
SeqiBloc: Mining Multi-time Spanning Blockmodels in
Dynamic Graphs∗

Jeffrey Chan, Wei Liu, Christopher Leckie, James Bailey, Kotagiri Ramamohanarao
Department of Computing and Information Systems, University of Melbourne, Australia

{jeffrey.chan, wei.liu, caleckie, baileyj, kotagiri}@unimelb.edu.au

ABSTRACT
Blockmodelling is an important technique for decomposing
graphs into sets of roles. Vertices playing the same role
have similar patterns of interactions with vertices in other
roles. These roles, along with the role to role interactions,
can succinctly summarise the underlying structure of the
studied graphs. As the underlying graphs evolve with time,
it is important to study how their blockmodels evolve too.
This will enable us to detect role changes across time, detect
different patterns of interactions, for example, weekday and
weekend behaviour, and allow us to study how the structure
in the underlying dynamic graph evolves. To date, there
has been limited research on studying dynamic blockmod-
els. They focus on smoothing role changes between adjacent
time instances. However, this approach can overfit during
stationary periods where the underlying structure does not
change but there is random noise in the graph. Therefore,
an approach to a) find blockmodels across spans of time and
b) to find the stationary periods is needed. In this paper, we
propose an information theoretic framework, SeqiBloc, com-
bined with a change point detection approach to achieve a)
and b). In addition, we propose new vertex equivalence def-
initions that include time, and show how they relate back to
our information theoretic approach. We demonstrate their
usefulness and superior accuracy over existing work on syn-
thetic and real datasets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; E.1 [Data
Structures]: Graphs and Networks

General Terms
Algorithms

∗This research was supported under Australian Research
Council’s Discovery Projects funding scheme (project num-
ber DP110102621).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

Keywords
Blockmodel, Dynamic Graphs, Minimum Description Length,
Structural Equivalence

1. INTRODUCTION

0 0.5 1 1.5 2

x 104

0

0.5

1

1.5

2

x 10

Tier 1 Tier 2

Tier 1

Tier 2

Core

Core

(a) Adjacency matrix and the blockmodel decom-
position. Red dotted lines delimit the boundaries
of each role. The 3 roles are Core, Tier 1 and Tier
2.

(b) Image diagram of the 3 roles
and their role to role relationships.

Figure 1: Blockmodel decomposition of a BGP con-
nectivity graph over November 2011.

Blockmodelling has been studied for many years in the
social sciences [16]. Blockmodelling is a powerful approach
to decompose social networks and graphs into partitions and
common roles. Vertices playing the same role, or are equiva-
lent, if they have similar connections to other vertices. These
roles, along with the role to role interactions, summarises
the underlying structure of a graph succinctly. For exam-
ple, consider Figure 1, which shows a blockmodel decom-
position of the Internet routing graph in November 2011.
Figure 1a shows the adjacency matrix of the graph, along
with the partition into roles, delimited by the red dotted
lines. We label the roles into ‘Core’, ‘Tier 1’ and ‘Tier 2’.
The decomposition shows the Core vertices are highly con-
nected among themselves and to vertices in other roles. Tier
1 vertices are highly connected among themselves and con-

nected to some Tier 2 vertices. The overall structure is a
core-periphery, which can be succinctly summarised by the
image diagram in Figure 1b, which shows the roles as ver-
tices, and the inter role interactions as edges (the amount of
connectivity between roles is expressed by the thickness of
the edges in the image diagram). As can be seen, blockmod-
els summarise the structure of a graph succinctly, allowing
us to understand and characterise the underlying structure
(e.g., it is a core-periphery), discover the important roles
(e.g., the Core role is highly connected to all other roles and
hence routes most of the traffic) and compare with other
graphs.

A community decomposition seeks to find roles that are
densely connected within themselves and sparsely connected
to vertices of other roles. Such a type of decomposition is
not able to find the structure in Figure 1b. For example, the
connections between the Core vertices to the Tier 1 vertices
are more dense than among the Tier 1 vertices, so it is likely
that the Core and Tier 1 vertices are incorrectly merged
into one role. Blockmodelling, on the other hand, can find
community decompositions, and hence, it can be considered
as a generalisation of community finding for graphs.

