their edge members and their change behaviours are summarised in
Table I. The change behaviours are represented as waveforms. We will explain this
representation in Secton 4.1.

Challenges: There are two key technical challenges in discovering regions of corre-
lated change in dynamic graphs.

— Scalability: Designing scalable algorithms that can efficiently process very large
graphs, sampled over many time points. Scalability here refers to both time efficiency
and memory efficiency.

— Accuracy: It is important that the regions that are discovered are of high quality. This
is difficult to achieve, due to the multi-objective combinatorial nature of the problem.
One must determine the optimal length of time for each region, such that the total

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Chan et al.

Region Edge Set Change Waveform
G 1 G2G G3G G4G G 5G

A {e1,2, e2,3, e15,16}

B {e4,5}

C {e3,6, e3,7}

D {e7,8}

E {e9,10}

F {e12,13}

G {e12,14, e13,14}

Table I: Regions of correlated spatio-temporal change and their associated change
waveforms of the dynamic graph from Figure 1. The change waveforms represent
the change behaviour experienced by each region. We explain this representation in
Section 4.1.

temporal and spatial correlation over all the regions is maximised. Furthermore, the
optimal number of regions is unknown.

As we shall see, our work in this paper focuses on improving the first of these
challenges - scalability.

Limitations of existing approaches: There are two existing approaches for dis-
covering regions of correlated change. One based on greedy search [Chan et al. 2008]
and the other based on global optimisation [Chan et al. 2009]. Although both these
approaches can discover high quality regions, they are not able to efficiently process
very large graphs. For example, neither of these algorithms is able to analyse the
entire BGP routing graph or a massive web graph such as [Gibson et al. 2005]. A key
bottleneck of these algorithms is that they need to repeatedly compute the temporal
and topological correlation/distances between all pairs of changing edges in the
network. Hence, an open problem is how to reduce the number of distance calculations
in order to improve the scalability of these approaches, while maintaining their high
accuracy. The increased scalability will allow analysis of very large graphs.

Our approach (ciForager): To address this important scalability problem, we pro-
pose in this paper a new algorithm called ciForager (Incremental Change Forager).
This algorithm is specifically designed to improve the speed and scalability of region
discovery, by reducing the number of distance calculations. As its name implies, part
of its efficiency relies on an ability to operate in an incremental manner as new data
(graphs) are processed. To reduce the number of distance calculations, ciForager intro-
duces two new modelling concepts, Synchronised Connected Components and Equiva-
lence Classes. Synchronised Connected Components (synCC) are sets of changing edges

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:5

that are connected to each other and have the same temporal evolution, such as edges
e1,2 and e2,3 in Figure 1. Rather than computing the temporal and shortest path dis-
tances between all pairs of changing edges, we instead compute distances between the
much smaller set of synchronised connected components. We further reduce the time
to compute the temporal distances between the synCCs by the introduction of equiva-
lence classes.

To address the second part of the problem, i.e., reducing the number of distance
recalculations across time, we introduce the idea of a graph Voronoi [Erwig 2000].
Although this type of representation has previously been used in graph theory, here
we use and adapt it to an entirely different context: to determine which shortest path
distances between synCCs are likely to have changed due to underlying graph changes
and hence need to be recomputed. The idea is to partition the graph into a number of
cells around the synCCs. Each cell contains the edges whose closest synCC is in that
cell. When changes occur, we can then restrict the shortest path computations to those
cells that are affected by the change.

Finally, these new modelling concepts will become bottlenecks themselves if they
are not efficiently computed and maintained. Hence, ciForager also proposes efficient
methods to determine a) which synCCs and cells of the graph Voronoi have been af-
fected when the underlying graph changes; and b) incrementally update the affected
synCCs and cells. The new modelling concepts and the efficient incremental updating
of these concepts make up the technical contributions of ciForager.

To evaluate the effectiveness of these approaches for improving the scalability of
region discovery, we have evaluated ciForager on a variety of synthetic and real-life
data sets. We show that for graphs where the degree of change is mostly localised, we
can achieve speedups of over 106 times over previous work [Chan et al. 2008], whilst
having comparable accuracy. We also evaluate our algorithm on graphs where changes
are more widespread, such as the Border Gateway Protocol (BGP) Internet Routing
and the 1998 World Cup website access graphs. In such graphs, when compared
to previous work, we are able to achieve speedups of up to 70 times for ciForager,
whilst using substantially less memory and achieving higher accuracy. Moreover, this
strong memory efficiency also means we are able to apply ciForager to the BGP graph
for the entire Internet, something which was not achievable by previous work. We
demonstrate similar performance improvements when analysing a dynamic graph of
web accesses to a popular website.

Contributions: In summary, the contributions of this paper are:

— We introduce a new, incremental algorithm called ciForagerto find regions of spatio-
temporal correlated change. This method introduces the concepts of synchronised
connected components, equivalence classes and uses a graph Voronoi to significantly
reduce the number of distance calculations and recalculations and the general run-
ning time.

— We design efficient algorithms to incrementally maintain the sets of synCCs and
equivalence classes and the graph Voronoi as new graph snapshots arrive.

— Using real and synthetic data sets, we show that ciForager scales linearly with the
size of the graphs analysed. In addition, we show that ciForager is from ten times
to 106 times faster than an existing approach [Chan et al. 2008], with comparable or
better accuracy and substantially reduced memory usage. This speed advantage of
ciForager grows as the size of the graph analysed increases.

— We show that we can apply ciForager to discover regions of correlated change in the
global BGP connectivity graph, which has until now been out of reach for previous
methods.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Chan et al.

The rest of the paper is organised as follows. In Section 2 we survey related work.
Then in Section 3, the region discovery problem is formally presented. In Section 4
we provide an overview of ciForager. In Section 5, we introduce the concept of syn-
chronised connected components. Then we describe an efficient algorithm to compute
and incrementally maintain the set of synCCs for each window. In Section 6, we de-
scribe how the spatial distances between synCCs can be efficiently maintained via
graph Voronoi diagrams. The time complexity of ciForager is presented in Section 7.
Then in Section 8, we present an evaluation of ciForager against an existing method,
using both synthetic and real datasets. Finally, in Section 9, we conclude and present
possible future work.

2. RELATED WORK
In this section, we first describe the two previous approaches to finding regions of
correlated change, namely cSTAG and regHunter, and highlight their strengths and
weaknesses. Then we outline work in stream clustering, spatio-temporal mining and
dynamic subgraph graph mining and analysis that are related to region discovery.

cSTAG (clustering for spatio-temporal analysis of graphs) [Chan et al. 2008] is a
greedy approach. It segments a sequence of snapshots into a number of overlapping
subsequences, then finds the sets of regions for each subsequence. The set of changed
edges for each window are grouped into regions based on their temporal and spatial
distances. To find regions that span multiple window lengths, the temporal and spa-
tial correlation of regions in adjacent windows are computed. Those regions that are
highly correlated are merged to from regions that span multiple consecutive windows.
Although cSTAG is incremental in grouping the edges, it still computes all the pair-
wise distances among the changed edges for every snapshot in the whole snapshot
sequence, regardless of whether the distance has changed or has been computed be-
fore. ciForager avoids much of this redundant and duplication distance computation
using the synCC and graph Voronoi concepts.

In contrast, regHunter (Region Hunter) [Chan et al. 2009], employs a more global
approach to discover regions in order to discover minimally separated regions that
cSTAG cannot accurately find. regHunter solves the region discovery problem as a
graph partitioning problem. The evolving set of changed changes are modeled as a set
of vertices, and the temporal or spatial distance between changed edges are modeled
as edge weights. Each partition of this time evolving graph corresponds to a region.
regHunter has comparable or worse running times than cSTAG, because similar to
cSTAG, regHunter also computes many duplicate distances across the snapshots. The
concepts of ciForager can be used to reduce these inefficiencies.

We now outline related work in other areas. Most of this related work solves prob-
lems that are similar to region discovery problem, but are different enough such that
their solutions cannot be directly used to discover regions in dynamic graphs. For ex-
ample, in the area of data stream clustering [Aggarwal et al. 2003][Zhou et al. 2007],
the aim is to cluster records that arrive in a continuous stream. The emphasis is to
perform clustering online, while keeping memory consumption within reasonable lim-
its. Aggregate statistics of the objects are updated online, and clusters can be produced
anytime from these aggregates. However, these statistics are formulated for aggregat-
ing flat, non-relational data. It is not obvious or intuitive to extend these aggrega-
tion statistics to graphs. Hence, current stream clustering algorithms [Aggarwal et al.
2003][Zhou et al. 2007] cannot be used to solve the region discovery problem.

In spatio-temporal clustering and pattern mining, the main objective is to find
objects or incidents that are in close geographical proximity, and occur frequently
together. One example of spatio-temporal pattern mining is given in [Celik et al.
2006], where Celik et al. define the problem of mining mixed-drove spatio-temporal

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:7

co-occurrence patterns. These patterns are objects in spatio-temporal databases that
are spatially near each other for an extended period of time.

Another example of spatio-temporal mining is [Yang et al. 2005]. Yang et al. [Yang
et al. 2005] extended spatio-temporal co-location mining to scientific data. They in-
troduced a method to discover spatio-temporal episodes, which are defined as spatial
patterns that frequently occur together across a number of snapshots.

Finally, Lauw et al. [Lauw et al. 2005] used spatio-temporal co-occurring patterns
to construct affiliations between people. The idea is that people or entities who are co-
located frequently are mostly likely to be affiliated to each other. Places where there is
a high concentration of people for a period of time are classified as events. For exam-
ple, an event could be a data mining conference. Lauw et al. then uses the frequency
people are at the same events to determine the affiliation between people. The more
frequently two people are at the same events/places, the more likely they are to be
affiliated with each other.

All these examples illustrate that spatio-temporal mining is concerned with finding
clusters of entities that co-occur frequently. However, the region discovery problem is
concerned with groups of entities that report strong temporal change correlation over
a window of time, which may or may not co-occur frequently. For example, in the ap-
plication of localising brain excitation, a part of the brain can be excited for a short
burst of time. These excitations do not last long and are not very frequent, but the af-
fected parts do produce the bursts around the same time. Hence, these excitations can
be detected as a region of correlated change, but will not be considered as a frequent,
co-located cluster.

In dynamic subgraph mining and analysis, subgraphs of interest are extracted. Sim-
ilar to discovering regions of spatio-temporal correlated change, the emphasis is on ex-
tracting patterns in graphical data. However, each of the works in this area have one
or two significant differences with the region discovery problem. We shall highlight
each of their differences in the following paragraphs.

Borgwardt et al. [Borgwardt et al. 2006] defined the novel problem of finding fre-
quent subgraphs in dynamic graphs. In addition to the traditional definition of be-
ing topologically frequent, these subgraphs must also exhibit similar temporal evolu-
tion over a period of time. Although very similar to our work, the frequent subgraphs
sought by Borgwardt do not have any topological or spatial constraints, whilst in our
work, we require changed edges to be topologically close. For example, in finding faults
in computer network, two areas of the network that is caused by different faults but
having same change signature will be incorrectly classified as one by Borgwardt’s def-
inition, while correctly classified as two areas of change by the region definition.

In [Lahiri and Berger-Wolf 2010], Lahiri and Berger-Wolf proposed the problem of
mining frequent, periodic subgraph patterns from dynamic graphs. These subgraph
patterns are periodic with a certain frequency, span a continuous period of time (i.e.,
no gaps in the periodicity), are maximal in size and in time (i.e., the subgraph pattern
will no longer be a valid pattern if a vertex is added or the time spanned is extended),
and in the period of time it spans, it must appear a minimum number of times (min-
imum support). The authors proposed an efficient pattern tree that keeps track of all
potential patterns, and demonstrated some interesting patterns like periodic move-
ment of a herd of zebras and the appearance of the same set of actors at an annual
awards show. Finding periodic subgraph patterns is an appropriate step towards find-
ing general correlated subgraph patterns, but it can be considered as a specialisation
of finding the general regions of correlated changes.

Bogdanov [Bogdanov et al. 2011] recently proposed the problem of mining dynamic
heavy subgraphs. Heavy subgraphs are subgraphs that are have maximal total edge
weights, and dynamic heavy subgraphs are heavy subgraphs that span a continous

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Chan et al.

interval of time. As an example to motivate the mining of heavy subgraphs, the same
framework can be used to identify heavy, short traffic congestion spikes, or moderate
congestion that persist for long time. An algorithm called MEDEN was proposed to
find a single dynamic heavy subgraph per interval. Although similar to finding regions
of correlated changes, MEDEN only identifies one subgraph candidate, and has no
concept of correlation in edge weight changes.

In [Kumar et al. 2003], Kumar et al. explored the evolution of community struc-
ture and behaviour in several collections of weblogs. They introduced the notion of a
time graph to model the evolution of a collection of weblogs and the links between
them. Edges in the time graph are labelled with their creation time. Using these time
graphs, they extracted weblog communities and analysed the degree distribution, evo-
lution of node distributions, and burstiness of communities. In [Kumar et al. 2006],
they performed a similar analysis on the structure and evolution of two online social
networks, namely Flickr and Yahoo! 360. Similar to Leskovec et al. [Leskovec et al.
2005], their focus is on analysing how the frequency distributions of vertex and local
substructures evolve with time and then designing generative models to replicate the
observed distributions. In addition, these global based graph analysis do not analyse
how correlated the changes are, nor find regions whose change is correlated across a
limited span of time.

In [Ali et al. 2005], Ali et al. introduced the idea of phenomena detection and track-
ing (PDT) in sensor networks. PDT involves detecting sensors that are geographically
near to each other and have abnormal readings over a certain time period. The moti-
vating example was to track oil spills from a sensor network deployed at sea. Again,
although similar in aim to our work, the PDT algorithm involves finding areas where
the readings are all high. It does not analyse how the readings change nor whether the
reading changes are correlated.

Sun et al. [Sun et al. 2006] introduced tensor analysis to dynamic graphs. Tensors
are basically a generalisation of a matrix to multiple dimensions. Tensor decompo-
sition techniques can reveal important factors that explain the underlying structure
and/or variance observed. Sun et al. proposed two efficient algorithms to perform the
tensor decomposition. A dynamic graph can be considered as a 3 dimensional tensor
(adjacency matrix and time). As such, it can be used to find prominent regions that
can explain most of the structure or variation seen in the evolving graph. However, it
is more difficult for such an approach to find regions that might not be prominent yet
possibly interesting (e.g., an anomalous attack pattern that tries to remain hidden).

Similar to [Sun et al. 2006], Du et al. [Du et al. 2010] employed matrix decomposi-
tion in the idea of EigenNetworks. Similar to our work, EigenNetworks represents and
tracks the evolution of edges as a matrix of edges and their activity across time (each
entry in the matrix has a value of ’1’ if the corresponding edge had some activity in
that time instance, ’0’ otherwise). Then singular value decomposition is applied to de-
termine the edge groupings and the activity levels of each group. Analysing the energy
values of the singular values gives an indication of the fluctuations in the activity of
a group, while each grouping allows their subgraphs and the evolution in their graph
neighbourhoods to be tracked across time. EigenNetworks is a very useful analytic
tool, but it is different from finding regions of correlated change because it does not
model the connectivity information, i.e., which edges are connected to each other.

In [Sun et al. 2007], Sun et al. proposed an information theoretic algorithm to dis-
cover communities in evolving, relational graphs. Communities are defined as groups
of objects (vertices) that have the same set of connections among themselves over a
period of time. Using lossless encoding schemes, groups of objects are encoded, and the
ones with the smallest entropy (i.e., are most homogeneous or have the same connec-
tions among themselves over a continuous span of time) are chosen as the communi-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:9

ties. In theory, it is possible to design an encoding scheme to find regions of correlated
changes. However, unlike finding communities, it is much more difficult to design an
efficient coding scheme and optimising heuristic for regions of correlated change. For
example, if a region consists of a change pattern of present, absent, absent, absent,
present, then to find this pattern, all dense subgraphs of all sizes would need to be
kept in the initial snapshot, then the number of candidates that could be extended
with absent edges could be very large for sparse graphs. This can become very ex-
pensive very quickly. However, there is promise in this approach, and certainly worth
considering in future work.

Similar to [Sun et al. 2007], Chi et al. [Chi et al. 2007] extended spectral cluster-
ing to finding evolving subgraph communities. Spectral approaches are a popular and
successful method for partitioning static graphs into communities. To extend spectral
clustering to dynamic graphs, Chi et al. used the idea of temporal smoothing from
evolutionary clustering [Chakrabarti et al. 2006]. Evolutionary clustering is an incre-
mental approach, where at each time snapshot, clusters are found that, on one hand,
are similar to their previous history, but on the other hand, maximise cluster quality
for the current snapshot. Similar to [Sun et al. 2007], the main focus of [Chi et al. 2007]
is the discovery of dynamic communities and not the discovery of regions of correlated
change.

In summary, the two previous solutions [Chan et al. 2008][Chan et al. 2009] to dis-
covering regions in dynamic graphs cannot scale to very large graphs because of their
inefficiencies and redundant computations. In Section 4, we introduce ciForager that
tackles this efficiency challenge. In addition, each of the areas of stream clustering,
spatio-temporal mining and dynamic subgraph mining and analysis have similarities
with the region discovery problem. However, each of them have one or more significant
differences with the region discovery problem. Hence algorithms developed in these
areas cannot be directly used to solve the region discovery problem.

