
Classifying proteins using gapped markov feature pairs

Xiaonan Jia, James Bailey∗,a, Kotagiri Ramamohanaraoa

aNICTA Victoria Laboratory, Department of Computer Science and Software Engineering,

The University of Melbourne, Australia

Abstract

Classifying protein sequences has important applications in areas such as disease
diagnosis, treatment development and drug design. In this paper we present
a highly accurate classifier called the g-MARS (gapped Markov Chain with
Support Vector Machine) protein classifier. It models the structure of a protein
sequence by measuring the transition probabilities between pairs of amino acids.
This results in a Markov chain style model for each protein sequence. Then, to
capture the similarity among non-exactly matching protein sequences, we show
that this model can be generalized to incorporate gaps in the Markov chain.
Theoretical justification for the power of our gapped feature space model is
provided through its connections to analysis methods for nonlinear dynamical
systems. We perform an experimental study and compare g-MARS to several
other state-of-the-art protein classifiers. Overall, we demonstrate that g-MARS
has high accuracy and operates efficiently on a diverse range of protein families.

Key words: Protein classification, Gapped markov chains, Support vector
machine, Delay space

1. Introduction

With the development of genome sequencing techniques, biologists have ac-
cumulated huge numbers of protein sequences and new ones are being discovered
daily. Predicting the class or the main function of a new protein sequence can
assist experts in understanding its nature. It is a difficult problem, however,
and it is not easy to advance the state of the art. Successful protein classifiers
must be able to compare sequences efficiently, detect important features and
also show good predictive capability.

A number of algorithms have been developed for classifying proteins into
families or into clusters of functions or localizations. The basic assumption
mostly used is the first fact of biological sequence analysis: ”In biomolecular

∗Corresponding author.
Email addresses: xji@csse.unimelb.edu.au (Xiaonan Ji),

jbailey@csse.unimelb.edu.au (James Bailey), rao@csse.unimelb.edu.au (Kotagiri
Ramamohanarao)

Preprint submitted to Neurocomputing January 26, 2010

sequences (DNA, RNA or amino acid sequences), high sequence similarity usu-
ally implies significant functional or structural similarity.”[11]. So, to create
highly-accurate classifiers, we need a way to compare the similarity of a large
number of diverse sequences precisely and efficiently.

Our contribution. In this paper, we describe a new protein classifier called
the g-MARS (gapped Markov Chain with Support Vector Machine) classifier.
The g-MARS approach has two main stages. Firstly, each protein sequence is
individually modeled using what we call a “gapped markov chain”, to capture
its statistically important features. Next, a new dataset is derived from the
collection of all gapped markov chains and it is passed to a support vector
machine for decision making. The advantages of g-MARS are its simplicity and
good accuracy compared to several existing protein classification methods. This
is a claim validated in our experimental study, which considers a diverse range
of protein families with different characteristics. The technique also scales well
for large datasets. We first begin with a review of related work in the area.

2. Related work

Previous work on protein classification mainly falls into six categories: Amino
acid composition-based algorithms, support vector machine-based kernel algo-
rithms, markov model-based algorithms, sequence alignment-based algorithms,
markov chain-based algorithms and support vector machine-based hybrid algo-
rithms.

Amino acid composition-based algorithms measure the similarity of proteins
from the compositions of their amino acids. For each protein in the training
dataset, the algorithm[10] calculates the frequency of each of its amino acids. For
a new protein to be classified, its amino acid frequency histogram is calculated
and compared with the compositions of the proteins in each class of training
data. The protein is then classified to the class containing the protein with the
smallest composition difference. The shortcomings of this approach are the loss
of the ordering relationship among amino acids and the simplistic comparison in
the composition difference. These compositions may be biased for small training
datasets.

Amino acid composition with gaps[12] is an improvement of the pure amino
acid composition algorithm[10]. The first improvement is that it considers pairs
of the amino acids rather than individual ones. The second improvement is that
it uses a support vector machine to make decisions. This is useful for situations
where the number of features relatively large in comparison to the number of
instances. Many other studies[12, 13, 17, 18, 22, 28] also show that support
vector machines, if used properly, perform well in protein classification problems.
The limitation is that the measurement is still based on the percentages of the
pairs of amino acids among the whole protein sequence. When two proteins
have different lengths, although they share some similar sections, certain amino
acid pairs may have composition differences.

Support vector machine-based kernel algorithms concentrate on developing
new kernels that are capable of handling sequence similarity measurement di-

2

rectly. The spectrum kernel [18] is a support vector machine algorithm that
calculates the similarity of two sequences by their common k-mers. A user-
defined parameter k is provided and the number of occurrences of each k-mer
(contiguous amino acids with fixed length of k) is calculated. Next, the support
vector machine is used to compute the support vectors using the k-spectrum
kernel. A testing sequence is mapped to the k-spectrum in the same way and
is compared with the support vectors to decide which class it belongs to. The
underlying principle is, the more common k-mers being shared between two pro-
teins, the more structurally similar they are. In practice, the spectrum kernel
works quite well [18]. However, there are limitations: it is far more computa-
tionally expensive than the amino acid composition algorithm. Secondly the
choice of k in practice must be small, since the number of k-mers increase ex-
ponentially with k (so k = 3 is generally used). Thirdly, since k-mers must be
contiguous, there can be less tolerance when proteins contain errors or muta-
tions. In the mismatch kernel[17], the sharing of the similar k-mers, along with
the identical ones, is used to measure the similarity.

Previous work by Wang et al [26] presents an interesting, but very general
framework called GMM (Generalizations of Markov Model), for using markov
models to classify proteins using amino acid feature combinations which may
include gaps. It uses generalizations of Markov models to characterize biological
sequences. It computes the log-odds scores (i.e. the natural logarithm of the
ratio of the probability that an event happens to the probability that the event
does not happen) of the transition probabilities from the prior (the amino acids
upon which the probability is conditioned) to the posterior (the amino acids
whose probability one wishes to compute). In GMM, the prior is O number
of L1-grams, each separated by a gap g1 from one other. The posterior is L2

amino acids, each separated by a gap g2 from one other. There can also be a
third gap G, which is the distance between the prior and the posterior. If there
are O number of L1-grams in the prior, then the prior-posterior pair is called
an O-th order pair. Note that the standard n-order Markov model captures
the transition probability from an n-gram to the next single item, which is
equivalent to the prior-posterior pair used in GMM when L1 = 1, O = n, g1 =
0, G = 0, g2 = 0, L2 = 1. In the training procedure, GMM scans the training
data set once to compute the log-odds scores of the transition probabilities for
all prior-posterior pairs, for which the prior is of sufficiently high frequency. It
also retains higher order pairs in preference to lower order pairs. In the testing
procedure, GMM moves a sliding window along the testing instance. Given a
class, for each window position the log-odds score of the best matching prior-
posterior pair is added to the score for that class. GMM predicts the testing
instance to belong to the class with the highest score.

Our g-MARS algorithm can roughly fit into this framework, but with a num-
ber of key differences: i) GMM requires the configuration of between six and
ten different parameters and does not provide any general strategy for choosing
them, a difficult challenge for a user . Thus it is better described as a large space
of possible algorithms, rather than a single algorithm (and so it is very difficult
to try to experimentally benchmark against). For g-MARS, there is a single

3

parameter g (the gap) that needs to be chosen to construct the feature space.
This feature space is then passed to a support vector machine for classification.
Choices of kernel and kernel parameters are needed for using the support vector
machine. ii) Different combinations of features are used. Only the prior and
posterior pair with the highest order is used for classifying a protein by GMM. In
g-MARS, however, we consider variable gaps and use all resulting prior-posterior
pairs for the classification decision, iii) The GMM classification/decision model
is essentially a set of prior-posterior pairs which work as rules and classification
relies on aggregating scores of these rules. In contrast, g-MARS learns a classi-
fication model based on training a support vector machine. Also, g-MARS and
GMM use somewhat different representations. g-MARS constructs a vector of
feature values for each protein, describing its markov characteristics. GMM,
though, constructs a vector of feature values for each entire class of proteins,
aggregating the statistics of each feature across all proteins in the class.

