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Computer-aided Diagnosis of Melanoma Using
Border and Wavelet-based Texture Analysis
Rahil Garnavi, Member, IEEE, Mohammad Aldeen, Senior Member, IEEEand James Bailey.

Abstract—This paper presents a novel computer-aided diagno-
sis system for melanoma. The novelty lies in the optimised selec-
tion and integration of features derived from textural, border-
based and geometrical properties of the melanoma lesion. The
texture features are derived from using wavelet-decomposition,
the border features are derived from constructing a boundary-
series model of the lesion border and analysing it in spatial
and frequency domains, and the geometry features are derived
from shape indexes. The optimised selection of features is
achieved by using the Gain-Ratio method, which is shown to
be computationally efficient for melanoma diagnosis application.
Classification is done through the use of four classifiers; namely,
Support Vector Machine, Random Forest, Logistic Model Tree
and Hidden Naive Bayes. The proposed diagnostic system is
applied on a set of 289 dermoscopy images (114 malignant, 175
benign) partitioned into train, validation and test image sets.
The system achieves and accuracy of 91.26% and AUC value
of 0.937, when 23 features are used. Other important findings
include (i) the clear advantage gained in complementing texture
with border and geometry features, compared to using texture
information only, and (ii) higher contribution of texture features
than border-based features in the optimised feature set.

Key words: Computer-aided diagnosis of Melanoma, Der-
moscopy, Feature extraction, Classification, Wavelet.

I. I NTRODUCTION

M ALIGNANT melanoma is the deadliest type of skin
cancer and the most common cancer in people aged

15–44 years in Australia [1]. Failure to diagnose a newly
developed melanoma lesion may lead to lethal advanced
melanoma, thus, early detection is of significant importance
for the dermatology community.

Dermoscopy is a non-invasivein vivo imaging technique
which provides a magnified and clear visualization of the
morphological structures of the skin that are not visible to
the naked eye. With the use of dermoscopy and dermoscopic
clinical algorithms, such as pattern analysis [2], ABCD rule
of dermoscopy [3], Menzies method [4], 7-point checklist [5],
and the CASH algorithm [6], the diagnosis of melanoma
has been improved compared with the simple naked-eye
examination by 5–30%. This improvement rate depends on
the type of skin lesion and the experience of the dermatolo-
gist [7]. However, clinical diagnosis of melanoma is inherently
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subjective and its accuracy has been an issue of concern,
especially with equivocal pigmented lesions [7]. Despite the
use of dermoscopy, the accuracy of expert dermatologists in
diagnosing melanoma is still estimated to be about 75-84% [8].

Due to enhancements in skin imaging technology and image
processing techniques in recent decades, there has been a
significant increase in interest in the area of computer-aided
diagnosis of melanoma, aiming to remove subjectivity and
uncertainty from the diagnostic process, and provide a reliable
second opinion to dermatologists. Some of these systems
include1: SolarScan [10] developed by Polartechnics Ltd, in
Australia, DermoGenius-Ultra [11] developed by LINOS Pho-
tonics Inc., DBDermo-MIPS [12], developed at the University
of Siena in Italy, DANAOS expert system [13], Melafind [14]
developed by Electro-Optical Sciences Inc., Irvington, etc.
However, it is widely acknowledged that much higher accuracy
is required for computer-based algorithms to be adopted rou-
tinely in the diagnostic process [9], [15], [16]. In this study, we
have proposed a novel diagnostic system to facilitate accurate,
fast and reliable computer-based diagnosis of melanoma.

A computer-aided diagnosis of melanoma generally com-
prises several components; image acquisition, segmentation,
feature extraction, feature selection, and classification; the
latter three are the main focus of this paper.

Segmentationor border detectionis the process of separat-
ing the lesion from the surrounding skin in order to form the
region of interest. Existing computer-based melanoma studies
have either used manual, semi-automatic or fully automatic
border detection methods. Various image features such as
shape, colour, texture, and luminance have been employed
to perform skin lesion segmentation. Numerous border de-
tection methods have been reported in the literature [9],
[17]. Recent methods include histogram thresholding followed
by region growing [18], JSEG algorithm based on colour
quantization and spatial segmentation [19], global thresholding
on optimised colour channels followed by morphological
operations [20], Hybrid thresholding [21]. In this study, we
have applied our recently proposed Hybrid border detection
method [21], which encompasses two stages; the first stage
applies global thresholding to detect an initial boundary of
the lesion, and the second stage applies adaptive histogram
thresholding on optimized colour channels of X (from the CIE
XYZ colour space) to refine the border.

Feature extractionis used to extract the features; similar to
those visually detected by dermatologists, that accurately char-
acterizes a melanoma lesion. The feature extraction method-

1A more comprehensive literature review can be found in [9].
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ology of many computerised melanoma detection systems has
been largely based on the conventional clinical algorithm
of ABCD-rule of dermoscopy due to its effectiveness and
simplicity of implementation. Its effectiveness stems from the
fact that it incorporates the main features of a melanoma lesion
such as asymmetry, border irregularity, colour and diameter
(or differential structures), where quantitative measures can be
computed. Different image processing techniques have been
used to extract such features, see for example [9], [22], [23].

In this paper we propose a highly effective feature extraction
method which combines different types of features; novel
ones as well as a few adopted from existing studies. In
our proposed method, texture and border (including geometry
and boundary-series) features are extracted and combined.
The texture-based feature extraction method employs tree-
structured wavelet decomposition. The novelty here lies in
(i) the use of four-level decompositions as opposed to three
level used in the existing wavelet-based methods [24]–[26],
(ii) the use of four colour channels of red, green, blue and
luminance as opposed to only luminance in existing studies,
(iii) application of various statistical measurement and ratios
on all the nodes of the wavelet-tree.

The geometry-based feature extraction method uses a vari-
ety of statistical measures. These are derived via two distinc-
tive processes: (i) various geometry-based features (standard
and newly designed based on expert opinion of dermatologists)
are defined to evaluate the properties of the overall shape of
the lesion, and (ii) a boundary-series model of the border
is constructed and analysed in both spatial and frequency
domains to extract the main characteristics of the lesion
boundary. To the best of our knowledge, the boundary-series
analysis of process (ii) and some of the measures used in
process (i) have not been previously applied on dermoscopy
images.

Feature selectionis an intermediate process that lies be-
tween the two steps of feature extraction and classification.
In this process, irrelevant, redundant, or noisy features are
excluded from the initial feature vector constructed in the
feature extraction step. Some of the prominent feature se-
lection method that have been used in existing computer-
based melanoma recognition systems include sequential for-
ward floating selection and sequential backward floating selec-
tion [27], genetic algorithm [28], ReliefF, mutual information
and correlation-based methods used in [22], principal compo-
nent analysis used in [25], statistical analysis used in [24],
[26], etc.