3. PROBLEM STATEMENT
In this section, we formally define what is a region of spatio-temporal correlated
change and the problem of discovering these regions. For ease of reference, Table II
provides a summary of the main symbols used in this paper.

Definition 3.1. A graph G(V,E) consists of a set of vertices V , and a set of edges E,
E : V × V , representing the pairwise relationships over V .

Definition 3.2. A dynamic graph is represented as a sequence of snapshots <
G1, . . . , Gt, . . . , GT > of the graph G, 1 < t < T . Note that T can be infinity. A sub-
sequence (or window) < Gts, . . . , Gte > is denoted by W ts,te, 1 ≤ ts ≤ te ≤ T . Let wn be
the number of windows. For fixed length windows, we also denote a window by W[k],
1 ≤ k ≤ wn, where the index k is ordered in ascending temporal order; i.e., the first
snapshot of W[k] is earlier than the first snapshot of W[k+1]. Note that the index k
does not designate the starting point of a window. Finally, if both the window ordering
and the snapshots spanned are important, then the notation W ts,te

k is used.

For example, the window W 1,2 for the graph illustrated in Figure 1 represents the
sequence < G1, G2 >. If wn = 4, and the set of windows is {W 1,2,W 2,3,W 3,4,W 4,5},
then W1 is W 1,2, W2 is W 2,3, and so on.

Definition 3.3. A structural change of an edge e is defined as the appearance or
disappearance of e between any two consecutive graph snapshots. We call an edge that
has experienced any structural change a changed edge, and we define Ets,te

C (Ek
C) as

the set of changed edges over window W ts,te (Wk).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Chan et al.

Symbol Description
G(V,E) A graph, with vertex and edge set V and E.
W ts,te(Wk) A window of snapshots < Gts, . . . , Gte >,

with index k.
Ets,te

C (Ek
C) Set of changed edges over window W ts,te

(Wk).
qts,te(ei) The change waveform of edge ei over win-

dow W ts,te.
Rts,te

r A region of spatio-temporal correlated
change, defined over W ts,te.

R A set of regions of spatio-temporal corre-
lated change.

ω The sliding window size.
T The length of the total sequence of graph

snapshots.
synMG The acronym for a synchronised maximal

graph.
synCC The acronym for a synchronised connected

component.
si An synCC with label i.
Sk The set of synCCs for window Wk.
eqi An equivalence class with label i.
EQk The set of equivalence classes for window

Wk.
celli The cell of synCC si.
Nk(i) The set of synCC neighbours of synCC si.
Bk(i, j) The set of boundary vertices and edges be-

tween synCCs si and sj .
SPDk(i, j) The shortest path distance between

synCCs si and sj .
Uk The number of synCC operations required

to update Sk to Sk+1.
|VSkAvg| The average size of the synCCs in Sk.

Table II: Summary of the main symbols and parameters used in this paper.

For example, the edge e3,7 for the graph shown in Figure 1 is a changed edge over
W 1,2. The set of changed edges for W 1,2, E1,2

C , is {e1,2, e2,3, e4,5, e9,10, e15,16}.
A region of spatio-temporal correlated change Rts,te

r , Rts,te
r ⊆ E1,T

C , is a set of
changed edges that have the following characteristics:

— Over the snapshots spanning ts to te, all edges are highly correlated in their change
behaviour, as well as being topologically close.

— The temporal and spatial distances within each region is minimised.

Intuitively, the edges within a region should have minimal temporal and spatial dis-
tances between them, while edges in different regions should have maximal temporal
and/or spatial distances between them. For example, in the computer network fault
diagnosis context, let there be two simultaneous faults occurring: an unstable router,
and a cut physical link. All connections that transit through an underlying, unstable
router will experience similar, flapping changes and be near each other in the connec-
tivity graph. All connections that transit though the cut link will experience a failure

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:11

change and be near each other. The two sets of connections are temporally and spa-
tially similar within themselves, and temporal and possibly spatial different from each
other. Another example is in the localisation of brain excitations. Each excited portion
of the brain will be excited at different periods hence have different high temporal dif-
ference and be in different areas of the brain, and hence have high spatial distances.
Therefore to use regions to localise faults and brain excitations, we define a region as
having minimal temporal and spatial distance among its member edges.

Next we define the relations dtem and dspa, the objectives ftem and fspa and the region
discovery problem.

Definition 3.4. The temporal relation dtem : E×E×Wk → [0, 1] measures the differ-
ence between the temporal change behaviour of pairs of edges over the window Wk. The
spatial relation dspa : E × E ×Wk → [0, 1] measures the topological distance between
pairs of edges over the window Wk.

In this paper, we represent the temporal behaviour of an edge by a waveform. In
unweighted graphs, the waveform is a sequence of ’0’ and ’1’, where ’1’ means the
edge was present at that time instance, ’0’ means absent. To measure the difference,
we use the modified euclidean distance, first proposed in Definition 6 of [Chan et al.
2008]. For the spatial distance measure, we use the shortest path distance between
the edges, computed over the union graph of the snapshots in the window. These are
described in more detail in Section 4.1

Definition 3.5. Let the set of regions of spatio-temporal correlated change be
denoted by R = {Rts1,te1

1 , . . . , RtsL,teL
L }, where Rtsr,ter

r ⊆ EC , L is the number of regions
defined over the whole snapshot sequence W 1,S and a changed edge can only belong in
one region at any particular time.

Definition 3.6. Given R and dtem, the temporal objective function, ftem(R, dtem) is
defined as

ftem(R, dtem) =
∑

Rtsr,ter
r ∈R

∑
ei,ej∈Rtsr,ter

r

dtem(ei, ej ,W
tsr,ter)

where ftem(R, dtem) measures how temporally correlated the regions R are, under the
temporal distance relation dtem. The spatial objective function fspa(R, dspa) is similarly
defined.

This measure sums up the temporal (spatial) distances within each region, and
minimising it would minimise the temporal and spatial distances among the member
edges of each region.

Definition 3.7. Given a sequence of snapshots < G1, . . . , Gt, . . . , GT > and its set of
changed edges E1,T

C , the problem of discovering regions of spatio-temporal correlated
change is to partition E1,T

C into a set of regions of spatio-temporal correlated
change R = {Rts1,te1

1 , . . . , RtsL,teL
L }, to minimise the objective functions ftem(R, dtem)

and fspa(R, dspa).

From its definition, the region discovery problem is a bi-objective optimisation prob-
lem. In general, it is infeasible to optimise multiple objectives simultaneously, hence
there is no “standard” definition for multi-objective optimisation. Different formula-
tions are used depending on the application. Hence we intentionally present the prob-
lem using this general form. For example, in [Chan et al. 2008][Chan et al. 2009],
different formulations such as optimising a single weighted sum of ftem and fspa were
introduced and evaluated. We describe formulations in Section 4.1. The focus of this

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Chan et al.

paper is to improve the overall efficiency of the two existing algorithms, hence we use
the same formulations and weights as in [Chan et al. 2008]. In Section 8.3.1, we evalu-
ate different approaches and different weightings and their effect on the running time
and accuracy.

4. OVERVIEW OF CIFORAGER
The ciForager algorithm improves the distance calculation efficiency of the two exist-
ing frameworks, cSTAG [Chan et al. 2008] and regHunter [Chan et al. 2009]. ciForager
achieves this via the three new modeling concepts introduced in Section 1, and the ef-
ficient incremental maintenance of these concepts. The new concepts are:

(1) the concept of synchronised connected components (synCC), designed to reduce the
number of pairwise temporal and spatial comparisons;

(2) the concept of equivalence classes, designed to reduce the number of pairwise tem-
poral comparisons;

(3) the concept of a graph Voronoi diagram, designed to reduce the number of spatial
recalculations triggered by new snapshots;

The concepts are centred around using synchronised connected components to rep-
resent regions of correlated change. In the evaluation of cSTAG and regHunter [Chan
et al. 2008][Chan et al. 2009], we found regions of correlated change can be broken
down into a number of disjoint groups of edges that form connected components and
experience the same temporal evolution over the region’s lifespan. From the definition
of a synchronised connected component, these edge groups are synchronised connected
components (synCCs). Therefore, a region of correlated change can be considered as a
set of synCCs. For example, in the fault diagnosis example presented earlier, the edges
in the region representing the unstable router would have the same unstable change
behaviour, and are likely to form a connected component as many of the connections
have the same incident vertices. Therefore, we can group the edges together into a
synCC and avoid computing the spatial or temporal distances among the edges. To
further illustrate the idea of a synCC, consider region A of Figure 1, which consists of
three changed edges: e15,16, e1,2 and e2,3. But region A can also be considered as con-
sisting of two synchronised connected components (synCC): one synCC consisting of
the edge e15,16, and the other consisting of edges e1,2 and e2,3.

Hence we can reduce the problem of discovering regions from grouping a set of
changed edges to grouping a set of synchronised connected components. Since the num-
ber of synCCs is usually far smaller (about a reduction of 100 to 1000 times), the time
to compute the pairwise temporal and spatial distances is reduced. In addition, we can
also reduce the time to cluster/partition. As we will show in our worst case complex-
ity analysis (Section 7) and empirical evaluation (Section 8), the time savings from
calculating distances between synCCs outweigh the time required to construct and
maintain the synCCs.

The ideas of equivalence classes and graph Voronoi further enhance the speedups
using synchronised connected components. Although the introduction of synCCs re-
duces the number of temporal distance calculations, there are still redundant calcula-
tions. Multiple synCCs can have the same change waveform/equivalence class because
there can be groups of edges that have the same change evolution but form multi-
ple connected components. Restricting temporal distance calculations among unique
waveforms or equivalence classes will further reduce the calculation time. For exam-
ple, in the detection of flash crowds in web access graphs, there are many changes,
particularly of the type where the users access the website then leave after a period
of time. Therefore, many of the change waveforms are the same, and the idea of only

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:13

computing distances among the equivalence classes will reduce the time to compute
the temporal distances.

A graph Voronoi divides a graph into a number of cells. As we show in Section
6, shortest path distance recalculations can be restricted to only the ones that pass
through cells affected by new changes. The synCCs themselves do not restrict the
shortest path distance recalculations; the addition of the graph Voronoi and its cell
structure help restrict these recalculations. As an example of the potential speed im-
provements achieved by restricting recalculations, consider the localisation of brain
excitations. Each part of the brain has specific functionalities, hence the excitations
due to different activities are very localised. Therefore, many of the existing synCCs
and the shortest paths between them do not change, and so using a graph Voronoi to
restrict recalculations to affected distances will improve the speed.

In addition, the ciForager algorithm incrementally maintains and updates the syn-
chronised connected components, equivalence classes and graph Voronoi. This is to
prevent the maintenance of these structures becoming a bottleneck. We show in Sec-
tion 7 that we can restrict updates to these structures to only those affected by new
changes. This ensures the updating can be performed in linear time to the number of
synCCs.

The ciForager algorithm improves the overall efficiency of both the cSTAG and
regHunter algorithms. Both algorithms clusters the set of changing edges, hence can
benefit from the idea of synchronised connected components. Both frameworks calcu-
late temporal and spatial distances, hence can benefit from the equivalence class and
graph Voronoi concepts. However, due to the similarity of the required implementa-
tion, we demonstrate how ciForager improves the distance calculation efficiency of the
cSTAG framework in this paper. The procedure and efficiency benefits of extending
regHunter are similar to those for cSTAG. In the following subsections, we first intro-
duce the algorithm of cSTAG, then how ciForager extends cSTAG.

4.1. cSTAG Algorithm
cSTAG [Chan et al. 2008] divides the sequence of snapshots into a sequence of consec-
utive, overlapping windows of snapshots. Regions of correlated change are discovered
for each window, then these locally discovered regions are merged to form regions that
span multiple windows.

The temporal relation dtem used in cSTAG, and regHunter, is based on representing
change behaviour of edges as change waveforms. More formally,

Definition 4.1. For structural changes to edge ei, over the subsequence W ts,te,
the changes are represented by a binary valued change waveform qts,te(ei) =
q(ei)[1]q(ei)[2] . . . q(ei)[te− ts+ 1], where

q(ei)[k] =

{
0 ei /∈ Gts+k−1

1 ei ∈ Gts+k−1
, 1 ≤ k ≤ te− ts+ 1

As an example, the change waveforms for each changed edge in Figure 1 are shown in
Table I.

Using this representation, any existing waveform measure can be used to compute
the temporal distance between the edges. The measure used in [Chan et al. 2008] is the
modified Euclidean distance, which is the Euclidean distance measure that also takes
the shape of the waveforms into consideration. The spatial relation used in cSTAG was
the shortest path distance measure as it is a general measure of topological proximity.

To discover the local regions for each window, a bi-objective clustering method is
used to partition the set of changed edges for that window, using the temporal and
spatial distances between the edges. There are two parts to the bi-objective cluster-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Chan et al.

ing: a) incorporating both distance measures; and b) grouping the changed edges into
regions.

Several methods were proposed in [Chan et al. 2008] to combine and incorporate
the distances, including hard modification, soft modification and sequential. In hard
modification, the temporal and spatial distances are combined into one measure, based
on using one of the distance measures as a constraint. If the constraining distance is
less than a user set threshold, then the combined distance is set as the other distance.
Otherwise, it is set to the maximum distance, usually 1 if distances are normalised to
range [0, 1]. In soft modification, the temporal and spatial distances are combined as a
weighted linear sum. In sequential, also known as lexicographical optimisation, one of
the distance measures is used to initially partition the regions. Then the other distance
measure is used to further partition the regions discovered in the first partitioning
step.

To group the changed edges into local regions, a clustering method was used. These
include leaderFollower, singleLinkage and averageLinkage clustering algorithms. lead-
erFollower [Chan et al. 2008] is an incremental clustering algorithm that inserts each
new point into an existing cluster if its average distance to the points in that cluster is
below some user-specified threshold. New clusters are created for new points that do
not satisfy the threshold for all existing clusters. singleLinkage and averageLinkage
are the single and average linkage (hierarchical) agglomerative clustering algorithms
[Jain and Dubes 1998].

The last step is to merge the local regions across windows. cSTAG computes the
inter-region distances between the discovered regions of adjacent windows, and merges
regions that have average inter-region temporal and spatial distances below user spec-
ified minimum similarity thresholds.

Figure 2a shows the process diagram for cSTAG.

4.2. ciForager Algorithm
ciForager uses the concepts of equivalence classes, synchronised connected components
and graph Voronoi diagrams to reduce unnecessary calculations during region discov-
ery. In Figure 2, we show the process diagrams of cSTAG and ciForager side by side.
Figure 2b shows the process diagram of ciForager, and how the new concepts are incor-
porated. ciForager maintains the overall structure of cSTAG and regHunter. The main
differences are associated with calculating the temporal and spatial distances and
clustering/partitioning. These differences are highlighted by the gray shaded boxes
in Figure 2b. We elaborate on these differences in the following paragraphs.

After the waveforms are updated in the Update waveforms step, ciForager incorpo-
rate the new changes into the current set of synCCs and equivalence classes in step
Update synCCs, equivalence classes (we elaborate the process in Section 5). Then we
compute the temporal distances among the updated equivalence classes (step Com-
pute temporal distance). The updates in the synCCs are also used to update the graph
Voronoi in the Update graph Voronoi step (Section 6). Then the shortest path distances
that have changed are recomputed in step Compute SPD. After all necessary distances
are recomputed, the updated distances are used to cluster the current set of synCCs
in step Cluster synCCs . Finally, the member edges of each synCC are extracted in
step Extract edges because the region association step is inherited from cSTAG and
requires regions to consist of edges, not synCCs. The rest of the steps are the same
between ciForager and cSTAG.

In the following sections, we describe the key concepts behind these steps in more
detail. We first formally define the concepts of an equivalence class and a synchronised
connected component, and describe how it can be efficiently maintained. Then we de-
fine the concept of a graph Voronoi diagram, and explain how they can be efficiently

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:15

(a) Process diagram of cSTAG. (b) Process diagram of ciForager.

Fig. 2: Process diagram of cSTAG and ciForager. The boxes shaded in gray in Figure
2b highlight the main process differences between cSTAG and ciForager.

maintained and used to compute shortest path distances. Finally, we present the time
complexity of ciForager.

5. EQUIVALENCE CLASSES AND SYNCHRONISED CONNECTED COMPONENTS (SCC)
In this section we first describe the concept of an equivalence class. To simplify the
description of discovering and maintaining a set of synchronised connected compo-
nents (synCC), we then introduce the more general concept of Sychronised Maximal
Subgraphs (synMG). Finally, we formally introduce the synchronised connected com-
ponent concept and describe the algorithms used to incrementally maintain a set of
synMGs and a set of synCCs.

Definition 5.1. An equivalence class is a unique waveform among the set of
change waveforms of a window. A changed edge is linked to an equivalence class if
it has the same change waveform as the equivalence class.

We now introduce the concepts of a synchronised maximal subgraph, a connected
component and a synchronised connected component.

Definition 5.2. A synchronised maximal subgraph (synMG) for a window Wk is
a set of changed edges. It is associated with exactly one equivalence class of Wk. An

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Chan et al.

edge belongs to the synMG if it is linked to the synMG’s associated equivalence class.
The set of synMGs for window Wk is denoted by Sk.