Among the classifiers built on sequence alignment, Hidden Markov Mod-
els (HMM) are widely used. In its most naive form, a single hidden markov
model is built to summarise a set of sequences for a given data class. The
model has five types of hidden states and their total number can be varied.
State transition and emission (observation symbol) probabilities are calculated
from the training sequences by using the Baum-Welch algorithm[5]. Given a
testing sequence, the probability for this sequence to be generated by an HMM
can be calculated by using the forward-backward procedure[5]. Markov chains
can be treated as a special case of hidden markov models and there are methods
for directly applying markov chains to classify proteins. One can calculate the
log-odds ratio between these markov chains and use this to classify unknown
proteins. The difficulty is that there is usually not sufficient training data to
obtain good maximum likelihood estimators for the transition probabilities of
the markov chain. This can seriously impair classification accuracy.

One difficulty of using Support vector machines (SVMs) for protein classi-
fication is that classic kernels cannot handle sequence data. Instead, an extra
step is needed to ”transform” each sequence into a fixed-dimensional vector, so
that these kernels can then be applied. Such methods come under the category
of support vector machine-based hybrid algorithms.

The Fisher kernel[13] combines the support vector machine and the hidden
markov model. It first builds a hidden markov model using the set of train-
ing data. Given a testing sequence, a sufficient statistic representation of it is
computed from the model. The representation is a fixed-length vector with a
value for each parameter in the model as the posterior frequencies of having
taken a particular transition or having generated one of the residues of the test-
ing sequence from a particular state. Next, the ”distances” between pairs of
the vectors of the sufficient statistics are computed using a specific kernel func-
tion. Finally, the ”distance” between the testing sequence’s vector of sufficient
statistics and the vector of sufficient statistics of each training sequence from
each class is summed up. The testing sequence is classified to the class with
the smallest summation. Our g-MARS approach is different from the Fisher
kernel. Firstly, we do not use a hidden markov model generated from the whole

4

training dataset. Instead, we use the gapped markov chain generated from each
individual training protein. Secondly, the ”distance” between two proteins in
the SVM is not calculated directly by the kernel function[13]. It is instead cal-
culated by a classic relational kernel such as the RBF kernel. We note that
there also exist several other sequence classifiers that transform sequences into
attribute-value pairs and build support vector machines for classification, e.g.
Oligomer distance kernels [20], Pairwise kernels [19], profile kernels [16] and
cluster kernels [27].

Work[22, 28] has been done on building a series of classifiers which make
use of frequent substring patterns and the support vector machine. The algo-
rithms firstly mine the frequent substrings from the training proteins that are
frequent and discriminative for their own class (each pattern is mined with high
confidence). Then they reform each sequence (training and testing sequences)
by verifying which patterns are contained in it. An SVM is used for decision
making on the reformatted dataset. In terms of the formatting, each sequence
is translated into a vector of 0s and 1s with fixed length (the dimension of each
such vector is the total number of frequent substrings found). If a pattern is
found to be contained in the sequence, the corresponding dimension has a value
1. For other patterns that are not contained, the dimensions have a value 0.
The decision is made by the support vector machine built upon these vectors.
The shortcomings of these algorithms are: 1.The dimension of the vectors for the
protein sequences depends on the number of frequent substrings found, which
is difficult to control. In order to keep the dimension within a reasonable range,
some pruning strategies are needed. 2.There are several parameters such as the
frequency threshold, the confidence threshold and the minimum and maximum
lengths of the patterns, as well as the desirable number of patterns, that need
to be settled in order to obtain good performance. There is no general strategy
for choosing them. 3.The pattern mining procedure can require considerable
computational resources (time and space).

Finally, we note that a preliminary conference version of this current paper
appeared in [14].

3. Preliminaries.

A sequence p = a1a2a3...an is a length n sequence. Each character ak in
p is chosen from an alphabet set A and referred to as p(k). Throughout this
paper, we consider protein primary structure (amino acid sequences), but our
technique is easily adapted to classification of other types of sequences as well.

In protein classification problems, a training dataset TrDB contains proteins
whose classes are known to the classifier. The class label for each protein p
is denoted as p.c. A testing dataset TeDB contains proteins whose classes are
unknown to the classifier. The task is to predict the class label of each unknown
protein sequence according to the training dataset. The predicted class label
for each such protein p is denoted as p.pc. Given a testing protein p, if the
predicted class label is the same as its real class label, that is, p.pc = p.c, we
say it is correctly classified by the classifier, otherwise it is misclassified.

5

If the dataset only contains proteins from two classes, it is a binary-class
classification problem. For the multi-class classification problem, where the
testing dataset contains proteins belonging to more than two classes, we choose
proteins from one class and merge the rest of the proteins into another class.
In this way the multi-class classification problem can be reduced to a binary-
class classification problem. The task is then to predict whether a testing protein
belongs to the chosen class or not. The chosen class is called the positive class (or
the target class) and can be denoted as T . The merged set of instances (named
the negative class) containing all other proteins is denoted as ¬T . TrDBT =
{p ∈ TrDB | p.c = T } is called the training positive set and TrDB¬T = {p ∈
TrDB | p.c 6= T } is called the training negative set. Corresponding definitions
exist for sets of testing instances TeDBT and TeDB¬T .

4. g-MARS Methodology

Training the g-MARS classifier has two main phases. Firstly, g-MARS builds
for each p ∈ TrDB, a gapped markov chain. Secondly, g-MARS passes the
vectorial expressions of the gapped markov chains to a support vector machine
(SVM) for decision making.

Markov chains are a well known method for modeling sequences. The system
consists of a set of states, where each is labelled by a character a ∈ A and a set of
transitions which are associated with some probabilities. From one position to
the next one of the sequence, the system undergoes a change of state (possibly
a self-loop to the same state), according to the transition probability between
the states. An important special case is the first order markov chain, where the
transition probability depends only on the current and the predecessor position,
i.e., Pr[p(i) = ak | p(i−1) = aj , p(i−2) = am, ...] = Pr[p(i) = ak | p(i−1) = aj].

Furthermore, the markov chains we will consider are independent of the
sequence positions. In other words, the probabilities of a transition from item
am to an do not depend on the position in the sequence where transition occurs.

A markov chain modeling a sequence p consists of two kinds of components.
One is the set of the states {Si} representing each character from A and the other
is the set of transition probabilities {tij} between states. The formal definition
of transition probability tij leading from state Si to Sj is: tij = Pr[p(k) = aj |
p(k − 1) = ai]

In order to build a markov chain of the sequence p, we have to decide the
probability of each pair of the states. A maximum likelihood estimation pro-
cedure is applied to calculate these probabilities: tij =

cij
P

k cik
, where cij is the

number of times amino acid j follows amino acid i in p and
∑

k cik is the number
of times the amino acid i is followed by any amino acid.

Example 1. Consider the sequence p = ABACCAB. The markov chain for p
has three states and we have tAA = 0, tAB = 2

3 , tAC = 1
3 , tBA = 1, tBB = 0,

tBC = 0, tCA = 1
2 , tCB = 0 and tCC = 1

2 .

6

Example 2. Given a markov chain m and a sequence s, it is straightforward
to compute the probability of the m to produce s. e.g. If s = ABABC, the
probability for m to produce s is p(s|m) = tAB × tBA × tAB × tBC .

