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Abstract—This paper presents a novel computer-aided diagno- subjective and its accuracy has been an issue of concern,
sis system for melanoma. The novelty lies in the optimised selec-especially with equivocal pigmented lesions [7]. Despite t
tion and integration of features derived from textural, border- use of dermoscopy, the accuracy of expert dermatologists in

based and geometrical properties of the melanoma lesion. The . . . .
texture features are derived from using wavelet-decompositian diagnosing melanoma is still estimated to be about 75-84% [8

the border features are derived from constructing a boundary Due to enhancements in skin imaging technology and image
series model of the lesion border and analysing it in spatial processing techniques in recent decades, there has been a
and frequency domains, and the geometry features are derived sjgnificant increase in interest in the area of computegdid

from shape indexes. The optimised selection of features is 4 ; s i
achieved by using the Gain-Ratio method, which is shown to diagnosis of melanoma, aiming to remove subjectivity and

be computationally efficient for melanoma diagnosis application. Uncertainty from the diagnostic process, and provide abig
Classification is done through the use of four classifiers; namely, Second opinion to dermatologists. Some of these systems
Support Vector Machine, Random Forest, Logistic Model Tree include': SolarScan [10] developed by Polartechnics Ltd, in
and Hidden Naive Bayes. The proposed diagnostic system isaystralia, DermoGenius-Ultra [11] developed by LINOS Pho-

applied on a set of 289 dermoscopy images (114 malignant, 17 onics Inc., DBDermo-MIPS [12], developed at the Univarsit
benign) partitioned into train, validation and test image sets. " '

The system achieves and accuracy of 91.26% and AUC value©f Siena in ltaly, DANAOS expert system [13], Melafind [14]
of 0.937, when 23 features are used. Other important findings developed by Electro-Optical Sciences Inc., Irvingtorg. et
include (i) the clear advantage gained in complementing texture However, it is widely acknowledged that much higher accyrac
with border and geometry features, compared to using texture g required for computer-based algorithms to be adopted rou

information only, and (ii) higher contribution of texture features : : : : :
than border-based features in the optimised feature set. tinely in the diagnostic process [9], [15], [16]. In this égiwe

Key words: Computer-aided diagnosis of Melanoma, Der- have propo;ed a novel diagnostic system Fo facilitate ateur
moscopy, Feature extraction, Classification, Wavelet. fast and reliable computer-based diagnosis of melanoma.
A computer-aided diagnosis of melanoma generally com-
prises several components; image acquisition, segmenjati
|. INTRODUCTION feature extraction, feature selection, and classificatibe

M ALIGNANT melanoma is the deadliest type of skinlatter three are the main focus of this paper.
cancer and the most common cancer in people agedSegmentatiorr border detectioris the process of separat-
15-44 years in Australia [1]. Failure to diagnose a newlg the lesion from the surrounding skin in order to form the
developed melanoma lesion may lead to lethal advancegion of interest. Existing computer-based melanomaiestud
melanoma, thus, early detection is of significant imporgandave either used manual, semi-automatic or fully automatic
for the dermatology community. border detection methods. Various image features such as
Dermoscopy is a non-invasivie vivo imaging technique shape, colour, texture, and luminance have been employed
which provides a magnified and clear visualization of th@® perform skin lesion segmentation. Numerous border de-
morphological structures of the skin that are not visible fgction methods have been reported in the literature [9],
the naked eye. With the use of dermoscopy and dermoscolié]- Recent methods include histogram thresholding vetid
clinical algorithms, such as pattern analysis [2], ABCDerulby region growing [18], JSEG algorithm based on colour
of dermoscopy [3], Menzies method [4], 7-point checkligt [5 quantization and spatial segmentation [19], global tholekhg
and the CASH algorithm [6], the diagnosis of melanom@n optimised colour channels followed by morphological
has been improved compared with the simple naked-e§gerations [20], Hybrid thresholding [21]. In this studyew
examination by 5-30%. This improvement rate depends bave applied our recently proposed Hybrid border detection
the type of skin lesion and the experience of the dermatol@ethod [21], which encompasses two stages; the first stage
gist [7]. However, clinical diagnosis of melanoma is inhrehg ~ applies global thresholding to detect an initial boundafy o
the lesion, and the second stage applies adaptive histogram

c R. Gaf_naviNfllgiAb\e}?n V_Vitf;{ the Dipfrtgﬁent of 5'§9tricaf\|Maf1lg tielec  thresholding on optimized colour channels of X (from the CIE
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TABLE |

ology of many computerised melanoma detection systems has LIST OF ABBREVIATIONS
been largely based on the conventional clinical algorithm Term Abbreviations
of ABCD-rule of dermoscopy due to its effectiveness and Area Under Curve of ROC AUC
simplicity of implementation. Its effectiveness stemsnirthe ge_cei;ei,ogeratg?: Cfgafacéefllﬂlt? IECR)’(I-::S
P . - aln Ratio-base eature selectip
fact that it incorporates the main features ofa melanomgﬂes Hidden Naive Bayes HNB
such as asymmetry, border irregularity, colour and diamete Logistic Model Tree LMT
(or differential structures), where quantitative measwan be Random Forest RF
Support Vector Machine SVM

computed. Different image processing techniques have been
used to extract such features, see for example [9], [22], [23
In this paper we propose a highly effective feature extoacti fication methods that have been applied to computer-based
method which combines different types of features; noveielanoma recognition systems include [9], [23] Discrinéna
ones as well as a few adopted from existing studies. Analysis [24], Artificial Neural Network [25], [29]k-Nearest
our proposed method, texture and border (including gegmeNeighbourhood [27], [29], Support Vector Machine [22],]23
and boundary-series) features are extracted and combin@@], Decision Trees [23], [30], Bayes Networks [23] and
The texture-based feature extraction method employs trémgistic Regression [29]. However, some enhanced versions
structured wavelet decomposition. The novelty here lies of these classifiers have been reported in literature, diaty
(i) the use of four-level decompositions as opposed to threandom Forest (RF) [31], Logistic Model Tree (LMT) [32],
level used in the existing wavelet-based methods [24]+-[2@nd Hidden Naive Bayes (HNB) [33]. These three plus the
(i) the use of four colour channels of red, green, blue angry popular Support Vector Machine (SVM) were utilized in
luminance as opposed to only luminance in existing studigaelanoma diagnosis in our preliminary study [34] for thetfirs
(iii) application of various statistical measurement aatlas time, and will also be used in this study. All these classifier
on all the nodes of the wavelet-tree. and more particularly the Random Forest classifier are shown
The geometry-based feature extraction method uses a vari-our previous study [34] and in this paper to be highly
ety of statistical measures. These are derived via twondisti effective in the classification of melanoma lesions.