Definition 5.3. A connected component of a graph G is a subgraph G′ such that
for any pair of edges e1, e2 ∈ EG′ , it is possible to find a connected path between them
in G. In addition, the connected component G′ is maximal in size, i.e., it contains all
edges in G that satisfy the connected path property.

Definition 5.4. A synchronised connected component (synCC) for window Wk

is a set of changed edges such that a) all the edges in the synCC are linked to the
same equivalence class, and b) the edges form a maximal connected component, over
the union graph of the snapshots in Wk. Note that the concept of an synCC is a special
case of an synMG, but not vice versa.

For an example illustrating a synchronised maximal subgraph (synMG), a synchro-
nised connected component (synCC) and their difference, consider Figure 1. The edges
in regions C and F together form one synMG, because the edges in C ∪ F consist
of all the changed edges with the same change waveform (i.e., they are in the same
equivalence class). However, the edges in regions C and F form two separate synCCs,
{e3,8, e3,7} and {e12,13}, because the edges form two different connected components.
Next, we describe how the set of synMGs can be incrementally maintained.

5.1. Incrementally Maintaining the Set of Synchronised Maximal Subgraphs
A naive approach to discovering and maintaining the set of synchronised maximal
subgraphs (synMGs) is to discover the set of changed edges for each window, then find
the maximal groups of edges with the same equivalence class. But since consecutive
windows are overlapping, the sets of synMGs can be much more efficiently discovered
and maintained using an incremental approach. In this subsection, we first examine
the operations that are required to maintain the set of synMGs, then state a lemma
that shows that these operations are sufficient to maintain the set of synMGs. With
some minor modification, the same set of operations are sufficient to maintain a set
of synCCs. Then in the next subsection, we shall introduce an algorithm that imple-
ments these operations to efficiently maintain the set of synMGs and synCCs as new
snapshots arrive.

Consider the following set of possible operations on a set of synMGs.

Definition 5.5. Shrink: Let EQk denote the set of equivalence classes for window
Wk. Given an equivalence class eqj ∈ EQk defined over <Gts, Gts+1, . . . , Gts+ω−1>, the
shrink operation, shrink: EQk → Q (Q is a set of waveforms), drops its earliest element;
i.e., eqj[0] is deleted. After shrinking, the length of eqj reduces to ω − 1 and eqj is
subsequently defined over <Gts+1, Gts+2, . . . , Gts+ω−1>.

Note that a shrunk equivalence class might not be an unique waveform anymore,
hence the range of the shrink operation is the set Q of waveforms of length ω − 1.

Definition 5.6. Extend: Given an equivalence class eqj defined over
<Gts, Gts+1, . . . , Gts+ω−1> and a value y ∈ {0, 1}, the extend operation, extend:
EQk ×{0, 1} → EQk+1 appends y to the end of eqj . After extension, the length of eqj in-
creases by one and eqj is subsequently defined over <Gts, Gts+1, . . . , Gts+ω−1, Gts+ω>.

As an example of the extend and shrink operations, consider Figure 3. Figure 3
shows an example of an equivalence class (labelled original), and the result of extend-
ing, shrinking and applying both operations (labelled extension, shrink and extension
+ shrink respectively).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:17

G1 2G 3G 4G 5G

Original

Extension

Extension + Shrink

Shrink

Fig. 3: An example of the result of shrinking and extending an equivalence class.
Each rectangular block represent a change waveform, and the circles within repre-
sent the value of ’1’ and blank squares represent ’0’. The original waveform of the
equivalence class spans the snapshots G2, G3 and G4. After extension, it spans G2 to
G5. After shrinking, it spans G3 to G4. And after extension and shrinking, it spans
G3 to G5.

Definition 5.7. Merge: Given two sets of edges, si and sj , that are associated with
the same equivalence class eqi, the merge operation, merge: ∆ → Sk (∆ is a set of edge
sets), combines the two groups into one synMG, sc, where si ∪ sj = sc. The equivalence
class of sc is set to eqi.

Definition 5.8. Split: Given a set of edges, sp, where a subset of the edges, si ∈
sp, is associated with an equivalence class eqi of EQk+1, the other subset, sj ∈ sp, is
associated with a different equivalence class eqj of EQk+1, and si and sj are disjoint
sets, the split operation, split: ∆ → Sk+1, partitions si into the two separate synMGs
sj and sl, where sp = si ∪ sj .

Before presenting the theorem that shows that these four operations are sufficient
to maintain a set of synMGs or synCCs, we need to introduce an alternative notation
for equivalence classes. The alternative notation defines the time alignment of two
equivalence classes.

Definition 5.9. An equivalence class can alternatively be represented using a “list”
like notation. An equivalence class eqi of length ω can be represented as x|tAy, where
x, y ∈ {0, 1} are equivalence classes of length 1, and A is an equivalence class of length
ω−2. x denotes the value of eqi at snapshot Gt−1, y the value at snapshot Gt+ω−1, and A
is defined over the subsequence <Gt, Gt+1, . . . , Gt+ω−2>. Note that using this temporal
alignment notation, x|tAy can also be equivalently denoted by |t−1xAy or xA|t+ω−2y.
In addition, where it is unambiguous to do so and only an indication of the temporal
alignment is required, |A and |B will be used to denote |tA and |tB respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Chan et al.

Now we present a main theorem showing that the four operations are sufficient to
maintain a set of synMGs or a set of synCCs.

THEOREM 5.10. Let the set of synMGs for window Wk and Wk+1 be denoted by Sk

and Sk+1 respectively. Then between two consecutive windows Wk = <Gts, . . . , Gts+ω−1>
and Wk+1 = <Gts+1, . . . , Gts+ω>, the operations shrink, extend, merge, and split are
sufficient to update Sk to Sk+1.

PROOF. To prove Theorem 5.10, we first construct a process to update Sk to Sk+1

that only uses the four operations. This process consists of an intermediate state Sint,
where Sint is the set of synMGs over <Gts, . . . , Gts+ω> (i.e., Wk∪Wk+1), and it involves
two sub-processes. The first sub-process applies the extend, then split operation on the
synMGs of Sk to obtain the synMGs of Sint, and the second sub-process applies the
shrink, then merge operation on the synMGs of Sint to obtain the synMGs of Sk+1. The
process can be summarised as:

Sk
extend−−−−→
split

Sint
shrink−−−−→
merge

Sk+1

As Sk, Sint and Sk+1 are assumed to be correct and complete over their respective win-
dows, we just need to show the process is correct and complete. To show the process is
correct and complete, hence proving Theorem 5.10, we need to show the sub-processes
are correct and complete.

We add the synMGs associated with equivalence classes of all ’0’ or ’1’ values to Sk,
Sint and Sk+1; i.e., those equivalence classes that do not change. This special case is
handled separately in the implementation, but it simplifies the proof to consider them
as being part of those synCCs.

Consider the first sub-process, Sk to Sint, which uses the extend and split operations.
Consider two synMGs in Sint, sβ0 and sβ1, associated with equivalence classes x|A0 and
x|A1 respectively, where x ∈ {0, 1} and A is a waveform of length ω − 1. All the edges
in sβ0 ∪ sβ1 must have once been linked to the equivalence class x|A. Let the synMG
associated with x|A be denoted by si; therefore all the edges in sβ0 ∪ sβ1 must also
have once belonged in si. The synMG si must exist and be a synMG of window Wk,
and hence must be in Sk, as x|A is a valid equivalence class over Wk. This shows every
synMG in Sint must have originated from a synMG in Sk.

To obtain sβ0 and sβ1 from si, the change waveform of the edges of sβ0 are extended
with ’0’ to form the equivalence class x|A0 and the change waveform of the edges of sβ1
are extended with ’1’ to form the equivalence class x|A1. Then si is split into sβ0 and
sβ1. This shows every synMG in Sint can be obtained from a synMG in Sk by extension
and splitting.

Consider the second sub-process, Sint to Sk+1, which uses the shrink and merge
operations. Consider a synMG in Sk+1, sα, associated with equivalence class |Ay, y ∈
{0, 1}. The edges in sα must have been linked to either x|A0 and x|A1 (depending on
the value of y), which are the equivalence classes of sβ0 and sβ1. Therefore, the edges
in sα must have belonged in either sβ0 or sβ1, and sβ0 and sβ1 must be synMGs in Sint.
This shows every synMG in Sk+1 must have originated from a synMG in Sint.

To obtain sα from sβ0 or sβ1, the equivalence classes of sβ0 and sβ1 are first shrunk,
resulting in x|A. Then the edges in sβ0 and sβ1 are merged to form sα, since both sets
of edges have the same equivalence class after shrinking. This shows every synMG in
Sk+1 can be obtained from a synMG in Sint by shrinking and merging.

5.2. Algorithm to update the set of synMGs
Algorithm 1 describes the algorithm to update the set of synMGs and the set of equiv-
alence classes given the existing sets of equivalence classes and synMGs and the new

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:19

changes. The algorithm assumes that: a) the waveforms of all the edges have been
extended with their new values for the snapshot Gts+ω; and b) the set of edges that
have appeared or disappeared (appeared and disappeared respectively) between the
last two snapshots and are not part of any existing synMGs have already been ex-
tracted; and c) the initial set of synMGs, Sk, is available. Assumptions a) and b) can
be easily performed prior to each invocation of Algorithm 1. Assumption c) is always
valid except for the initial set of synCC S1. S1 can be obtained via bootstrapping, as it
is a special case of Theorem 5.10. S1 can be obtained from extending and splitting the
synMGs obtained for the first ω − 1 snapshots, which in turn can be obtained from ex-
tending and splitting synMGs obtained from the first ω − 2 snapshots, and so on until
the base case of two snapshots. The set of synMGs over the initial two snapshots can
be obtained by snapshot comparison. Thus S1 can be obtained by bootstrapping from
the set of synMGs obtained from the first two snapshots.

ALGORITHM 1: Updating of the set of synMGs and equivalence classes for window Wk to the
set of synMGs and equivalence classes for Wk+1. Sk and EQk are updated inplace.
Input: Sk - the set of synMGs associated with window Wk.
EQk - the set of equivalence classes for window Wk.
appeared - edges that have appeared but are not in any of the existing synMGs.
disappeared - edges that have disappeared but are not in any of the existing synMGs.
Output: Sk+1 - the set of synMGs associated with window Wk+1.
EQk+1 - the set of equivalence classes for window Wk+1.

1 // Extend the equivalence classes. This might cause some synMGs to be split.
2 for each sj ∈ Sk do
3 if sj .edges are all extended with the same value y then
4 Extend sj .eq with y;
5 else
6 split(sj);
7 end
8 end
9 eqHash = {};

10 // Shrink all equivalence classes and neighbourhood vectors in EQk.
11 for each eqj ∈ EQk do
12 shrink(eqj);
13 if eqj is a constant equivalence class then
14 EQk.delete(eq);
15 end
16 eqHash.insert(eqj);
17 end
18 // Create new synMGs
19 nScc1 = newScc(appeared, eq01);
20 nScc2 = newScc(disappeared, eq10);
21 Sk ← {nScc1, nScc2};
22 eqHash.insert(eq01); eqHash.insert(eq10);
23 // Determine which equivalence classes need to be merged
24 for each key eqj in eqHash do
25 if |eqHash[eqj]| > 1 then
26 merge(eqHash[eqj]);
27 end
28 end

Algorithm 1 performs each of the four operations of Theorem 5.10 in turn. It first
extends the equivalence classes of all existing synMGs. Those synMGs that are associ-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Chan et al.

ated with two extended equivalence classes are then split. After that, the equivalence
classes are shrunk, and those synMGs associated with constant equivalence classes
(i.e., do not possess a change anymore) are deleted. New synMGs are then created,
and any synMGs that have the same equivalence classes are merged.

5.3. Maintaining a Set of Synchronised Connected Components (synCC)
In this section, we examine how to extend Algorithm 1 to maintaining a set of synCCs.
Then we evaluate the complexity of this synCC algorithm.

First, consider a lemma. Recall that the connected components and shortest path
distances are computed over the graph resulting from the union of the snapshots in a
window. This property leads to the following lemma.

LEMMA 5.11. After extension, an existing synCC sj can only split due to its member
edges been linked to different equivalence classes.

PROOF. See Appendix A.

Lemma 5.11 shows that an existing synCC can only split because new changes cause
its member edges to belong to different equivalence classes. This means the algorithm
does not have to test whether topological changes to the edges will cause any existing
synCCs to split. However, this case does not apply to merging. To merge two existing
synCCs, the equivalence classes and whether the two sets of edges of the synCCs form
a connected component after merging have to be evaluated.

The simplest method to test whether two sets of edges form a connected component
after their union is to run a connected component algorithm over the union set of edges.
The time complexity of this is linear in the number of edges in the merged synCCs.

The other difference with the algorithm to maintain the set of synMGs is that each
equivalence class can be associated with multiple synCCs. No significant changes are
necessary to handle this difference, except for some implementation details relating to
splitting. When splitting, an additional check must be performed to test if an equiva-
lence class already exists. If so, we do not create a new equivalence class, but link the
existing one to one of the newly split partitions/synCCs. Algorithm 2 illustrates the
process to maintain the set of synCCs. It is similar to Algorithm 1, apart from lines
2–12 and 22–30 of Algorithm 2 replacing the lines 2–8 and 18–20 of Algorithm 1.

5.3.1. Complexity

LEMMA 5.12. The worst case complexity to update Sk to Sk+1 (Algorithm 2) is
O(|Ek

C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1
C |).

PROOF. We analyse each step of Algorithm 2 and show that the total complexity to
update Sk to Sk+1 is O(|Ek

C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1
C |).

First, each of the edges in the synCCs of Sk are extended with either a value of ’0’
or ’1’ (lines 3 to 8 of Algorithm 2). Extending a change waveform is a O(1) operation
and there is a total of |Ek

C | number of extensions, hence the complexity of extension is
O(|Ek

C |).
For splits (line 10), in the worst case, each extension of a synCC results in a split.

Each split requires finding the connected components among the two resulting set
of edges. Let sp be the set of edges in synCC, and s0 and s1 denote the two sets of
edges after the split (i.e., s0 ∪ s1 = sp). Using the disjoint set-find-union data struc-
ture [Cormen et al. 2001], the cost to determine the connected components is O(µ),
where µ is the size of a set of edges in which the connected components are sought.
Therefore the complexity to perform a split is O(s0) + O(s1) = O(sp). As it is difficult
to analytically determine the size of synCCs without making assumptions about the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:21

ALGORITHM 2: Updating of the set of synCCs and equivalence classes for window Wk to the
set of synCCs and equivalence classes for Wk+1.
Input: Sk - the set of synCCs associated with window Wk.
EQk - the set of equivalence classes for window Wk.
appeared - edges that have appeared but are not in any of the existing synMGs.
disappeared - edges that have disappeared but are not in any of the existing synMGs.
Output: Sk+1 - the set of synCCs associated with window Wk+1.
EQk+1 - the set of equivalence classes for window Wk+1.

1 // Extend the equivalence classes associated with Sk. This might cause some synCCs to be split.
2 for each sj ∈ Sk do
3 if sj .edges are all extended with the same value y then
4 if sj .eq extended with y exists already then
5 link sj .eq to existing extended equivalence class;
6 else
7 extend sj .eq with y;
8 end
9 else

10 split(sj);
11 end
12 end
13 eqHash = {};
14 // Shrink all equivalence classes.
15 for each eqj ∈ EQk do
16 shrink(eqj);
17 if eqj is a constant equivalence class then
18 EQk.delete(eq); delete associated synCCs;
19 end
20 eqHash.insert(eqj);
21 end
22 // Create new synCCs
23 Conna = connectedComponents(appeared);
24 for each cc ∈ Conna do
25 Sk ← newSCC(cc, eq01);
26 end
27 Connb = connectedComponents(disappeared);
28 for each cc ∈ Connb do
29 Sk ← newSCC(cc, eq10);
30 end
31 eqHash.insert(eq01); eqHash.insert(eq10);
32 // Determine which equivalence classes need to be merged
33 for each key eqj in eqHash do
34 if |eqHash[eqj]| > 1 then
35 merge(eqHash[eqj]);
36 end
37 end

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Chan et al.

underlying graph structure and the distribution of changed edges, we use the average
size of synCCs, |VSkAvg|, to parameterise this aspect. Therefore the total complexity of
performing splits is O(|VSkAvg| · |Sk|).

Next, the equivalence classes are shrunk and possibly deleted (lines 15 to 21). Each
equivalence class is shrunk, and each shrinking operation takes O(1) time, hence the
complexity for shrinking is O(|EQk|). Some of the shrinking operations might require
a deletion, which can be performed in O(1) time as the equivalence classes, and the
associated synCCs can be looked up and deleted in constant time using a hash map.
Hence, the total complexity for shrinking and deleting is O(|EQk|).
Sk are created in lines 22 to 30. At worst, the maximum number of creations is

|Sk+1| when all existing synCCs in Sk are deleted and all synCCs in Sk+1 are new.
To maintain the data structure for these synCCs, two new equivalence classes will
be created eq01 and eq10, which has complexity of O(1). However, they would require
finding the connected components, which would have the worst case total complexity of
O(|Ek+1

C |) (|s1|+ |s2|+ . . .+ sn = O(|Ek+1
C |), where s1, s2, . . ., sn ∈ Sk+1). The complexity

for creation is then O(|Ek+1
C |).