The purpose of building the markov chain for each protein is that similar
global or local structures of two proteins can be captured by their markov chains.
E.g., the probability for amino acid X followed by amino acid Y can be discrim-
inative for proteins from two different classes. This is true if the proteins from
the same class share a lot of common sections and those common sections are
different between different classes. One issue is that it is rare for many proteins
from the same class to share long common sections. The common parts may be
similar, but not exactly the same. An example to further illustrate is:

Example 3. Consider two sequences p1 = ABC and p2 = ADC. The first
order markov chains of them are quite different. For p1, the non-zero probability
transitions are tAB = 1 and tBC = 1. For p2, the non-zero probability transitions
are tAD = 1 and tDC = 1. There is no common non-zero transition probability
between the markov chains of p1 and p2. However p1 and p2 share two out of
three characters, which may indicate some similarity.

4.1. Introduction to Gapped Markov Chains

To overcome the limitation of traditional markov chains which only model
successive state transitions, we modify the traditional markov chain in two ways.
The first is to model the ending of the sequence and the second is to add the
concept of gaps.
Modelling the ending of the sequence. In Example 1, the transition prob-
ability tBA is 1, meaning that in sequence p, if B is followed by any amino
acid, it must be A. This does not consider the last character p(7), which has
no character following. A more complete model should illustrate that in p, the
probability for B to be followed by A is 0.5 and the probability for B to be
followed by nothing is 0.5. This can be reflected by changing the transition
probability definition to tij =

cij

ci
, where cij is the number of times amino acid j

follows amino acid i in p and ci is the number of times the amino acid i appears
in p.

Although we consider the ending of the sequence in the probability cal-
culation, when we translate our markov chain into a feature representation
(described shortly), we do not use the null (end of sequence) state and state
transitions from other states to the null state (null transitions). There are two
reasons: Firstly, when the transitions from one state to another non-null state
are determined, its null transitions are also implicitly determined. Including
the null transition is redundant. Secondly, by removing the null transitions,
we reduce the model size, which has benefits for the classification process used
later. In practice, the exclusion of these transitions does not impair classification
accuracy.

The concept of gaps. In a g-gapped markov chain, we determine the
probabilities of amino acid transitions, where there may be gaps between the

7

amino acid pairs being considered. In particular, we allow contiguous (with no
gap), jumping of one amino acid (with the gap as 1), jumping of two amino
acids (with the gap as 2) and so on up to the g-th gap. The state transition

probabilities are redefined as tkij =
ck

ij

ci
, 0 ≤ k ≤ g, where tkij is the probability

of a transition from amino acid i to amino acid j with gap as k in p; ck
ij is the

number of times amino acid i has gap k to amino to amino acid j in p. ci is the
number of times amino acid i appears in p.

Suppose we allowed a character ∅ called ”The-Character-Don’t-Care”. Our
gapped markov chain can be used to directly model sequences containing ∅. An
example is given in Example 4.

Example 4. Given a sequence p = AB∅BC, the probability for it to be pro-
duced by a gapped markov chain can be calculated as Pr(p) = t0AB ∗ t1BB ∗ t0BC .
The probability of p can be directly reflected by the gapped markov chain. Note
that the probability of p could also be calculated by the traditional markov chain
indirectly: Pr(p) = tAB ∗ (

∑

i (tBi ∗ tiB)) ∗ tBC .

The purpose of being able to model sequences containing ∅ is to capture the
approximate similarity between protein sequences.

Example 5. Consider two sequences p1 = ABC and p2 = ADC. Comparing
contiguous amino acid pairs gives no similarity between their transition proba-
bilities (c.f. Example 3). If we ignore their second characters, the sequences
become p′1 = A∅C and p′2 = A∅C, which are the same. This commonality is
reflected when we compare p1 and p2 allowing gaps in the markov chain: for
gap equal to 1, we have the non-zero transition probabilities of p1 as t0AB = 1,
t0BC = 1 and t1AC = 1. The non-zero transition probabilities of p2 are t0AD = 1,
t0DC = 1 and t1AC = 1. We can see p1 and p2 now share one common transition
probability.

Given that we can generate a g-gapped markov chain for a sequence, how do
we compare two markov chains to obtain the similarity between two sequences?
A direct way would be, for each pair of states, compare their transition proba-
bilities and count the number which are identical to get a score of the similarity
of the two sequences. E.g., considering p1 = ABC and p2 = ADC from the
previous example, the number of transitions having the same non-zero proba-
bility under a 0-gapped markov chain model is 0, so the similarity of p1 and
p2 under gap 0 would be 0. The similarity score for a 1-gapped markov chain
model would be 1, because they share exactly one common transition, namely
t1AC .

In order to discriminate between classes of proteins, we will take the approach
of translating markov chains into vectors and then using a support vector ma-
chine to derive a decision boundary between the classes. We now provide some
brief background on support vector machines.

Support Vector Machines: The Support vector machine (SVM) [25] is
a classification technique that has its roots from statistical learning theory.

8

SVMs require all data to be presented in vectorial format in some feature
space. Suppose each instance is denoted by a tuple <xi, yi>, where xi =
(xi1, xi2, · · ·, xid)T corresponds to the d-dimension vector of the i-th instance
and yi ∈ {−1, 1} denotes the class label of the instance. A hyperplane of a
linear classifier can be written as:

w · x + b = 0, (1)

where w and b are parameters determining the hyperplane and x is the data
points locating on the hyperplane. If the data point x is on either side of the
hyperplane, Equation 1 should be changed to either:

w · x + b > 0, (2)

or
w · x + b < 0. (3)

From the classification point of view, a good hyperplane should be able to
separate data points from different classes. SVMs try to find out the single best
one that maximizes the margins between different classes. This leads to the
following constrained optimization problem:

arg minw(‖w‖2

2),

subject to yi(w · xi + b) ≥ 1, for all <xi, yi>.

The constraints can be integrated and the new objective function to minimize
becomes the following Lagrangian:

LP =
1

2
‖w‖2 −

N
∑

i=1

λi[yi(w · xi + b) − 1].

During the training procedure, SVMs try to find out the parameters λi, w and
b to identify the best hyperplane that can maximally correctly separate training
data points from different classes with largest margins.

In the testing procedure, a testing instance z is classified as follows:

f(z) = sign(w · z + b),

where f(z) indicates the locating side of the data point z according to the
hyperplane.

For more complex data point distributions where no linear hyperplane exists
to separate the training data points, the data can be mapped to another space
and a linear separating hyperplane may exist in that new space. A kernel
function allows one to compute similarity of two vectors in the new space, by
using their original attribute-value pairs. This is usually called the kernel trick.

9

Some of the popular kernel functions are the linear kernel and Gaussian (RBF)
kernel.

Support vector machines using classic kernel functions require the input
format to be vectors. We must therefore be able to represent gapped markov
chains as vectors. This is straightforward: simply form a vector where each
dimension corresponds to a transition and the value for that dimension is the
probability of the transition. Transitions are annotated with gaps, so t0AA is
considered to be a different dimension to t1AA. The ordering of the transitions
does not matter as long as it is consistent for all the sequences in TrDB as well
as TeDB. An example is:

Example 6. Consider the sequence p = ABACCAB. The vector for this 1-
gapped markov chain is (t0AA = 0, t0AB = 0.66, t0AC = 0.33, t1AA = 0.33, t1AB = 0,
t1AC = 0.33, t0BA = 0.5, t0BB = 0, t0BC = 0, t1BA = 0, t1BB = 0, t1BC = 0.33,
t0CA = 0.5, t0CB = 0, t0CC = 0.5, t1CA = 0.5, t1CB = 0.5, t1CC = 0).