However, in this study the Gain Ratio-based Feature Selec-
tion (GRFS) method is employed for the following reasons:
(i) the method is computationally efficient, which is a vital
factor because of the high dimensionality of the initial feature
vector constructed in the feature extraction phase; (ii) itis
highly comparable with a sample of well-known filter-based
feature selectors as explained in Section V of this paper. Tothe
best of our knowledge GRFS has not been applied in previous
melanoma studies.

Classification is the final step in the diagnosis process,
wherein the extracted features are utilized to ascertain whether
the lesion is cancerous or normal. The most common classi-

TABLE I
L IST OF ABBREVIATIONS

Term Abbreviations
Area Under Curve of ROC AUC
Receiver Operating Characteristic ROC
Gain Ratio-based Feature SelectionGRFS
Hidden Naive Bayes HNB
Logistic Model Tree LMT
Random Forest RF
Support Vector Machine SVM

fication methods that have been applied to computer-based
melanoma recognition systems include [9], [23] Discriminate
Analysis [24], Artificial Neural Network [25], [29],k-Nearest
Neighbourhood [27], [29], Support Vector Machine [22], [23],
[29], Decision Trees [23], [30], Bayes Networks [23] and
Logistic Regression [29]. However, some enhanced versions
of these classifiers have been reported in literature, including
Random Forest (RF) [31], Logistic Model Tree (LMT) [32],
and Hidden Naive Bayes (HNB) [33]. These three plus the
very popular Support Vector Machine (SVM) were utilized in
melanoma diagnosis in our preliminary study [34] for the first
time, and will also be used in this study. All these classifiers
and more particularly the Random Forest classifier are shown
in our previous study [34] and in this paper to be highly
effective in the classification of melanoma lesions.

To evaluate the accuracy of our diagnosis system, which is
comprised of the three phases of feature extraction, feature
selection and classification, we have conducted a set of four
experiments, flow charts of which are shown in Figure 7. The
proposed diagnosis system encompasses most of the existing
features proposed by other studies, and blends them with novel
ones carefully extracted to best reflect the property of the
lesion.

In summary, the main contributions of this study are sum-
marized as follows:

1) The use of four level of wavelet decomposition, incorpo-
rating four colour channels, applying various statistical
measurement and ratios on all the nodes of the fully ex-
tended wavelet tree for texture-based feature extraction.

2) The use of boundary-series analysis in spatial and
frequency domains and new geometrical measures for
border feature extraction.

3) Establishing that the Gain Ratio feature selection method
can deliver substantial accuracy for feature selector.

4) Combining different types of features in an optimised
way to achieve higher performance for the diagnostic
system.

The rest of the paper is organized as follows. An overview
of the proposed texture feature extraction method is provided
in Section II. The proposed geometry-based features and
boundary-series features are explained in Sections III andIV,
respectively. Section V details the proposed feature selection
method, followed by discussing the applied classification
methods. Experimental results and discussions are presented in
Section VI. Section VII provides the summary and conclusion.
The frequently used abbreviations in this study are listed in
Table I.



3

II. PROPOSEDTEXTURE-BASED FEATURES

The visual characteristics of a lesion which constitutes the
basis of clinical diagnostic approaches (e.g. ABCD rule of
dermoscopy and pattern analysis) can be captured through tex-
ture analysis. The multi-scale properties of wavelets, makes the
wavelet-based texture analysis a useful technique for analysing
dermoscopy images, as these images are often taken under
different circumstances, i.e. various image acquisition set ups
(lighting, optical zooming, etc) and versatile skin colours.
Among the two wavelet structures; Pyramid-structured [35]
and Tree-structured wavelet analysis [36], the latter is more
informative for classification of melanoma images, as it can
capture information of both general (overall properties) and de-
tail (detailed structure and internal texture) of the lesion [34].

In this paper, texture-based feature extraction is achieved
by applying 4-level tree-structured wavelet decomposition on
red, blue, green and luminance colour channel of dermoscopy
images. Various statistical measures and ratios are proposed to
extract useful information from the wavelet coefficients, and
utilized for the classification. The measures include energy (E),
mean (M), standard deviation (Std), skewness (S), kurtosis(K),
norm (N), entropy (H), and average-energy (AvgE), expressed
in Equations 1–8. Figure 1 displays a schematic illustration
of wavelet tree with nodes marked by circles. For each colour
channel, the measures are applied on the original image (called
level 0) and also on wavelet coefficients of each node (sub-
image) of the wavelet tree. The wavelet tree has 341 nodes
in total (4 nodes in first level, 16 nodes in second level, 64
nodes in third level and 256 nodes in forth level, plus the actual
image in level zero which is the parent node of the tree). The
eight measures therefore yield a total of8× 341 features, per
colour channel.
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where i = 0, 1, ..., 341 is an index of wavelet tree nodes
starting sequentially from noden0 of colour channel 1 and
ending at noden4.4.4.4 of colour channel 4 (colour channels:
Red = 1, Green = 2, Blue = 3, Luminance = 4 ).Xi is a
Ji ×Ki matrix of theith node,X ′

i is its transpose,xjk is its

Fig. 1. Schematic 4-level wavelet tree with nodes in circle.

jkth element, andeig(Xi) are its eigenvalues.J andK are
dimensions of the matrices over which wavelet decompositions
take place. They start from dimension (resolution) of the
original image and at each level of decomposition they are
divided by a factor of two.

The ratios used in this study are maximum ratio (Rm),
fractional ratio (Rf ) and sub-level ratio (Rs), defined in
Equations 9–11, respectively for a sample noden2.3. As
each decomposition sub-tree has four nodes (as illustrated
in Figure 1), the maximum ratio divides each node by the
maximum node among the four. The fractional ratio divides
each node by the summation of the other three nodes. The sub-
level ratio divides each node of the tree by its low frequency
component (first child node from left hand side). These ratios
are calculated for each of the above mentioned 8 measure,
which will produce a total of8 × 765 (340 maximum ratios,
340 fractional ratios, 85 sub-level ratios) features.

Rm(n2.3) =
m(n2.3)

max(m(n2.1),m(n2.2),m(n2.3),m(n2.4))
(9)

Rf (n2.3) =
m(n2.3)

m(n2.1) +m(n2.2) +m(n2.4)
(10)

Rs(n2.3) =
m(n2.3.1)

m(n2.3)
(11)

where n2.3 refers to node 2.3 andm(n2.1) refers to the
measure (energy, entropy, etc.) applied on the node.

Moreover, the featureln(std+1) suggested by [24] and [25]
has also been used. All of these features were calculated
for four colour channels of red, green, blue and luminance
(Equation 12) and a set of 35396 features is obtained.

luminance = (0.3×R) + (0.59×G) + (0.11×B) (12)

where R, G and B represent red, green and blue colour
channels, respectively.