Finally, some of the synCCs are merged (line 35). The maximum number of merges
possible is equal to the number of equivalence classes |EQk|. Each merge, using a
union-set-join data structure, requires O(1) time. Hence the complexity of merging
the equivalence classes and the associated synCCs is O(|EQk|).

Therefore, the total time complexity to update Sk to Sk+1 is O(|Ek
C |) + O(|VSkAvg| ·

|Sk|) + O(|EQk|) + O(|Ek+1
C |). Each changed edge can be associated with one distinct

changed waveform, hence at most, there is one equivalence classes associated with
each changed edge, or |EQk| < |Ek+1

C |. Therefore we can simplify the total complexity
to O(|Ek

C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1
C |)

This shows the incremental maintenance of a set of synCCs, Sk → Sk+1, is only
linear in the number of synCCs, the number of changing edges and the average size
of a synCC. When the changes in the graph are localised, there are generally fewer
synCCs and equivalence classes to update, hence the running time is less. In contrast,
when the changes to the graph are more randomly distributed, there are more synCCs
and equivalence classes to update, hence the running time is larger. But for all datasets
in our evaluation, the number of synCCs and new changing edges are still several
orders of magnitude smaller than the total number of existing changing edges, hence
even for the distributed change case, ciForager is still faster than cSTAG. We show in
Section 7 and 8 that the time to maintain the set of synCCs and calculate the distances
between them is much less than the time to compute the pairwise distances in cSTAG
and regHunter.

6. USING GRAPH VORONOI DIAGRAMS TO COMPUTE AND MAINTAIN THE SHORTEST PATH
DISTANCES BETWEEN SYNCCS

In this section, we describe how a Voronoi partition of a dynamic graph can be used to
efficiently compute and maintain the shortest path distances between a dynamic set
of synCCs (synchronised connected components).

Voronoi diagrams [de Berg et al. 2008] are an important concept in computational
geometry. Given a set of Voronoi points and the space the points are embedded in, the
space is partitioned into cells. A cell envelopes each Voronoi point, and other points in
the space belongs to the cell whose Voronoi point it is closest to. In ciForager, we extend
the Voronoi diagram to dynamic graphs. In the literature [Erwig 2000], graph Voronois
are used to partition the graph into cells to quickly detect what are the closest vertices
to a set of pre-selected vertices. Algorithms [Erwig 2000] have been designed to up-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:23

(a) The union graph and labelled
regions from the example illus-
trated in Figure 1.

(b) Example graph Voronoi, constructed
for three of the synCCs from the example
of Figure 1.

Fig. 4: An example graph Voronoi, constructed from part of the graph in Figure 1
(we have re-included Figure 1f for easier reference). Each synCC is highlighted with
a solid rectangle and labelled according the regions to which their corresponding
synCCs belong. Region A of Figure 1 consists of two synCCs, so vertex labelled “Aa”
corresponds to {e1,2, e2,3} and “Ab” corresponds to {e15,16}. The cell of each synCC is
drawn with a dotted line. Note that the cell boundaries can occur on an edge or a
vertex.

date the cells as the graph changes. However, graph Voronois have not been used to
determine which existing shortest paths need to be recomputed due to changes in the
underlying graph. Nor has previous work used synCCs (synchronised connected com-
ponents) as the set of Voronoi points, or analysed how changes to the graph Voronoi
can be solely considered in terms of synCCs changes. This type of consideration sim-
plifies the maintenance of the graph Voronoi and the other structures, as all changes
in ciForager can be considered as synCC changes.

In ciForager, the Voronoi points are the synchronised connected components, and
the cells are the vertices and edges that are closest to the associated synchronised
connected component. As an example of a graph Voronoi and how it is extended in
ciForager, consider an example graph Voronoi (Figure 4b), constructed for a part of
the graph from Figure 1. We only illustrate part of the graph to avoid cluttering the
example. Each synCC is highlighted by a solid rectangle, and the corresponding cells
are the dotted octagons around the synCCs. Where the octagons meet are the cell
boundaries. As Figure 4b shows, cells are constructed around each synCC, and the
boundaries of the cells are equidistant to their respective synCCs.

Using this graph Voronoi structure, we can reduce the complexity of computing
shortest path distances on a smaller meta-graph. Furthermore changes to the under-
lying graph can be isolated to a subset of cells, and only those synchronised connected
components with affected cells need their shortest path distances updated. This also
helps reduce the number of shortest path recomputations.

The meta-graph represents the shortest path distances between neighbouring syn-
chronised connected components. synCCs are neighbouring if their cells are neigh-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Chan et al.

bours of each other. A vertex in the constructed meta-graph represents an synCC and
an edge between two vertices indicates the corresponding synCCs are neighbours. The
weight of the edges is the shortest path distance between neighbouring synCCs, and
the weight of the vertices is the average shortest path distance within the associated
synCC. We shall shortly explain why vertex weights are necessary. The shortest path
distance between a pair of synCCs is then the shortest path distance between the cor-
responding vertices in the meta-graph. As an example of a meta graph, consider Figure
5b. It shows the meta graph constructed from the example of Figure 1.

In the rest of this section, we first define some further notation needed for graph
Voronois, then describe how to calculate the spatial distances using the Voronoi and
its meta-graph. After that, we show that only localised parts of the graph and the
associated graph Voronoi need to be updated when changes occur to the underlying
graph. Finally, we present the time complexity to update the graph Voronoi.

First, we introduce the graph Voronoi related notation.

Definition 6.1. The shortest path distance between a vertex va and a synCC si is
defined as d(va, si) = minvi∈si d(va, vi), where d(va, vi) is the shortest path distance be-
tween the vertices va and vi. Similarly, the shortest path distance between an edge ea,b
(va, vb are the incident vertices) and a synCC si is defined as minvi∈si(d(va, vi), d(vb, vi)).

Definition 6.2. Let cellki denote the cell of synCC si for window Wk. A cell con-
sists of vertices and edges that have si as their closest synCC. It is defined as
cellki = {va|d(va, si) ≤ d(va, sj),∀j 6= i} ∪ {ea|d(ea, si) ≤ d(ea, sj),∀j 6= i}. Where it is
unambiguous to do so, the k superscript will be dropped.

For example, e4,17 and e5,18 belong to the cell of region B in Figure 4a (see Figure 4b).

Definition 6.3. The set of neighbours of an synCC sj is the set of synCCs that have
their cells adjacent to cellj . The set of neighbours of sj is denoted by N(sj).

Definition 6.4. The boundary list between two neighbouring synCCs si and sj is
the set of vertices and edges that lie on the boundary of celli and cellj for window
Wk. The boundary list of si and sj is denoted by Bk(i, j). More formally, Bk(i, j) =
{va|d(va, si) == d(va, sj), va ∈ si, sj} ∪ {ea,b|d(va, si) == d(vb, sj), va ∈ si, vb ∈ sj}

Definition 6.5. Given the union graph over window Wk and a set of corresponding
synCCs Sk, a graph Voronoi Gk

v(V
k
v , Ek

v) divides the union graph into a set of cells
satisfying Definition 6.2, where for each synCC si, there exists an associated cellki , and
the boundaries between neighbouring cells satisfy Definition 6.4.

With these definitions, we now explain how the shortest path distances are computed
using the graph Voronoi diagram.

6.1. Computing the Shortest Path Distances using the Graph Voronoi Diagram
We define the shortest path distance between a pair of synCCs si and sj as the min-
imum shortest path distance between a vertex of si and a vertex of sj . Formally, it is
defined as minva∈si,vb∈sj d(va, vb). The graph Voronoi diagram allows us to compute the
shortest path distance between neighbouring synCCs quickly. In addition, the Voronoi
meta-graph built from the graph Voronoi diagram enables us to quickly compute an
approximate shortest path distance between non-neighbouring synCCs. In this sub-
section, we first describe how we can efficiently compute the shortest path distances
of neighbouring synCCs, then explain how these distances can be used to compute the
distances for non-neighbouring synCCs.

The shortest path distance between neighbouring synCCs si and sj can be calculated
from the boundary lists of the synCCs. As the vertices and edges on the lists are on

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:25

(a) No vertex weights. (b) Vertex weights.

Fig. 5: The graph Voronoi meta-graph constructed for the example of Figure 1. The
vertices are the synCCs, or the Voronoi points. The vertices are labelled according
to the regions to which their corresponding synCCs belong. Region A of Figure 1
consists of two synCCs, so vertex labelled “Aa” corresponds to {e1,2, e2,3} and “Ab”
corresponds to {e15,16}.

the boundary, they are equidistant from the associated synCCs. Therefore the shortest
path distance is simply double of the distance from the boundary to one of the synCCs
sharing that boundary. Formally, let the shortest path distance between synCCs si and
sj (of window Wk) be denoted by SPDk(i, j). Then the shortest path distance between
neighbouring synCCs si and sj can be computed as:

SPDk(i, j) = min
va∈Bk(i,j),eb∈Bk(i,j)

(2d(va, si), 2d(eb, si) + 1) (1)

Note that we can equally define SPDk(i, j) in terms of the distance between the sj and
the boundary vertices and edges, as d(va, si) == d(va, sj).

The distances between neighbouring synCCs are the edge weights in the meta-
graph. Using these distances, the shortest path distance between non-neighbouring
synCCs is computed as the shortest path distance on the meta-graph. The shortest
path distances of the meta-graph consists of the sum of the edge and vertex weights.
Before we explain the reasoning of the vertex weights, we first formally define the
notation for the Voronoi meta-graph.

Definition 6.6. Let G∗(V ∗, E∗) denote the Voronoi meta-graph of graph G(V,E). Let
v∗i ∈ V ∗ be associated with synCC si and w(vi) and w(ei,j) denote the weights of vi and
ei,j respectively.

A path and shortest path distance between two vertices in this meta-graph are de-
fined as follows:

Definition 6.7. Let P ∗(i, j) =< v∗i , v
∗
l , . . . , v

∗
p, v

∗
j > denote a path between v∗i and v∗j .

Then the path distance d(P ∗(i, j)) = w(e∗i,l) + w(v∗l) + . . .+ w(v∗p) + w(e∗p,j).

Now we can define the shortest path distance between two synCCs as:

Definition 6.8. The shortest path distance between synCCs si and sj is

SPDk(i, j) = min
P∗(i,j)

d(P ∗(i, j))

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 J. Chan et al.

The vertex weights of the meta-graph are calculated as the average shortest path
distance among the vertices of each synCC and represent the average cost to tran-
sit through a synCC. The vertex weights are included in the shortest path distance
calculations to prevent two non-neighbouring synCCs being connected via a chain of
adjacent synCCs, resulting in an incorrect total distance of 0. For an example, Figure
5a shows the meta-graph with no vertex weights, built from the example of Figure 1
(see Figure 4a). Consider the shortest path distance between vertices Aa and E, which
is 1 when no vertex weights are considered. Now consider Figure 5b, which is the meta-
graph with vertex weights. The shortest path distance between Aa and E is 3.33, which
is much closer to the true shortest path distance of 3. Hence, using the vertex weights
help to ensure the meta-graph shortest path distance is close to the true distance.

6.2. Constructing the Graph Voronoi Diagram
In order to construct the graph Voronoi, we grow the cells from each synCC simulta-
neously. Each cell expands at the same rate, and keep growing until either it hits the
edge of the graph or the boundary(ies) of other cells. When all cells stop growing, the
graph would be partitioned into a number of cells. To implement this, we run Dijkstra’s
algorithm from multiple roots. The roots are the synCCs, which are considered as an
indivisible entity in the Voronoi diagram. We can use the standard implementation of
Dijkstra’s algorithm using a priority heap, as the heap used ensures the vertices are
expanded in the correct order. Algorithm 3 shows the pseudo code for this process.

Computing this Voronoi structure is no worse than visiting every vertex and edge
in the whole graph, which is the lower bound of any shortest path distance algorithm.
The dominant running time cost is the cost of running Dijkstra’s algorithm. This has
a complexity of O(|E|+ |V |log|V |) if implemented with Fibonacci heaps [Erwig 2000].

6.3. Incrementally Maintaining the Graph Voronoi Diagram and Shortest Path Distances
In this section we describe our approach to maintaining and updating the graph
Voronoi and the shortest path distances between synCCs when changes occur. First,
we introduce a theorem that states that changes to the underlying graph can solely be
considered in terms of changes in the set of synCCs. The consequence of this theorem
is that we can analyse how the graph Voronoi and associated shortest path distances
change and how they are affected solely in terms of synCC changes. This simplifies the
analysis. After introducing the theorem, we introduce a series of lemmas that show
what part of the graph Voronoi and shortest path distances change, and present how
we update the affected parts and distances.

Definition 6.9. Given a synCC si, the no-change operation, no-change: Sk → Sk+1,
maintains the edge membership of si.

THEOREM 6.10. Changes to the underlying dynamic graph can be considered solely
as a sequence of merge, split, create, delete and no-change operations to the set of
synCCs.

PROOF. Parts of the underlying graph that are non-changing in the last window
but experience change in the latest snapshots can be considered as part of new synCCs
(create, see Appendix D, Lemma D.1). Parts of the graph that no longer change over the
current window can be considered as deletions from the existing synCCs (delete, see
Appendix E, Lemma E.1). All other changes must involving existing synCCs, as the set
of synCCs encapsulates all existing change behaviour in the dynamic graph. Therefore,
all other changes either involving merging, splitting or not changing existing synCCs.
Changes that just extend an existing synCC with the same value does not change the
edge membership of that synCC, hence can be consider as a no-change operation. The

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:27

ALGORITHM 3: Construction of the graph Voronoi diagram.
Input: Sk - The set of synCCs for window Wk.
Gunion,k - The union graph computed over the snapshots in Wk.
Output: Pk - Parent list for all vertices in Gunion,k.
Dk - Vector of distance of each vertex to its closest synCC.
Bk - Boundary list between all pairs of synCCs for window Wk.
Nk - synCC Neighbourhood lists for each synCC for window Wk.
Bk = {}; Nk = {}; Pk = {};
D[v] =∞,marked[v] = false, ∀v ∈ Vunion,k.
construct empty heap H;
// Initialise and mark vertices in the synCCs for each sj ∈ Sk do

for each (x, y) ∈ sj do
D[x] = D[y] = 0; P [x] = P [y] = {j};
marked[x] = marked[y] = true;
H.insert(x, 0); H.insert(y, 0);

end
end
// Start Dijkstra’s algorithm.
while H is not empty do

v = deleteMin(H); marked[v] = true;
// Find all adjacent vertices of v.
Av = adjacent(v), where va ∈ Av, if ev,va ∈ Eunion,k ∧marked[va];
for each va ∈ Av do

newD = d[v] + w(v, va);
if d[va] =∞ then

d[va] = newD; p[va]← p(v);
H.insert(va, newD);

else
//Vertex boundary case.
if newD == d[va] then

add p[v] to p[va];
add va to Bk(p(v), p(va));
add p[va] to Nk[p(v)]; add p(v) to Nk[p(va)];

end
//Edge boundary case.
else if newD == d[va] + 1 then

add e(v, va) to Bk(p(v), p(va));
add p[va] to Nk[p(v)]; add p(v) to Nk[p(va)];

end
else if newD < d(va) then

d[va] = newD; p[va] = {p(v)};
H.decrease(va, d[va]− newD);

end
end

end
end

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 J. Chan et al.

s s

s

s

m1

1

2

3

sm2

(a) Before merging.

s s

s

s

M

1

2

3

(b) After merging.

Fig. 6: An example from a portion of a graph Voronoi diagram, showing a subset
of the embedded synCCs and the cell boundaries before and after synCCs sm1 and
sm2 are merged. The solid black lines represent the cell boundaries, and the shaded,
diagonally striped area represent the affected area.

other types of change either cause synCCs to merge (see Lemma 6.11), or a synCC to
split (see Appendix C, Lemma C.1).

Theorem 5.10 indicates that the changes to the graph, graph Voronoi and the asso-
ciated shortest path distances can be considered as changes to synCCs: two existing
synCCs merging, an existing synCC being split into two synCCs, creation of a new
synCC, or deletion of an existing synCC (we do not need to do anything for the no-
change operation). Therefore, we only need to consider how to handle these four synCC
changes when updating the graph Voronoi and the associated shortest path distances.

In the following, we introduce a lemma that shows which cells of the graph Voronoi
are affected and which shortest path distances change when two synCCs merge. The
lemmas for splitting, creating and deleting synCCs are available in Appendices C–E.
These lemmas are used to design procedures to only update the necessary parts of the
graph Voronoi, and the changed shortest path distances. In the four lemmas, we make
the assumption that only one change is incorporated at a time. Therefore, it is assumed
that synCCs and their respective cells that are not part of the operation or explicitly
mentioned in the lemmas do not experience change during the update operation.

To illustrate the logic of the lemmas, we constructed examples of the graph Voronoi
before and after the change in the synCC. These examples are illustrated in Figures
6 and 14–16. We will describe them in more detail in the appropriate subsection. The
figures show the graph Voronoi, the synCCs, and the cell partition before and after
the synCC change. Dotted lines are used to represent an pending synCC split or the
location of previous cell boundaries.