Difference between gapped markov chains and traditional markov
chains. A main difference between our gapped markov chain and traditional
markov chains is that traditional markov chains describe successive states of
a system. Our gapped markov chain can do this because any gapped markov
chain contains the 0-th transition matrix, which is the traditional markov chain.
But it can also model sequences containing ∅. As we discussed earlier, these two
changes enhance their suitability for protein classification.

Differences between sequence modeling by gapped markov chains
and by amino acid compositions. Recall the amino acid pair composition
technique[12] we discussed earlier. There are several differences between that
technique and our gapped markov chain technique. In the former case, the dis-
criminative information is measured by the frequencies of the amino acid pairs.
If the amino acid pairs are treated as patterns, these algorithms model each
protein by their length-2 pattern frequencies. The model can be interpreted as:
given an ordered pair of amino acids, how likely is it that this pair occurs in the
protein? In our case, the discriminative information is measured by the prob-
abilities of the amino acid transitions. The gapped markov chain models each
protein by these pairwise amino acid transition probabilities. The model can
be interpreted as: given a specific amino acid m, how likely is it that another
amino acid n follows it? An important advantage is that the probability model
is much less likely to be affected by the protein lengths.

Example 7. Given two sequences p = ABBCDACDD and p′ = ABBD.
With gap as 0, for pair BB, its compositions in p and p′ are very different,
because the total lengths of p and p′ are different. From a probabilistic point of
view, the chance for B to follow B is the same in p as in p′. So the similarity
modeled by the transition probabilities is much higher than the similarity mod-
eled by the frequency composition. Visually checking these two sequences, we
can see that p′ is indeed very similar to the length-4 prefix of p.

10

Algorithm 1 g-MARS Training(TrDB, g): Train g-MARS with training
dataset TrDB and the gap parameter g

Require: TrDB : training dataset. g: gap parameter.
Ensure: g-MARS is trained with the inputs.
1: for each class T in TrDB do
2: for all p ∈ Tr do
3: t = MarkovChainBuilder(p, g) {Build the g-gapped markov chain.}
4: addt to the vector set VS
5: end for
6: Train an SVM with VST and VS¬T

7: end for

4.2. The g-MARS Algorithm

g-MARS takes a set of training data TrDB and a gap parameter g as the
input. For each protein in TrDB, g-MARS builds a g-gap markov chain. The
associated vector for this chain has (g + 1) ∗ 20 ∗ 20 dimensions (unlike the
k20 dimensions for the Spectrum kernel[18]). This is because there are 20 ∗ 20
possible amino acid pairs and we need to consider transitions with gap up to
g for each pair. As we will later see, we can easily set g to values as large as
10 and still attain good classification performance and reasonable running time.
The markov chains for proteins from TrDBT and TrDB¬T are passed as input
to an SVM and it builds a classification model using these inputs. Any kernels
available for the traditional SVM can be used, such as linear and RBF kernels.
Building a g-gap markov chain for a set of n proteins requires O(n ∗ g ∗ l) time,
where l is the average length of the n proteins. The training time for g-MARS
is the markov chain building time plus the SVM training time. Given a testing
protein, the same g-gap markov chain is computed and passed to the SVM and
it makes the classification decision is made by the SVM. The testing time for
a length l protein in g-MARS is the markov chain building time(O(g ∗ l)) plus
the SVM prediction time.

Although the discussion above is for the binary-class classification problem,
g-MARS can be easily generalized to handle the multi-class classification prob-
lem. We turn the m-class classification problem into m reduced binary-class
classification problems. Each time we pick one class out from the m classes as
T and merge all the rest of the proteins as ¬T . In this way, way we build m
SVMs, one for each target class. Given a testing protein, if there is an SVM
classifying it to its target class, we classify it to that class. If more than one
SVM classifies it to their target class, we classify it to the class with the highest
score.

The training and testing algorithms are listed in Algorithms 1, 2 and 3.

5. Experimental Results

Datasets. In order to test the general performance of g-MARS, we use four
different benchmark datasets, which were chosen since they covered a diverse

11

Algorithm 2 MarkovChainBuilder(p, g): Build the g-gapped markov chain for
the protein p.

Require: p: a sequence to build from. g: gap parameter.
Ensure: Return the matrix t representing the g-gapped markov chain of p.
1: for all 1 6 h ≤ g + 1 do
2: for all positions j in p do
3: th[p(j)][p(j + h)] + + {th[i][j] stores the count of the transition from

amino acid i to j w.r.t gap h.}
4: c[p(j)]++ {c[i] stores the total times the amino acid i appearing in p.}
5: end for
6: for all 0 6 k < |th| do
7: th[k] = t[k]/c[k]
8: end for
9: merge th to t {Append the matrix with gap h to the overall markov chain

matrix.}
10: end for
11: return t

Algorithm 3 g-MARS Testing(p, g): Predict the class label of p.

Require: p: the protein with unknown class, g: the gap parameter.
Ensure: p.pc is set to the predicted class.
1: t = MarkovChainBuilder(p, g)
2: p.pc =SVM Predict(t) {Predict the class label of t by SVM.}

range of characteristics and have also been used in previous work on protein
classification. The first two of these datasets relate to different localizations of
proteins. Being able to predict the localization of a protein is important, since
it allows inferences to be made about its function, thus offering the potential
for development of candidate lists of proteins to be screened for drug targets.
The third dataset relates to discriminating between proteins which have differ-
ent structural motifs. This is important since it offers the potential to make
predictions about secondary and tertiary structure, based on primary sequence
information. The fourth dataset is a multi class one and relates to discrimi-
nating between multiple subfamilies of G protein-coupled receptors, which are
popular drug targets. Classification of such proteins is again important for un-
derstanding about a protein function and its potential for use as a drug target.
We now describe each dataset in more detail.

The first set of data is chosen from PSORTb[8]. It contains proteins from
different localizations of the bacteria. We pick out the proteins from the outer
membrane of the Gram negative as the positive class and merge the proteins
from the inner membrane, cytoplasmic and extra-cellular of the Gram negative
as the negative class. Part of this data was previously used to evaluate the clas-
sifiers built on frequent substring patterns[22, 28]. The positive class contains
352 proteins and the negative class contains 1013 proteins.

12

Table 1: G Protein-Coupled Receptor dataset list.

Subfamily #protein % of Dataset

Class A Rhodopsin like 1884 69.4%
Amine

Acetylcholine 66 15%
Adrenoceptors 120 27.3%
Dopamine 94 21.4%
Serotonin 159 36.2%

Class B Secretin like 309 11.4%
Class C Metabotropic glutamate/

pheromone 206 7.6%
Class D Fungal pheromone 65 2.4%
Class E cAMP receptors 10 0.4%
Class F Frizzled/Smoothened

family 130 4.8%
Class Z Archaeal/bacterial/

fungal opsins(Non-GPCR) 110 4.1%
Total 2714 100%

The second set of data is proteins from different subcellular localizations
from the Proteome Analyst Project[21]. We choose the proteins from the extra-
cellular localization (127 proteins) as the positive class and the proteins from
the intracellular localization as the negative class (3166 proteins). The third set
of data is the outer membrane proteins versus the globular proteins which was
used to evaluate the classifier built on amino acid compositions[10]. It contains
377 proteins from bacterial outer membrane and 674 Globular proteins.