tive processes: (i) various geometry-based featuresdatdn 14 eyaluate the accuracy of our diagnosis system, which is
and newly designed based on expert opinion of dermato)gistomprised of the three phases of feature extraction, featur
are defined to evaluate the properties of the overall shapes@iection and classification, we have conducted a set of four
the lesion, and (i) a boundary-series model of the bordggpneriments, flow charts of which are shown in Figure 7. The
is constructed and analysed in both spatial and frequengy,nosed diagnosis system encompasses most of the existing
domains to extract the main characteristics of the 'es'?é'atures proposed by other studies, and blends them wits nov

boundary. To the best of our knowledge, the boundary-serigges carefully extracted to best reflect the property of the
analysis of process (i) and some of the measures used|dgjon.

i) h n previousl li n dermosco . I .
ipnr]%(;eesss (1) have not been previously applied on de P summary, the main contributions of this study are sum-

o : . : mariz follows:
Feature selectioris an intermediate process that lies be- arized as follows

tween the two steps of feature extraction and classification 1) The use of four level of wavelet decomposition, incorpo-
In this process, irrelevant, redundant, or noisy featumes a  rating four colour channels, applying various statistical
excluded from the initial feature vector constructed in the measurement and ratios on all the nodes of the fully ex-
feature extraction step. Some of the prominent feature se- ended wavelet tree for texture-based feature extraction.
lection method that have been used in existing Computer-3) The use of boundary-series analysis in spatial and
based melanoma recognition systems include sequential for frequency domains and new geometrical measures for
ward floating selection and sequential backward floatingcsel border feature extraction.

tion [27], genetic algorithm [28], ReliefF, mutual infortien 3y Estaplishing that the Gain Ratio feature selection metho
and correlation-based methods used in [22], principal @mp can deliver substantial accuracy for feature selector.
nent analysis used in [25], statistical analysis used if,[24 4) Combining different types of features in an optimised

[26], etc. _ _ way to achieve higher performance for the diagnostic
However, in this study the Gain Ratio-based Feature Selec-  gystem.

tion (GRFS) method is employed for the following reasons:
(i) the method is computationally efficient, which is a vital The rest of the paper is organized as follows. An overview
factor because of the high dimensionality of the initialttea of the proposed texture feature extraction method is pealid
vector constructed in the feature extraction phase; (iigit in Section Il. The proposed geometry-based features and
highly comparable with a sample of well-known filter-basetloundary-series features are explained in Sections IlIl¥nd
feature selectors as explained in Section V of this papeth@o respectively. Section V details the proposed feature Setec
best of our knowledge GRFS has not been applied in previomethod, followed by discussing the applied classification
melanoma studies. methods. Experimental results and discussions are pegsant
Classificationis the final step in the diagnosis processSection VI. Section VIl provides the summary and conclusion
wherein the extracted features are utilized to ascertaigtiven  The frequently used abbreviations in this study are listed i
the lesion is cancerous or normal. The most common clas§able .




Il. PROPOSEDTEXTURE-BASED FEATURES

The visual characteristics of a lesion which constitutes th
basis of clinical diagnostic approaches (e.g. ABCD rule of
dermoscopy and pattern analysis) can be captured throxgh te
ture analysis. The multi-scale properties of wavelets,endke
wavelet-based texture analysis a useful technique foysimgj
dermoscopy images, as these images are often taken under
different circumstances, i.e. various image acquisitienups
(lighting, optical zooming, etc) and versatile skin cokur
Among the two wavelet structures; Pyramid-structured [35]
and Tree-structured wavelet analysis [36], the latter isemo_
informative for classification of melanoma images, as it cdr? -
capture information of both general (overall properties) de- . .
tail (detailed structure and internal texture) of the lesjg4]. J+'" element, andkig(X;) are its eigenvalues’ and K are

In this paper, texture-based feature extraction is achievdimensions of the matrices overyvh|ch_waveletdec_ompusfstlo
by applying 4-level tree-structured wavelet decompositio tal_<e_ pla_ce. They start from dimension (resolgpon) of the
red, blue, green and luminance colour channel of dermoscdji@in@l image and at each level of decomposition they are
images. Various statistical measures and ratios are pedgos divided by a factor of two. _
extract useful information from the wavelet coefficientada  The ratios used in this study are maximum rati@,),
utilized for the classification. The measures include en@gy, fractional ratio &) and sub-level ratio g,), defined in
mean (M), standard deviation (Std), skewness (S), kur(egjs Equations 9-11, respectively for a sample nodg;. As
norm (N), entropy (H), and average-energy (AvgE), expntdass_@ach decomposition s_ub-tree has _fc_)ur nodes (as illustrated
in Equations 1-8. Figure 1 displays a schematic illustratid” Figure 1), the maximum ratio divides each node by the
of wavelet tree with nodes marked by circles. For each colofifeXimum node among the four. The fractional ratio divides
channel, the measures are applied on the original imagedcafach node by the summation of the other three nodes. The sub-
level 0) and also on wavelet coefficients of each node (suve! ratio divides each node of the tree by its low frequency
image) of the wavelet tree. The wavelet tree has 341 nodg¥nponent (first child node from left hand side). These gatio
in total (4 nodes in first level, 16 nodes in second level, g#¢€ calculated for each of the above mentioned 8 measure,
nodes in third level and 256 nodes in forth level, plus theact Which will produce a total oB x 765 (340 maximum ratios,
image in level zero which is the parent node of the tree). TR0 fractional ratios, 85 sub-level ratios) features.
eight measures therefore yield a total8ok 341 features, per m(na.3)

Schematic 4-level wavelet tree with nodes in circle.

colour channel. Rom(n2.3) = maz(m(nz.1), m(na.2), m(na.s), m(ns.4)) ©)
ijl Zka1 x?k m(n2-3)
N — = = R = 10
B(n:) Jx K @ (n23) m(nz.1) +m(nz.2) + m(nz.4) (10)
>t Yok @ik _ mn2sa)
M(nz) = J }Xl}(l ’ (2) Rs(n2'3) m('n,zg) (11)
5 = . where ny 3 refers to node 2.3 andn(no;) refers to the
Std(ni) = 251 2 (T — M(na)) (3) Mmeasure (energy, entropy, etc.) applied on the node.
Jx K Moreover, the featurén(std+1) suggested by [24] and [25]
S K (ma=M) g has also been used. All of these features were calculated
S(ny) = ==t ==l Stdlng) (4) for four colour channels of red, green, blue and luminance
Ix K (Equation 12) and a set of 35396 features is obtained.
zip—M(n;)
K(n;) = Ej:l i Jgtd(ni) )* ) luminance = (0.3 x R) + (0.59 x G) + (0.11 x B) (12)
E Jx K
where R, G and B represent red, green and blue colour
N(n;) = maz(y/eig(X; x X})) (6) channels, respectively.
J X ) ) As outlined in the introduction this is the first time four
Hng) = Djor 2o (255 X log(x7y)) @) colour channel with four level of wavelet decomposition has
’ Jx K been reported.
S S E g The features proposed in this section also account for colou
AvgE(n;) = Fljx—":KlJ (8) information of the lesion (in addition to the textural prope

) ] ties). The colour features, which include the eight measure
Wherez' = 0,1,.'..,341 is an index of wavelet tree nodesgs energy, mean, standard deviation, entropy, averageggne
starting sequentially from node, of colour channel 1 and gyewness, kurtosis, and norm of the four colour channels red
ending at nodeu, 4 4.4 Of colour channel 4 (colour channels:green’ blue and luminance of the image, are measured by

Red = 1, Green = 2, Blue = 3, Luminance = 4, is @ gmploying these eights measures on the node-0 (parent node)
Ji x K; matrix of thei‘" node, X/ is its transposeg j is its of the wavelet tree, i.e., the original image.