6.3.1. Merging:

LEMMA 6.11. Let sm1 and sm2 be a pair of synCCs to be merged into sm; i.e., sm =
sm1 ∪ sm2. Then:

(1) The resulting cell of sm is the union of the cells of sm1 and sm2; i.e., cellm = cellm1 ∪
cellm2.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:29

(2) Only the shortest paths between synCCs that were neighbours to both sm1 and sm2

change. More formally, ∀sp ∈ Sk+1,

SPDk+1(m, p) =

SPDk(m1, p) sp ∈ Nk(m1), sp /∈ Nk(m2)

SPDk(m2, p) sp /∈ Nk(m1), sp ∈ Nk(m2)

min(SPDk(m1, p), SPDk(m2, p)) sp ∈ Nk(m1), sp ∈ Nk(m2)
(2)

PROOF. See Appendix B.

Consider Figure 6, which shows a portion of an example graph Voronoi before and
after two synCCs merge. The diagonal, striped area represent the area of the Voronoi
affected by the merge. Lemma 6.11 and Figure 6 show that changes to membership of
the cells are restricted to vertices and edges in sm. In addition, the lemma shows that
the only distances that need to be updated are the ones where sm1 and sm2 share a
neighbour.

Therefore the update can be performed by first relabelling the parent of all the ver-
tices and edges in cellm1 and cellm2 to sm (i.e., they become part of cellm). Then, the
shortest path distances are updated using Equation 2.

6.3.2. Algorithm. The algorithm to update an existing graph Voronoi takes a sequence
of changes to the synCCs, and applies the updating techniques outlined previously, one
by one. At the end of the process, the graph Voronoi is updated.

6.3.3. Complexity. In this subsection, we derive the time complexity to perform any of
the four graph Voronoi updates. This result will be used for constructing the overall
complexity of ciForager.

LEMMA 6.12. The worst case complexity of performing any synCC update operation
is O(|EcellAvg| + |VcellAvg|log(|VcellAvg|)), where |VcellAvg| and |EcellAvg| are the average
number of vertices and edges of a voronoi cell respectively.

PROOF. We analyse each of the update operations and show that they have com-
plexity equal to or less than O(|EcellAvg|+ |VcellAvg|log(|VcellAvg|)).

The time complexity to perform merging is dominated by the time to update the
membership/parent and distance information of the merging cells. As we need to up-
date the membership of one of the merging cells to the id of the other, this has linear
complexity with the number of vertices in a cell. As the number of vertices (and edges)
in a cell can vary [Honiden et al. 2009], we use the average number of vertices and
edges of a voronoi cell. Hence the (average) complexity is O(|VcellAvg|).

After splitting a synCC into two, the vertices and edges in the cell of the original
synCC need to be allocated between the two new synCCs. Hence Dijkstra’s algorithm
needs to be run over the cell of the split synCC. Recall that Dijkstra’s algorithm has a
complexity of O(|E| + |V |log|V |) for a graph with vertex set V and edge set E. Using
the average vertex and edge sizes, the complexity to split a synCC has complexity
O(|EcellAvg|) + |VcellAvg|log(|VcellAvg|).

The time complexity to create a new synCC is again dominated by the time to re-
assign and rerun Dijkstra’s algorithm over the cell of the new synCC. This is over
Sk+1 rather than Sk but assuming the average size of a cell is calculated over a long
time, we can approximate the size of the cells by |VcellAvg| and |EcellAvg|. Therefore the
complexity of creating a synCC is O(|EcellAvg|) + |VcellAvg|log(|VcellAvg|).

The time complexity to delete a synCC is again dominated by the time to reas-
sign and rerun Dijkstra’s algorithm over the deleted cell. Therefore, the complexity
is O(|EcellAvg|) + |VcellAvg|log(|VcellAvg|).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 J. Chan et al.

Therefore, the worst case complexity of performing any synCC update operation is
O(|EcellAvg|) + |VcellAvg|log(|VcellAvg|).

7. OVERALL TIME COMPLEXITY OF CIFORAGER
In this section, we analyse the time complexity to compute the regions for Wk+1, given
the data structures of Wk. Then we analyse the time complexity of the previous method
cSTAG [Chan et al. 2008] and compare the complexities of ciForager and cSTAG.

THEOREM 7.1. The overall complexity of ciForager to update the regions of corre-
lated change from window k to window k + 1 is:

O(|Ek
C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1

C |) +O(|EcellAvg|
+ |VcellAvg|log(|VcellAvg|)) ∗Uk +O(|EQk|2) +O(|Sk|2 + |Sk|log(|Sk|)) + ciFor clus cost.

(3)

ciFor clus cost is the clustering cost, while Uk is the number of synCC update operations
between windows k and k + 1.

PROOF. To determine the time complexity of ciForager, we analyse the sub-steps
required to perform the update (see Figure 2b). As a reminder these sub-steps are:
extracting the changed edges, updating the waveforms and synCCs, computing the
temporal distances between the equivalence classes, updating the graph Voronoi, com-
puting the shortest path distances between the synCCs, clustering the synCCs, and
extracting the edges and performing region association.

Extracting the changed edges involves comparing the two edge sets, which can be
done in O(max(|Ek|, |Ek+1|)) if performed as a separate operation. However, this step
can be performed when the graph snapshots are read in. A hash table of edges is main-
tained for the previous graph snapshot and the comparison is performed when reading
in the next graph snapshot from a file. Hence, we do not need to directly include this
cost into the analysis. Note that this step is also shared with cSTAG.

The time to update the set of synCCs from Sk to Sk+1 is O(|Ek
C |)+O(|VSkAvg| · |Sk|)+

O(|Ek+1
C |) (see Section 5.3.1).

The time to compute the pairwise temporal distances among the equivalence classes
EQk is O(|EQk|2), as ciForager incrementally computes the waveform distances, which
can be performed in O(1) for each comparison [Chan et al. 2009].

The time to update the graph Voronoi is equal to the time to compute an operation
(see Section 6.3.3) multiplied by the number of synCC updates. Recall that the number
of synCC updates between windows k and k + 1 is denoted by Uk. Then the time to
update the graph Voronoi is O(|EcellAvg|+ |VcellAvg|log(|VcellAvg|)) ∗ Uk.

Dijkstra’s algorithm is used to compute the shortest path distances on the meta-
graph. The time to compute the shortest path distances for a graph G(V,E) is
O(|E| + |V |log(|V |)) = O(|V |2 + |V |log(|V |)). As |V | = |Sk| for the meta-graph,
then the time to compute the pairwise spatial distances among the synCCs of Sk is
O(|Sk|2 + |Sk|log(|Sk|)).

The clustering cost is dependent on the clustering method employed, but is depen-
dent on |Sk+1|. We denote it by ciFor clus cost.

The time to extract the changed edges from the clusters of synCCs is O(|Ek+1
C |).

Finally, the time to compute the region association is dominated by the spatial inter-
region time, which is the time to compute the set intersection over the two sets of
regions, which have total sizes of |Ek

C | and |Ek+1
C |. Keeping an inter-region confusion

matrix, the algorithm makes a linear scan through the smaller of the two changed
edge sets, and updates the intersection count of the confusion matrix. Again, this is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:31

actually is part of the underlying algorithm (cSTAG) and not a part of the algorithm
we are focusing on in this paper, but we include it for completeness.

Therefore, the total complexity for ciForager is

O(|Ek
C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1

C |) +O(|EcellAvg|+ |VcellAvg|log(|VcellAvg|)) ∗ Uk

+O(|EQk|2) +O(|Sk|2 + |Sk|log(|Sk|)) + ciFor clus cost+O(min(|Ek
C |, |Ek+1

C |)) (4)

which can be simplified to

O(|Ek
C |) +O(|VSkAvg| · |Sk|) +O(|Ek+1

C |) +O(|EcellAvg|+ |VcellAvg|log(|VcellAvg|)) ∗ Uk

+O(|EQk|2) +O(|Sk|2 + |Sk|log(|Sk|)) + ciFor clus cost (5)

Equation 5 indicates the running time of ciForager depends mainly on the num-
ber of changed edges (|Ek

C | and |Ek+1
C |) and the number of synCCs (|Sk|). The term,

O(|EcellAvg| + |VcellAvg|log(|VcellAvg|)) ∗ Uk, has terms EcellAvg and VcellAvg, whose size
is generally inversely proportional to the number of synCCs (the more synCCs, the
smaller their sizes on average). While the second term, O(|Sk|2 + |Sk|log(|Sk|)) is
quadratic with the number of synCCs. Hence there is a trade-off between more synCCs
against the average size of cells. We explore this trade-off in Section 8.

Using a similar analysis, we can show that the complexity of cSTAG is dominated by
the shortest path comparisons between all pairs of changed edges (O(|Ek

C |2 ·V)), which
is generally much larger than the number of synCCs. From this complexity analysis,
it can be seen ciForager is much faster than cSTAG. In the evaluation section that
follows, we show that ciForager is up to 106 times faster than cSTAG

8. EVALUATION
In this section we evaluate the running time and accuracy of ciForager. We show that
ciForager is up to 106 times faster than cSTAG, with the speed advantage growing a) as
the changes become more localised and b) as the size of the graphs analysed increases.
In addition, we show that ciForager has equal accuracy to cSTAG, and has linear com-
plexity with respect to the size of the analysed graphs. Because of the faster running
speed and more efficient memory usage, ciForager can analyse very large graphs like
the global BGP connectivity graph that cSTAG cannot.

In the rest of this section, we first describe the datasets used in the evaluation. Then
we describe the accuracy measures used. Finally, we evaluate the running times and
accuracy of ciForager and cSTAG for both synthetic and real datasets, and present
two new high quality regions discovered by ciForager when analysing the global BGP
connectivity graph.

8.1. Datasets
In this section, we describe two sets of datasets used to evaluate ciForager and cSTAG,
one synthetic and one real-life. The synthetic datasets have more localised changes.
In contrast, the real-life datasets have more bursty, distributed changes. We introduce
these two types of datasets to evaluate the efficiency of ciForager for different types of
changes.

8.1.1. Synthetic Graphs (Localised Changes). The aim of the synthetic graphs is to gener-
ate a number of pseudo random graphs that test the efficiency and accuracy of ciFor-
ager. On one hand, we wish to vary the number of synCCs and other parameters that
affect the efficiency of ciForager. On the other hand, we also wish to evaluate and

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 J. Chan et al.

compare the accuracy of ciForager against cSTAG. Hence we use two synthetic dataset
generation methods, first used in [Chan et al. 2009], to evaluate cSTAG and regHunter.

The first method generates regions of change, then generates paths between them
to form the dynamic graph. The second method generates the graph, then randomly
select subgraphs to become regions. The first method allows more control over the
separation criteria between the regions, but it is difficult to control the number of
synCCs and the percentage of the graph that experiences change. Hence, we introduce
the second method, which allows more control over these two factors.

The graphs generated tend to have changes that are more localised. Localised
changes are realistic for datasets like the online strategy game Travian, where players
tend to ally and attack within a local neighbourhood.

Region-then-link Method. The difficulty of finding high quality regions in a dataset
depends on the separability of the regions. Separability is measured by three fac-
tors: minSpaSep, the minimum spatial separation between any pair of edges that
are in different regions; ii) minTemSep, the minimum temporal separation between
the change waveforms of any pair of edges in different regions; and iii) minEvtSep,
the minimum temporal separation between consecutive, but independent and separate
windows of changes affecting the same set of edges. By varying these factors, we can
generate a variety of synthetic dynamic graphs to test the accuracy and efficiency of
ciForager and cSTAG.

To generate the datasets using this method a number of random subgraphs are gen-
erated. A number of random paths, at least minSpatSep long, are generated between
each pair of subgraphs. This ensures that each subgraph is at least minSpatSep from
all the other extracted subgraphs. Next, a random sequence of changes are generated
for each subgraph, such that the distance between any pair of sequences is at least
minTemSep. In addition, each sequence consists of a random number of subsequences
of high change, separated by at least minEvtSep of periods of no change. Each sub-
graph, along with a subsequence of change, constitutes a region. A simulation is used
to generate the snapshots and regions by applying the sequences of changes to the orig-
inal random graph. The names of datasets generated by this method have the prefix
synGen.

Graph-then-region Method. To generate datasets using this method, a graph is first
generated. Any graph model generator can be used to generate this graph. Next, non-
overlapping subgraphs are selected for each region. Finally, random change sequences
are assigned to each region, and additional graph snapshots are generated based on
the original graph, the set of regions, and their associated change sequences. The
names of the datasets generated by this method will have the prefix introGen.

8.1.2. Border Gatework Protocol (BGP) Connectivity Graphs (Widely Distributed Changes). BGP
is a routing protocol used to establish the forwarding tables between the routers of
organisations, known as Autonomous Systems (ASs), on the Internet. The vertices in
the BGP connectivity graph represent the ASs, and the edges represent the existence
of a routing path between the ASs. The BGP connectivity graph represents the top-
level routing topology of the Internet.

The RouteViews project3 at the University of Oregon collects BGP routing informa-
tion by passively peering with a number of distributed ASs. From each table obtained
from RouteViews, we built a snapshot of the BGP connectivity graph using the AS
PATH path entries.

3http://www.routeviews.org

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:33

In [Chan et al. 2008], the Katrina event was analysed because it has been reported
that its effect on the Internet was mostly localised around Louisiana and several other
southern states. In this paper, we analyse the US portion of the BGP graph. In addi-
tion, we also analyse the whole (worldwide) BGP graph over the same period, which
was not performed in previous work [Chan et al. 2008][Chan et al. 2009].

In August 2005, the US BGP graph consisted of around 9,000-10,000 vertices and
36,000 edges, and the whole BGP graph consisted of around 20,000 vertices and 42,000
edges. We analysed three and a half days of snapshots, from 28 August, 13:19 to 31 Au-
gust, 22:32. This period included the landfall of Hurricane Katrina (around 29 August,
10:00).

There are two types of changes occurring within the BGP connectivity graph. The
changes associated with the failure events tend to be of a more localised nature. In ad-
dition, there is a steady amount of distributed, background changes of a more random
nature. Overall, there are many distributed areas of background changes, but strong
areas of localisation are present when failure events like the arrival of Hurricane Ka-
trina occur.

8.1.3. 1998 World Cup Website Access. In 1998, the 16th FIFA World Cup was
held in France. To study the workload characteristics of the official web site,
www.france98.com4, access logs5 of the web site were analysed by Arlitt and Jin [Arlitt
and Jin 1999]. It was reported by Arlitt and Jin that the website experienced flash
crowds - sudden, large increases in the number of unique, legitimate clients accessing
the website. This coincided with the time of weekday matches. The 1998 World Cup
was the first world cup where live scores were available online. Therefore, a signifi-
cant number of fans, who cannot watch the football matches on television, monitored
the live scores via the website during the matches, producing the flash crowds.

We construct a dynamic graph of the website accesses and find regions of correlated
change that correspond to different types of access, e.g., a group of accesses relating
to online viewing of a particular match. In previous work [Chan et al. 2008][Chan
et al. 2009], we had manually matched discovered regions with the matches, based
on the time the regions were defined and the websites contained in them. Like the
BGP dataset, this dynamic web access graph has localised and distributed background
changes. For comparison, we used the same snapshots as [Chan et al. 2008], which
varied from 3417 to 5891 vertices and 110 to 849 edges. Please refer to [Chan et al.
2008] for details on the snapshot extraction process.

8.2. Accuracy Validation Methods
Accuracy was evaluated using external and internal cluster validation methods. In
the external methods, we compare the obtained set of regions with a known set of true
regions, while in the internal methods, we compare against a set of measures that
are based on other partitioning objectives. We will describe the external and internal
validation measures next.

8.2.1. External Accuracy Validation Measure. In external accuracy validation, we have a
set of true (generated) regions, Rtru, and a set of detected regions Rdet. This prob-
lem has been partially studied in the field of external cluster validation [Halkidi et al.
2001]. Existing validation methods can be divided into three groups: a) those that
count the number of pairs [Halkidi et al. 2001]; b) those that compare set member-
ship [Meila 2003]; and c) those that compare membership distribution [Bae et al.
2010][Zhou et al. 2005]. However, none of them consider both the temporal behaviour

4As of August 2007, the address is still valid, but links to a general soccer promotion website.
5Available at [wc98trace].

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 J. Chan et al.

Name Attribute varied Attribute set
synGen003 – Same as synGen003 of [Chan et al. 2009]
synGenSeq Total sequence length (T) 30, 70, 110, 150

introGenScc # of regions 6, 17, 34, 46, 77, 147
introGenPerc % of edges changing 5%, 10%, 20%, 30%, 50% 70%
introGenSize Number of edges of graphs 2000, 4000, 16000, 32000, 65000

Table III: Summary of the synthetic datasets used in the evaluation.

and membership of regions when comparing sets of regions. Hence, in prior work [Chan
et al. 2009], we introduced a matching-based method that incorporates both temporal
and membership considerations in [Chan et al. 2009]. The method is called extReg-
Compare.

Each region in Rtru is matched with one or more regions in Rdet. extRegCompare
finds the matching that minimises the total distance between the matched regions, by
solving it as a mass transportation linear programming problem [Luenberger 2003]. A
distance of 0 means the two sets of regions are the same, and a distance of 1 means
the two sets are completely different.