The fourth set of data uses the G Protein-Coupled Receptor (GPCR)[4], the
biggest known protein family. The GPCR database contains five level-0 GPCR
classes (level-0 subfamilies). The largest subfamily is the Class A Rhodopsin
like subfamily. It can be further divided into 16 level 1 subfamilies and more
level 2 subfamilies. Classifiers have been developed to classify GPCR proteins
from non-GPCR ones, the GPCR proteins from level 1 subfamilies, as well as the
GPCR proteins from level 2 subfamilies[4]. We perform two experiments on this
data. For the first experiment, we try to classify proteins from the level-0 sub-
families. Besides the five GPCR level-0 subfamilies, we add a non-GPCR family
in order to test the ability for g-MARS to separate the GPCR proteins from
non-GPCR ones. All six families can be obtained from http://www.gpcr.org[9].
For the second experiment, we try to classify proteins from the level 2 subfam-
ilies. We select 4 level-2 subfamilies belonging to the Amine subfamily under
level-0 subfamily Class A Rhodopsin like, namely, acetylcholine, adrenoceptors,
dopamine and serotonin. These two experiments are multi-class classification
problems. The specification of all the five experiments is listed in Tables 1 and
2.

Algorithms. We compare the accuracy of g-MARS against several algo-

13

Table 2: Binary-class classification dataset list.

Dataset Description # Protein % of Dataset
D ¬D D ¬D D ¬D

Outer Membrane
Proteins (OMP)∗

Inner Membrane, Extra-
cellular, Cytoplasm

352 1013 25.8% 74.2%

Extracellular pro-
teins

Intracellular proteins 127 3166 3.9% 96.1%

Outer Membrane
Proteins (OMP)∗

Globular proteins 377 674 35.9% 64.1%

rithms: i) the spectrum kernel[18](Spectrum for short), which has been claimed
to be better than Fisher kernel[18], ii) an amino acid composition classifier[10](AAC
for short), iii) an amino acid pair composition with gap constraints classifier[12](AAPC
for short), iv) simple markov chain classifier[5](MC for short), v) Frequent Sub-
string Pattern based SVM[28](FS for short), vi) Generalised markov model
(GMM[26]). The reasons for choosing these algorithms are: 1.g-MARS, AAPC
and FS are all SVM-based hybrid algorithms. The difference between them is
the way they ”translate” sequences into vectors. 2.Spectrum is a famous protein
classifier which makes use of the SVM and self-defined kernel function. 3.The
AAC, GMM and MC methods are not based on support vector machines. They
simply sum up the scores computed in each way up to make decisions. They
are simple, well-known methods. All the experiments were conducted on a Mac
Os X system with a 2.8GHz CPU and 4GB memory. We used the LIBSVM[3]
package. MC required no parameter settings. For the Spectrum kernel, we used
k = 3. For g-MARS, AAC and AAPC, for each dataset we used the gap that
gave the best average performance (according to f-measure, see below), using
5-fold cross validation with a verification dataset (a subset of the training data
whose class labels are known to the classifiers, but which is not used in train-
ing). For the FS algorithm we mined the frequent substring patterns from the
target class having minimum length as 3, minimum support as either 0.1% or
3 (whichever is greater) and minimum confidence of 90%[28]. For g-MARS, FS
and AAPC, we used the RBF kernel. The gamma and cost parameters for this
kernel were chosen using the Gridsearch tool in the LIBSVM package[3], again
using a verification dataset (a subset of the training data in each fold used for
parameter optimisation). For g-MARS, a gamma value of 0.0078125 and cost
value of 32.0 or 2048.0 gives generally good performance. For GMM, we tested
the three configurations that were evaluated by the authors in their paper [26].
The first of these, a 6th order single nucleotide Markov model, produced the
best results in all our datasets and we list its performance in the tables.

Evaluation. In order to give a comprehensive analysis of how good the
classifiers are, we use 4 metrics: accuracy (a), precision (p), recall (r) and f-
measure (f) as:

a = |{t⊆TeDB|t.pc=t.c}|

|TeDB|
; p = |{t⊆TeDBT |t.pc=T}|

|{t⊆TeDB|t.pc=T}|
;

14

Table 3: Results (%) of the three binary-class experiments.
OMP vs. Inn+Ext+Cyt Extra vs. Intra OMP vs. Globular

Algorithm A
∗

P R F A P R F A P R F

gMARS 95.16 94.97 85.8 90.15 98.66 93.68 70.08 80.18 96.76 95.98 94.96 95.47

Spectrum 94.36 92.83 84.66 88.56 98.15 92.31 56.69 70.24 95.62 95.59 92.04 93.78
FS 90.04 79.35 82.95 81.11 98 95.52 50.39 65.98 91.53 82.88 96.29 89.08
AAC 78.38 51.49 78.69 62.25 88.59 18.64 58.27 28.24 80.02 67.88 84.08 75.12
AAPC 95.6 94.24 88.35 91.2 98.45 93.18 64.57 76.28 92.86 85.78 96.02 90.61
MC 82.49 61.06 88.64 72.31 94.02 36.74 76.38 49.62 86.77 76.44 91.25 83.19
GMM 34.1 42.74 100 59.89 97.4 65.2 39.4 36.25 90.0 88.55 77.34 82.27

∗ A: accuracy, P: precision, R: recall, F: f-measure.

r = |{t⊆TeDBT |t.pc=T}|

|{t⊆TeDBT }|
; f = 2∗p∗r

(p+r) .

For multi-class classification, a different overall accuracy measurement is used:

a =
∑

Ti

|{t⊆TeDBTi
|t.pc=t.c}|

|TeDB|
. The accuracy for each target class Ti is calcu-

lated as: ai =
|{t⊆TeDBTi

|t.pc=t.c}|

|TeDBTi
|

. The accuracy measurement tells how many

proteins are classified correctly overall. For the rare-class classification case,
precision and recall are more meaningful. When comparing algorithms, the
f measure is a standard way of combining precision and recall to get a single
measure. We used stratified 5-fold cross validation for testing.

Performance on binary-class data. The accuracies of the five algorithms
on the 3 binary-class classification problems are listed in Table 3. g-MARS per-
forms strongly for the first set of data, the outer membrane proteins vs. the inner
membrane, extracellular and the cytoplasm proteins. In this set the amino acid
pair composition algorithm works quite well. g-MARS gives generally good per-
formances on all the datasets, because the discriminative information of markov
chains in g-MARS does not rely on any particular property of proteins being in
specific domains. The MC classifier given in the second last row uses the log
odd ratio score to classify the proteins[5]. The performance tells that simply
adding up the score ratios from different classes does not give good answers.
This partly shows the power of using the SVM to make the decisions.

Performance on GPCR subfamilies. The classification results for the
GPCR level-2 and level-0 subfamilies are given in Tables 4 and 5, respectively.
The diversities of subfamilies are greater for level-0 proteins than for level-2
proteins. That is the reason why generally we gain better results for level-2
proteins. There are certain subfamilies in level-0 that are easily separated from
other subfamilies such as Class E cAMP receptors. Most of the classifiers do not
make mistakes for proteins from this family. By looking at this family we know
that the structures of the proteins within this family are quite different from
proteins of other families. Some proteins contain long contiguous asparagine and
histidine. The performances for most classifiers are quite good for identifying
which protein belongs to Class A Rhodopsin like subfamily (high percentages
in the first row of Table 5). This is due to the abundant proteins of this family.
So as an observation about Table 5, we can say that for the classifiers tested
here, having more testing data means a more accurate the model can be built.

15

Table 4: The accuracy (%) of the GPCR level-2 subfamilies prediction.

Level-2 Subfamily gMARS Spectrum FS AAC AAPC MC GMM

Acetylcholine 100 95.45 95.45 87.88 93.93 95.45 85.52
Adrenoceptors 100 100 100 62.5 100 95.83 83.67
Dopamine 98.93 95.74 94.68 76.6 85.11 85.11 80.21
Serotonin 98.11 100 97.48 77.99 94.97 94.34 75.48

Table 5: The accuracy (%) of the GPCR level-0 subfamilies prediction.

