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Abstract

Mutual information (MI) based approaches are a popu-
lar feature selection paradigm. Although the stated goal
of MI-based feature selection is to identify a subset of
features that share the highest mutual information with
the class variable, most current MI-based techniques
are greedy methods that make use of low dimensional
MI quantities. The reason for using low dimensional
approximation has been mostly attributed to the diffi-
culty associated with estimating the high dimensional
MI from limited samples. In this paper, we argue a dif-
ferent viewpoint that, given a very large amount of data,
the high dimensional MI objective is still problematic
to be employed as a meaningful optimization criterion,
due to its overfitting nature: the MI almost always in-
creases as more features are added, thus leading to a
trivial solution which includes all features. We propose
a novel approach to the MI-based feature selection prob-
lem, in which the overfitting phenomenon is controlled
rigourously by means of a statistical test. We develop lo-
cal and global optimization algorithms for this new fea-
ture selection model, and demonstrate its effectiveness
in the applications of explaining variables and objects.

Introduction
Within the rich literature on feature selection, mutual infor-
mation (MI) based approaches form an important paradigm.
Over years, these methods have gained large popularity,
thanks to their simplicity, effectiveness and strong theoret-
ical foundation. Given an input data of M features X =
{X1, . . . , XM}, and a target classification variable C, the
goal of MI-based feature selection is to select the optimal
feature subset X̃

∗
= {X̃1, . . . , X̃m} that shares the maximal

mutual information with C, defined as

I(X̃;C) ,
∑
X̃,C

P (X̃, C) log

(
P (X̃, C)
P (X̃)P (C)

)
(1)

Despite its theoretical merit, implementing this so-called
Max-Dependency criterion is challenging, due to the dif-
ficulties in estimating the multivariate probability distri-
butions P (X̃) and P (X̃, C) from limited samples. There-
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fore, all current MI-based methods approximate this Max-
Dependency criterion with low dimensional MI quanti-
ties, in particular the relevancy I(Xi;C), joint relevancy
I(XiXj ;C), conditional relevancy I(Xi;C|Xj), redun-
dancy I(Xi;Xj) and conditional redundancy I(Xi;Xj |C).
These low-dimensional MI quantities capture only low-
order feature dependancy. Seventeen low-dimensional MI-
based criteria can be found in (Brown et al. 2012), summa-
rizing two decades of research in this area.

The reason for abandoning the Max-Dependency criterion
in Eq. (1), is commonly attributed to the technical difficul-
ties encountered in estimating the joint multivariate densi-
ties P (X̃) and P (X̃, C) with limited samples (Peng, Long,
and Ding 2005). In our opinion, besides this practical con-
straint, there exists a more fundamental theoretical limita-
tion with using the Max-Dependency criterion, that has to do
with the monotonicity property of the mutual information:
the MI never decreases when including additional variables,
that is, I(X̃ ∪Xi;C) ≥ I(X̃;C) (Cover and Thomas 2006;
de Campos 2006). Thus, adding more features into the set
X̃ will likely increase the value of the Max-Dependency
criterion, unless I(Xi;C|X̃) ≡ 0, which rarely occurs in
practice, due to statistical variation and chance agreement
between variables. The Max-Dependency criterion is there-
fore usually maximized when all variables in X are included.
Due to this overfitting nature of the mutual information mea-
sure, the Max-Dependency criterion cannot be employed
as a meaningful optimization criterion for feature selection,
even when large samples are available.

Contribution: We take a novel view of the MI-based fea-
ture selection problem that is based on the high-dimensional
Max-Dependancy criterion in (1). We propose to systemati-
cally and rigourously resolve the overfitting issue by means
of using a statistical test of significance for the MI. We
formulate novel local and global optimization criteria, and
propose effective solutions for these problems. Finally, we
demonstrate the usefulness of our proposed approaches in
the applications of explaining variables and objects in data.