The vertex equivalence used in the previous example is
called structural equivalence; there are several others, but we
concentrate on this type of equivalence in this paper as it is
the most common and easiest to interpret. Equivalent ver-
tices have similar in and out neighbours. For example, the
vertices labelled 2 and 3 in Figure 2a are structurally equiv-
alent because they have the same out neighbours (1,2,3,4)
and the same in neighbours (1,2,3,4).

As the underlying graphs are not static, it is essential to
fit and track blockmodels across time. For example, in the
dynamic graph representing the email communications in
Enron, it is known that during the crisis, communication
patterns and intensity among different employee roles expe-
rienced large shifts [8]. Hence if we used a single blockmodel
to describe the whole sequence we will not detect or see these
changes.

There are several open challenges in fitting dynamic block-
models. Unlike the case of static blockmodelling where there
is a strong formalism between the vertex equivalences and
what type of blockmodels will satisfy those equivalences [16],
there are no equivalence definitions for dynamic blockmod-
els. These formalisms are important, because they provide
the theoretical underpinnings between (intuitive) definitions
of vertex equivalences (i.e., what defines a group of vertices
playing the same role) and how they relate to structure seen
in the adjacency matrix. In this paper, we introduce two for-
mal definitions of evolving structural equivalence and pro-
vide lemmas on how this is reflected in the block structure
of a blockmodel decomposition.

In addition, dynamic blockmodels have only been recently
studied [17]. In these works, each snapshot in the dynamic
graph is modelled by a blockmodel, with smoothing applied
on the membership of the roles (for the rest of the paper, we
will use roles and positions, which is the term from social
sciences, interchangeably). However, this might not be the
optimal model to represent a dynamic graph. Consider the
following scenarios, using the Enron email network as an ex-
ample. If we used a single blockmodel to represent the whole
graph sequence, it will be the simplest blockmodel, but it
will be unlikely to model the communication changes inside
Enron. On the other hand, if we represented each snapshot

(a) T1 Snapshot. (b) T2 Snapshot. (c) T3 Snapshot.

(d) T1 Adj matrix.(e) T2 Adj matrix. (f) T3 Adj matrix.

Figure 2: A dynamic graph example of 3 snapshots.
The top and bottom rows illustrate the snapshots
and corresponding adjacency matrices respectively.

with its own blockmodel, this will accurately model the un-
derlying dynamic graph, but at the expense of overfitting.
Hence, it is desirable to find a balance between accuracy
and generality. During periods where the edges within the
graph undergo minor noisy fluctuations, it is better to use
one blockmodel to represent these periods. On the other
hand, when the underlying graph is going through a funda-
mental shift, then using multiple blockmodels to represent
this period might be preferable. This shows the importance
of having a) an approach to quantify and find a tradeoff be-
tween model complexity and model accuracy; b) a method
to fit blockmodels over subsequences of snapshots and c) a
way to find where best to segment a graph sequence.

In this paper, we present an information theoretic ap-
proach to address these challenges. Using the minimum
description length principle [14] to quantify the tradeoff be-
tween model complexity and accuracy, we propose four dif-
ferent encoding schemes that are used as objectives for find-
ing blockmodels over subsequences, for our two proposed
definitions of evolving structural equivalence. In addition,
we propose a new, fast, change point detection based ap-
proach and a new blockmodel comparison measure to seg-
ment the graph sequence. Using generated and three real
datasets, we show that our approach can accurately de-
termine good locations to segment the dynamic graph se-
quence and find interesting dynamic blockmodels. We call
our framework SeqiBloc (Subsequence Information Theo-
retic Blockmodelling).

We present the following contributions in this paper:

• We introduce two formal definitions of evolving struc-
tural equivalences, describe when they are applicable,
and show their corresponding matrix form.

• We propose four different information theoretic encod-
ings that quantify the tradeoff between model com-
plexity and accuracy and conform to the new equiva-
lence definitions.

• Using our encoding schemes, we propose a blockmodel
comparison measure and a fast and accurate change
point detection based segmenting approach to deter-
mine when new blockmodels need to be learnt.