8.2.2. Internal Accuracy Validation Measure. Similar to [Chan et al. 2009], we use the av-
erage intra-region distance and the average inter-region distance as the internal val-
idation measures. Average intra-region distance measures how compact the regions
are. Average inter-region distance measures how well separated the regions are.

Both of these measures depend on an intra or inter-region distance measure. We
use separate spatial and temporal distances, so effectively, there are four different
measures (two for temporal, two for spatial). More formally, if Ry and Rz are two of the
discovered regions, then

dspat(Ry, Rz) =
1

|Ry||Rz|
∑

ei∈Ry

∑
ej∈Rz

dspd(ei, ej ,W
1,T)

where T is the number of graph snapshots in the sequence and dspd is the shortest path
distance measure. The average intra and inter-region spatial distances are defined as
dspat(Ry, Ry) and 1

|R−1|dspd(Ry, Rz), Ry, Rz ∈ R, Ry 6= Rz respectively. The average
intra and inter-region temporal distances are defined similarly, except the modified
Euclidean distance measure replaces dspd.

8.3. Synthetic (Localised Changes) Graph Comparison
In this subsection, we investigate the performance of ciForager and cSTAG using syn-
thetic datasets. We compare the performance of ciForager and cSTAG across different
clustering methods and different synthetic datasets. The various datasets vary the
length of the sequence, the number of synCCs (synchronised connected components),
the percentage of changing edges, and the size of the generated graphs. All these pa-
rameters affect the running speed of the algorithms. The synthetic datasets used are
summarised in Table III. To reduce the bias, for each of the synthetic dataset, we gen-
erated three different sets of data for each parameter setting and present the average
(and standard deviation) of the results. More details will be provided about each set of
datasets in the subsections that follow. Apart from the clustering methods evaluation,
we use the best clustering algorithm of cSTAG (leaderFollower-singleLinkage) as the
benchmark to compare against ciForager. We first present the running time results,
then the accuracy results.

8.3.1. Running Time Evaluation.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:35

har−ag har−sn har−ld sof−ag sof−sn sof−ld ld−ag ld−sn
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
W

al
l c

lo
ck

 r
un

ni
ng

 ti
m

e
(s

ec
s)

top 1
top 10
top 30
top 50

(a) Timing comparison for ciForager.

har−ag har−ld har−sn sof−ag sof−ld sof−sn ld−ag ld−sn
0

50

100

150

200

250

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

top 1
top 10
top 30
top 50

(b) Timing comparison for cSTAG.

har−ag har−sn har−ld sof−ag sof−sn sof−ld ld−ag ld−sn
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
cc

ur
ac

y

top 1
top 10
top 30
top 50

(c) Accuracy comparison for ciForager.

har−ag har−ld har−sn sof−ag sof−ld sof−sn ld−ag ld−sn
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
cc

ur
ac

y

top 1
top 10
top 30
top 50

(d) Accuracy comparison for cSTAG.

Fig. 7: Timing and accuracy comparison of ciForager against cSTAG. Note that the
time scales in Figures 7a and 7b are different. The clustering algorithms labelled
har-ag, har-ld, har-sn are the hard approach with {averageLinkage, leaderFollower,
singleLinkage} clustering methods; sof-ag, sof-ld, sof-sn are the soft approach with
{averageLinkage, leaderFollower, singleLinkage} clustering methods; ld-ag and ld-
sn are the sequential approach with {leaderFollower + averageLinkage, leaderFol-
lower + singleLinkage}. As cSTAG and ciForager consist of a number of parameter
configurations, we report the average of the best, top 10, top 30 and top 50 results,
in terms of accuracy, with 100-120 configurations for each clustering algorithm.

Varying the clustering methods. Any clustering algorithm can be used in cSTAG and
ciForager, hence it is important to evaluate the sensitivity of ciForager and cSTAG
across different clustering methods. We evaluate the eight different clustering algo-
rithms proposed for cSTAG [Chan et al. 2008].

The synthetic datasets used to evaluate these results were the same ones used to
compare cSTAG against regHunter in [Chan et al. 2009]. The parameters for generat-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Chan et al.

ing these datasets are seqLen = 30, minSpaSep = 3, minTemSep = 3 and minEvtSep =
3.

cSTAG and ciForager have a number of parameters. To avoid bias, we varied the
parameters and report the average performance of the top, top 10, top 30 and top 50
most accurate results for each clustering method (100-120 parameter configurations
per method). The timing results are averaged over the same ordering. We do not show
the error bars in these bar charts as we found that they clutter the charts.

Consider the running time results for ciForager and cSTAG, illustrated in Figures
7a and 7b respectively. Note that the timing scales for Figures 7a and 7b are different.
ciForager is 100-800 times faster than cSTAG, across all results and across all clus-
tering methods. These results show that ciForager is considerably faster than cSTAG
across different clustering methods and parameter settings.

In addition, note that the timing of ciForager is consistent against the clustering
methods, suggesting that ciForager and the idea of synCCs is agnostic to the cluster-
ing approach employed. On the other hand, the results of cSTAG does not show this
consistency across clustering methods.

Varying the number of snapshots in the sequence. As the sequence length increases,
the number of windows analysed grow linearly, hence the running time of the algo-
rithms should increase linearly also. To investigate the effect of increasing the se-
quence length on running time and accuracy, we
generated datasets with four different sequence lengths (30, 70, 110, 150 snapshots).
In addition, to maintain the average number of changing edges between any pair of
consecutive snapshots, we linearly increase the life span of the generated regions in
line with the increase in the sequence length. This dataset is labelled synGenSeq in
Table III.

Consider Figure 8a, which shows the total running time of each algorithm. First,
we confirm that the running time of ciForager is linear. The running times for the
sequence lengths 30, 70, 110, 150 are 0.266s, 0.397s, 0.655s and 0.840s respectively.
We did a linear regression fit, and obtained the equation y = 0.0049x + 0.0940, with
R2 = 0.9863, which shows that the running time of ciForager is indeed linear with the
sequence length.

Next, we compare the running times of ciForager and cSTAG; ciForager is at least
two orders of magnitude faster than cSTAG, with the gap growing as the sequence
length increases. This is because the average number of synCCs per snapshot is in-
creasing much more slowly than the average number of changing edges. As Equations
5 show, the running time of ciForager is dependent on the number of synCCs per snap-
shot while the running time of cSTAG [Chan et al. 2008] is dependent on the number
of changing edges per snapshot. As the number of changing edges grows much faster
than the number of synCCs, this results in the increasing gap between the running
times of the two algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:37

20 40 60 80 100 120 140 160
10

−1

10
0

10
1

10
2

10
3

Total sequence length

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(lo
g

10
 s

ec
s)

cSTAG
ciForager

(a) Timing comparison between ciForager and
cSTAG.

20 40 60 80 100 120 140 160
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Total sequence length

A
cc

u
ra

cy

cSTAG
ciForager

(b) Accuracy comparison between ciForager and
cSTAG.

Fig. 8: Timing and accuracy comparison of ciForager against cSTAG when the total
sequence length of the dynamic graph is varied. The size of the snapshots is approx-
imately 500 vertices and 1500 edges. The total number of regions varied from 22 to
38, and the total number of unique changed edges is approximately 200 to 215.

Varying the average number of synCCs embedded in each snapshot. To investigate
the effect of varying the average number of embedded synCCs on the performance of
ciForager and cSTAG, we generated a random, connected graph of size 500 vertices
and 5000 edges, and introduced an increasing number of regions into it. The number
of regions is the lower bound on the number of synCCs. The sequence length was set
at 30, minTempSep = 0, minEvtSep = 3, for all the generated dynamic graphs in this
dataset. This dataset is labelled introGenScc in Table III.

Figure 9a shows the running time of ciForager and cSTAG for this dataset. Again,
ciForager is 15 to over 1000 times faster than cSTAG. However, as the number of
synCCs increases, the gap in timing performance between ciForager and cSTAG de-
creases. Consider Figures 9c and 9d, which show the timing breakdowns of ciForager
and cSTAG, respectively (to avoid clutter, we do not show the error bars). The running
times of each algorithm are broken down into the time to compute the clustering (la-
belled clustering in the figures), the region association (labelled association), the tem-
poral and spatial distances (labelled temporal and spatial in Figure 9c and combined
together and labelled distance in Figure 9d) and the total running time (labelled total).
For cSTAG, the average size of the regions found after the first stage of the sequential
clustering (i.e., the regions are only temporally correlated, not necessarily spatially
correlated) decreases as the number of synCCs increases; this results in fewer spatial
distances calculated overall, as confirmed by the distance line in Figure 9d.

For ciForager, the total running time of ciForager shows an increasing trend. This is
due to the increasing time to update the set of synCCs and the graph Voronoi, and the
increasing time to compute the distances, clustering and association, where the first
three are dependent on the number of synCCs. This is confirmed by Equation 5, which
shows increasing time with respect to the number of synCCs. This experiment suggest
that for this scenario, as the number of synCCs increases, the time to maintain the
synCCs and compute the distances grow faster than the decrease in time due to the
average size of cells decreasing.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 J. Chan et al.

0 50 100 150
10

−1

10
0

10
1

10
2

10
3

Total number of synCC’s

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(lo
g

10
 s

ec
s)

cSTAG
ciForager

(a) Timing comparison between ciForager and
cSTAG.

0 50 100 150
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Total number of synCC’s

A
cc

u
ra

cy

cSTAG
ciForager

(b) Accuracy comparison between ciForager and
cSTAG.

0 50 100 150
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Total number of synCC’s

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(lo
g

10
 s

ec
s)

temporal

spatial

clustering

total

association

(c) Timing breakdown of ciForager.

0 50 100 150
10

−2

10
−1

10
0

10
1

10
2

10
3

Total number of synCC’s

W
al

l c
lo

ck
 r

u
n

n
in

g
 t

im
e

(l
o

g 10
 s

ec
s)

clustering
association

distance

total

(d) Timing breakdown of cSTAG.

Fig. 9: Timing and accuracy comparison of ciForager against cSTAG when the total
number of synCCs is varied. The size of the snapshots is approximately 500 vertices
and 5000 edges. The sequence length is 30 for all datasets. Total number of unique
changed edges is approximately 500.

Varying the average number of edges changing between any pair of consecutive snap-
shots. To determine the effect of the average number of changing edges between pairs
of consecutive snapshots on timing and accuracy, we generated a graph of 500 vertices
and 5000 edges, and varied the number of changed edges introduced, from 50 (5%) to
3500 (70%) of edges experiencing some change. The sequence length was set at 30 for
all the generated datasets. This set of datasets is labelled introGenPerc in Table III.

Figure 10a illustrates the running times of ciForager and cSTAG. Again, the total
running time of ciForager is two to four orders of magnitude faster than cSTAG. The
difference in performance increases as more edges change. The rate at which the run-
ning time increases is gentler for ciForager than cSTAG. This is because the distance
calculations dominate the running times for cSTAG, as the amount of spatial distance
calculates increase at least quadratically with the number of changed edges. However,
the time to compute the spatial distances is much less for ciForager than cSTAG, due
to the fact that spatial distances are calculated on the much smaller meta-graph for
ciForager. In addition, we found that the time to perform the clustering is about one

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:39

0 10 20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Percentage of edges changing

W
al

l c
lo

ck
 r

u
n

n
in

g
 t

im
e

(l
o

g 10
 s

ec
s)

cSTAG
ciForager

(a) Timing breakdown of ciForager.

0 10 20 30 40 50 60 70 80
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Percentage of edges changing

A
cc

u
ra

cy

cSTAG
ciForager

(b) Accuracy comparison of ciForager and cSTAG.

Fig. 10: Timing and accuracy comparison of ciForager against cSTAG when the per-
centage of edges in the original graph is varied. The size of the snapshots is approx-
imately 500 vertices and 5000 edges. The sequence length is 30 for all datasets.

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

10
6

10
8

Graph size (log
10

 number of edges)

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(lo
g

10
 s

ec
s)

cSTAG
ciForager

y = 1.09x − 3.92

y = 3.33x − 8.15

Fig. 11: Timing comparison of ciForager vs. cSTAG as the size of the scale-free graph
increases. Sequence length was 30, and 20% of edges experienced change over the
snapshot sequence.

order of magnitude faster for ciForager than cSTAG, reinforcing the fact that grouping
into synCCs vastly decreases the number of actual points the clustering algorithms
need to compare and group.

Varying the number of edges in the dynamic graphs. To investigate how the number
of edges affects the running time of ciForager against cSTAG, we generated scale-free
dynamic graphs whose edge count range from 2,000 to 65,000 edges. We generated
scale-free graphs because many real-life graphs have scale-free characteristics. In ad-
dition, we wanted to evaluate the shortest path distances using a difficult dataset.
Scale-free graphs cause shortest path searches to expand over much of the graph, re-
sulting in long average running times. The number of vertices was kept at 30% of
the number of edges, and the generated graphs were all connected. For each dynamic
graph, 20% of the edges were changing and their sequence length was 30. This set of
datasets is labelled introGenSize in Table III.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 J. Chan et al.

We attempted to run cSTAG on the 32,000 and 65,000 edge datasets, but cSTAG
had not finished after 5.8 million seconds, therefore we terminated the tests. Figure
11 shows the running time of ciForager and cSTAG as the size of the graph increases,
in log-log scale. We show the lines of best fit for the results of both algorithms, and
the slope of these lines indicate that cSTAG scales cubically with the number of edges,
while ciForager has almost linear scalability. For cSTAG, we found that the time to
perform the region associations and calculate the spatial distances were the dominant
factors in the increasing running time. For ciForager, it was the time to compute the
spatial distances between synCCs, but it is still a fraction of the time it takes cSTAG
to compute.

8.3.2. Accuracy Evaluation. In this subsection, we evaluate the accuracy of ciForager
and cSTAG for the synGen003, synGenSeq, synGenScc and synGenPerc datasets. Gen-
erally, the accuracy of ciForager is comparable to the accuracy of cSTAG.

Varying the clustering methods. Consider Figures 7c and 7d, which show the accu-
racy results for ciForager and cSTAG respectively. The best accuracy result for ciFor-
ager is a few percent lower than cSTAG for some of the clustering methods. The reason
for this is as follows. Some of the dataset generated have regions that have a small di-
ameter (i.e., small shortest path distance among the changed edges). In cSTAG, when
clustering the edges in the spatial dimension, we are considering the pairwise distance
between edges. Because the regions have small diameter, they are clustered correctly.
In ciForager, we first group edges into synCCs and then cluster the synCCs. To ensure
a direct comparison, we used the same parameter settings, including the same set of
clustering parameters. These clustering parameters were designed for the clustering
of cSTAG and not ciForager, hence when clustering synCCs rather than edges, the
synCCs can be mistakenly grouped into the same cluster or region, occasionally lead-
ing to more accurate results for cSTAG. Even with this disadvantage, ciForager still
achieves accuracies of over 80%.

In addition, the ciForager results show significantly less variability within any of
the clustering methods. Also, across all clustering methods, the results for ciFor-
ager vary much less than cSTAG (compare the results of ciForager, leaderFollower-
averageLinkage against cSTAG, leaderFollower-averageLinkage for example). This
indicates that ciForager is less sensitive to the choice of parameters and clustering
method than cSTAG, making it simpler to use and optimise.

Varying the number of snapshots in the sequence. Consider Figure 8b, which shows
the accuracy comparison of ciForager and cSTAG. Apart from the seqLen = 30 result,
ciForager is of comparable or better accuracy than cSTAG. This indicates that the
incremental nature of ciForager does not result in a loss of accuracy, even for longer
sequence lengths.

Varying the average number of synCCs embedded in each snapshot. Consider Figure
9b, which shows the accuracy comparison of the two algorithms. ciForager has compa-
rable accuracy to cSTAG, apart from the nine synCC result.

Varying the average number of edges changing between any pair of consecutive snap-
shots. Consider Figure 10b, which shows the accuracy results for ciForager and cSTAG
when the percentage of edges changing is varied. The accuracy of ciForager is slightly
higher than cSTAG almost over all edge percentage values, apart from the 5% value.
Despite not optimising the parameters for ciForager, this suggests that the average
effect of first grouping changed edges into synCCs can lead to accuracy improvements.

8.3.3. Synthetic (Localised Changes) Dataset Evaluation Summary. These results indicate
that ciForager is highly scalable, and its running time is dependent on the average

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:41

Algorithm Intra Inter Running time
Temporal Spatial Temporal Spatial Time (secs) % of cSTAG

ciForager 0.011859 0.340575 0.968289 0.473339 859 1.59%
cSTAG 0.27145 0.39723 0.962554 0.62065 34402 100%

Table IV: Results for the best intra-region distance, for the effect of Hurricane Kat-
rina on the BGP connectivity graph. Lower intra and higher inter-region distances
are more accurate.

Algorithm Intra Inter Running time
Temporal Spatial Temporal Spatial Time (secs) % of cSTAG

ciForager 0.011859 0.340575 0.968289 0.473339 859 1.55%
cSTAG 0.46870 0.51435 0.96283 0.64748 35209 100%

Table V: Results for the best inter-region distance, for the effect of Hurricane Kat-
rina on the BGP connectivity graph. Lower intra and higher inter-region distances
are more accurate.

number of synCCs per snapshot, rather than the sequence length. In addition, ciFor-
ager is up to 106 times faster than cSTAG, primarily because of large reductions in
the time required to compute the shortest path distances and to perform the cluster-
ing. The speed advantage of ciForager over cSTAG grows as the size of the analysed
graphs increases. Because ciForager is much faster than cSTAG, it was able to pro-
cess larger graphs that cSTAG cannot handle, as shown by the inability of cSTAG to
complete the 32,000 and 64,000 edge tests.