A new framework for incremental high
dimensional MI-based feature selection

Let us begin by considering the Max-Dependency criterion
in Eq. (1) and proposing an incremental optimization proce-



dure similar to other popular MI-based heuristics. Suppose
we have already selected the feature set X̃m−1 and would
like to expand it to X̃m by adding an additional feature X̃m.
Due to the decomposition property of the mutual informa-
tion (Cover and Thomas 2006)

I(X̃m;C) = I(X̃m−1;C) + I(X̃m;C|X̃m−1) (2)

the incremental objective value added by X̃m is thus the con-
ditional mutual information (CMI) I(X̃m;C|X̃m−1). Since
the CMI is non negative, adding any arbitrary feature to
X̃m−1 will almost surely increase the Max-Dependency cri-
terion, due to chance agreement. To rectify the overfitting
nature of the Max-Dependency criterion, we propose to pro-
ceed as follows. While the Max-Dependency criterion will
always increase, the magnitude of this increment becomes
smaller and smaller as more features are added to X̃m, i.e.,
adding an additional feature improves little knowledge about
C. Indeed we can expect that at some point, this increment
will be so small that it becomes statistically insignificant. In-
formation theory provides us with an important tool to quan-
tify the statistical significance of this increment. We consider
the following classical result by Kullback (Kullback 1968;
de Campos 2006), which, in the specific context of feature
selection, can be stated as follows:

Theorem 1. Under the null hypothesis that X̃m and C are
conditionally independent given X̃m−1, the statistic
2N ·I(X̃m;C|X̃m−1) approximates to a χ2(l(X̃m, X̃m−1))
distribution, with l(X̃m, X̃m−1) = (rC − 1)(r̃m − 1)rX̃m−1

degree of freedom, where r̃m, rC and rX̃m−1
are the number

of categories of X̃m, C and X̃m−1 respectively, andN is the
number of samples.

Herein, we assume that all features have been discretized
to categorical variables. Note that in case X̃m−1 = ∅, then
rX̃m−1

= 1. Otherwise rX̃m−1
=
∏m−1
i=1 r̃i, where r̃i is the

number of categories of X̃i. In general, the theorem also
holds for the case where X̃m and C are, each of them, a
set of random variables (RV), rather than a single RV. In
such case, rX̃m

and rC shall be the aggregate number of cat-
egories of such a RV set, similar to rX̃m−1

. We note that
the quantity 2N.I(X1;X2) is in fact the well known G-
statistic for the test of independence between random vari-
ables. Kullback’s statistic is more general, in that it also pro-
vides a means for testing conditional independence. This re-
sult provides us with a rigorous means to control the over-
fitting problem. Only features that are statistically signif-
icantly dependent on the class variable C, given all the
other already selected features, should be included. Given
a statistical significance threshold α, we propose an incre-
mental feature selection scheme for maximizing the Max-
Dependancy criterion (1) as in Algorithm 1.

Here, χα,l(X̃m,X̃m−1)
is the critical value corresponding to

a given significance level 1 − α, i.e. the value such that the
probability Pr(χ2(l(X̃m, X̃m−1)) ≤ χα,l(X̃m,X̃m−1)

) equals

α, where the degree of freedom l(X̃m, X̃m−1) is determined

Algorithm 1 iSelect : incremental Feature Selection

Repeat given X̃m−1, a new feature:

X̃m = argmax
Xi∈X\X̃m−1

I(Xi;C|X̃m−1)−
1

2N
χα,l(Xi,X̃m−1)

can be added, if I(X̃m;C|X̃m−1) >
1

2N
χα,l(X̃m,X̃m−1)

.
Until no more feature could be added.

as per Theorem 1. If we takeα = 0.95, then the MI test of in-
dependence is at the traditional threshold of 5% significance.
If we take α = 0.99, then the MI test of independence is
at the strict threshold of 1% significance. With this selection
scheme, we add the feature that has the most statistically sig-
nificant conditional MI with the class variable C, given all
the previously added features, until no more feature can be
added. A reasonable starting set is the single feature that has
the maximum (unconditioned) MI with C, or the set of two
features that jointly shares the maximum MI with C. The
significance threshold α serves to control the model com-
plexity, i.e. number of features to be included. The lower the
α value, the more relaxed the statistical test, and thus more
features will be selected. The computational complexity of
adding the m-th feature is O((M −m)mN).