2. RELATED WORK
In this section, we describe related work in static and dy-

namic blockmodelling and finding dynamic communities.
Blockmodelling was initially introduced in sociology to

model social networks [16]. Later, stochastic blockmodels
[2] were proposed to relax the presumption of exact vertex
equivalences. Edges, the position of vertices and other vari-
ables are modelled as random variables. The assumptions
made about the variables modelled, the dependencies be-
tween random variables and the parametric distributions of
the probabilities lead to different formulations and proba-
bilistic models. For example, Airolid et al. [2] introduced
a model that allowed vertices to belong to multiple posi-
tions In [17], Xing et al. extended the mixed membership
model of [2] to dynamic networks, where there is one block-
model per snapshot. The positions of vertices are allowed to
change with time and be smoothed between adjacent snap-
shots. This is similar to one of the dynamic equivalence
definitions we propose. To improve the fitting complexity,
Yang et al. [18] performed the fitting using Bayesian infer-
ence.

Statistical approaches can infer insightful models, but their
fitting process can be computationally demanding. More im-
portantly, the dynamic blockmodel techniques fit one block-
model per snapshot, which is likely overfit.

There are a variety of approaches proposed for finding and
tracking communities across time. Initially, static methods
were applied to each individual snapshot and the amount
of overlap between the communities of adjacent snapshots
were used to categorise community events such as growth,
decay and stability [11]. Subsequent approaches used the
idea of smoothing from evolutionary clustering [4] to find
communities that are good for the current snapshot but also
close to the communities found from the previous snapshot.
Work in this area includes [5], which extended static spectral
community finding to this framework.

Dinh et al. [9] proposed an incremental algorithm to
update existing communities when a new snapshot arrives.
Similarly, [1] introduced efficient ways to maintain a set of
communities in massive graph streams. The emphasis is on
incrementally maintaining the best current set of communi-
ties, not on finding communities across a subsequence.

Algorithms for finding dynamic communities generally do
not work with dynamic blockmodels, as finding communities
is only one type of blockmodel and there are many other
interesting types, like the core-periphery structure of the
BGP example.

To the best of our knowledge, only [15] represents a graph
sequence as a series of models. Graphscope [15] uses a mini-
mum description length coding formulation to find evolving
co-clusters in bi-partite graphs. The sequence of graphs is
partitioned into segments where a single co-clustering holds.
This is similar to our approach, and as a baseline we have
adapted Graphscope to finding unipartite blockmodels. How-
ever, the original Graphscope can only find one type of
dynamic equivalence and its greedy lookahead segmenting
approach misses many segmenting points in synthetic and
real datasets. In addition, the blockmodels it found for real
datasets have an unreasonably high number of positions. In
contrast, we propose four different encodings to find our pro-
posed dynamic equivalences, and our change point detection
approach can accurately segment the graph sequences and
find blockmodels that have a reasonable number of positions.

Symbol Description
G A graph with vertex set V and edge set E.
<Gts,te> A continuous graph sequence of snapshots.
vi A vertex.
ei,j An edge from vertex vi to vj .
At Adjacency matrix of Gt.
n Number of vertices.

CL A set of vertex positions with index L.
Ci A vertex position.
At (Ci ,Cj) A block with rows from Ci and columns

from Cj , from graph snapshot Gt.
m1(At (Ci ,Cj)) The number of 1’s in block At (Ci ,Cj).
H(X) Entropy of random variable X.

Table 1: Description of symbols used in this paper.

3. BACKGROUND
In this section, we formally introduce the ideas of block-

modelling and structural equivalence, their dynamic vari-
ants, and the notation we use in this paper (see Table 1).

A graph G consists of a set of vertices V , and a set
of edges E, E : V × V . In this paper, the graphs we
study are uniquely labelled and the set of vertices do not
change (we leave this to future work). A graph can also be
modelled by its adjacency matrix A. A dynamic graph
is represented as a sequence of snapshots < G1,T >=<
G1, . . . , Gt, . . . , GT >, 1 < t < T (T can be ∞).

3.1 Blockmodelling
We start by describing the traditional, static definition

of blockmodelling. Recall that a blockmodel partitions the
vertices of a graph into a set of positions, based on notions
of vertex equivalence. The positions in turn divide the ad-
jacency matrix of the graph into a set of blocks. Each block
defines the edge interactions between two positions.