Level-0 Subfamily gMARS Spectrum FS AAC AAPC MC GMM

Class A Rhodopsin like 99.84 99.52 98.57 78.66 99.73 91.77 77.93
Class B Secretin like 99.38 98.06 95.47 60.2 95.46 96.12 94.0
Class C Metabotropic gluta-
mate/pheromone

98.06 95.15 91.26 76.21 97.09 93.69 82.7

Class D Fungal pheromone 89.23 86.15 81.54 89.23 83.07 95.38 76.2
Class E cAMP receptors 100 100 100 90 90 100 83.0
Class F Frizzled/Smoothen-
ed family

98.46 97.69 96.15 93.85 92.31 90.77 85.53

Class Z Archaeal/bacterial
/fungal opsins (non-GPCR)

96.36 94.55 86.36 92.73 92.73 95.45 90.12

The more distinctive the data is, the easier it is for the model to make correct
decision. This is generally true for most feature-based classifiers.

5.1. Statistical Evaluation

For each pair of classifiers on a given dataset, we computed a p-value assess-
ing whether their difference in performance was significant. Given a classifier
and a dataset, there are five performance values, one for each fold of the cross
validation. We compare the two sets of five performance results of two classi-
fiers, using a paired t-test. If the p-value was less than 0.05, then we categorised
that classifier comparison as a win/loss. Otherwise it was classified as a draw.

For the three binary classification problems, we used the f-measure value
as the performance metric. For the GPCR level-0 and level-1 families, as a
performance metric we used the overall accuracy from each cross validation of
all the subfamilies in the same level as:

overall accuracy =
∑

i

#True Positive in Di

|Di|
.

So for a given classifier, it was compared against the other 6 classifiers over
the 5 classification tasks (6×5 = 30 comparisons in total). The wins, draws and
losses for the classifier were recorded. Table 6 shows the results for g-MARS
against the other classifiers. It won 21 times, drew 9 times and lost 0 times.
Of the other classifiers, the Spectrum ranked the second best with 16 wins, 13
draws and 1 loss. The third best algorithm was the AAPC and its performance

16

Table 6: Statistical comparison of g-MARS against other classifiers using paired t-test

dataset Spectrum FS AAC AAPC MC GMM

OMP vs. In-
ner+Extra+Cyt.

D W W D W W

Extra vs. Intra D W W D W W
OMP vs. Globular D W W W W W
GPCR level 0 sub-
families

W W W W D W

GPCR level 2 sub-
families

D D W D W W

D (draw) for g-MARS if p-value >= 0.05 else W (win) for g-MARS.

was 13 wins, 14 draws and 3 losses. Comparing directly against the Spectrum,
g-MARS won on 1 dataset and drew on the other 4.

5.2. How to choose the proper gap.

The gap can be chosen by performing cross validation on the training dataset.
Set aside a portion of training data as test data, try different gaps and choose
the one which yields best accuracy. A cost of this strategy is that it increases
the overall time required for training. We can also make some general remarks
about gap behaviour. Figure 1 shows the change in accuracy for g-MARS with
various gaps. For gap 0, which is the case in the traditional markov chain,
the performance is poor. With the increase of the gap, overall performance
becomes stable. The f-measure achieves its peak value when the gap is set to
11. So instead of using cross validation, as a heuristic, one could also begin
by using the gap as 7 and then increase and decrease the gap from this value,
finishing when the result remains stable (changes are smaller than a certain θ).
Of course such a strategy doesn’t guarantee an optimal gap, but can help to
reduce the training time.

5.3. Running time

For classifiers working on large volumes of data, time efficiency is a rele-
vant issue. We discussed the time complexity of g-MARS in Section 4.2. We
also measured the running time for g-MARS for various gaps on both 1) OMP
vs. Inner, Extra and Cytoplasm dataset and 2) Extracellular vs. Intracellular
Dataset. The behavior is shown in Figure 2, which provides curves for both the
training time and the testing time, across 5 folds of cross validation. We see
that both training and testing time increase roughly linearly with the increment
of the gap, as expected from our discussion in Section 4.2.

5.4. Robustness experiment.

In our final experiment, we train the classifiers with original training pro-
teins. In the testing phase, we select a random position of each protein, chop off
a certain length of it starting from that position and concatenate the remaining

17

 60

 65

 70

 75

 80

 85

 90

 95

 100

131211109876543210

P
e
r
c
e
n
t
a
g
e
(
%
)

Accuracy with various gaps

accuracy
precision

recall
f-measure

Figure 1: g-MARS performance for varying gap on OMP vs. Inner, Extra, Cytoplasm
dataset

parts together to form a new sequence. The practical intuition is that some-
times we may want to classify a certain part of an unknown protein sequence,
rather than use of all of it, while in other situations we might know there are
some mistakes in the sequence (possibly due to contamination) of the data and
we wish to remove them before attempting classification. Specifically we chop
off from each sequence, a random snippet whose length is a certain percentage
of the total sequence length. We increase this percentage to allow longer and
longer snippets to be chopped. From a machine learning point of view, this
allows us to test the robustness of the classification techniques. The results of
this experiment is shown in Figure 3. We see that all the classifiers suffer dete-
rioration in performance due to the chop-offs. The f-measures are at their peak
values when the chop-off is 0%. As chop-off lengths increase, the general perfor-
mances of all the classifiers decrease. We judge the robustness of each algorithm
by calculating the standard deviation of the 11 f-measures with various chop-

off percentages. The standard deviation formula is σ =

√

P

N
i (xi−µ)2

N
, where

N = 11, xi is the i-th f-measure and µ is the average value of the f-measures.
The standard deviations for g-MARS, Spectrum, FS, AAC, AAPC and MC are
3.32, 11.36, 3.45, 3.57, 3.66 and 4.22, respectively. From these results we can
see that g-MARS maintains the best performance for this dataset. FS is quite
robust in this experiment, because the algorithm only relies on the substring
patterns. If the chop-off snippet does not contain any pattern or does not cut

18

0 2 4 6 8 10 12 14

Gap Size

0

50

100

150

200

250

300
T
im
e
 (
s
e
c
o
n
d
s
)

Testing

Training

(a) OMP vs. Inner, Extra and Cytoplasm

Dataset

0 2 4 6 8 10 12 14

Gap size

0

100

200

300

400

500

600

T
im
e
 (
s
e
c
o
n
d
s
)

Testing

Training

(b) Extracellular vs.

Intracellular Dataset

Figure 2: g-MARS running times when varying gap size

up any pattern, the decision will not be affected. The Spectrum has the biggest
changes in performance. The problem is that it relies on using all k-mers, so
it is very likely that some common k-mers get chopped off. If pattern pruning
strategies were applied to select the most discriminative k-mers rather than all
of them, then its performance might be better.

6. Further Analysis: A Dynamical Systems Perspective

In light of the experimental results we have presented, we now further explore
the question of why the performance of g-MARS is so strong, despite the relative
simplicity of its approach. Clearly, the accuracy of g-MARS is related to the
quality of the feature space it constructs, using ordered pairs of amino acids. As
we have seen, such pairs can be interpreted as “gapped markov chain” features.
In this section, we present another framework for interpreting these ordered pair
features.

At a high level, we can explain the naturalness of our feature space by
showing its connection to representations that are used in nonlinear time series
analysis and dynamical systems theory [2]. In particular, the g-MARS feature
space can be derived by performing an appropriate delay co-ordinate embed-
ding of the protein sequence. We begin our description by first providing some
background about dynamical systems.

19

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

50454035302520151050

f
-
m
e
a
s
u
r
e
(
%
)

Chop-up percentage(%)

f-measures with various chop-ups

g-MARS
Spectrum

FS
AAC

AAPC
MC

Figure 3: The performances change with various chop-off lengths on Extracellular vs. Intra-
cellular dataset.