As outlined in the introduction this is the first time four
colour channel with four level of wavelet decomposition has
been reported.

The features proposed in this section also account for colour
information of the lesion (in addition to the textural proper-
ties). The colour features, which include the eight measures
of energy, mean, standard deviation, entropy, average-energy,
skewness, kurtosis, and norm of the four colour channels red,
green, blue and luminance of the image, are measured by
employing these eights measures on the node-0 (parent node)
of the wavelet tree, i.e., the original image.
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III. PROPOSEDGEOMETRY-BASED FEATURES

Border formation and geometrical properties of the shape
of the lesion provide significant diagnostic information inthe
detection of melanoma. According to the ABCD rule of der-
moscopy [3], asymmetry is given the highest weight among the
four features of asymmetry, border irregularity, colour and dif-
ferential structures. A number of studies have been carriedout
on quantifying asymmetry in skin lesions. In some approaches,
the symmetry axis is determined in a certain manner (such as
principal axis [37], [38], major axis of the best-fit ellipse[39],
[40], Fourier transform [41], longest or shortest diameter[42])
and the two halves of the lesion along the axis are compared.
In another approach, the symmetry feature is calculated based
on geometrical measurements on the whole lesion, e.g. sym-
metric distance [42], circularity [42]. Other studies, consider
the circularity index, also called thinness ratio, as a measure
of irregularity of borders in dermoscopy images [40], [43].
Other features extracted from border and shape of the lesion
include bulkiness, fractal dimension, irregularity indices [44],
[45]. Here, we used some standard geometry features (Area,
Perimeter, Greatest Diameter, Circularity Index, Irregularity
Index A, Irregularity Index B, and Asymmetry Index) adopted
from [23] complemented by new others (Shortest Diameter,
Irregularity Index C and Irregularity Index D) that we drew
from our discussions with expert dermatologists2.

The main prerequisite for extracting the border features is
the segmentation or border detection step, where the lesion
is separated from the surrounding normal skin. The output
of the segmentation step is the segmentation plane which is
a black-white image. In this study, after forming the lesion
pixels in a 2D matrix and the corresponding boundary pixels
in a vector, the following set of 11 geometry-based features
are extracted from each dermoscopy image:

Area (A): Number of pixels of the lesion.

Perimeter (P): Number of pixels along the detected boundary.

Greatest Diameter (GD): The length of the line which
connects the two farthest boundary points and passes across
the lesion centroid (C), which is given by:

(xc, yc) = (

∑n

i=1 xi

n
,

∑n

i=1 yi

n
) (13)

wheren is the number of pixels inside the lesion, and(xi, yi)
is the coordinates of the i-th lesion pixel.

Shortest Diameter (SD): The length of the line which
connects the two nearest boundary points and passes across
the lesion centroid.

Circularity Index (CRC): It explains the shape uniformity.

CRC =
4Aπ

P 2
(14)

2Images used in this study have fairly similar spatial resolution, thus there
has been no scale issue for features such as area and perimeter. For image
sets where images are taken under different zooming conditionand have
various resolutions, a normalization procedure is requiredwhen measuring
those features.

Fig. 2. Major and minor symmetry axes for sample dermoscopy image.

Irregularity Index A (IrA):

IrA =
P

A
(15)

Irregularity Index B (IrB):

IrB =
P

GD
(16)

Irregularity Index C (IrC):

IrC = P × (
1

SD
−

1

GD
) (17)

Irregularity Index D (IrD):

IrD = GD − SD (18)

Major and Minor Asymmetry Indices: These indices are
defined as the area difference between the two halves of the
lesion, taken the principal axes (obtained by Equation 19) as
the major symmetry axis, and its 90 degree rotation as the
minor axes of the symmetry.

tan 2θ =
2
∑n

i=1 xiyi
∑n

i=1 x
2
i −

∑n

i=1 y
2
i

(19)

where θ is the orientation of the principal axis. Figure 2
shows a sample dermoscopy image with obtained principal
axes (major and minor symmetry axes). After calculating the
major and minor symmetry axes, the lesion is folded along the
axes and the differences between the two halves of the lesion
are calculated by applying the XOR operation on the binary
segmentation plane. The asymmetry index is measured by:

Asymmetry Index=
AD

A
× 100 (20)

where AD denotes the difference between the two halves.
Figure 3 shows a dermoscopy image with the obtained major
principal axes (symmetry axes), and the process of calculating
the major asymmetry index.

IV. PROPOSEDBOUNDARY-SERIESFEATURES

A time-series is an ordered sequence of values or ob-
servationsx that are measured and recorded at successive
equally spaced time intervalst [46]. Time-series have been
widely applied in statistics, signal processing, data mining,
mathematical finance and economy [47]. Inspired from this
concept, in this study, we propose to build a boundary-
series of the lesion by traversing the boundary of the lesion
(starting from an arbitrary pixel on the lesion boundary3), and

3The choice of the starting point is not our concern because the measures
applied on the resultant boundary-series, including histogram and wavelet
analysis, are rotation invariant.
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Fig. 3. Calculating the major symmetry index: (a) major symmetry axis, (b)
upper half, (c) lower half, (d) folded upper half, (e) difference.

calculating the distance between each border pixel and the
centroid of the lesion, as expressed by Equation 21.

BS = d1, d2, ..., dP (21)

whereP is the number of pixels along the boundary (previ-
ously defined as perimeter of the lesion) and

dj =
√

(xj − xc)2 + (yj − yc)2 (22)

where (xj , yj) and (xc, yc) are the coordinates of the j-th
boundary pixel, and lesion centroid, respectively. Figure4
shows a sample dermoscopy image and the corresponding
boundary-series curve.

The obtained boundary-series is analysed in both the spatial
and frequency domains. The former is done by calculating the
histogram of the boundary-series (using 10 bins), and the latter
is performed via applying a three-level wavelet transform,
where the signal (the boundary-series) is decomposed into
an approximate and a detail component. As in the pyramid-
structured wavelet transform, the approximate component is
used for the next level of decomposition. The wavelet de-
composition was performed up to the third level, after which
it is found that for the image set under study the boundary-
series loses its time dependency and does not carry useful
information regarding the border. A set of six statistical mea-
sures of Energy, Mean, Standard deviation, Skewness, Kurtosis
and Norm (defined by Equations 1–6) are then applied on
the resultant eight signals of boundary-series; histogramof
boundary-series, and the three pairs of approximate and detail
components of the wavelet transform, to produce a vector of
48 features.

V. FEATURE SELECTION AND CLASSIFICATION

A. Feature Selection

Feature selection is the process of finding an optimised
subset of features which provides the highest discriminating
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Fig. 4. Boundary-series for sample dermoscopy image.

power when employed by the classifier. Exclusion of less
significant features in the problem space can help the clas-
sifier by removing the noisy evidence in the training stage.
Feature selection can also reduce the number of features to
be considered in the problem space, thus lessens computation
cost.