I1l. PROPOSEDGEOMETRY-BASED FEATURES

Border formation and geometrical properties of the shape
of the lesion provide significant diagnostic informationtire
detection of melanoma. According to the ABCD rule of der-
moscopy [3], asymmetry is given the highest weight among the
four features of asymmetry, border irregularity, coloud alif-
ferential structures. A number of studies have been caoigd
on quantifying asymmetry in skin lesions. In some approache
the symmetry axis is determined in a certain manner (suchfg 2. Major and minor symmetry axes for sample dermoscopy image.
principal axis [37], [38], major axis of the best-fit ellipf&9],

[40], Fourier transform [41], longest or shortest diam4@])  |rregularity Index A (IrA):

and the two halves of the lesion along the axis are compared. p

In another approach, the symmetry feature is calculateddbas IrA = 1 (15)
on geometrical measurements on the whole lesion, e.g. sylm- larity Index B (IrB):

metric distance [42], circularity [42]. Other studies, sater rregularity Index B (IrB):

the circularity index, also called thinness ratio, as a mesas mB= Lt (16)
of irregularity of borders in dermoscopy images [40], [43]. GD
Other features extracted from border and shape of the lesigiggularity Index C (IrC):
include bulkiness, fractal dimension, irregularity inec[44], 1 1
[45]. Here, we used some standard geometry features (Area, IrC=Px (ﬁ B @) )
Perimeter, Greatest Diameter, Circularity Index, Irregity |rreqularity Index D (IrD):
Index A, Irregularity Index B, and Asymmetry Index) adopted
IrD=GD - SD (18)

from [23] complemented by new others (Shortest Diameter,

Irregularity Index C and Irregularity Index D) that we drewMajor and Minor Asymmetry Indices: These indices are

from our discussions with expert dermatologists defined as the area difference between the two halves of the
The main prerequisite for extracting the border features |ission, taken the principal axes (obtained by Equation 39) a

the segmentation or border detection step, where the lesigi8 major symmetry axis, and its 90 degree rotation as the
is separated from the surrounding normal skin. The outpgiinor axes of the symmetry.

of the segmentation step is the segmentation plane which is 95 e
a black-white image. In this study, after forming the lesion tan 20 = —;— == Y 5 (19)
pixels in a 2D matrix and the corresponding boundary pixels =1 T = Y
in a vector, the following set of 11 geometry-based featur#ghere 6 is the orientation of the principal axis. Figure 2
are extracted from each dermoscopy image: shows a sample dermoscopy image with obtained principal
axes (major and minor symmetry axes). After calculating the
Area (A): Number of pixels of the lesion. major and minor symmetry axes, the lesion is folded along the
axes and the differences between the two halves of the lesion
Perimeter (P): Number of pixels along the detected boundaryre calculated by applying the XOR operation on the binary
segmentation plane. The asymmetry index is measured by:

Greatest Diameter (GD): The length of the line which Ap
connects the two farthest boundary points and passes across Asymmetry Index= —= x 100 (20)
the lesion centroid (C), which is given by: where A, denotes the difference between the two halves.
(e, ) = (EL Ty yi) (13) Figure 3 shows a dermoscopy image with the obtained major
e Ye n  n principal axes (symmetry axes), and the process of calonglat

wheren is the number of pixels inside the lesion, apd, y;) the major asymmetry index.
is the coordinates of the i-th lesion pixel.
IV. PROPOSEDBOUNDARY-SERIESFEATURES
Shortest Diameter (SD): The length of the line which A time-series is an ordered sequence of values or ob-

connects the two nearest boundary points and passes acfsSationss that are measured and recorded at successive

the lesion centroid. equally spaced time intervals [46]. Time-series have been
widely applied in statistics, signal processing, data ngni
mathematical finance and economy [47]. Inspired from this
CRC — 4A27f (14) con_cept, in this_ study, we propose to build a boundary-
P series of the lesion by traversing the boundary of the lesion

2Images used in this study have fairly similar spatial resofytthus there (Starting from an arbitrary pixel on the lesion boundrand

has been no scale issue for features such as area and perirteténage

sets where images are taken under different zooming condéti@h have 3The choice of the starting point is not our concern becausarthasures
various resolutions, a normalization procedure is requisb@n measuring applied on the resultant boundary-series, including bistm and wavelet
those features. analysis, are rotation invariant.

Circularity Index (CRC): It explains the shape uniformity.




Distance to centroid

Fig. 3. Calculating the major symmetry index: (a) major symmetig, k) 14
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upper half, (c) lower half, (d) folded upper half, (e) dierce. Pixel number

calculating the distance between each border pixel and ffi¢ 4. Boundary-series for sample dermoscopy image.

centroid of the lesion, as expressed by Equation 21. power when employed by the classifier. Exclusion of less

BS =di,dz,...,dp (21) significant features in the problem space can help the clas-
sifier by removing the noisy evidence in the training stage.
Feature selection can also reduce the number of features to
be considered in the problem space, thus lessens computatio
dj = /(x5 — ) + (Y5 — ye)? (22)  (ost.
where (z;,y;) and (z.,y.) are the coordinates of the j-th Feature selection algorithms can be categorized into three
boundary pixel, and lesion centroid, respectively. Figdre classes [48]: (1) the filter model, which uses the general
shows a Samp|e dermogcopy image and the Correspondﬁh@raCteriStiCS of the data to evaluate the features, dadtse
boundary-series curve. the optimised feature subset(s) without using any classific
The obtained boundary-series is analysed in both the $pati@n/learning algorithm, (2) the wrapper model, which uses
and frequency domains. The former is done by calculating tRePredetermined learning algorithm and searches for festur
histogram of the boundary-series (using 10 bins), and therla Which improve the learning performance, (3) the hybrid ntode
is performed via applying a three-level wavelet transfornivhich combines the two approaches. The filter model feature
where the signal (the boundary-series) is decomposed ig&Jectors are less computationally expensive than wrapper
an approximate and a detail component. As in the pyrami@ased approaches.
structured wavelet transform, the approximate component i In this study, due to the high dimension of the feature vector
used for the next level of decomposition. The wavelet d#e have adopted the filter model by using the Gain Ratio-
composition was performed up to the third level, after whichased feature selection method. GRFS (Equation 23) is an
it is found that for the image set under study the boundar§ntropy-based feature valuator which assesses the woeth of
series loses its time dependency and does not carry uséfififibute (feature) by measuring its Gain Ratio with respec
information regarding the border. A set of six statisticalan t0 the class. The Gain Ratio is a measure of goodness of
sures of Energy, Mean, Standard de\/iation' Skewness,mgrtdhe feature and illustrates how well the feature predicts th
and Norm (defined by Equations 1-6) are then applied 6#ss label. The Ranker search method is used to rank and
the resultant eight signals of boundary-series; histogodm Sort features according to their evaluated Gain Ratio.
boundary-series, and the three pairs of approximate aradl det GainR(C, A) = H(C)— H(C|A) 23)
components of the wavelet transform, to produce a vector of H(A)