High dimensional MI-based feature selection
as a global optimization problem

In the previous section, we discussed an incremental, greedy
scheme for MI-based feature selection. Similar to other MI-
based greedy approaches, this heuristics will only converge
to a locally optimal solution at best. We next formalize the
feature selection problem as a global optimization problem,
maximizing the adjusted dependancy defined as:

D(X̃;C) , I(X̃;C)− 1

2N
χα,l(X̃,∅) (3)

Here, the degree of freedom l(X̃, ∅) = (
∏|X̃|
i=1 r̃i−1)(rC−1)

is determined as per Theorem 1. The intuition behind this
objective is clear: we aim to find the feature set with the best
mutual information with the class variable, but penalizing it
according to the significance of the MI value. Larger feature
sets always yield higher mutual information, but not neces-
sarily better adjusted dependancy overall. An appealing in-
terpretation for the Max-Adjusted Dependancy criterion in
(3) is in terms of model goodness-of-fit and model com-
plexity. I(X̃;C) measures model goodness-of-fit—the more
variables we add, the more information they carry about C.
The price to pay is, however, an increment in model com-
plexity, as measured by 1

2N χα,l(X̃,∅), which increases as the
feature set grows.

The optimization task is to find the subset X̃
∗

of X that
globally maximizes the adjusted dependency scoreD(X̃;C)
in Eq. (3). The naı̈ve exhaustive enumeration search is pre-
sented in Algorithm 2. It systematically enumerates feature
sets of increasing size m. This is clearly not a viable option,
requiring exponential time, as there are 2M − 1 subsets. In



the next section, we will show how the globally optimal so-
lution can be identified in polynomial time instead. The key
insight into this development is that, we can bound the max-
imum feature set cardinality, above which any feature set
of higher cardinality cannot be optimal. For ease of exposi-
tion, we shall start by considering the simpler case where all
features have the same number of categories, and then later
relax this assumption. We first define the penalty function as

p(X̃) ,
1

2N
χα,l(X̃,∅).

Algorithm 2 Naı̈ve global search

X̃
∗
:= ∅

for m = 1 to M do
X̃
∗
m := argmaxX̃m

{D(X̃m;C)|X̃m ⊂ X; |X̃m| = m}
If D(X̃

∗
m;C) > D(X̃

∗
;C) then X̃

∗
:= X̃

∗
m.

end for

All features have the same number of categories
The following properties will be algorithmically important:
Property 1. For all feature sets of the same size, the penalty
terms p(·) are the same.

Thus, instead of writing p(X̃), we can write p(|X̃|), or
p(m), with the implication that any arbitrary feature set
of size |X̃| = m gets this same penalty of p(m) =
1

2N χα,(rC−1)(km−1).

Property 2. p(m), m ∈ Z+ is a non-negative, monotonic
non-decreasing function in m.

This holds true, based on the fact that for a fixed signifi-
cance level α, the critical threshold χα,l of the Chi-squared
distribution increases as the degree of freedom l increases
(Myers and Well 2003). We now define

g∗(m) , max
X̃⊂X,|X̃|=m

I(X̃;C) (4)

as the best goodness of fit of all feature sets of size m.
Property 3. g∗(m) is a monotonic non-decreasing function
upper-bounded by I(X;C).

Let us also define D∗(m) , g∗(m)− p(m), i.e., the best
adjusted dependancy score of all feature sets of size m, then
clearly

maxD(X̃;C) = max
m∈[1,M ]

D∗(m) (5)

The relationship between these quantities is illustrated in
Figure 1. The best goodness of fit g∗(m) is monotoni-
cally non-decreasing in m, and approaches its upperbound
I(X;C) as m increases. The penalty term p(m) grows
strictly monotonically increasing inm. The best adjusted de-
pendancy scoreD∗(m) is the difference between g∗(m) and
p(m). It can be observed that once the complexity penalty
p(m) is larger than the maximum goodness of fit I(X;C),
then D∗(m) becomes negative and will remain so as m
increases. This observation suggests us that an exhaustive
search on all m values is not necessary.
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Figure 1: The relationship between the adjusted dependancy,
goodness of fit and penalty

Theorem 2. (Max-Cardinality) The size of the optimal fea-
ture set |X̃

∗
| is not greater than m∗ , max{m| p(m) <

I(X;C)} .