Feature selection algorithms can be categorized into three
classes [48]: (1) the filter model, which uses the general
characteristics of the data to evaluate the features, and selects
the optimised feature subset(s) without using any classifica-
tion/learning algorithm, (2) the wrapper model, which uses
a predetermined learning algorithm and searches for features
which improve the learning performance, (3) the hybrid model
which combines the two approaches. The filter model feature
selectors are less computationally expensive than wrapper-
based approaches.

In this study, due to the high dimension of the feature vector,
we have adopted the filter model by using the Gain Ratio-
based feature selection method. GRFS (Equation 23) is an
entropy-based feature valuator which assesses the worth ofan
attribute (feature) by measuring its Gain Ratio with respect
to the class. The Gain Ratio is a measure of goodness of
the feature and illustrates how well the feature predicts the
class label. The Ranker search method is used to rank and
sort features according to their evaluated Gain Ratio.

GainR(C,A) =
H(C)−H(C|A)

H(A)
(23)

where A is the attribute or feature, C is the class label, and
H specifies the entropy.

In our preliminary study [34], we proposed a two-stage
feature selection scheme, which used the GRFS method in the
first stage, and applied the Correlation-based Feature Selection
method [49] on the subset obtained from the first stage,
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Fig. 5. Comparing various feature selection methods.

in the second stage. However, experimental results showed
that adding the CFS method did not provide a noticeable
improvement to the classification performance over that ob-
tained by using the GRFS method only. For this reason
we have elected to use GRFS only as the feature selection
method in this study. Moreover, GRFS has been compared
with other three measures; namely, Information Gain, Chi-
squared and ReliefF [50]. In order to perform the comparison,
the entire feature vector comprising 35455 features (including
35396 texture, 11 geometry, and 48 boundary-series features)
is ranked individually by the four feature selectors. Then
the first 100 highest ranked features by each selector are
fed individually into the Random Forest classifier and the
accuracy is computed. For all four feature selectors the optimal
number of trees of the Random Forest is determined as 6. The
results are shown in Figure 5, which shows GRFS is highly
comparable with the other three.

In the experimental results (Section VI-D3) we have shown
that applying GRFS method results in significant improvement
in the system performance and a great reduction in the
dimension of the feature vector, as well as the required time
for classification.

B. Classification

In this study four different classes of classifier are applied:
Support Vector Machine [51] with SMO implementation [52],
Random Forest [31], Logistic Model Tree [32] and Hidden
Naive Bayes [33]. A brief introduction about each classifier
can be found in [34] and for a more detailed explanation please
refer to [9].

VI. EXPERIMENTAL RESULTS

In our preliminary study [34], we investigated the ef-
fectiveness of using texture-based feature extraction method
in the classification of melanoma lesions. The texture fea-
tures were extracted from four-level Wavelet-decomposition
in colour channels of red, green, blue and luminance. The
feature selection was performed using the Gain Ratio and
correlation-based feature selection methods on a train set
of 103 dermoscopy images. Classification was conducted by

TABLE II
COMPARATIVE STUDY: 10-FOLD CROSS VALIDATION OF CLASSIFICATION

ACCURACY OF FOUR CLASSIFIERS, USING WAVELET-BASED FEATURES

SUGGESTED BY[24], [26] AND [25], AND OUR PROPOSED

WAVELET-BASED FEATURE EXTRACTION METHOD. THE SYMBOL * NEXT

TO MEASURES INDICATES A STATISTICALLY SIGNIFICANT ACCURACY

DIFFERENCE COMPARED TO OUR METHOD, USING PAIRED T-TEST

(P-VALUE = 0.05).

Method SVM RF LMT HNB

Our method 86.27 86.27 88.24 86.27
Nimukar [24] 83.33* 85.29 85.29 82.35
Patwardhan [26] 52.94* 62.74* 62.74* 52.94*
Walvick [25] 82.35* 86.27 82.35 79.41

four classifiers; namely SVM, RF, HNB, and LMT. When
an optimised subset of texture features was extracted from
a test set of 102 dermoscopy images, LMT classifier was
able to successfully differentiate between melanoma and be-
nign lesions with 88.24% accuracy. As shown in Figure 6,
performing a comparative study showed that our wavelet-
based textural feature extraction method is highly competitive
with three other texture-based methods, proposed by Nimukar
et al. [24], Patwardhan et al. [26] and Walvick et al. [25].
Table II also shows the 10-fold cross validation of classifica-
tion accuracy, when applying different classifiers on test set,
and using features suggested by [24], [26] and [25], and our
proposed wavelet-based method. The statistical significance of
the comparative result has been investigated using paired t-test.
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Fig. 6. Comparative study between our proposed wavelet-based method [34]
and other three wavelet-based methods by [24], [25] and [26].

Figure 7(a) shows that the above-mentioned texture analysis
piloted in our preliminary study [34], constitutes a foundation
for the new experiments conducted in this study. Hereby,
the purpose is to investigate the impact of incorporating
border-based features in the classification of melanoma by
appending them to the optimised texture features. To validate
the comparison we repeat the texture-analysis procedure [34]
in Experiment 1. This is followed by appending geometry
and boundary-series features in Experiments 2 and 3 and
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Fig. 7. Experiments flowchart: (a) Evaluating the effectiveness of three
sets of features extracted from texture analysis (Experiment 1), texture
and geometrical measurements (Experiment 2), and texture, geometrical and
boundary-series (Experiment 3) and comparing the results,(b) Assessing the
overall performance of the proposed diagnostic system.

performing a comparison between the three. Moreover, we
determine the most effective feature optimisation approach and
evaluate the performance of the proposed diagnostic systemin
an unbiased way in Experiment 4 (Figure 7(b)).

Two image sets have been used in this study;Image-set1is
used in the first three experiments, andImage-set2is utilized in
the last experiment. Table III shows the distribution of images
for the two image sets.

TABLE III
IMAGE SETS USED IN THE STUDY; M : M ALIGNANT , B : BENIGN.

Train set Validation set Test set

Image-set1: 88 M, 109 B 48 M, 55 B - 40 M, 54 B
Image-set2: 114 M, 175 B 40 M, 59 B 30 M, 57 B 44 M, 59 B

A. Experiment 1: Optimised Texture Features

As mentioned, in order to make a valid comparison with
the other new experiments we repeat the experiment performed
in [34] but using the new image set of 197 dermoscopy images
(88 M + 109 B), labeled asImage-set1in Table III. The
following initial steps are conducted:

(i) Dermoscopy images undergo pre-processing in order
to minimise the impact of background skin in the analysis,

Fig. 8. Number of features selected by Gain Ratio feature selection method
at different thresholds.

wherein the lesion borders are obtained manually by using
dermatologists’ expertise. Then, an enclosing rectangle frame
is set around the lesion, the rest is cropped and the non-lesion
pixel is set to black. This pre-processing step is used in allof
the four experiments of this paper.