48 features. where A is the attribute or feature, C is the class label, and

H specifies the entropy.
V. FEATURE SELECTION AND CLASSIFICATION .
In our preliminary study [34], we proposed a two-stage

A. Feature Selection feature selection scheme, which used the GRFS method in the
Feature selection is the process of finding an optimiséidst stage, and applied the Correlation-based Featuret®eie
subset of features which provides the highest discrimigatimethod [49] on the subset obtained from the first stage,

where P is the number of pixels along the boundary (prev
ously defined as perimeter of the lesion) and




90, : . : : TABLE I
COMPARATIVE STUDY: 10-FOLD CROSS VALIDATION OF CLASSIFICATION

80+ ACCURACY OF FOUR CLASSIFIERSUSING WAVELET-BASED FEATURES
SUGGESTED BY[24], [26] AND [25], AND OUR PROPOSED
70t WAVELET-BASED FEATURE EXTRACTION METHOD THE SYMBOL * NEXT
TO MEASURES INDICATES A STATISTICALLY SIGNIFICANT ACCURACL
60k DIFFERENCE COMPARED TO OUR METHODUSING PAIRED FTEST
g (P-vALUE = 0.05).
50 [ Method [SVM_[RF__[LMT [ HNB |
g Our method 86.27 | 86.27 | 88.24 | 86.27
g 40 Nimukar [24] 83.33" | 85.29 | 85.29 | 82.35
< Patwardhan [26]| 52.94% | 62.74* | 62.74* | 52.94*
30 Walvick [25] 82.35% | 86.27 | 82.35 | 79.41

N}
=

four classifiers; namely SVM, RF, HNB, and LMT. When
an optimised subset of texture features was extracted from
a test set of 102 dermoscopy images, LMT classifier was
able to successfully differentiate between melanoma and be
Fig. 5. Comparing various feature selection methods. nign lesions with 88.24% accuracy. As shown in Figure 6,
performing a comparative study showed that our wavelet-
in the second stage. However, experimental results showggieq textural feature extraction method is highly cortipeti
that adding the CFS method did not provide a noticeabith three other texture-based methods, proposed by Nimuka
improvement to the classification performance over that ofr ). [24], Patwardhan et al. [26] and Walvick et al. [25].
tained by using the GRFS method only. For this reasompie || also shows the 10-fold cross validation of clasaific
we have elected to use GRFS only as the feature selectjgy accuracy, when applying different classifiers on tedt s
method in this study. Moreover, GRFS has been compargg using features suggested by [24], [26] and [25], and our
with other three measures; namely, Information Gain, Chiyoposed wavelet-based method. The statistical signifecan

squared and ReliefF [50]. In order to perform the comparisofhe comparative result has been investigated using patesd.t
the entire feature vector comprising 35455 features (ain

35396 texture, 11 geometry, and 48 boundary-series fegture
is ranked individually by the four feature selectors. Then 90—
the first 100 highest ranked features by each selector are o o o
fed individually into the Random Forest classifier and the 000 00 o 0000 =]
. . 5 000 _ 000 _O o0 |
accuracy is computed. For all four feature selectors thienght ¢} o
number of trees of the Random Forest is determined as 6. Thu
results are shown in Figure 5, which shows GRFS is highly — gg 1
comparable with the other three. >
In the experimental results (Section VI-D3) we have shown 2
that applying GRFS method results in significant improvemen ‘g 75 7
in the system performance and a great reduction in the §
dimension of the feature vector, as well as the required time< 70- i
for classification. @ Proposed method
¥ Nimukar method
¢ Patwardhan method ]
@ Walvick method ¢

._.
o

Gain-ratio Info—gain Chi-squared ReliefF

%

B. Classification 65+

In this study four different classes of classifier are applie
Support Vector Machine [51] with SMO implementation [52], 60 ¢
Random Forest [31], Logistic Model Tree [32] and Hidden 185 7 9 1113 15f. 1719 21 23 25 27
Naive Bayes [33]. A brief introduction about each classifier Feature Configuration
can be found in [34] and for a more detailed EXplanatlon |eIeal—slg. 6. Comparative study between our proposed waveletshasthod [34]
refer to [9]. and other three wavelet-based methods by [24], [25] and [26].

VI. EXPERIMENTAL RESULTS Figure 7(a) shows that the above-mentioned texture asalysi

In our preliminary study [34], we investigated the efpiloted in our preliminary study [34], constitutes a foutida
fectiveness of using texture-based feature extractiorhodet for the new experiments conducted in this study. Hereby,
in the classification of melanoma lesions. The texture fetlie purpose is to investigate the impact of incorporating
tures were extracted from four-level Wavelet-decompaositi border-based features in the classification of melanoma by
in colour channels of red, green, blue and luminance. Thppending them to the optimised texture features. To ualida
feature selection was performed using the Gain Ratio atlte comparison we repeat the texture-analysis proceddie [3
correlation-based feature selection methods on a train setExperiment 1. This is followed by appending geometry
of 103 dermoscopy images. Classification was conducted &yd boundary-series features in Experiments 2 and 3 and
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Fig. 7. Experiments flowchart: (a) Evaluating the effect&es of three

sets of features extracted from texture analysis (Expetinign texture
and geometrical measurements (Experiment 2), and texture, ¢gzahand

boundary-series (Experiment 3) and comparing the resyltdgbessing the
overall performance of the proposed diagnostic system.

performing a comparison between the three. Moreover,
determine the most effective feature optimisation appr@amx
evaluate the performance of the proposed diagnostic syiste

an unbiased way in Experiment 4 (Figure 7(b)).
Two image sets have been used in this stuthgge-setlis
used in the first three experiments, dnthge-set2s utilized in

the last experiment. Table 11l shows the distribution of gesa

for the two image sets.

TABLE Il
IMAGE SETS USED IN THE STUDYM : M ALIGNANT

, B : BENIGN.