Proof. Clearly when p(m) has grown larger than the max-
imum goodness of fit I(X;C), then the best adjusted de-
pendancy score D∗(m) for any m > m∗ will be < 0,
and thus can not be globally optimal, noting that we have
D(∅;C) = 0.

Thus, in the worst case, we only need to search among
feature sets of cardinality ≤ m∗, which is characterized by
the following result.

Theorem 3. m∗ ≤ dlogk(
2N.I(X;C)
rC−1 + 1)e − 1

Proof. If we can identify the minimum integer m̂ satisfying

p(m̂) ≥ I(X;C)⇔ 1

2N
χα,(rC−1)(km̂−1) ≥ I(X;C)

then m∗ ≤ m̂ − 1. Unfortunately, since m̂ does not admit
a closed-form solution, as χα,l does not have an analytical
form, we provide an over-estimate for m̂ as follows. Note
that χα,l is the value such that p(χ2(l) ≤ χα,l) = α. Since
generally we use α � 0.5, the mean value l of the χ2(l)
distribution is an under-estimate for χα,l, i.e.,

1

2N
χα,(rC−1)(km̂−1) �

1

2N
(rC − 1)(km̂ − 1)

Now we will require a stricter condition for m̂, that is

1

2N
(rC − 1)(km̂ − 1) ≥ I(X;C)

⇔ m̂ ≥ logk(
2N.I(X, C)
rC − 1

+ 1) (6)

For m ≥ logk(
2N.I(X,C)
rC−1 + 1), we have p(m) ≥ I(X;C),

thus m∗ ≤ dlogk(
2N.I(X;C)
rC−1 + 1)e − 1.

Let m̂∗ , dlogk(
2N.I(X;C)
rC−1 + 1)e − 1, then the largest set

size we have to search is m̂∗. In fact, we may even terminate
the search before m reaches m̂∗.



Theorem 4. (Early stop) Suppose the search is currently at
m = me, the current best set is X̃

∗
. If I(X;C)−I(X̃

∗
;C) ≤

p(me + 1) − p(me), then the globally optimal feature set
size is X̃

∗
.

Proof. We are to decide whether to expand the feature set
size to m ≥ me + 1. The maximum bonus for such ex-
pansion is bounded by I(X;C)− I(X̃

∗
;C), while the addi-

tional penalty is at least p(me + 1) − p(me). If I(X;C) −
I(X̃

∗
;C) ≤ p(me + 1) − p(me) then the adjusted depen-

dancy score will always decrease as more features are added,
thus the search can be stopped at me and X̃

∗
is the globally

optimal feature set.

Using the results in Theorem 3 and 4, our proposed global
approach, named GlobalFS, is presented in Algorithm 3.

Algorithm 3 GlobalFS : Global Feature Selection

X̃
∗
:= ∅

for m = 1 to dlogk(
2N.I(X;C)
rC−1

+ 1)e − 1 do
X̃
∗
m := argmaxX̃m

{D(X̃m;C)|X̃m ⊂ X; |X̃m| = m}
If D(X̃

∗
m;C) > D(X̃

∗
;C) then X̃

∗
:= X̃

∗
m;

If I(X;C)− I(X̃
∗
;C) ≤ p(m+ 1)− p(m) then

{Return X̃
∗
; Exit;}

end for

Theorem 5. GlobalFS admits a worst-case time complex-
ity of O(M logk NN logkN) in the number of features M ,
samples N and categories k.

Proof. Clearly, the largest set size we have to consider is
m̂∗ = dlogk(

2N.I(X;C)
rC−1 +1)e−1. AssumingN � log rC ≥

H(C) ≥ I(X;C), we have that m̂∗ ∼ logkN . As there
are O(M m̂∗

) subsets of size up to m̂∗ and each set requires
O(m̂∗N) time to process, the algorithm admits an overall
complexity of O(M logk NN logkN).