(ii) Using the MATLAB Daubechies-3 wavelet function, the
texture-based features (explained in Section II of this paper)
are extracted from half of theImage-Set1designated astrain
image set(See the first row of Table III).

(iii) The GRFS method is applied on the constructed feature
vectors, resulting in various Gain Ratio values or evaluation
rank. We consider these values as a cut off threshold; each
corresponds to a certain subset of texture features. Figure8
shows the number of features selected by the Gain-ratio
feature selection method, at different feature evaluationrank.
Figure 9 shows the obtained accuracy and the required time
for classification at different feature evaluation ranks (set
as threshold for the ranker search method) using the SVM
classifier with RBF kernel (gamma=0.1). As illustrated in the
figure, by reducing the number of features the accuracy is
increased and then decreased after a certain threshold -theso-
called peak phenomena [53]. Therefore the process of feature
selection or optimisation is to find the optimised threshold.
As expected and also shown in Figure 9 the time required for
performing classification is proportional to the dimensionof
the optimised feature vector and thus decreases considerably
as a result of the feature selection process.

(iv) By visual inspection, eleven of these thresholds are
empirically chosen in range of [0.27 , 0.37] and the cor-
responding texture features are extracted from the second
half of the dermoscopy images designated as atest set(See
the first row of Table III). To test the effectiveness of the
feature subsets selected in the previous step, we have applied
the four classifiers of SVM, RF, MLT and HNB, using the
corresponding parameter range shown in Table IV, on thetest
set; parameters outside the indicated regions did not produce
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TABLE V
10-FOLD CROSS VALIDATION OF PERFORMANCE(ACCURACY AND AUC) OF DIFFERENT CLASSIFIERS ON THE TEST SET, USING THE 11 TEXTURE

FEATURE CONFIGURATIONS RESULTING FROM THEGAIN RATIO FEATURE SELECTION.

Configuration Threshold Feature No. SVM (RBF) RF LMT HNB

1 0.27 1108 86.17 , 0.854 86.17 , 0.889 82.98 , 0.886 86.17 , 0.885
2 0.28 852 85.11 , 0.841 84.04 , 0.887 84.04 , 0.836 88.30 , 0.887
3 0.29 609 86.17 , 0.854 86.17 , 0.899 80.85 , 0.825 87.23 , 0.882
4 0.30 451 87.23 , 0.866 85.11 , 0.868 85.11 , 0.871 86.17 , 0.881
5 0.31 299 85.11 , 0.844 85.11 , 0.885 82.98 , 0.855 85.11 , 0.873
6 0.32 217 86.17 , 0.854 82.98 , 0.887 84.04 , 0.870 86.17 , 0.888
7 0.33 151 86.17 , 0.857 85.11 , 0.901 84.04 , 0.881 86.17 , 0.894
8 0.34 93 87.23 , 0.869 86.17 , 0.883 79.79 , 0.842 84.04 , 0.902
9 0.35 48 87.23 , 0.869 87.23 , 0.882 84.04 , 0.846 85.11 , 0.880
10 0.36 25 86.17 , 0.863 85.11 , 0.856 82.98 , 0.890 82.98 , 0.855
11 0.37 13 86.17 , 0.854 85.11 , 0.859 84.04 , 0.871 84.04 , 0.852
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Fig. 9. Obtained accuracy and required time for classification for different
thresholds using SVM classifier with RBF kernel.

TABLE IV
PARAMETERS SETTING FOR THE CLASSIFIERS

Classifier Parameter range

Support Vector Machine (RBF) Gamma = [0.001, 0.5]
Random Forest number of trees = [2, 200]
Logistic Model Tree weightTrimBeta = [0, 0.9]
Hidden Naive Bayes No parameters

useful results. In the classification experiments, the highest
accuracy obtained by each classifier is used as the measure of
its performance. The Weka data mining toolkit [54] has been
utilised in this study. This has resulted in the classification
accuracy shown in Table V, which indicates that the best
classification result (accuracy of 87.23% and AUC value of
0.882) is obtained by applying the Random Forest classifier
using the 9-th configuration with 48 texture-based features.
The obtained accuracy and AUC are calculated using a 10-
fold cross-validation scheme [55].

In the next two experiments of this study, we expand the fea-
ture vector by augmenting the optimised texture features with
geometry and boundary-series features. We then investigate the
impact of such an expansion by comparing the classification
results obtained from (1) texture, (2) texture and geometry,
and (3) texture, geometry and boundary-series features. The
test image set used in these experiments (40 melanoma and
54 benign, first row of Table III) is slightly different from
what was used in our preliminary study [34]. The reason
for excluding eight lesions is because the quality of these
images is such that it is not feasible to perform border-based
measurements. In other words, we have made this assumption

that the input image contains the entire lesion4.

B. Experiment 2: Optimised Texture and Geometry Features

The purpose of this experiment as depicted in Figure 7(a)
is to analyse the effect of integrating geometry with optimised
texture features and assess the classification performance. The
geometry features are extracted from the images in thetest set
of Image-set1(See the first row of Table III). The optimised
texture feature sets are obtained from applying the GRFS
method as per experiment 1. Eleven optimised features sets are
chosen corresponding to the 11 thresholds shown in Table V.

The whole appended feature vector (texture plus geometry)
is then fed into the same four classifiers to ascertain the status
of the 103 lesions. Table VI shows the 10-fold cross-validation
of classification performance where the highest accuracy for
each of the classifier is quoted. Examination of Tables V
and VI shows that there is an overall improvement in the
classification results as a consequence of augmenting texture
with geometry-based features; when using the RF classifier,
the maximum classification accuracy has been increased from
87.23% (texture) to 88.30% (texture and geometry). Figure 10
illustrates this effect more clearly on the RF classifier, which
shows that for most of the thresholds, the classifier accuracy
increases when the geometry-based features are added. In
the next experiment the feature vector is further extended to
include the boundary-series features. Since the RF classifier
exhibits the best overall results we proceed with this classifier
in the remaining experiments.