[ [ Train set | Validation set| Test set |
Image-setl: 88 M, 109 B| 48 M, 55 B - 40 M, 54 B
Image-set2: 114 M, 175 8 40 M, 59 B 30 M,57B 44 M, 59 B

A. Experiment 1: Optimised Texture Features

As mentioned, in order to make a valid comparison withesponding texture features are extracted from the second
the other new experiments we repeat the experiment pertbrntalf of the dermoscopy images designated assh set(See
in [34] but using the new image set of 197 dermoscopy imagti®e first row of Table IlI). To test the effectiveness of the
(88 M + 109 B), labeled asmage-setlin Table Ill. The feature subsets selected in the previous step, we havesdppli

following initial steps are conducted:
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Fig. 8. Number of features selected by Gain Ratio featurecgsefemethod
at different thresholds.

wherein the lesion borders are obtained manually by using
dermatologists’ expertise. Then, an enclosing rectanglad

is set around the lesion, the rest is cropped and the naorlesi
pixel is set to black. This pre-processing step is used iofall
the four experiments of this paper.

(i) Using the MATLAB Daubechies-3 wavelet function, the
texture-based features (explained in Section Il of thisepap
are extracted from half of thenage-Setldesignated afrain
image set(See the first row of Table IlI).

(iil) The GRFS method is applied on the constructed feature
vectors, resulting in various Gain Ratio values or evatmati
rank. We consider these values as a cut off threshold; each
corresponds to a certain subset of texture features. Figure

ows the number of features selected by the Gain-ratio

\&eature selection method, at different feature evaluataork.
rTfigure 9 shows the obtained accuracy and the required time

or classification at different feature evaluation ranket(s
as threshold for the ranker search method) using the SVM
classifier with RBF kernel (gamma=0.1). As illustrated ie th
figure, by reducing the number of features the accuracy is
increased and then decreased after a certain thresholdethe
called peak phenomena [53]. Therefore the process of &eatur
selection or optimisation is to find the optimised threshold
As expected and also shown in Figure 9 the time required for
performing classification is proportional to the dimensifn
the optimised feature vector and thus decreases consigerab
as a result of the feature selection process.

(iv) By visual inspection, eleven of these thresholds are
empirically chosen in range of [0.27 , 0.37] and the cor-

the four classifiers of SVM, RF, MLT and HNB, using the

(i) Dermoscopy images undergo pre-processing in ordeorresponding parameter range shown in Table IV, ortébe
to minimise the impact of background skin in the analysiset parameters outside the indicated regions did not produce



TABLE V

10-FOLD CROSS VALIDATION OF PERFORMANCHACCURACY AND AUC) OF DIFFERENT CLASSIFIERS ON THE TEST SETSING THE 11 TEXTURE
FEATURE CONFIGURATIONS RESULTING FROM THESAIN RATIO FEATURE SELECTION

[ Configuration] Threshold [ Feature No.] SVM (RBF) | RF [ LMT [ HNB ]
1 0.27 1108 86.17 , 0.854] 86.17 , 0.889] 82.98 , 0.886] 86.17 , 0.885
2 0.28 852 85.11, 0.841| 84.04, 0.887| 84.04, 0.836| 88.30 , 0.887
3 0.29 609 86.17 , 0.854| 86.17 , 0.899] 80.85, 0.825| 87.23 , 0.882
4 0.30 451 87.23, 0.866| 85.11, 0.868| 85.11, 0.871| 86.17 , 0.881
5 0.31 299 85.11, 0.844| 85.11, 0.885| 82.98, 0.855| 85.11, 0.873
6 0.32 217 86.17 , 0.854| 82.98, 0.887| 84.04, 0.870| 86.17 , 0.888
7 0.33 151 86.17 , 0.857| 85.11, 0.901| 84.04, 0.881] 86.17 , 0.894
8 0.34 93 87.23, 0.869| 86.17, 0.883| 79.79, 0.842| 84.04 , 0.902
9 0.35 48 87.23, 0.869| 87.23, 0.882| 84.04, 0.846| 85.11 , 0.880
10 0.36 25 86.17 , 0.863| 85.11, 0.856| 82.98, 0.890| 82.98, 0.855
11 0.37 13 86.17 , 0.854| 85.11, 0.859| 84.04 , 0.871| 84.04 , 0.852
90 6 : . . . .
) that the input image contains the entire ledion
=5 . -
< 80 A 2 B. Experiment 2: Optimised Texture and Geometry Features
< 84 . . . -
P ] The purpose of this experiment as depicted in Figure 7(a)
S 70 N3 . . : . X
3 i is to analyse the effect of integrating geometry with opsiaci
g Eo texture features and assess the classification performé@hee
60 . geometry features are extracted from the images ingabieset
of Image-setl(See the first row of Table Ill). The optimised
50 o1 02 03 % 01 02 o3 “o4 texture feature sets. are obtained from {applymg the GRFS
Threshold Threshold method as per experiment 1. Eleven optimised features ets a
chosen corresponding to the 11 thresholds shown in Table V.
Fig. 9. Obtained accuracy and required time for classificata different The whole appended feature vector (texture plus geometry)

thresholds using SVM classifier with RBF kernel. is then fed into the same four classifiers to ascertain thiassta

of the 103 lesions. Table VI shows the 10-fold cross-vaiafat
of classification performance where the highest accuracy fo
each of the classifier is quoted. Examination of Tables V
and VI shows that there is an overall improvement in the
classification results as a consequence of augmentingréextu
with geometry-based features; when using the RF classifier,
the maximum classification accuracy has been increased from
87.23% (texture) to 88.30% (texture and geometry). Figlre 1
illustrates this effect more clearly on the RF classifierjolih
useful results. In the classification experiments, the dsgh Shows that for most of the thresholds, the classifier acgurac
accuracy obtained by each classifier is used as the measurigféases when the geometry-based features are added. In
its performance. The Weka data mining toolkit [54] has bedR€ Néxt experiment the feature vector is further extended t
utilised in this study. This has resulted in the classifaati Include the boundary-series features. Since the RF classifi
accuracy shown in Table V, which indicates that the beg{(hlblts the.b.est overa[l results we proceed with this diess
classification result (accuracy of 87.23% and AUC value 87 the remaining experiments.
0.882) is obtained by applying the Random Forest classifigr . ) .
using the 9-th configuration with 48 texture-based feature%’O Experlmeqt 3. Optimised  Texture,
undary-series Features

The obtained accuracy and AUC are calculated using a 10-
fold cross-validation scheme [55]. As shown in flowchart of Figure 7(a), the purpose of this

experiment is to analyse the effect of integrating border-

In the next two experiments of this study, we expand the fegageq features (geometry and boundary-series) with &extur
ture vector by augmenting the optimised texture featurés Wigaqres, and to investigate the classification performankis

geometry and boundary-series features. We then investigat is yone by appending the 59 border features (the same 11

impact of su_ch an expansion by comparing the classificatiagometry features as per experiment 1 and 48 boundary-
results obtained from (1) texture, (2) texture and geometdpries features, Section IV) to the same 11 optimised textur

and (3) texture, geometry and boundary-series features. Thayre subsets listed in Table V which were previously used
test image set used in these experiments (40 melanoma gngyperiments 1 and 2. The RF classifier is then applied
54 benign, first row of Table Ill) is slightly different from

what was used in our preliminary study [34]. The reason*“lt is worthwhile to mention that in some image acquisition sstder-

for excluding eight lesions is because the quality of the&@scopy images are taken such that the picture frame does arliydés

. . h that it is not feasible to perform borderdbas%irt of the lesion, and consequently the border can not beetkfthus any
images IS Ssuc It ' p X alculated border-based parameter would reflect an invaligev The removed
measurements. In other words, we have made this assumptigiyes in the experiment belong to these cases.