Let the set of positions be denoted by C = {C1, C2, . . . , Ck},
e.g., C1 in Figure 2d is {1, 2, 3, 4}. A block A(Ci ,Cj) is a
submatrix of the adjacency matrix A, and represents the
edges from the vertices of position Ci to the vertices of po-
sition Cj . An example block is A(C1 ,C1) from Figure 2d,
which occupies the top left of the adjacency matrix.

A blockmodel is defined as B(A, C), where the rows and
columns of A are rearranged into blocks according to the set
of positions C, such that the vertices in the same position
are (structurally) equivalent.

3.2 Evolving Blockmodels
As explained in Section 1, evolving structural equivalence

has not been explored in the literature hence it is not clear
what it means to have dynamic structural equivalence. There-
fore, in this section, we propose and define two definitions
of dynamic structural equivalence.

The most strict definition, block preserving structural
equivalence, asserts that two vertices are equivalent over
a span of time if they have the same neighbours over that
span of time.

Definition 1. Two vertices vi and vj are block preserv-
ing structurally equivalent over the continuous time span
of [ts, te], where ts ≤ te, if for t and t′, where ts ≤ t ≤
te, ts ≤ t′ ≤ te, and for vk, vl ∈ V :

1. eti,k ∈ Et iff et
′
j,k ∈ Et′ and etl,i ∈ Et iff et

′
l,j ∈ Et′ ;

2. eti,k /∈ Et iff et
′
j,k /∈ Et′ and etl,i /∈ Et iff et

′
l,j /∈ Et′ .

For example, in Figure 2, vertices 2 and 3 are block pre-
serving equivalent over T1 and T2, but not T3, because their
neighbourhood in T3 is different from T1 and T2. Next, we
relate this definition of equivalence with the density of the
blocks of the corresponding blockmodel.

Lemma 1. Let a block consisting of all 1s be denoted by
1, and all 0s be denoted by 0. Let V be partitioned into block
preserving structurally equivalent positions, C, over the span
[ts, te]. Then for all t, t′, ts ≤ t, t′ ≤ te, and ∀Cx, Cy ∈ C

1. At(Cx ,Cy) = 1 or 0;

2. At(Cx ,Cy) = At′(Cx ,Cy).

The inverse direction holds true also.

Proof. Consider the vertices vi and vj ∈ Cx and vk ∈
Cy, ∀Cx, Cy ∈ C. Since vi and vj are equivalent, then they
must either both have an edge, or both have no edge to vk
over all t. This means condition 1, and since it is over all t,
condition 2 of the lemma are both true. To show the inverse
direction, consider a block At(Cx ,Cy). If it is equal to 1,
then there is an edge from all vertices vi ∈ Cx to all vertices
vj ∈ Cy. As the blocks are equal across all t, then the edge
ei,j must exist over all t, satisfying first part of condition 1
of Definition 1. Similar reasoning can be used to show the
second part of condition 1 and condition 2 of Definition 1
(At(Cx ,Cy) = 0 case) holds also.

The second definition, position preserving structural
equivalence, asserts that two vertices are equivalent over
a span of time if for every time instance in the span, the
two vertices are structurally equivalent. Note that the set of
neighbours of equivalent vertices can be different at differ-
ent time instances, but must be the same at the same time
instance. For example, vertices 2 and 3 are position preserv-
ing equivalent over T1 to T3 in Figure 2. This equivalence
is useful for finding dynamic equivalences that might not
maintain the same connectivity throughout a span of time.

For example, we could represent the replying between a
group of experts and newbies in a Q&A forum as a dynamic
graph with one snapshot per hour. During the day, the ex-
perts are active, but they go to sleep at night. Using a
position preserving structural equivalence definition, the ex-
perts are considered equivalent throughout a 24 hour period
because they are structurally equivalent for each snapshot.
They are still regarded as experts when they go to sleep.
However, applying a block preserving definition, their be-
haviour means they are equivalent in two subsequences -
one for the day, when they are highly active, and one for
night, when they are inactive and likely to have the same
replying behaviour as newbies (and be equivalent to them).
This equivalence asserts that the experts are only considered
experts when they are actively answering questions.