6.1. Dynamical Systems

A dynamical system is a system that evolves over time. Classical examples
include a mass on a spring, a collection of planets or an electrical circuit. At
each point in time, the system can be described by a set of state variables,
known as the dimension of the system. In the case of a swinging pendulum,
the state variables might correspond to the angular position and velocity of the
pendulum.

A dynamical system’s behaviour can be represented using a phase space
(also known as state space) portrait, which is a multidimensional space, whose
axes correspond to the different state variables and in which the system ‘flows’
along a trajectory between successive state configurations. Analysis of such
trajectories may potentially reveal characteristics such as fixed points, periodic
behavior, or chaotic behaviour.

In general though, the state space of a dynamical system can have many
dimensions (possibly even an infinite number), and sometimes dimensions may
be measurable or even known. So to understand the properties of the system,
it is necessary to use partial information.

A common method of measuring the behaviour of a dynamical system is
to measure the values of a single state variable, at equally spaced intervals
over time. This yields a time series of N observations (a sequence of scalar
measurements):

20

x(t) = {x1, x2, x3, . . . xN} (4)

In non linear dynamics, such a time series may be transformed by using
the technique of delay co-ordinate embedding. One constructs a set of vectors
z1, z2, z3 . . . by sampling from this time series. Each vector has m components,
sampled at intervals of τ , as follows:

z1 = x1, x1+τ , x1+2τ , . . . , x1+(m−1)τ (5)

z2 = x2, x2+τ , x2+2τ , . . . , x2+(m−1)τ (6)

z3 = x3, x3+τ , x3+2τ , . . . , x3+(m−1)τ (7)

z4 = ... (8)

where τ is a parameter known as the delay time or lag and m is known as
the embedding dimension.

Taking these vectors and plotting them in m dimensional space yields a delay
space portrait of the system. The key idea here is that constructing a delay co-
ordinate embedding can provide insight into the dynamics of the system. Indeed
a central theorem in the area due to Takens [24], states that given a noise free
time series and a sufficiently large value for m (m = 2d + 1, where d is the
true dimension of the system), the trajectory of the system in the delay co-
ordinate embedding (delay space) is topologically equivalent (diffeomorphic) to
the trajectory of the system in the full, unobserved phase space. This implies
that conclusions one makes about the dynamics in delay space can in a formal
sense, also be valid with regard to the dynamics of the system in the full phase
space.

6.2. A Protein as a Dynamical System

In our context, the dynamical system of interest is a protein. Although a
protein is not a time series, we can still process it in an analogous way. For a
protein, the amino acid order plays the role of successive time intervals.

For example, given a protein ACCE of length n = 4, we view it as the time
series

p(t) = p1, p2, . . . , pn

= A, C, C, E

Thus, by starting at the beginning of the protein sequence and traversing it
to the end, one can trace out a trajectory of different states at different times,
where the state variable corresponds to the type of amino acid.

One issue is that the states of the protein here are discrete symbols, rather
than values measured on a continuous scale, as is usual in a dynamical system.
Hence, to remain close to the dynamical system analogy, it is useful to convert

21

the symbols in the protein time series into a continuous scale. There are a variety
of possibilities that can be employed here [23], based on the physiochemical
properties of the amino acids, such as charge density, or volume.

For illustration purposes, we choose to characterise the amino acids in a pro-
tein by their hydrophobicity values (tendency to repel water). Hydrophobicity
values are known to relate to the three dimensional structure of a protein [23].
Each amino acid can be replaced with a number on a continuous scale, represent-
ing its hydrophobicity. We use the Engelman hydrophobicity scale (GES-scale)
[6], which uses the mapping:

A = 1.6 C = 2.0 D = −9.2 E = −8.2
F = 3.7 G = 1.0 H = −3.0 I = 3.1
K = −8.8 L = 2.8 M = 3.4 N = −4.8
P = −0.2 Q = −4.1 R = −12.3 S = 0.6
T = 1.2 V = 2.6 W = 1.9 Y = −0.7

So the protein ACCE would become the sequence {1.6, 2.0, 2.0,−8.2}.

After translating the protein into a numeric “time series’, we can now plot
the trajectory of the protein in delay space. In doing this, we must choose values
for both m (the embedding dimension) and τ (the time delay/lag). An example
is given next:

Example 8. Consider the protein
LKCHKLVPPVWKTCPEGKNLCYKMFMVSTSTVPVKRGCIDVCPKNSALVKYVCCSTDKCN .
Let m = 2 and τ = 3. The delay space vectors are then:

(p(t) , p(t + 3))
(2.8 , −3.0)
(-8.8 , −8.8)
(2.0 , 2.8)
(-3.0 , 2.6)
(-8.8 , −0.2)
. . .

In figure 4, we show the delay space trajectory for this protein. The tra-
jectory begins at the point labelled ‘START’ and finishes at the point labelled
‘END’. Some clustering in the paths can be observed, with a higher preference
for i) horizontal paths between approximately (−8.8, 2) and (2, 2), and ii) verti-
cal paths between approximately (2,−9) and (2, 2).

6.3. Connections to g-MARS

It may be apparent that the feature representation used by g-MARS for an
individual protein can be derived from the protein’s delay space trajectories
constructed using τ = 1, 2, . . . , g + 1 and m = 2.

22

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

p(t)

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

p
(t
+
3
)

 END

START

P(t)= -8.8 = K

Figure 4: Delay space portrait when m = 2 and
τ = 3 using the hydrophobicity profile of the protein
LKCHKLVPPVWKTCPEGKNLCYKMFMVSTSTVPVKRGCIDVCPKNSALVKYVCCSTDKCN
A Poincare section at p(t) = −8.8 is also shown.

Note that the g-MARS representation of a protein is one dimensional, whereas
the delay space representation is two dimensional. Hence it is necessary to use
dimension reduction when computing the g-MARS features. This is accom-
plished by determining intersections of the protein’s trajectory with a cutting
plane, known as a Poincare section. This is a well known tool for visualising
and revealing structures and patterns in delay space.

Looking again at figure 4, a Poincare section is drawn as the vertical line
p(t) = −8.8 (i.e. p(t) = K, since K = −8.8). This line p(t) = −8.8 has eight
delay vectors lying directly on it, corresponding to the values of p(t+3) = {K =
−8.8, P = −0.2 (twice), A = 1.6, C = 2.0(three times), M = 3.4}. Thus, we can
make inferences about the distribution of amino acids that follow the amino
acid K, at a delay of τ = 3. So Pr(K|K) = 1/8, P r(P |K) = 2/8, P r(A|K) =
1/8, P r(C|K) = 3/8.P r(M |K) = 1/8. These correspond exactly to the values
of the g-MARS features {KK, KP, KA, KC, KM} with a gap size of g = τ −
1 = 2. To compute the values of feature pairs that do not begin with K, one

23

would compute the statistics from appropriate Poincare sections: p(t) = A =
1.6, p(t) = C = 2.0, p(t) = D = −9.2,

So in essence, the g-MARS feature values (for a given gap size g) correspond
to statistics computed from particular projections of the protein’s trajectory in
delay space. Of course since the g-MARS algorithm uses features corresponding
to pairs of amino acids whose gap is ≤ g, this means that its features must be
in fact derived from multiple delay space portraits, each corresponding to a par-
ticular value of g. From each delay space profile, one computes the probabilities
of projections of amino acid pairs as above.