TABLE IV
PARAMETERS SETTING FOR THE CLASSIFIERS

[ Classifier

Support Vector Machine (RBF
Random Forest

Logistic Model Tree

Hidden Naive Bayes

| Parameter range |
Gamma = [0.001, 0.5]
number of trees = [2, 200]
weightTrimBeta = [0, 0.9]
No parameters

Geometry and



TABLE VI

10-FOLD CROSS VALIDATION OF PERFORMANCHACCURACY AND AUC) OF DIFFERENT CLASSIFIERS ON THE TEST SETSING THE 11 TEXTURE
FEATURE CONFIGURATIONS RESULTING FROM THESAIN RATIO FEATURE SELECTION COMBINED WITH GEOMETRY FEATURES

[ Configuration] Threshold [ Feature No.] SVM (RBF) | RF [ LMT HNB ]
12 0.27 1119 86.17 , 0.854] 86.17 , 0.874] 82.98, 0.886] 86.17 , 0.878
13 0.28 863 85.11, 0.841| 87.23, 0.878| 84.04, 0.836| 88.30, 0.856
14 0.29 620 86.17 , 0.854| 85.11, 0.887| 80.85, 0.825| 86.17 , 0.881
15 0.30 462 87.23, 0.866| 84.04, 0.884| 82.98, 0.863| 86.17 , 0.883
16 0.31 310 85.11, 0.844| 85.11, 0.837| 82.98, 0.855| 85.11, 0.873
17 0.32 228 85.11, 0.844| 85.11, 0.884| 84.04, 0.858| 86.17 , 0.888
18 0.33 162 86.17 , 0.857| 86.17, 0.913| 84.04, 0.882| 86.17 , 0.894
19 0.34 104 87.23, 0.869| 86.17, 0.891| 81.91, 0.875| 84.04, 0.898
20 0.35 59 87.23, 0.869| 87.23, 0.881| 82.98, 0.816| 85.11, 0.879
21 0.36 36 85.11, 0.848| 88.30, 0.887| 82.98, 0.853| 84.04, 0.853
22 0.37 24 88.30, 0.882| 86.17, 0.859| 81.91, 0.889| 85.11, 0.849
10 .
o o selection.
o | As these images are in different conditions, the border
detection step in two-third of them is done manually and
g o | the automated Hybrid border-detection method [21] is &obpli
3 on the remainder to separate the lesion from the surrounding
3 skin. This is followed by the pre-processing step explaiimed
g Y Section VI-A to prepare the images for performance evadunati
of the diagnosis system.
2 ] As illustrated in Figure 7(b), we use two streams of opti-
misation. The first employs Global optimisation (labellexl a
%027 028 029 03 031 03 033 034 033 036 037 experiment 4a in the flowchart) wherein the whole feature vec
Threshold (Feature Evaluation Rank) ..
tor, consisting of texture and border (geometry and boundar
i & Goometry Features series) features is optimised. The second uses individotal o
[ Texture & Geometry & Boundary-series Featufes misations (labelled as experiment 4b in the flowchart) winere
Fig. 10. 10-fold cross validation of accuracy of texturepmetry and the texture and border features are optlmlsed deVIdua”y

and the resultant optimised features are appended, a®ffurth
explained in the following.

1) Global Optimisation:In this experiment the whole fea-
on test image set (48 malignant and 54 benign), resultihgre vector, consisting of texture and border (geometry and
in the classification accuracies for each of the 11 featub®undary-series) is optimised, using the following thséep
vectors shown in Figure 10. The figure also shows the resyttocedure.
of the highest accuracies obtained in Experiments 1 and 2(i) Feature selection: feature extraction is performed on
for easy comparison, where the highest accuracy (91.49%)rsges from the designatetlain set (the second row of
obtained by choosing the feature vector correspondingdo thable IlI) and for each image a vector of 35455 features
0.33 threshold (the feature vector for this threshold caosegr is extracted, including 35396 wavelet-based texture featu
151 texture, 11 geometry and 48 boundary-series featurem)d 59 border features (11 geometry and 48 boundary-series
The obtained AUC value for this feature configuration is 8.93features). The extracted features are evaluated and rdmked
using the Gain Ratio method. This results in various evalnat
ranks in the range of [0, 0.6], each corresponding to a subset
@ configuration) of features.
ed - ) . . .
(i) Parameter tuning: 26 various evaluation ranks, in eang
of [0.35 to 0.6] with 0.1 increment, are empirically chosen a
For this experiment thémage-setXrom Table Il is used. threshold_s and the correqundmg fe_atu_r € subsets areiexira
o . ... from the images of the designatedlidation set(the second
In order to to reduce bias in terms of evaluating prediction e .
. . -row of Table Ill). Then, the RF classifier is applied on each
accuracy of the developed diagnostic system, we consm#er . : . . o
. . i . S eature configuration to classify the images of the valmhati
three independent image sets; a train, a validation andta tes e .
. . et. In each classification process, various parameterseof t
set of 99, 87 and 103 dermoscopy images, respectively. Rcsifi .
i . . c tass:lfler (number of trees) are tested and the parametehwhi
other words, as our technique requires various parameiers S o .
. .. resulted in highest classification accuracy is selected.
be selected (such as what features to use and classifiefispeci
parameters S.UCh as number pf trees), these paramete'rsor?eeds(t)ne might attempt to merge all three subsets into a single da@add¢hen
be chosen without ever looking at the test set. The aim is d6 10 fold cross validation. However, in each fold of the dation, different
fix all the parameters prior to performing the final evaluatiofeatures would be selected and different classifier parametged, making
f th h . 10 fold lidati it difficult to explain behaviour. Furthermore, 10 fold crosdidation can be
of the system on the test set (using old cross valiaa r'Dn)misused, if it is run repeatedly by the user on the same dassest;hing for

order to avoid any bias in selecting the features or in par@mebest prediction accuracy by tweaking parameter behaviour.

boundary-series features at various thresholds of the ®aitio feature
selection method, using the Random Forest classifier.