8.4. BGP Graph Evaluation
In this subsection, we evaluate the timing and accuracy performance of ciForager and
cSTAG on the Internet routing connectivity BGP graph. We analyse two versions of the
connectivity BGP graphs - the US and global versions. We use the US portion of the
BGP graph to compare the timing and accuracy of ciForager and cSTAG. cSTAG was
unable to analyse the global version of the BGP graph due to its high memory usage
and long running times. Therefore, we use ciForager to analyse the global portion to
demonstrate a useful application of the improved efficiency of ciForager over cSTAG.

The BGP graphs do not have a known set of regions, hence we use the internal val-
idation methods to evaluate the accuracy of ciForager and cSTAG. We compare the
intra/inter-region accuracy and running time results for the US and global portions of
the Internet. Table IV shows the best intra-regional distance results for the US BGP
graph for ciForager and cSTAG. Table V shows the best inter-regional distance re-
sults. Both sets of results show that ciForager is significantly more accurate in terms
of intra-region distance and approximately 40–41 times faster. The inter-region spa-
tial distance for ciForager is lower than cSTAG due to synCC formation, which might
inadvertently group edges together that would not be grouped together if considered
individually.

The lower running time savings of ciForager over cSTAG are due to the large num-
ber of background changes in the graph. The speed advantage of ciForager over cSTAG
is due to the ability of ciForager to localise change updates. However, the background
changes in the BGP graphs are generally randomly distributed throughout the graph,
which limits the ability to localise updates, leading to the diminished efficiency advan-
tage of ciForager over cSTAG for this scenario.

Consider Figure 12a, which shows the number of changed vertices and edges experi-
enced across subsequences that are six snapshots long. The figure shows that the num-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 J. Chan et al.

Algorithm Running time (secs)
Pre-landfall Landfall Post-landfall

ciForager 25.7 131.0 76.1
cSTAG 849.4 10781.4 4912.8

Speedup (times) 33.1 81.3 64.6

Table VI: A breakdown comparison of the running times of ciForager and cSTAG for
the pre-landfall, landfall and post-landfall periods of Hurricane Katrina.

ber of connectivity failures spiked when Hurricane Katrina made landfall. In addition,
in [Chan et al. 2008], we found the failure regions have strong topological locality. This
means that the updates required due to changes in the regions tend to be localised,
hence ciForager should be fastest over periods of focused failure activity.

Hence, to evaluate if the speed advantage of ciForager over cSTAG is indeed re-
stricted by the random background changes, we segmented the sequence of snapshots
into three periods (see Figure 12a): before the landfall of Hurricane Katrina (pre-
landfall), during the landfall of Hurricane Katrina (landfall), and after the landfall
(post-landfall). The number of random, background changes is dominant in the pre-
landfall period, hence among the three periods, we expect the advantage of ciForager
over cSTAG to be the least. The number of localised changes is dominant in the land-
fall period, hence we expect ciForager to have greatest speed advantage over cSTAG.
Finally, the network is in a recovery phase in the post-landfall period and therefore
has fewer localised changes than during the landfall period, but still higher than
the pre-landfall period. Note that the landfall and post periods are deliberately non-
continuous. We want to choose a period whose amount of localised change fall between
the two other periods.

These observations are evident in Figures 12b and 12c. Figure 12b shows the num-
ber of synCCs for each time window and Figure 12c shows the size of the three largest
synCCs for each time window. Figures 12b and 12c indicate that the number of synCCs
is largest and the size of the three largest synCCs are relatively small during the pre-
landfall period. This suggests that most of the synCCs during this period are of a ran-
dom nature, and most likely to be background changes. Compare this with the number
of synCCs and the size of the three largest synCCs during the landfall period. The
number of synCCs is minimal, and the size of the three largest synCCs are relatively
large. This suggests that the changes tend to form connected components and are of a
more localised nature. Finally, the number of synCCs and the size of the three largest
synCCs during the post-landfall period is in-between the other two periods, suggest-
ing that during this period, some of the changes are localised, but there are also a
significant number of random background changes.

The running time results for each period are shown in Table VI. As Table VI shows,
the speed advantage of ciForager over cSTAG is maximal over the landfall period (81.3
times), while least over the pre-landfall period (33.1 times) and 64.6 times for the
post-landfall period. This further reinforces our hypothesis, and shows that ciForager
has maximal advantage over cSTAG when localised changes are the dominant type of
change.

In summary, even with a larger, real-life graph that experiences significant change,
ciForager is still much faster than cSTAG, as well as actually being more accurate
than cSTAG.

Global BGP Graph Results. In this section, we present two regions that were dis-
covered by ciForager when analysing the whole BGP graph. cSTAG was not about to
analyse the whole BGP graph due to its slow speed and very high memory consump-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:43

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Window Number

C
h

an
g

ed
 N

u
m

b
er

Changed Vertices
Changed Edges

Pre Land Post

(a) Number of changed edges and vertices in each
time window.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Window Number

N
u

m
b

er
 o

f
S

C
C

s

Pre Land Post

(b) Number of synCCs found over each time window.

0 5 10 15 20 25 30
0

5

10

15

20

25

Window Number

N
u

m
b

er
 o

f
E

d
g

es
 in

 S
C

C

Largest SCC
2nd largest SCC
3rd largest SCC

Pre Land Post

(c) Sizes of the three largest synCC found in each
time window.

Fig. 12: Number of changed edges and vertices, number of synCCs and the sizes of
the three largest synCCs found in each time window in the US portion of the BGP
graph during the period 28 August to 31 August 2005. The dotted line signifies the
landfall of Hurricane Katrina. The labels pre, land and post represent the periods
pre-landfall, landfall and post-landfall respectively.

tion. Table VII summarises the two new regions found. Both represent instability re-
gions, one during the time of the landfall of Hurricane Katrina (between snapshots 11
and 12), and the other was during the subsequent unstable, recovery periods after the
landfall. Both regions consist of incident vertices that are predominately European
ASs, and indicates connectivity instability in the US cascading to Europe. These re-
gions show that a failure event in the US will not only affect the connectivity in the
US portion of the network [Chan et al. 2008], but also cause instability in the Euro-
pean and other parts of the network. In addition, the large size of the regions indicate
the fragility of the connectivity network to significant localised changes to its US core.
In contrast, these regions were undiscovered by cSTAG because it cannot scale up to
the global BGP graph. This demonstrates the added benefit of increased efficiency of
ciForager.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 J. Chan et al.

Region No. of Edges Change Waveform Comments

Sat-C1 114

8 9 10 11
Instability region,
mostly consisting of
European ASs. Number
of ASs by region – Eu-
ropean: 95, US: 26, Asia
Pacific: 7, other: 40.

Sat-C2 123

28 29 30 31
Instability region,
mostly consisting of
European ASs. Num-
ber of ASs by region
– European: 101, US
and Canadian: 36, Asia
Pacific: 2, other: 24.

Table VII: Characteristics of two new discovered regions of correlated change for the
whole BGP graph over the period of the Hurricane Katrina landfall.

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

900

Window number

N
u

m
b

er
 o

f
ch

an
g

ed
 e

d
g

es
/s

yn
C

C
s

Number of changed edges
Number of synSCCs

Fig. 13: Number of changed edges and synCCs in each time window, for the World
Cup dataset.

8.5. 1998 World Cup Graph Evaluation
In this section, we evaluate another real dataset with a large number changes that
occur in bursts.

Consider Figure 13, which shows the number of changed edges per window and the
number of synCCs per window. The window size is 6 (same as in [Chan et al. 2008]).
As this figure illustrate, even though this World Cup dataset is much smaller than the
BGP dataset, it has many more changes. In addition, the ratio of synCCs to changed
edges is higher than the BGP dataset, suggesting this dataset has many distributed
changes. Analysing the algorithms on this dataset should give us further confidence of
the performance of ciForager in this distributed change data type of data.

Tables VIII and IX show the timing breakdown of ciForager and cSTAG respectively.
Despite the bursty nature of the dataset and the relatively large number of synCCs
to changed edges, ciForager is still more than 70 times faster than cSTAG. This sug-
gests that the computation of the shortest paths over the meta-graph has a significant

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:45

Temporal Spatial Clustering Association Total
0.022417 0.068927 0.102661 0.064997 11.7674

Table VIII: Running time breakdown (secs) for ciForager on the World Cup dataset.

Distance Clustering Association Total
547.597 321.877 0.525479 884.981

Table IX: Running time breakdown (secs) for cSTAG on the World Cup dataset.

speedup effect, as most of the speedup resulted from savings in the distance and clus-
tering calculations. This is another demonstration that by first grouping changed edges
into synCCs and then incrementally updating them and the shortest path distance, the
running time can be reduced significantly.

In conclusion of the evaluation, ciForager is up to 106 times faster than cSTAG for
graphs with more localised changes. For distributed, random changes, ciForager can
still be up to 70 times faster than cSTAG. In addition, the speed advantage of ciForager
over cSTAG grows as the size of the graphs analysed increases. This means ciForager
can scale up to very large graphs that cSTAG cannot analyse. This was demonstrated
by the inability of cSTAG to analyse the global BGP graph in a timely and memory
limited manner.

9. CONCLUSION
In this paper, we have introduced a new framework called ciForager to discover re-
gions of correlated change. We introduced several major efficiency improvements to
existing region discovery frameworks. These improvements include the introduction
of synchronised connected components to reduce the number of temporal and spatial
distances that need to be computed, the introduction of a graph Voronoi structure to
reduce the number of shortest path recalculations required when new snapshots are
considered, and the introduction of equivalence classes among the change waveforms
to reduce the number of shortest path distance computations. Furthermore, ciForager
proposed efficient methods to incrementally update the set of synchronised connected
components and the graph Voronoi as new snapshots arrive.

Using datasets with localised changes, we have shown that the improvements of
ciForager resulted in up to six orders of magnitude speedup over a previous method
(cSTAG), with ciForager scaling linearly with the size of the graphs analysed. We have
evaluated the effect that the length of the graph sequence, the average size of the
synCCs, the number of synCCs and the size of the graphs have on the running time and
accuracy of ciForager and cSTAG. Furthermore, we have shown that ciForager takes
1.55% of the time cSTAG takes to analyse the US portion of the BGP connectivity
graphs, and only 1.2% of the time cSTAG takes to analyse the sub-period covering
the landfall of Katrina, which had more localised changes. When analysing the global
BGP graph, we have also discovered two regions corresponding to the instability of
European ASs, caused by the instability in the US. cSTAG and regHunter were unable
to analyse the whole BGP graph due to its inability to scale to very large graphs well.
In addition, ciForager is 70 times faster when analysing the bursty World Cup 98
website access graph. The high scalability of ciForager means it is a practical tool for
discovering regions of correlated changes in very large graphs and on challenging real
world problems.

For future work, we would like to incorporate dynamic shortest path algorithms and
evaluate the trade-off between the possible decrease in running time and increased
memory usage, and also derive with an upper bound on using graph Voronois to com-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 J. Chan et al.

pute the shortest path distances. In addition, we would like to investigate other mea-
sures of spatial correlation. One example is the amount of shared boundary between a
pair of synCCs. Finally, we would like to extend our analysis to weighted graphs. This
can be easily accommodated into the ciForager framework by extending the change
waveforms distance measure to incorporate weights.

ACKNOWLEDGMENTS

This research was funded by NICTA and the National Institute of Informatics. Furthermore, we would like
to thank the University of Oregon for making the RouteView data publicly available, and Prof. Christos
Faloutsos and the two anonymous reviewers for their helpful comments.

REFERENCES
AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving data

streams. In Proceedings of the 29th International Conference on Very Large Data Bases. 81–92.
ALI, M. H., MOKBEL, M. F., AREF, W. G., AND KAMEL, I. 2005. Detection and tracking of discrete phenom-

ena in sensor-network databases. In Proceedings of the 17th International Conference on Scientific and
Statistical Database Management. 163–172.

ARLITT, M. AND JIN, T. 1999. Workload characterization of the 1998 World Cup website. Tech. Rep. HPL-
99-35R1, Hewlett-Packard Labs. September.

BAE, E., BAILEY, J., AND DONG, G. 2010. A clustering comparison measure using density profiles and its
application to the discovery of alternate clusterings. Data Mining and Knowledge Discovery 21, 427–
471.

BOGDANOV, P., MONGIOVÌ, M., AND SINGH, A. K. 2011. Mining heavy subgraphs in time-evolving net-
works. In Proceedings of the 11th International Conference on Data Mining. 81–90.

BORGWARDT, K. M., KRIEGEL, H.-P., AND WACKERSREUTHER, P. 2006. Pattern mining in frequent dy-
namic subgraphs. In Proceedings of the 6th International Conference on Data Mining. 818–822.

CELIK, M., SHEKHAR, S., ROGERS, J. P., SHINE, J. A., AND YOO, J. S. 2006. Mixed-drove spatio-temporal
co-occurance pattern mining: A summary of results. In Proceedings of the 6th International Conference
on Data Mining. 119–128.

CHAKRABARTI, D., KUMAR, R., AND TOMKINS, A. 2006. Evolutionary clustering. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 554–560.

CHAN, J., BAILEY, J., AND LECKIE, C. 2008. Discovering correlated spatio-temporal changes in evolving
graphs. Knowledge and Information Systems 16, 1, 53–96.

CHAN, J., BAILEY, J., AND LECKIE, C. 2009. Using graph partitioning to discover regions of correlated
change spatio-temporal change in evolving graphs. Intelligent Data Analysis 13, 5, 755–793.

CHI, Y., SONG, X., ZHOU, D., HINO, K., AND TSENG, B. L. 2007. Evolutionary spectral clustering by incor-
porating temporal smoothness. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 153–162.

CLARE, S. 1997. Functional mri : Methods and applications. Ph.D. thesis, University of Nottingham.
CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms. MIT

Press.
DE BERG, M., CHEONG, O., VAN KREVELD, M., AND OVERMARS, M. 2008. Computational Geometry: Algo-

rithms and Applications. Springer-Verlag.
DU, N., WANG, H., AND FALOUTSOS, C. 2010. Analysis of large multi-modal social networks: Patterns and

a generator. In Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer
Science Series, vol. 6321. Springer Berlin / Heidelberg, 393–408.

ELNEKAVE, S., LAST, M., AND MAIMON, O. 2007. Incremental clustering of mobile objects. IEEE Computer
Society, Los Alamitos, CA, USA, 585–592.

ERWIG, M. 2000. The graph voronoi diagram with applications. Networks 36, 3, 156–163.
GIBSON, D., KUMAR, R., AND TOMKINS, A. 2005. Discovering large dense subgraphs in massive graphs. In

Proceedings of the 31st International Conference on Very Large Data Bases. 721–732.
HALKIDI, M., BATISAKIS, Y., AND VAZIRGIANNIS, M. 2001. On clustering validation techniques. Journal of

Intelligent Information Systems 17, 2–3, 107–145.
HONIDEN, S., HOULE, M. E., AND SOMMER, C. 2009. Balancing graph voronoi diagrams. In Proceedings of

the 2009 Sixth International Symposium on Voronoi Diagrams. IEEE Computer Society, 183–191.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:47

JAIN, A. K. AND DUBES, R. C. 1998. Algorithms for Clustering Data. Prentice-Hall, Inc.
KUMAR, R., NOVAK, J., RAGHAVAN, P., AND TOMKINS, A. S. 2003. On the bursty evolution of blogspace. In

Proceedings of the 12th International Conference on World Wide Web. 568–576.
KUMAR, R., NOVAK, J., AND TOMKINS, A. S. 2006. Structure and evolution of online social networks. In

Proceedings of the 12th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (poster).
LAHIRI, M. AND BERGER-WOLF, T. Y. 2010. Periodic subgraph mining in dynamic networks. Knowledge

and Information Systems 24, 467–497.
LAUW, H. W., LIM, E.-P., TAN, T.-T., AND PANG, H.-H. 2005. Mining social networks from spatio-temporal

events. In Workshop on Link Analysis, Couterterrorism and Security.
LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. 2005. Graphs over time: Densification laws, shrinking

diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining. 177–187.

LUENBERGER, D. 2003. Linear and Nonlinear Programming. Kluwer Academic Publishers.
MEILA, M. 2003. Comparing clusterings by the variation of information. In Proceedings of the Conference

on Learning Theory and Kernel Machines. 173–187.
SHOUBRIDGE, P. J., KRAETZL, M., WALLIS, W. D., AND BUNKE, H. 2002. Detection of abnormal change in

a time series of graphs. Journal of Interconnection Networks 3, 1-2, 85–101.
STEINDER, M. AND SETHI, A. S. 2004. A survey of fault localization techniques in computer networks.

Science of Computer Programing 53, 2, 165–194.
SUN, J., PAPADIMITRIOU, S., YU, P. S., AND FALOUTSOS, C. 2007. Graphscope: Parameter-free mining

of large time-evolving graphs. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 687–696.

SUN, J., TAO, D., AND FALOUTSOS, C. 2006. Beyond streams and graphs: dynamic tensor analysis. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, New York, NY, USA, 374–383.