Features with different number of categories
In this case, the penalty terms for feature sets of the
same cardinality are no longer the same. Therefore, we
shall replace the penalty function p(m) with p∗(m) ,
minX̃m⊂X,|X̃m|=m p(X̃m), that is, the minimum penalty
amongst all feature sets of size m, identified via the follow-
ing result.
Theorem 6. The minimum penalty p∗(m) over all feature
sets of size m corresponds to the set comprising m features
of X with fewest number of categories.

Proof. Let X̃
+

m = {X̃+
1 , . . . , X̃

+
m} be the set of m fea-

tures in X with the smallest number of categories, and
X̃m = {X̃1, . . . , X̃m} be m arbitrary features in X, with
the corresponding number of categories being {r+1 , . . . , r+m}
and {r̃1, . . . , r̃m}. We show that p(X̃

+

m) ≤ p(X̃m), i.e.,
χ
α,l(X̃+

m,∅)
≤ χα,l(X̃m,∅). Indeed, this holds true, based on

the fact that for a fixed significance level α, the critical

threshold χα,l of the Chi-squared distribution increases as
the degree of freedom l increases (Myers and Well 2003).
Herein it is easily seen that (rC − 1)(

∏m
i=1 r

+
i − 1) ≤

(rC − 1)(
∏m
i=1 r̃i − 1), i.e., l(X̃

+

m, ∅) ≤ l(X̃m, ∅).

Note that p∗(m) is a non-negative, increasing function of
m. It is straightforward to show that Theorem 4 still holds
when p∗(m) is used in place of p(m). Furthermore, Theo-
rems 3 and 5 also hold true, where k is replaced by kmin , the
smallest number of categories of features in X. Thus we can
employ Algorithm 3 for this case, with k and p(m) replaced
by kmin and p∗(m).

To further speed up the search, it is noted that for an m
value, it is not needed to do a full exhaustive search on all
feature sets of size m, thanks to the following observation:

Theorem 7. (Feature set bypassing) For any feature set X̃,
if I(X;C) − I(X̃

∗
;C) ≤ p(X̃) − p(X̃

∗
), then X̃ cannot be

globally optimal and thus can be bypassed.

Proof. Recall that X̃
∗

represents the currently best solu-
tion. Moving from X̃

∗
to any other set X̃, the maximum

bonus gained for the adjusted dependancy score is I(X;C)−
I(X̃

∗
;C), while the actual additional penalty incurred is

p(X̃) − p(X̃
∗
). If the maximum bonus is smaller than the

incurred penalty, then X̃ cannot improve the current objec-
tive value, and thus can be bypassed.

The computational value of this theorem is that, for any
feature set of sizem, it takesO(mN) time to process, which
is mainly the time required for computing the mutual infor-
mation I(X̃;C). The penalty function, on the other hand,
can be computed in O(1) time via a lookup table. Thus, us-
ing this simple check which costsO(1) time, a large amount
of computation can be avoided.

In Table 1, we recommend the best application scenario
for each algorithm. iSelect and GlobalFS are both based
on high-dimensional mutual information, and thus are most
suitable for applications where a relatively large number of
samples are available, e.g., from hundreds of samples. Due
to its higher complexity, GlobalFS is suitable for problems
with a small to medium number of features, e.g., several
tens, whilst iSelect is recommended for problems having a
larger number of features.