D. Experiment 4: Performance Evaluation of the Propos
Computer-aided Diagnosis of Melanoma
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TABLE VI TABLE VIl

NUMBER OF FEATURES AND THE RESULTANTLO-FOLD 10-FOLD CROSSVALIDATION OF PERFORMANCE OF THE PROPOSED
CROSSVALIDATION OF ACCURACY AND AUC VALUE USING RANDOM DIAGNOSTIC SYSTEM USING TRAIN SET OF99 IMAGES, VALIDATION SET
FOREST CLASSIFIER AT VARIOUS THRESHOLDS OF THEBAIN RATIO OF 87 IMAGES AND TEST SET OFLO3DERMOSCOPY IMAGES APPLYING
FEATURE SELECTION METHOD APPLIED ON VALIDATION IMAGE SET. THE TWO OPTIMISATION STREAMS
[ Threshold | Feature No.[ No. of trees| Accuracy | AUC | [ Stream [ Feature No.| Accuracy | Sensitivity | Specificity | AUC ]
0.60 2 10 66.67% | 0.662 Global 23 01.26% | 84.09% | 96.61% 0.937
0.59 2 10 66.67% | 0.662 Global 166 93.21% | 90.90% | 94.92% 0.946
0.58 8 50 64.37% | 0.618 Individual | 387 88.35% | 88.64% | 89.06% 0.939
057 10 10 87.36% | 0.827
0.56 12 5 86.21% | 0.828
0.55 14 10 85.06% | 0.829 2) Individual Optimisation:In this experiment the texture
8'2‘3‘ 12 g gg'izﬁ 8'258 and border features are optimised individually and theltasu
052 >3 > 86205 [ 0832 optimised features are combined. In or_der to do that, the fi_rs
0.51 23 2 86.21% | 0.832 two steps of the procedure performed in the previous section
8-22 ii ;0 gg-g?gf 8-2;3 (global Optimisation) is conducted independently for eath
. . 0 . . . .
048 5T 3 96.91% T 0.848 border and texture features. Thls mvplvgs performngg‘mt
047 62 10 86.21% | 0872 selection and parameter tuning usitigin and validation
0.46 67 90 85.06% | 0.887 image sets(the second row of Table Ill) to determine the
0.45 8 70 85.06% | 0.823 optimised border features and optimised texture featBgs.
0.44 91 5 87.36% | 0.829 isual i tion. thresholds for text 4 bord
043 39 155 8621% 1 0.891 visual inspection, thresholds for texture and border fieestu
0.42 122 55 83.91% | 0.847 are empirically chosen in range of [0.30, 0.59] and [0.BI].
0.41 149 200 85.05% | 0.900 respectively. The optimised texture feature vector inefud79
0, . . .
g'gg ;gg ég 22'8202 8'25 features, and the optimised border feature vector incl@les
038 555 550 85060 | 0915 features. The individual accuracy of texture and bordetufea
0.37 275 10 85.06% | 0.883 on evaluation image set is 78.16% and 90.81%, respectively.
0.36 302 S 86.21% | 0.879 Then, the two optimised sets are combined yielding in total
0.35 387 20 85.06% | 0.886

387 optimised features, and the classifier parameter igdtune
using the validation image set (humber of trees = 35). Rall
H]e RF classifier is applied on the test image set, using the
optimised feature set and the classification parametedtime

| ﬁée previous step. This results in an accuracy of 88.35%dusi

Table VII shows the number of features at various thres
olds, the resultant 10-fold cross-validation of the clisaiion
performance (accuracy and AUC) and the corresponding c
sification parameter; number of trees of the RF classifier.
shown in the table the best AUC and accuracy results
obtained if 0.4 threshold, 166 features, and 15 trees in the3) Comparison and Observationstable VIII shows the
random forest classifier are employed. For a more accurd@fold cross-validation of performance (evaluated inmer
evaluation of the system performance, and considering thk accuracy, sensitivity, specificity and the area under the
number of images in the test set (103 images, according to fR@C curve) of the proposed diagnostic system for the two
second row of Table Ill), we also consider threshold of 0.52ptimisation streams; global and individual, which shows
with 23 number of features, as explained in the following. the overall performance of the global stream is higher than

(i) Classification: the parameters (Gain Ratio, threslhollndl\”duaII approach (higher accuracy, smaller featurecepa

and number of trees of the RF) tuned in the previous ste rAn interesting observation of this experiment is the dis-
P P &Bution of features in the optimised feature vector; amon
then used to evaluate the overall performance of the prapo features (selected at the threshold of 0.52), four featur
diagnostic system. The optimised feature configuration &' border-based and 19 are texture-basea Ailso at the 0.4
threshold of 0.4 with 166 features is extracted from the iesag . X :

designated as thest sef(the second row of Table Ill). The RFthreShOId’ out of 166 selected features only glght (one s
o . ) . : geometry based and the rest are boundary-series based) are
classifier with 15 trees is then applied and resulted in awyur

0, iori -
of 93.21% (using 10-fold cross-validation). As stated abihe border (4.82%) and the majority are texture-based features

highest performance is obtained when 166 features are u%\gg le 1X shows the ranking of these border-based features.

on our image set. It might be noted that the ratio of featuwes't shown in the table, among the eight border features that
. ge set. 1t mig ) .~ contribute in the reported accuracy, the perimeter feata®
image set used in this study could be considered to be high ar(lld ;
. o opted from previous works, and the other seven featuees ar
may therefore introduce a degree of bias in the results due to

) ; " . . new and extracted from the boundary-series of the lesion.
problems associated with over-fitting. To obtain more kééa . . .
. . Figure 11 shows the Gain Ratio values of the features
and robust results smaller ratios need to be used if somewhat * o . -
nominated as optimised. We have estimated the contribofion

lower accuracy and AUC could be tolerated. Therefore, % border features in the optimised feature set by caloglat

have also tested the system using threshold of 0.52, with . o~ ST
] i e accumulative border features’ Gain Ratio divided byuacc
number of features, which results in an accuracy of 91.26%

Other performance measures of the proposed approach mulative features’ Gain Ratios (Equation 24). Consideting
. P X prop pp ?éehighest—ranked features, which consists of six bordar fe
listed in the first and second row of Table VIII.

tures and 29 texture features, the approximate contribwifo

)-fold cross-validation). Other performance measurethef
a%oposed method are listed in the second row of Table VIII.
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TABLE IX
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TABLE X
THE 20 FIRST-RANKED TEXTURE-BASED FEATURES L: LUMINANCE, R:
RED, G: GREEN, B: BLUE.