THON, I., LANDWEHR, N., AND RAEDT, L. D. 2008. A Simple Model for Sequences of Relational State
Descriptions. In Proceedings of the 19th European Conference on Machine Learning. 506–521.

wc98trace. 1998 World Cup website access traces. http://ita.ee.lbl.gov/html/contrib/WorldCup.html
YANG, H., PARTHASARATHY, S., AND MEHTA, S. 2005. A generalized framework for mining spatio-temporal

patterns in scientific data. In Proceedings of the eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining. 716–721.

ZHOU, A., CAO, F., QIAN, W., AND JIN, C. 2007. Tracking clusters in evolving data streams over sliding
windows. Knowledge and Information Systems, 181–214.

ZHOU, D., LI, J., AND ZHA, H. 2005. A new mallows distance based metric for comparing clusterings. In
Proceedings of the 22nd International Conference on Machine Learning. 1028–1035.

A. PROOF OF LEMMA 5.11 (SYNCC SPLITTING DUE TO DIFFERENT EQUIVALENCE
CLASSES)

From its definition, after extension, an existing synCC can split due to its member
edges a) lnked to different equivalence classes; and/or b) no longer forming a connected
component.

To show the proof, we show that case b) is not possible after an existing synCC is
extended.

From the definition of a change waveform, the equivalence class of sj must contain
at least one 0 → 1 or 1 → 0 change. Hence, the waveform of the equivalence class
must contain a ’1’ in one of its values. From the definition of a synCC, the edges in sj
must form a connected component before extension. After extending the equivalence
class with ’0’ or ’1’, the extended equivalence class must still contain a ’1’ in one of its
values. Therefore the member edges will still form a connected component over the
union graph. Therefore, case b) is not a possible state after extension.

B. PROOF OF LEMMA 6.11 (MERGING OF TWO SYNCCS)
We first prove cellm1 ∪ cellm2 → cellm. Let a ∈ cellm1. Therefore, d(a, sm1) ≤
d(a, sp),∀sp ∈ Sk−1, p 6= i. Since d(a, sm1) ≤ d(a, sp), then d(a, sm1) = d(a, sm1 ∪ sm2) =
d(a, sm), hence d(a, sm) ≤ d(a, sp) and a ∈ cellm. A similar derivative can be used

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 J. Chan et al.

s s

s

s

c

1

2

3

(a) Before splitting.

s s

s

s

C1

1

2

3

sC2

(b) After splitting.

Fig. 14: An example from a portion of a graph Voronoi diagram, showing a subset of
the embedded synCCs and the cell boundaries before and after synCC sc is split. The
solid black lines represent the cell boundaries, and the shaded, diagonally striped
area represent the affected area. In addition, the dotted line in Figure 14a represent
where the split in sc is about to occur.

to show that b ∈ cellm2 is true. Therefore, a ∈ cellm and b ∈ cellm and hence,
cellm1 ∪ cellm2 → cellm.

Now we prove the other direction, by proving the contrapositive (¬(cellm1∪cellm2) →
¬cellm)). Let a /∈ cellm1, a /∈ cellm2, hence there exists a synCC sp in S[k] where
d(a, sm1) ≥ d(a, sp) and d(a, sm2) ≥ d(a, sp). Recall sm = sm1 ∪ sm2, hence d(a, sm) ≥
d(a, sp). From the definition of a cell, a therefore cannot be in cellm.

As cellm = cellm1 ∪ cellm2 and there are no changes to the cells then:

Bk+1(m, p) =

Bk(m1, p) sp ∈ Nk+1(m1), sp /∈ Nk+1(m2)

Bk(m2, p) sp /∈ Nk+1(m1), sp ∈ Nk+1(m2)

Bk(m1, p) ∪Bk(m2, p) sp ∈ Nk+1(m1), sp ∈ Nk+1(m2)

If there are no changes to the boundaries, then the shortest path distances do not
change. For the case sp ∈ Nk(m1), sp ∈ Nk(m2), the shortest path distance is the
minimum of the two existing distances. Hence, the result for SPD(., .) follows from the
results from B(., .).

C. INCREMENTAL UPDATING OF THE GRAPH VORONOI TO ADDRESS THE SPLITTING OF A
SYNCC
LEMMA C.1. Let sc be split into sc1 and sc2, where sc = sc1 ∪ sc2. Then:

(1) The elements of the cell of sc is redistributed between the cells of sc1 and sc2 after
the split occurs; i.e., cellc1 ∪ cellc2 = cellc.

(2) Only the shortest paths distances between synCCs that are neighbours to both sc1
and sc2 after the split might change. More formally, ∀sp ∈ S[k + 1],

SPDk+1(c1, p) =

{
SPDk(c, p) sp ∈ Nk+1(c1), sp /∈ Nk+1(c2)

≥ SPDk(c, p) sp ∈ Nk+1(c1), sp ∈ Nk+1(c2)

SPDk+1(c2, p) =

{
SPDk(c, p) sp /∈ Nk+1(c1), sp ∈ Nk+1(c2)

≥ SPDk(c, p) sp ∈ Nk+1(c1), sp ∈ Nk+1(c2)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:49

PROOF. We first prove cellc → cellc1 ∪ cellc2. Let a ∈ cellc. Then d(a, sc) = d(a, sc1 ∪
sc2) = min(d(a, sc1), d(a, sc2)) ≤ d(a, sp),∀sp ∈ Sk, p 6= c1, p 6= c2. From the definition of
a cell, a must belong to either cellc1 or cellc2, hence cellc → cellc1 ∪ cellc2.

We now prove the other direction by proving the contrapositive (¬cellc → ¬(cellc1 ∪
cellc2)). Let a /∈ cellc. Therefore, there exists a synCC sp where d(a, sp) ≤ d(a, sc). Since
d(a, sc) ≤ d(a, sc1) and d(a, sc) ≤ d(a, sc2), then a cannot be in cellc1 nor cellc2.

To prove the shortest path distance relationships, consider the changes in the bound-
aries:

Bk+1(c1, p) =

Bk(c, p) sp ∈ Nk+1(c1), sp /∈ Nk+1(c2)

0 sp /∈ Nk+1(c1), sp ∈ Nk+1(c2)

⊆ Bk(c, p) sp ∈ Nk+1(c1), sp ∈ Nk+1(c2)

From the definition of a boundary, Bk+1(c, p) = Bk(c1 ∪ c2, p) = Bk(c1, p) ∪ Bk(c2, p).
Therefore, Bk(c1, p) = Bk+1(c, p)−Bk(c2, p) ∪ (Bk(c1, p) ∩Bk(c2, p)). For sp ∈ Nk+1(c1)
and sp /∈ Nk+1(c2), Bk(c2, p) = ∅, hence Bk(c1, p) = Bk(c, p). For sp ∈ Nk+1(c1) and
sp ∈ Nk+1(c2), Bk(c1, p) ⊂ Bk+1(c, p). Similar results hold for Bk+1(c2, p).

If the boundaries shrink, then the shortest path distances can only increase. Hence,
the definitions of SPD(., .) follows from the changes to the boundaries.

From Lemma C.1 and Figure 14, only the vertices and edges that were in cellc are
reassigned to either cellc1 or cellc2. All other cells remain the same. In addition, the
lemma shows that only the shortest path distances between synCCs that are neigh-
bours to both sc1 and sc2 need to be recomputed.

Therefore, to handle splitting sc, the distances and the parent markers of all the
vertices and edges in cellc are first invalidated. We need to invalidate all the vertices
and edges in the cells because we do not know which of sc1 or sc2 the edges or ver-
tices formerly in sc are closest to. Then Dijkstra’s algorithm is rerun from sj and si
simultaneously, until the search reaches the former boundary of sc. The boundaries of
si and sj will then be available from the Dijkstra search. From the boundary and cell
information, the necessary neighbours and distances of si and sj and their neighbours
can be computed.

D. INCREMENTAL UPDATING OF THE GRAPH VORONOI TO ADDRESS THE CREATION OF A
SYNCC
LEMMA D.1. Let sn be the new synCC. Let S[γ] denote the set of synCCs whose cells,

before the appearance of sn, would have overlapped with sn; i.e., S[γ] = {si|cellki ∩ sn 6=
∅}. Let S[aff] denote the set of synCCs that are neighbours of S[γ], including the synCCs
in S[γ]; i.e., S[aff] = S[γ] ∪Nk(S[γ]). Then:

(1) The set of cells affected by the creation of sn is restricted to S[aff]; i.e.,⋃
si∈S[aff]

cellk+1
i ∪ celln =

⋃
si∈S[aff]

cellki .
(2) Only the shortest path distances of synCCs that a) are between the neighbours of

sn, and b) were in S[aff], might change due to the creation of sn. More formally,
∀si ∈ Nk+1(n),

SPDk+1(i, p) =

{
SPDk(i, p) sp /∈ S[aff]

≥ SPDk(i, p) sp ∈ S[aff]

PROOF. We first prove
⋃

si∈Saff
cellki →

⋃
si∈Saff

cellk+1
i ∪celln. Let a ∈

⋃
si∈Saff

cellki .
Let si be the synCC in S[aff] that a is closest to. Therefore, d(a, si) ≤ d(a, sl),∀sl ∈ S[k].

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 J. Chan et al.

s

s

s

1

2

3
s4

shortest path

(a) Before sn is created.

s

s

s

1

2

3
s4

sn

shortest path

(b) After sn is created.

Fig. 15: An example from a portion of a graph Voronoi diagram, showing a subset of
the embedded synCCs and the cell boundaries before and after the synCC sn is cre-
ated. The solid black lines represent the cell boundaries, and the shaded, diagonally
striped area represent the affected area. In addition, the existing shortest path dis-
tance between s3 and s4 is represented by the dotted line with two arrowheads. The
example shows how the creation of sn can affect s4, even though its cell before the
creation of sn does not overlap with sn itself.

In addition, d(a, si∪sn) ≤ d(a, sl),∀sl ∈ (S[k]∪sn) = S[k+1]. Therefore a ∈ cellk+1
i ∪celln,

and a ∈
⋃

si∈Saff
cellk+1

i ∪ celln.
We now prove the other direction (

⋃
si∈Saff

cellk+1
i ∪ celln →

⋃
si∈Saff

cellki). Let b be
a member of celln or a cell in S[aff], i.e., b ∈

⋃
si∈Saff

cellki ∪ celln.
If b ∈

⋃
si∈Saff

cellk+1
i , then b ∈

⋃
si∈Saff

cellki , as cellk+1
i ⊆ cellki .

Consider the other case, b ∈ celln. We wish to show that celln =
⋃

si∈Saff
cellki ∩ celln,

or celln can be partitioned among the cells of Saff . This statement is equivalent to⋃
si∈Saff

cellki ∩ celln 6= ∅ and
⋃

sj /∈Saff
cellkj ∩ celln = ∅. Hence, we show by contradiction

that
⋃

sj /∈Saff
cellkj ∩ celln = ∅ holds to show celln can be partitioned among the cells of

Saff and celln =
⋃

si∈Saff
cellki ∩ celln.

Assume the opposite is true, i.e.,
⋃

sj /∈Saff
cellki ∩ celln 6= ∅, or there exists a synCC

sj that is not in S[aff] and whose cell have a non-empty overlap with celln, i.e., cellkj ∩
celln 6= ∅. Let h ∈ cellkj ∩ celln. Let sp be a neighbouring scc of sj , i.e., sp ∈ Nk+1(j),
therefore d(h, sp) < d(h, sn). sp must exist, as between sn and sj there must be a synCC
in N(Sγ) that is closer to sj than sn. Therefore h ∈ cellk+1

p , which contradicts the
initial assumption. Hence cellk+1

j ∩ celln = ∅,∀sj /∈ Saff ,
⋃

si∈Saff
cellki ∩ celln 6= ∅, and

celln =
⋃

si∈Saff
cellki ∩ celln. Therefore b ∈

⋃
si∈Saff

cellki , and
⋃

si∈Saff
cellk+1

i ∪ celln →⋃
si∈Saff

cellki is true.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ciForager: Incrementally Discovering Regions of Correlated Change in Evolving Graphs A:51

s s

s

s

d

1

2

3

(a) Before deleting synCC sd.

s

s

s

1

2

3

(b) After deleting synCC sd.

Fig. 16: An example from a portion of a graph Voronoi diagram, showing a subset
of the embedded synCCs and the cell boundaries before and after the synCC sd is
deleted. The solid black lines represent the cell boundaries, and the shaded, diago-
nally striped area represent the affected area.

To prove the shortest path distance relationships, consider the changes in the bound-
aries:

Bk+1(i, p) =

{
Bk(i, p) sp /∈ Saff

⊆ Bk(i, p)) sp ∈ Saff

The results of Bk+1(i, p) are obvious from cellk+1
i ⊆ cellki , ∀si ∈ Saff and cellk+1

j = cellkj ,
∀sj /∈ Saff .

The result for SPD(., .) follows from Bk+1(i, p).

Lemma D.1 and Figure 15 shows that the changes are confined to the cells of the
synCCs in Saff . Saff is the set of synCCs whose cells either partially overlaps the new
synCC sn, or is a neighbour of an overlapping synCC. To handle creation of a new
synCC sn, we update the parents and distances of the vertices and edges in sn and
some of the affected synCCs in Saff . The Dijkstra’s algorithm is rerun from the new
sn. Existing distances and parent information are overwritten if the current distance
of search is smaller than the existing distance. If not smaller, terminate that branch
of search. When the search finishes, we would have grown a new cell around the new
synCC. From the new cell celln, neighbours, boundaries and distances of sn can be
determined. Finally, all the boundaries and shortest path distances between all pairs
of synCCs si and sj , where si, sj ∈ N(sn), must also be updated, because the cells of si
and sj can also be affected.

E. INCREMENTAL UPDATING OF THE GRAPH VORONOI TO ADDRESS THE DELETION OF A
SYNCC
LEMMA E.1. Let sd be the deleted synCC. Then:

(1) The elements in the cell of sd are redistributed among the cells of the former neigh-
bours of sd; i.e.,

⋃
si∈Nk(d) cell

k+1
i =

⋃
si∈Nk(d) cell

k
i ∪ celld;

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 J. Chan et al.

(2) Only the shortest path distances between the former neighbours of sd might change.
More formally, si ∈ Nk(d),

SPDk+1(i, p) =

{
SPDk(i, p) sp /∈ Nk(d)

≤ SPDk(i, p) sp ∈ Nk(d)

PROOF. We first prove
⋃

si∈Nk(d) cell
k
i ∪ celld →

⋃
si∈Nk(d) cell

k+1
i . Let a be a member

of either celld, or one of its neighbouring cells in S[k], i.e., a ∈
⋃

si∈Nk(d) cell
k
i ∪ celld. If

a is in a neighbouring cell of celld in S[k], i.e., a ∈
⋃

si∈Nk(d) cell
k
i , then a must be in the

same cell (a ∈
⋃

si∈Nk(d) cell
k+1
i), as d(a, si) ≤ d(a, sp) still holds for ∀sp ∈ S[k]. For the

case where a in celld (a ∈ celld), note that si ∈ Nk(d), hence d(a, sd) ≤ d(a, si) ≤ d(a, sp),
∀si ∈ Nk(d), sp /∈ Nk(d), i 6= p 6= d. Hence when sd and its associated celld are deleted,
a is closest to one of the synCCs in Nk(d), or a ∈

⋃
si∈Nk(d) cell

k+1
i .

We now prove the other direction (
⋃

si∈Nk(d) cell
k+1
i →

⋃
si∈Nk(d) cell

k
i ∪ celld). Let

b ∈
⋃

si∈Nk(d) cell
k+1
i . b must be have been closest to either sd or one of its neighbouring

synCC si, because d(b, si) ≤ d(b, sp) or d(b, sd) ≤ d(b, sp), ∀sp ∈ S[k]. Therefore b must be
in either celld or one of its neighbouring cells, i.e., b ∈

⋃
si∈Nk(d) cell

k
i ∪ celld.

To prove the shortest path distance relationships, consider the changes in the bound-
aries:

Bk+1(i, p) =

{
Bk(i, p) sp /∈ Nk(d)

⊇ Bk(i, p)) sp ∈ Nk(d)

If a cell is not neighbouring sd in S[k], then there is no change to its cell membership,
and no changes to its boundaries with its neighbours. However, if a cell is a neighbour
of celld, i.e., in Nk(d), then it gets a portion of the redistribution of sd, hence its bound-
aries with the other neighbouring cells of celld can either remain constant or grow. The
result for the changes in boundaries follows from these cases.

The results stem from cellk+1
i ⊇ cellki . The result for SPD(., .) follows from Bk+1(i, p).

Lemma E.1 and Figure 16 show that the edges and vertices of the deleted cell must
be redistributed among its neighbouring synCCs. Because of the redistribution, there
can be changes to the neighbourhood information among the neighbours of the deleted
synCC. Hence, the boundaries and shortest path distances among the neighbours need
to be recalculated also.

Therefore, to handle deletion, we invalidate all the information in the vertices and
edges in celld and sd. Then from the boundaries of sd, we rerun Dijkstra’s algorithm.
When the algorithm terminates, the vertices and edges of celld and sd will be redis-
tributed among its former neighbours, and their boundaries and cells will have been
updated. The shortest path distances among the former neighbours can then be easily
recomputed from the new boundary information.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