Table 1: Algorithm summary

#Samples N #Features M
10s 100s-1000s

10s Not applicable
100s-1000s GlobalFS iSelect

Experimental evaluation
We experimentally demonstrate the usefulness of the pro-
poses approaches in two applications: Variable explanation
and object explanation. Variable explanation aims to select
a small set of variables that could potentially shed light



Table 2: Dataset summary. M: #features, N: #samples, #C:
#classes

Data M N #C Algorithm
Mushroom 21 8124 2 GlobalFS
Waveform 21 5000 3 GlobalFS
Dermatology 34 366 6 GlobalFS
Promoter 57 106 2 GlobalFS
Spambase 57 4601 2 GlobalFS
Splice 60 3190 3 GlobalFS
Optdigits 64 3823 10 GlobalFS
Arrhythmia 257 430 2 iSelect
Madelon 500 2000 2 iSelect
Multi-features 649 2000 10 iSelect
Advertisements 1558 3279 2 iSelect
Gisette 5000 6000 2 iSelect

on to the data generating process, i.e., explaining a target
variable, often taken to be the class C. Object explanation,
on the other hand, is a relatively novel problem, in which
one aims to select a small set of features that distinguish
the selected object from the rest of the data (Micenkova
et al. 2013). Object explanation is often employed to ex-
plain outliers, but could be also used to explain any ordinary
objects in principle. We compare our approach with other
well-known MI based methods, namely maximum relevance
(MaxRel), mutual information quotient (MIQ) (Ding and
Peng 2003), conditional infomax feature extraction (CIFE)
(Lin and Tang 2006), conditional mutual info maximiza-
tion (CMIM) (Fleuret and Guyon 2004), joint mutual in-
formation (JMI) (Brown et al. 2012) and quadratic pro-
gramming feature selection (QPFS) (Rodriguez-Lujan et al.
2010). Our implementation (in C++/Matlab–available from
https://sites.google.com/site/vinhnguyenx) supports multi-
threading to maximally exploit the currently popular off-the-
shelf multicore architectures. A quad-core i7 desktop with
16Gb of main memory was used for our experiments, in
which GlobalFS was executed with 6 threads running in
parallel. We note that other incremental MI-based feature se-
lection approaches, including iSelect, are generally fast even
without parallelization.

Variable Explanation
We employ several popular data sets from the UCI machine
learning repository (Frank and Asuncion 2010) with vary-
ing dimensions and number data points, as summarized in
Table 2. The aim of variable explanation is to select a rela-
tively small set of features that are helpful in interpreting a
target variable. Ideally, the ground-truth for evaluating this
task would be, for each data set, a set of annotations in-
dicating which features are important and which are not.
Since this information is generally not available for real data,
we thus employ the classification error rate as an indica-
tive measure. For classifier, following (Herman et al. 2013;
Rodriguez-Lujan et al. 2010) we employ support vector ma-
chine (Chang and Lin 2011) with linear kernel and the reg-
ularization factor set to 1. For MI computation, continu-
ous features are discretized to 5 equal-frequency bins, while
classification is performed on the original feature space. We

tested our algorithms with significance parameter at α =
0.99 and α = 0.95, corresponding to statistical tests at 1%
and 5% significance respectively, but since the results are
very similar, herein we report the results with α = 0.99.
GlobalFS was tested on data sets with small to medium
number of features. For larger dataset, we employed iSe-
lect which is initialized using the two features with best ad-
justed dependancy score provided by GlobalFS. Note that
both GlobalFS and iSelect automatically select the number
of features, while other MI-based methods all require the
number of feature as an input parameter. We use the number
of features returned by GlobalFS/iSelect as input to these
algorithms. The results of this experiment are detailed in
Table 3, where we report the average error rate across 100
bootstrap runs. In each run, N bootstrap samples are drawn
for the training set, while the unselected samples serve as
the test set. In order to summarize the statistical significance
of the findings, as in Herman et al., we employ the one
sided paired t-test at 5% significance level to test the hy-
pothesis that GlobalFS/iSelect or a compared method per-
forms significantly better than the other. Overall we found
that GlobalFS/iSelect perform strongly, consistently return-
ing a small set of features that achieve high classification
accuracy amongst the compared methods.