[ Rank | feature | Description [ Rank | Measure [ Channel] Level [ Node |
9 Norm(BS) BS: Boundary series Average-energy L 3 4.1.3
10 Norm(WA1(BS)) | WAn:Wavelet approximation compone 2 Average-energy G 3 41.1
13 Norm(WA3(BS)) | level n 3 Kurtosis B 1 4
14 Norm(WA2(BS)) 4 Average-energy G 2 4.1
31 Norm(Hist(BS)) | Hist: Histogram 5 Average-energy L 3 4.1.1
34 Eng(Hist(BS)) Eng: Energy 6 Energy L 3 411
139 Perimeter belongs to the Geometry category 7 Standard deviation L 3 411
140 Mean(Hist(BS)) 8 Kurtosis G 1 4
11 Average-energy L 4 4.11.2
12 Average-energy L 2 4.1
15 Kurtosis B 2 4.2
060 16 Standard deviation L 4 1.1.1.3
. 17 Energy L 4 1.1.13
058 o 18 Average-energy L 4 2311
056 19 Average-energy L 3 4.1.2
' ® 20 Average-energy L 2 4.2
054 21 Kurtosis L 1 4
o w 22 Sub-level ratio of Average-energy B 4 1.1.1.1
§ 0.52- 23 Average-energy B 4 4111
c o5 - 24 Average-energy L 3 4.4.4
© I
O] am
0.48 ——
am
0.46- e applied in the other studi®s(ii) texture features extracted
0.44- i from colour channels of Green and Blue are among the first
0.42 — 20 optimised texture features, which justifies our decigmn
04 ‘ ‘ ‘ ‘ ‘ N, S incorporate the independent colour channels of Red, Green,
"0 20 40 Feato Nuio0 120 140 160 Blue along with the Luminance, as opposed to other studies
. _ _ , _ where Luminance only is uséd(iii) the optimised features
Fig. 11. The Gain Ratio values of the features in the optimfeedure set.

border-based features is 17% , however its overall corttobu

in the optimised set of 166 features is only 5%.

Approximate Contribution=

> GainRatio(gorder)
Z GainRatio(A”)

x 100 (24)

are derived from both low and high frequencies which justifie
our choice of tree-structured decomposition over the pigam
structured wavelet, and (iv) particular measures we prepos
apply in this diagnostic systena.g.Kurtosis) are prominent in
the final optimised feature set. Table XI shows the advastage

TABLE XI
EFFECT OFGAIN RATIO-BASED FEATURE SELECTION METHOD

[ | Feature No.[ Accuracy | Time (sec) |

without feature selectior] 35455 81.55% 2.45
with feature selection 23 91.26% 0.05

of applying the GRFS method in our system, which includes
a significant reduction (by a factor of 1542) in the dimension
feature space and in the time required for classification (50

According to the estimated contribution, we suggest thaes). Moreover, the classification accuracy is improvgd b
texture-based features play the dominant role in the diassipe,. Note that the figures listed in Table XI are obtained

the clinical knowledge we obtained from our meetings witBjassifier parameters tuned over the validation image set.
experienced dermatologists at the Royal Melbourne Hdspita

Melbourne, Australia. We are informed that, when they ex-
amine an image, they focus on the changes in the internaTo assess the statistical significance of 4th level of wawideomposition,
structure of the lesion while its external attributes sush #e can consider the proportion of texture based featureshwiie Level 4

. in the original set of 35396 texture based features and camjpao the
border and shape are considered Secondary' proportion of Level 4 features which get automatically sedcusing gain

. . ratio for our optimised feature set (which has 158 textureehd®atures).
The 20 first-ranked texture-based features are listed {Re optimised feature set contains 67 level 4 features andrtpimal feature
Table X. Note the reason that ranking extends to 24 is thegt contains 6656 level 4 features. Thus, using a hypergeiondétribution,

four features among the first 24 features are border-based ( e can compute the probability that the opt_imised feature adostat least
Level 4 features, under a model in which 158 features ardoraly

thus not included in the table), and the remainder 20 featurR ected without replacement from 35396 features. Thisaiidty is 6.6E-12,
are texture-based. The following conclusions are deriveohf indicating that there is a statistically significant ovenesentation of Level 4
this table: (i) six out of 20 features belong to the nodes frofﬁa;tures in the_optimised feature set (using a significancalye of 0.05).

. L In the optimised feature set (166 features), the number aifesiextracted
the forth level, which vindicates our use of four-level Wte ¢, R G, B adds up to 97, i.e. more than 58%, and if we excludesth

decomposition as opposed to the three-level decompositinder based features which are colour-independent, tewauld be 62%.
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VII. SUMMARY AND CONCLUSION proposed system was evaluated by conducting two streams

} ) ) of optimisation on a set of 289 dermoscopy images (114
In this paper we have presented a computer-aided diagnqgigignant and 175 benign) subdivided into three image sets;

system for melanoma. The system covers the main diagipgin, validation and test. Two optimisation streams were
sis components of segmentation, feature extraction, fléatdydies: (1) the global optimisation, in which the wholettza
selection and cIaSS|f|cat|or1. We _have elected to use tor, consisting of texture and border features is ogeah;
manu'al (under de'rmatolog|sts’ gqldance) and automatgd (@5 Individual optimisation wherein the texture and border
applying the Hybrid border-detection method) borders i theatyres are optimised individually and the resultantrojstid
segmentation step. This, we believe, is essential in at#lyra feapyres are integrated. The experimental results sholatd t
assessing the ability of diagnostic system in both semi agg applying the Gain Ratio feature selection method and
fully automated manners. It is also worthwhile to highlighfhe Random Forest classifier, global optimisation outperéo
that the system proposed in this paper is not designed tg brifgividual optimisation. The proposed system achieves and
about complete autonomy in the diagnostic process or replag.cyracy of 91.26% and AUC value of 0.937, when 23 features
human judgment, but rather has potential as an assisti@mBYSye ysed. Although the results cited here were obtaineddghro
that could be used to screen images and direct physiciaeriments conducted on a particular image set, theyatelic
attention to cases that have high risk. that high diagnostic accuracy can be achieved when existing
The feature extraction process involved a guided genggatures are optimally blended with novel ones. The obthine
ation of categorized features, extracted from (i) wavelggerformance of our system is in fact highly comparable with
based texture analysis, (ii) geometrical measurementis{ién the state-of-the-art melanoma recognition systems regart
boundary-series analysis in spatial and frequency domaifise recent survey by Maglogiannis et al. [23]. However, the
The texture features were extracted from application of-fouaythors acknowledge that due to lack of a standard benchmark
level wavelet decomposition on red, green, blue and luntieartor dermoscopy (melanoma) imaging, it is not easily feasibl

colour channels in addition to employing a comprehensive $8 provide a comprehensive and quantitative comparatiayst
of statistical measures on all the nodes of the wavelet-tregnong the existing classification methods.

The geometry measures were extracted from indices that are\n important finding is the clear advantage gained in

commonly used in the literature as well as novel ones deﬁn@@mplementing texture with border and geometry features

in this paper to reflect the expert opinion of dermatologistsompared to using texture information only. Another inter-

Boundary-series analysis was applied on dermoscopy imag&sing finding of this paper is that in the melanoma classi-

for the first time in this paper, wherein features were ext®c fication application texture features play the dominane rol

by constructing a boundary-series model of the lesion bordghd make much higher contribution compared to border-based

and analysing it in spatial and frequency domains by applyifieatures. Among border features, which include geometdy an

histogram analysis and wavelet transform. boundary-series features, the latter has been shown to ke mo
A computationally efficient feature selection method, lbasénformative and obtain higher evaluation ranks (Gain Ratio

on Gain Ratio, is adopted and shown to be highly compargalues) than geometry in this application.

ble with three other well-known feature selection methods,
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