C. Experiment 3: Optimised Texture, Geometry and
Boundary-series Features

As shown in flowchart of Figure 7(a), the purpose of this
experiment is to analyse the effect of integrating border-
based features (geometry and boundary-series) with texture
features, and to investigate the classification performance. This
is done by appending the 59 border features (the same 11
geometry features as per experiment 1 and 48 boundary-
series features, Section IV) to the same 11 optimised texture
feature subsets listed in Table V which were previously used
in Experiments 1 and 2. The RF classifier is then applied

4It is worthwhile to mention that in some image acquisition setups der-
moscopy images are taken such that the picture frame does only includes
part of the lesion, and consequently the border can not be defined, thus any
calculated border-based parameter would reflect an invalid value. The removed
images in the experiment belong to these cases.
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TABLE VI
10-FOLD CROSS VALIDATION OF PERFORMANCE(ACCURACY AND AUC) OF DIFFERENT CLASSIFIERS ON THE TEST SET, USING THE 11 TEXTURE

FEATURE CONFIGURATIONS RESULTING FROM THEGAIN RATIO FEATURE SELECTION, COMBINED WITH GEOMETRY FEATURES.

Configuration Threshold Feature No. SVM (RBF) RF LMT HNB

12 0.27 1119 86.17 , 0.854 86.17 , 0.874 82.98 , 0.886 86.17 , 0.878
13 0.28 863 85.11 , 0.841 87.23 , 0.878 84.04 , 0.836 88.30 , 0.856
14 0.29 620 86.17 , 0.854 85.11 , 0.887 80.85 , 0.825 86.17 , 0.881
15 0.30 462 87.23 , 0.866 84.04 , 0.884 82.98 , 0.863 86.17 , 0.883
16 0.31 310 85.11 , 0.844 85.11 , 0.837 82.98 , 0.855 85.11 , 0.873
17 0.32 228 85.11 , 0.844 85.11 , 0.884 84.04 , 0.858 86.17 , 0.888
18 0.33 162 86.17 , 0.857 86.17 , 0.913 84.04 , 0.882 86.17 , 0.894
19 0.34 104 87.23 , 0.869 86.17 , 0.891 81.91 , 0.875 84.04 , 0.898
20 0.35 59 87.23 , 0.869 87.23 , 0.881 82.98 , 0.816 85.11 , 0.879
21 0.36 36 85.11 , 0.848 88.30 , 0.887 82.98 , 0.853 84.04 , 0.853
22 0.37 24 88.30 , 0.882 86.17 , 0.859 81.91 , 0.889 85.11 , 0.849
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Fig. 10. 10-fold cross validation of accuracy of texture, geometry and
boundary-series features at various thresholds of the GainRatio feature
selection method, using the Random Forest classifier.

on test image set (48 malignant and 54 benign), resulting
in the classification accuracies for each of the 11 feature
vectors shown in Figure 10. The figure also shows the results
of the highest accuracies obtained in Experiments 1 and 2
for easy comparison, where the highest accuracy (91.49%) is
obtained by choosing the feature vector corresponding to the
0.33 threshold (the feature vector for this threshold comprises
151 texture, 11 geometry and 48 boundary-series features).
The obtained AUC value for this feature configuration is 0.938.

D. Experiment 4: Performance Evaluation of the Proposed
Computer-aided Diagnosis of Melanoma

For this experiment theImage-set2from Table III is used.
In order to to reduce bias in terms of evaluating prediction
accuracy of the developed diagnostic system, we consider
three independent image sets; a train, a validation and a test
set of 99, 87 and 103 dermoscopy images, respectively. In
other words, as our technique requires various parameters to
be selected (such as what features to use and classifier specific
parameters such as number of trees), these parameters need to
be chosen without ever looking at the test set. The aim is to
fix all the parameters prior to performing the final evaluation
of the system on the test set (using 10 fold cross validation)in
order to avoid any bias in selecting the features or in parameter

selection5.
As these images are in different conditions, the border

detection step in two-third of them is done manually and
the automated Hybrid border-detection method [21] is applied
on the remainder to separate the lesion from the surrounding
skin. This is followed by the pre-processing step explainedin
Section VI-A to prepare the images for performance evaluation
of the diagnosis system.

As illustrated in Figure 7(b), we use two streams of opti-
misation. The first employs Global optimisation (labelled as
experiment 4a in the flowchart) wherein the whole feature vec-
tor, consisting of texture and border (geometry and boundary-
series) features is optimised. The second uses individual opti-
misations (labelled as experiment 4b in the flowchart) wherein
the texture and border features are optimised individually
and the resultant optimised features are appended, as further
explained in the following.

1) Global Optimisation:In this experiment the whole fea-
ture vector, consisting of texture and border (geometry and
boundary-series) is optimised, using the following three-step
procedure.

(i) Feature selection: feature extraction is performed on
images from the designatedtrain set (the second row of
Table III) and for each image a vector of 35455 features
is extracted, including 35396 wavelet-based texture features
and 59 border features (11 geometry and 48 boundary-series
features). The extracted features are evaluated and rankedby
using the Gain Ratio method. This results in various evaluation
ranks in the range of [0, 0.6], each corresponding to a subset
(a configuration) of features.

(ii) Parameter tuning: 26 various evaluation ranks, in range
of [0.35 to 0.6] with 0.1 increment, are empirically chosen as
thresholds and the corresponding feature subsets are extracted
from the images of the designatedvalidation set(the second
row of Table III). Then, the RF classifier is applied on each
feature configuration to classify the images of the validation
set. In each classification process, various parameters of the
classifier (number of trees) are tested and the parameter which
resulted in highest classification accuracy is selected.

5One might attempt to merge all three subsets into a single dataset and then
do 10 fold cross validation. However, in each fold of the validation, different
features would be selected and different classifier parameters used, making
it difficult to explain behaviour. Furthermore, 10 fold crossvalidation can be
misused, if it is run repeatedly by the user on the same dataset,searching for
best prediction accuracy by tweaking parameter behaviour.
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TABLE VII
NUMBER OF FEATURES AND THE RESULTANT10-FOLD

CROSS-VALIDATION OF ACCURACY AND AUC VALUE USING RANDOM

FOREST CLASSIFIER AT VARIOUS THRESHOLDS OF THEGAIN RATIO

FEATURE SELECTION METHOD, APPLIED ON VALIDATION IMAGE SET.

Threshold Feature No. No. of trees Accuracy AUC

0.60 2 10 66.67% 0.662
0.59 2 10 66.67% 0.662
0.58 8 50 64.37% 0.618
0.57 10 10 87.36% 0.827
0.56 12 5 86.21% 0.828
0.55 14 10 85.06% 0.829
0.54 18 5 86.21% 0.820
0.53 18 5 86.21% 0.820
0.52 23 2 86.21% 0.832
0.51 23 2 86.21% 0.832
0.50 29 10 85.06% 0.843
0.49 44 2 86.21% 0.83
0.48 51 3 86.21% 0.848
0.47 62 10 86.21% 0.872
0.46 67 90 85.06% 0.887
0.45 78 70 85.06% 0.823
0.44 91 5 87.36% 0.829
0.43 99 125 86.21% 0.891
0.42 122 55 83.91% 0.847
0.41 149 200 85.05% 0.900
0.40 166 15 87.36% 0.913
0.39 202 50 85.06% 0.887
0.38 225 220 85.06% 0.915
0.37 275 10 85.06% 0.883
0.36 302 5 86.21% 0.879
0.35 387 20 85.06% 0.886

Table VII shows the number of features at various thresh-
olds, the resultant 10-fold cross-validation of the classification
performance (accuracy and AUC) and the corresponding clas-
sification parameter; number of trees of the RF classifier. As
shown in the table the best AUC and accuracy results are
obtained if 0.4 threshold, 166 features, and 15 trees in the
random forest classifier are employed. For a more accurate
evaluation of the system performance, and considering the
number of images in the test set (103 images, according to the
second row of Table III), we also consider threshold of 0.52
with 23 number of features, as explained in the following.