Object Explanation
The object explanation task is to select a small set of fea-
tures that distinguish the query object q from the rest of the
data objects {o1, . . . , on}. The task can be cast as a two-
class feature selection problem as proposed in (Micenkova
et al. 2013), where the positive class is formed from n − 1
synthetic samples randomly picked from a Gaussian distri-
bution centered at q, and the negative class is {o1, . . . , on}.
For this experiments, we employ a collection of data sets
published by (Keller, Muller, and Bohm 2012) for bench-
marking subspace outlier detection. The collection contains
data sets of 10, 20, 30, 40, 50, 75 and 100 dimensions, each
consisting of 1000 data points and 19 to 136 outliers. These
outliers are challenging to detect, as they are only observed
in subspaces of 2 to 5 dimensions and not in any lower di-
mensional subspaces. Our task here is not outlier detection,
but to explain why the annotated outliers are designated as
such, i.e., pointing out the subspace (feature set) in which
the query point is outlying. For each outlier (query point)
q, we form the positive class as proposed in (Micenkova
et al. 2013), with samples drawn from N (q, λ2I), where
λ = 0.35 · 1

M · k-distance(q) and k-distance(q) is the dis-
tance from q to its k-th nearest neighbor, with k set to 35.
The features are discretized to 5 equal-frequency bins, and
mutual information based feature selection methods are em-
ployed to select the best features that distinguish the posi-
tive class from the negative class. Since the number of di-
mensions is moderate, we employ GlobalFS for this experi-
ment. Again, we set our significance parameter at α = 0.99
and α = 0.95. GlobalFS automatically determines the num-
ber of features. We used the number of features of Glob-
alFS (α = 0.99) as the number of features to be selected
by other MI-based methods. The ground-truth for this task
is the outlying subspace for each outlier, available as part



Table 3: Bootstrap error rate comparison of GlobalFS/iSelect against other methods. W: win (+), T: tie (=), L: loss (−) for
GlobalFS/iSelect against the compared method according to the 1-sided paired t-test.

Data maxRel MIQ CMIM CIFE MRMR JMI QPFS GlobalFS/
(#selected features) iSelect
Mushroom(2) 0.6± 0.1 (=) 1.4± 0.2 (+) 0.6± 0.1 (=) 0.6± 0.1 (=) 1.4± 0.2 (+) 0.6± 0.1 (=) 1.5± 0.2 (+) 0.6± 0.1
Promoter(2) 18.1± 5.5 (+) 18.1± 5.5 (+) 15.1± 4.7 (=) 15.1± 4.7 (=) 18.1± 5.5 (+) 15.1± 4.7 (=) 18.1± 5.5 (+) 15.1± 5.5
Splice(2) 28.0± 1.1 (+) 26.1± 0.9 (=) 26.0± 1.0 (=) 26.0± 1.0 (=) 26.0± 1.0 (=) 26.0± 1.0 (=) 28.0± 1.1 (+) 26.0± 1.1
Waveform(3) 32.6± 0.8 (+) 25.5± 0.8 (+) 25.5± 0.8 (+) 24.6± 0.8 (=) 25.5± 0.8 (+) 24.9± 0.8 (+) 33.0± 0.9 (+) 24.6± 0.8
Spambase(3) 23.5± 1.0 (=) 38.6± 1.0 (+) 23.5± 1.0 (=) 29.9± 1.0 (+) 23.5± 1.0 (=) 23.5± 1.0 (=) 27.5± 0.9 (+) 23.5± 1.0
Dermatology(2) 41.1± 4.4 (+) 47.9± 4.8 (+) 38.6± 3.8 (=) 38.6± 3.8 (=) 39.1± 3.8 (+) 38.6± 3.8 (=) 51.6± 3.4 (+) 38.6± 4.4
Optdigits(3) 18.9± 22.3 (−) 21.9± 25.8 (+) 18.9± 22.3 (−) 18.9± 22.3 (−) 20.3± 24.0 (+) 18.9± 22.3 (−) 25.3± 29.9 (+) 19.8± 22.3
Arrhythmia(3) 43.7± 2.8 (+) 43.2± 2.9 (+) 35.8± 3.0 (−) 35.5± 2.9 (−) 34.0± 3.0 (−) 35.9± 2.9 (−) 30.2± 2.9 (−) 38.4± 2.8
Advertisements(3) 5.6± 0.5 (−) 8.1± 0.6 (+) 6.6± 0.6 (=) 6.6± 0.6 (=) 6.6± 0.6 (=) 5.6± 0.5 (−) 7.8± 0.6 (+) 6.6± 0.5
Multi-features(3) 35.0± 2.3 (=) 49.6± 2.0 (+) 35.0± 2.3 (=) 22.0± 1.2 (−) 35.0± 2.3 (=) 35.0± 2.3 (=) 43.5± 1.8 (+) 35.0± 2.3
Madelon(4) 38.4± 1.5 (+) 37.9± 1.4 (−) 38.6± 1.5 (+) 38.4± 1.5 (+) 38.0± 1.5 (−) 38.3± 1.4 (+) 38.4± 1.5 (+) 38.2± 1.5
Gisette(2) 16.2± 0.6 (+) 15.7± 0.6 (+) 14.1± 0.6 (+) 12.8± 0.8 (+) 12.8± 0.6 (+) 12.8± 0.8 (+) 14.7± 1.1 (+) 11.7± 0.6