This dynamical system interpretation of the features used by g-MARS is
attractive for two key reasons:

• It suggests that the features used by g-MARS correspond to certain views
of the protein’s trajectory in delay space. Furthermore, Taken’s theorem,
mentioned above, states that this delay space trajectory is topologically
equivalent to some unobserved trajectory of the protein in its full phase
space. This trajectory of a protein in its full unobserved phase space could
be related to possibly hundreds of state variables, some of which might,
for example, describe its 3-dimensional structure. In other words, we can
argue that the features used by g-MARS are in some sense faithful and
descriptive of the higher order behavior of the protein.

• It offers insights into how the g-MARS feature space might be generalized.
In particular, the features for g-MARS use an embedding dimension of
m = 2. However, the delay space perspective suggests that the use of
higher embedding dimensions is indeed possible and might be worthwhile.

There is considerable discussion in the dynamical systems literature about
how to choose an appropriate embedding dimension and many methods
have been proposed, such as false nearest neighbors [15]. On a theoretical
level, Taken’s theorem only holds if m ≥ 2k + 1, where k is the true
dimension of the phase space of the original system. However k itself is
unlikely to be known. More pragmatically though, it is known that useful
information can still be recovered from an embedding, even if m < 2K +1
[1, 2]. So in the case of g-MARS, even though the choice of m = 2 may
not be optimal, it is not unexpected that the performance of the classifier
is nevertheless very strong. For future work, it would be interesting to
investigate adapting g-MARS for use with higher values of m.

Similar to the choice of embedding dimension m, the dynamical systems
literature also contains a variety of methods which consider how to choose
an appropriate value of the delay τ . One well known approach from [7],
is based on computing the mutual information between x(t) and x(t + τ)
and then choosing the value of τ which yields the first minimum of mutual
information. In the case of g-MARS, we have chosen to take a pragmatic
approach to the choice of τ (i.e. the gap g). The best value for g is
determined experimentally by measuring the classifier’s performance on a
set of verification data. Moreover, the features used by g-MARS do not

24

just correspond to a single value of g, but are instead computed using all
the gap values 0, 1, . . . , g.

7. Conclusion

In this paper we have extended the traditional markov chain to the gapped
markov chain. We proposed the g-MARS classifier, which uses gapped markov
chains and support vector machines to classify proteins. We have described the-
oretical justification for the gapped features used by g-MARS by relating them
to techniques used in dynamical systems theory. g-MARS has several merits:
It is a simple, yet intuitive approach and the technique is robust to data with
high diversity (i.e. data with various lengths). The growth of the gap length
increases the dimension of the vectors linearly rather than exponentially like
the Spectrum kernel, so it is realistic to use large gaps. Experimental results
show it has generally high accuracy for a range of protein datasets with diverse
characteristics. Overall, we believe g-MARS is a very practical algorithm to
handle protein classification.

Acknowledgements: This work was partially supported by NICTA. NICTA
is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program. We are grateful
to Limsoon Wong for comments on a draft of this paper.

References

[1] H. D. I. Abarbanel. Analysis of Observed Chaotic Data. Springer, New
York, 1996.

[2] Elizabeth Bradely. Time series analysis. In D. Hand and M. Berthold, edi-
tors, Intelligent Data Analysis: An Introduction, pages 199–227. Springer-
Verlag, 2003.

[3] C. Chang and C. Lin. LIBSVM: a library for support vector machines,
2001.

[4] B. Cheng, J. Carbonell, and J. Klein-Seetharaman. Protein classification
based on text document classification technique. PROTEINS: Structures,
Function and Bioinformatics., 58:955–970, 2005.

[5] R. Durbin, S. Eddy, A.Krogh, and Graeme Mitchison. Biological sequence
analysis—-Probabilistic models of proteins and nucleic acids. Cambridge
University Press, 1998.

[6] D. M. Engelman, T. A. Steitz, and A. Goldman. Identifying nonpolar
transbilayer helices in amino acid sequences of membrane proteins. Annu
Rev Biophys Biophys Chem, 15:321–353, 1986.

25

[7] A. M. Fraser and H. L. Swinney. Independent co-ordinates for strange
attractors from mutual information. Phy. Rev. A., 33(2):1134–1140, 1986.

[8] J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and
F. S. L. Brinkman. PSORTb v.2.0: Expanded prediction of bacterial pro-
tein subcellular localization and insights gained from comparative proteome
analysis. Bioinformatics, 21(5):617–623, 2005.

[9] GPCRDB. http://www.gpcr.org.

[10] M. Michael Gromiha and Makiko Suwa. A simple statistical method for dis-
criminating outer membrane proteins with better accuracy. Bioinformatics,
21(7):961–968, 2005.

[11] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer
Science and Computational Biology. Cambridge University Press, 1997.

[12] S. Huang, R. Liu, C. Chen, Y. Chao, and S. Chen. Prediction of outer mem-
brane proteins by support vector machines using combinations of gapped
amino acid pair compositions. In Proceedings of the Fifth IEEE Symposium
on Bioinformatics and Bioengineering, pages 113–120, 2005.

[13] Tommi Jaakkola, Mark Diekhans, and David Haussler. Using the fisher
kernel method to detect remote protein homologies. In Proceedings of the
Seventh International Conference on Intelligent Systems for Molecular Bi-
ology, pages 149–158, 1999.

[14] Xiaonan Ji, James Bailey, and Kotagiri Ramamohanarao. g-mars:protein
classification using gapped markov chains and support vector machines.
In Proceedings of the Third IAPR International Conference on Pattern
Recognition in Bioinformatics (PRIB), pages 165–177, October 15-17, 2008.

[15] H. Kantz and T. Schreiber. Nonlinear time series analysis, 2nd Edition.
Cambridge University Press, 2004.

[16] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund,
and Christina S. Leslie. Profile-based string kernels for remote homology
detection and motif extraction. In Proceedings of the Third IEEE Computa-
tional Systems Bioinformatics Conference (CSB), pages 152–160, Stanford,
CA, USA, August 16-19, 2004.

[17] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mis-
match string kernels for discriminative protein classification. Bioinformat-
ics, 20(4), 2004.

[18] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string ker-
nel for SVM protein classification. In Proceedings of the Pacific Symposium
on Biocomputing, pages 566–575, 2002.

26

[19] Li Liao and William Stafford Noble. Combining pairwise sequence similar-
ity and support vector machines for detecting remote protein evolutionary
and structural relationships. Journal of Computational Biology, 10(6):857–
868, 2003.

[20] Thomas Lingner and Peter Meinicke. Remote homology detection based
on oligomer distances. Bioinformatics, 22(18):2224–2231, 2006.

[21] Z. Liu. Predicting protein subcellular localization from homologs using
machine learning algorithms. Master’s thesis, Dept of Computer Science,
University of Alberta, 2002.

[22] R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy, and F. S. L. Brinkman.
Frequent-subsequence-based prediction of outer membrane proteins. In
Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 436–445, 2003.

[23] S. Sun and Parthasarathy. Protein sequence and structure relationship
arma spectral analysis: Application to membrane proteins. Biophysical
Journal, 66:2092, 1994.

[24] F. Takens. Detecting strange attractors in turbulence. In Dynamical Sys-
tems and Turbulence, Lecture Notes in Mathematics, Vol. 898, pages 366–
381. Springer, 1981.

[25] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[26] Junwen Wang and Sridhar Hannenhalli. Generalizations of markov model
to characterize biological sequences. BMC Bioinformatics, 6:219, 2005.

[27] Jason Weston, Christina S. Leslie, Eugene Ie, Dengyong Zhou, André Elis-
seeff, and William Stafford Noble. Semi-supervised protein classification
using cluster kernels. Bioinformatics, 21(15):3241–3247, 2005.

[28] S. Zhou and K. Wang. Localization site prediction for membrane proteins
by integrating rule and svm classification. IEEE Trans. Knowl. Data Eng.,
17(12):1694–1705, 2005.

27