(iii) Classification: the parameters (Gain Ratio, threshold
and number of trees of the RF) tuned in the previous step are
then used to evaluate the overall performance of the proposed
diagnostic system. The optimised feature configuration at
threshold of 0.4 with 166 features is extracted from the images
designated as thetest set(the second row of Table III). The RF
classifier with 15 trees is then applied and resulted in accuracy
of 93.21% (using 10-fold cross-validation). As stated above the
highest performance is obtained when 166 features are used
on our image set. It might be noted that the ratio of features to
image set used in this study could be considered to be high and
may therefore introduce a degree of bias in the results due to
problems associated with over-fitting. To obtain more reliable
and robust results smaller ratios need to be used if somewhat
lower accuracy and AUC could be tolerated. Therefore, we
have also tested the system using threshold of 0.52, with 23
number of features, which results in an accuracy of 91.26%.
Other performance measures of the proposed approach are
listed in the first and second row of Table VIII.

TABLE VIII
10-FOLD CROSS-VALIDATION OF PERFORMANCE OF THE PROPOSED

DIAGNOSTIC SYSTEM, USING TRAIN SET OF99 IMAGES, VALIDATION SET

OF 87 IMAGES AND TEST SET OF103 DERMOSCOPY IMAGES, APPLYING

THE TWO OPTIMISATION STREAMS.

Stream Feature No. Accuracy Sensitivity Specificity AUC

Global 23 91.26% 84.09% 96.61% 0.937
Global 166 93.21% 90.90% 94.92% 0.946
Individual 387 88.35% 88.64% 89.06% 0.939

2) Individual Optimisation: In this experiment the texture
and border features are optimised individually and the resultant
optimised features are combined. In order to do that, the first
two steps of the procedure performed in the previous section
(global Optimisation) is conducted independently for eachof
border and texture features. This involves performing feature
selection and parameter tuning usingtrain and validation
image sets(the second row of Table III) to determine the
optimised border features and optimised texture features.By
visual inspection, thresholds for texture and border features
are empirically chosen in range of [0.30, 0.59] and [0.11,0.57],
respectively. The optimised texture feature vector includes 379
features, and the optimised border feature vector includes8
features. The individual accuracy of texture and border features
on evaluation image set is 78.16% and 90.81%, respectively.
Then, the two optimised sets are combined yielding in total
387 optimised features, and the classifier parameter is tuned
using the validation image set (number of trees = 35). Finally
the RF classifier is applied on the test image set, using the
optimised feature set and the classification parameter tuned in
the previous step. This results in an accuracy of 88.35% (using
10-fold cross-validation). Other performance measures ofthe
proposed method are listed in the second row of Table VIII.

3) Comparison and Observations:Table VIII shows the
10-fold cross-validation of performance (evaluated in terms
of accuracy, sensitivity, specificity and the area under the
ROC curve) of the proposed diagnostic system for the two
optimisation streams; global and individual, which shows
the overall performance of the global stream is higher than
individual approach (higher accuracy, smaller feature space).

An interesting observation of this experiment is the dis-
tribution of features in the optimised feature vector; among
23 features (selected at the threshold of 0.52), four features
are border-based and 19 are texture-based. Also, at the 0.4
threshold, out of 166 selected features only eight (one is
geometry based and the rest are boundary-series based) are
border (4.82%) and the majority are texture-based features.
Table IX shows the ranking of these border-based features.
As shown in the table, among the eight border features that
contribute in the reported accuracy, the perimeter featurewas
adopted from previous works, and the other seven features are
new and extracted from the boundary-series of the lesion.

Figure 11 shows the Gain Ratio values of the features
nominated as optimised. We have estimated the contributionof
the border features in the optimised feature set by calculating
the accumulative border features’ Gain Ratio divided by accu-
mulative features’ Gain Ratios (Equation 24). Consideringthe
35 highest-ranked features, which consists of six border fea-
tures and 29 texture features, the approximate contribution of
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TABLE IX
RANKINGS OF THE EIGHT OPTIMISED BORDER FEATURES APPEARING IN

THE OPTIMISED FEATURE SET.

Rank feature Description

9 Norm(BS) BS: Boundary series
10 Norm(WA1(BS)) WAn:Wavelet approximation component
13 Norm(WA3(BS)) level n
14 Norm(WA2(BS))
31 Norm(Hist(BS)) Hist: Histogram
34 Eng(Hist(BS)) Eng: Energy
139 Perimeter belongs to the Geometry category
140 Mean(Hist(BS))
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Fig. 11. The Gain Ratio values of the features in the optimisedfeature set.

border-based features is 17% , however its overall contribution
in the optimised set of 166 features is only 5%.

Approximate Contribution=

∑

GainRatio(Border)
∑

GainRatio(All)

× 100 (24)

According to the estimated contribution, we suggest that
texture-based features play the dominant role in the classifi-
cation of melanoma. This finding is in fact fully aligned with
the clinical knowledge we obtained from our meetings with
experienced dermatologists at the Royal Melbourne Hospital,
Melbourne, Australia. We are informed that, when they ex-
amine an image, they focus on the changes in the internal
structure of the lesion while its external attributes such as
border and shape are considered secondary.

The 20 first-ranked texture-based features are listed in
Table X. Note the reason that ranking extends to 24 is that
four features among the first 24 features are border-based (and
thus not included in the table), and the remainder 20 features
are texture-based. The following conclusions are derived from
this table: (i) six out of 20 features belong to the nodes from
the forth level, which vindicates our use of four-level wavelet
decomposition as opposed to the three-level decomposition

TABLE X
THE 20 FIRST-RANKED TEXTURE-BASED FEATURES; L: L UMINANCE , R:

RED, G: GREEN, B: BLUE.