#W/T/L: 7/3/2 10/1/1 3/7/2 3/6/3 6/4/2 3/6/3 11/0/1
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(a) Average Jaccard index
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(c) Average execution time, Number of data
points is ∼ 2000.

Figure 2: Evaluation of GlobalFS and other MI-based approaches on the object explanation task (best viewed in color).

of Keller, Muller, and Bohm’s data. Let the true outlying
subspace be T and the retrieved subspace be P , to evaluate
the effectiveness of the algorithms, we employ the Jaccard
index Jaccard(T, P ) , |T ∩ P |/|T ∪ P |, and the preci-
sion, precision , |T ∩ P |/|P |. The average Jaccard index
and precision over all outliers for each dataset are reported
in Figure 2(a,b). In this task, GlobalFS outperforms all the
compared methods in both performance indices by a large
margin. More specifically, for each number of dimensions
M , we employ the one sided paired t-test at 5% significance
level to test the hypothesis that GlobalFS or a compared
method performs significantly better than the other. It turns
out that across all M values, GlobalFS at both α = 0.95
and α = 0.99 significantly outperform all other approaches
in both Jaccard index and precision. Although there is a
slight difference in GlobalFS at different α values, this dif-
ference is found to be statistically insignificant, according to
the t-test. An important factor that contributes to the strong
performance of GlobalFS lies in its ability to assess high-
order feature dependancy via high dimensional mutual in-
formation, while other MI-based methods only make use of

pairwise and triplet-wise dependancy. The outliers in these
datasets are indeed challenging to explain, as they do not
exhibit much outlying behaviour in low dimensional projec-
tion, in particular 1-D projection. The wall-clock execution
time comparison for all methods in these data sets is pro-
vided in Figure 2(c). Most low-dimensional MI based meth-
ods take negligible time, except QPFS which requires com-
puting the full pairwise MI matrix and solving a quadratic
optimization problem. Being a global approach, GlobalFS
takes considerably more time than the low-dimensional MI
greedy approaches, but this computational effort is well jus-
tified, given the strong performance indicators. In Fig. 2(c)
we also report the runtime of the naive global search, i.e. Al-
gorithm 2 with 6 threads running in parallel, up to M = 20,
which is orders of magnitude slower than GlobalFS. We
note that, at dimension M ≥ 30, the naive approach is prac-
tically infeasible.

Conclusions
In this article, we have introduced two novel algorithms
for the problem of feature selection based on the high-



dimensional mutual information measure. GlobalFS and iS-
elect aim to find a set of features that jointly maximizes the
mutual information with the class variable. Our approaches
rely on a rigorous statistical criterion to perform model se-
lection, i.e., deciding the appropriate number of features
to be included. This differs from the previous greedy ap-
proaches, e.g., MRMR, in which a feature set size must be
given as input. Further, GlobalFS is capable of identifying
the globally optimal feature sets in polynomial time. Our
approaches are suitable for selecting a small set of features,
that are highly relevant to the class variable, and can po-
tentially hint causal relationship with the class variable. We
also demonstrated the strong performance of the proposed
approach in the application of object explanation–selecting
a small set of features that distinguish the query object from
the background data.
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