Rank Measure Channel Level Node

1 Average-energy L 3 4.1.3
2 Average-energy G 3 4.1.1
3 Kurtosis B 1 4
4 Average-energy G 2 4.1
5 Average-energy L 3 4.1.1
6 Energy L 3 4.1.1
7 Standard deviation L 3 4.1.1
8 Kurtosis G 1 4
11 Average-energy L 4 4.1.1.2
12 Average-energy L 2 4.1
15 Kurtosis B 2 4.2
16 Standard deviation L 4 1.1.1.3
17 Energy L 4 1.1.1.3
18 Average-energy L 4 2.3.1.1
19 Average-energy L 3 4.1.2
20 Average-energy L 2 4.2
21 Kurtosis L 1 4
22 Sub-level ratio of Average-energy B 4 1.1.1.1
23 Average-energy B 4 4.1.1.1
24 Average-energy L 3 4.4.4

applied in the other studies6, (ii) texture features extracted
from colour channels of Green and Blue are among the first
20 optimised texture features, which justifies our decisionto
incorporate the independent colour channels of Red, Green,
Blue along with the Luminance, as opposed to other studies
where Luminance only is used7, (iii) the optimised features
are derived from both low and high frequencies which justifies
our choice of tree-structured decomposition over the pyramid-
structured wavelet, and (iv) particular measures we proposed to
apply in this diagnostic system (e.g.Kurtosis) are prominent in
the final optimised feature set. Table XI shows the advantages

TABLE XI
EFFECT OFGAIN RATIO-BASED FEATURE SELECTION METHOD.

Feature No. Accuracy Time (sec)

without feature selection 35455 81.55% 2.45
with feature selection 23 91.26% 0.05

of applying the GRFS method in our system, which includes
a significant reduction (by a factor of 1542) in the dimension
feature space and in the time required for classification (50-
times). Moreover, the classification accuracy is improved by
12%. Note that the figures listed in Table XI are obtained
by applying the RF classifier on the test image set, using the
classifier parameters tuned over the validation image set.

6To assess the statistical significance of 4th level of wavelet decomposition,
we can consider the proportion of texture based features which are Level 4
in the original set of 35396 texture based features and compare it to the
proportion of Level 4 features which get automatically selected using gain
ratio for our optimised feature set (which has 158 texture based features).
The optimised feature set contains 67 level 4 features and theoriginal feature
set contains 6656 level 4 features. Thus, using a hypergeometric distribution,
we can compute the probability that the optimised feature contains at least
67 Level 4 features, under a model in which 158 features are randomly
selected without replacement from 35396 features. This probability is 6.6E-12,
indicating that there is a statistically significant overrepresentation of Level 4
features in the optimised feature set (using a significance p-value of 0.05).

7In the optimised feature set (166 features), the number of features extracted
from R, G, B adds up to 97, i.e. more than 58%, and if we exclude the 8
border based features which are colour-independent, the ratio would be 62%.
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VII. SUMMARY AND CONCLUSION

In this paper we have presented a computer-aided diagnosis
system for melanoma. The system covers the main diagno-
sis components of segmentation, feature extraction, feature
selection and classification. We have elected to use both
manual (under dermatologists’ guidance) and automated (by
applying the Hybrid border-detection method) borders in the
segmentation step. This, we believe, is essential in accurately
assessing the ability of diagnostic system in both semi and
fully automated manners. It is also worthwhile to highlight
that the system proposed in this paper is not designed to bring
about complete autonomy in the diagnostic process or replace
human judgment, but rather has potential as an assistive system
that could be used to screen images and direct physicians
attention to cases that have high risk.

The feature extraction process involved a guided gener-
ation of categorized features, extracted from (i) wavelet-
based texture analysis, (ii) geometrical measurements, and (iii)
boundary-series analysis in spatial and frequency domains.
The texture features were extracted from application of four-
level wavelet decomposition on red, green, blue and luminance
colour channels in addition to employing a comprehensive set
of statistical measures on all the nodes of the wavelet-tree.
The geometry measures were extracted from indices that are
commonly used in the literature as well as novel ones defined
in this paper to reflect the expert opinion of dermatologists.
Boundary-series analysis was applied on dermoscopy images
for the first time in this paper, wherein features were extracted
by constructing a boundary-series model of the lesion border
and analysing it in spatial and frequency domains by applying
histogram analysis and wavelet transform.

A computationally efficient feature selection method, based
on Gain Ratio, is adopted and shown to be highly compara-
ble with three other well-known feature selection methods,
namely; Information Gain, Chi-squared and ReliefF. It has
been shown that the use of the GRFS method provides sig-
nificant improvement in the classification performance (10%
increment) as well as a great reduction in the dimension of the
feature vector and the required classification computational
time. Furthermore, four advanced classes of classification
techniques; namely, Support Vector Machine, Random Forest,
Logistic Model Tree and Hidden Naive Bayes are employed,
among which the Random Forest classifier was shown to be
highly effective in the classification of melanoma lesions.

Comprehensive sets of experiments were conducted in
this study to analyse the effectiveness of applying various
combination of features in the classification of melanoma.
Firstly, the texture-based features were analysed resulting in
a classification accuracy of 87.23%. In the other two experi-
ments the feature vector was extended, where the geometry-
based features and then the boundary series features were
appended to the optimised texture-based features. In both
cases improvements in the classification accuracy (88.30%
and 91.49%) were obtained. These results have demonstrated
the superiority of integrating border with texture features over
using texture features alone.

In the last experiment the overall performance of the

proposed system was evaluated by conducting two streams
of optimisation on a set of 289 dermoscopy images (114
malignant and 175 benign) subdivided into three image sets;
train, validation and test. Two optimisation streams were
studies: (1) the global optimisation, in which the whole feature
vector, consisting of texture and border features is optimised,
(2) Individual optimisation wherein the texture and border
features are optimised individually and the resultant optimised
features are integrated. The experimental results showed that
by applying the Gain Ratio feature selection method and
the Random Forest classifier, global optimisation outperforms
individual optimisation. The proposed system achieves and
accuracy of 91.26% and AUC value of 0.937, when 23 features
are used. Although the results cited here were obtained through
experiments conducted on a particular image set, they indicate
that high diagnostic accuracy can be achieved when existing
features are optimally blended with novel ones. The obtained
performance of our system is in fact highly comparable with
the state-of-the-art melanoma recognition systems reported in
the recent survey by Maglogiannis et al. [23]. However, the
authors acknowledge that due to lack of a standard benchmark
for dermoscopy (melanoma) imaging, it is not easily feasible
to provide a comprehensive and quantitative comparative study
among the existing classification methods.

An important finding is the clear advantage gained in
complementing texture with border and geometry features
compared to using texture information only. Another inter-
esting finding of this paper is that in the melanoma classi-
fication application texture features play the dominant role
and make much higher contribution compared to border-based
features. Among border features, which include geometry and
boundary-series features, the latter has been shown to be more
informative and obtain higher evaluation ranks (Gain Ratio
values) than geometry in this application.
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