Definition 2. Two vertices vi and vj are position pre-
serving structurally equivalent over the continuous time
span of [ts, te], where ts ≤ te, if ∀t, ts ≤ t ≤ te, and for
vk, vl ∈ V :

1. eti,k ∈ Et iff etj,k ∈ Et and etl,i ∈ Et iff etl,j ∈ Et;

2. eti,k /∈ Et iff etj,k /∈ Et and etl,i /∈ Et iff etl,j /∈ Et.

Lemma 2. Let V be partitioned into position preserving
structurally equivalent positions, C, over the span [ts, te].
Then for all t, ts ≤ t ≤ te and ∀Cx, Cy ∈ C,

1. At(Cx ,Cy) = 1 or 0.

The inverse direction holds true also.

Proof. The proof is similar to Lemma 1 and due to space
limitations, we omit it.

4. INFORMATION THEORETIC BLOCKMOD-
ELLING

In this section, we describe our information-theoretic frame-
work to evaluate how well blockmodels conform to our pro-
posed equivalence definitions.

Given data and a model, the idea is to evaluate a model by
the amount of compression it can achieve on the data against
how complex the model is. The more compression that is
achieved, the lower the cost to encode the model, and the
more accurate the model is. This is balanced against the
complexity of the model (the more complexity, the higher
the encoding costs). Using the minimum description length
principle, we can combine the two ideas as C(graph, position)
= C(position) + C(graph | position). A blockmodel (de-
scribed by its set of positions) is the best tradeoff between
accuracy and complexity if it minimises this expression.

In this work, we assume an unweighted, directed graph
representation. Note that we can extend our representation
to weighted graphs; we describe this in Section 7. Next, we
describe the different encoding schemes.

4.1 Individual Encodings
As a baseline and for our change point detection approach,

we first present two encodings that encode each snapshot of
a graph sequence with a blockmodel.

4.1.1 Individual Snapshot Encoding
Let Ct denotes the set of positions (blockmodel) for snap-

shot Gt. Then the total encoding cost is:

CInd(< G1,T >, {C1, . . . CT }) = C(n) +

T∑
t=1

C(Ct) +C(Gt|Ct)

where C(n) is the cost to send the number of vertices
(needed to decode the sizes of the positions), C(Ct) is the
cost to encode the positions, and C(Gt|Ct) is the cost to
encode the snapshot Gt using Ct.

Next, we describe the position description cost C(Ct). Let
the random variable Ψ(C) represent the distribution of the

position memberships of C; i.e., p(Ψ(C) = i) = |Ci|
n

, where
Ci ∈ C. Let H(X) denote the entropy of random variable X.
From information theory [7], we know we can design lossless
codes that uses H(Ψ(Ct)) bits, on average, to encode the po-
sition of a vertex, and n ∗H(Ψ(Ct)) to encode the positions
of all vertices. In order to be able to recover the member-
ships fully, we also need the number of positions, which can
be encoded as an integer [7] with cost C(|Ct|). Then the cost
to send the position information is : C(Ct) = C(|Ct|) + n *
H(Ψ(Ct)).

Next, we explain how to compute C(Gt|Ct). Given a
blockmodel, the snapshot can be described as a sequence
of its blocks1.
1In row or column order - we use row order

C(Gt|Ct) =
∑

Ci∈Ct

∑
Cj∈Ct

C(At(Ci ,Cj))

We can treat each timesliced block as a vector, and encode
it using single symbol encoding. Let m1(At(Ci ,Cj)) denote
the number of 1’s in the block At(Ci ,Cj). Let the random
variable Φ(At(Ci ,Cj)) represent the distribution of 0’s and
1’s in the block At(Ci ,Cj); i.e, p(Φ(At(Ci ,Cj)) = 1) =
m1(A

t (Ci ,Cj))

|Ci|∗|Cj |
. Then the cost to send one block is:

C(At(Ci ,Cj)) =

C(m1(At(Ci ,Cj))) + |Ci| ∗ |Cj | ∗H(Φ(At(Ci ,Cj)))

Again, we need the number of edges (1’s) in the block, sent
with cost C(m1(At(Ci ,Cj))), in order to fully reconstruct
the edges in the block.

4.1.2 Smoothed Individual Encoding
This model is based on ideas from evolutionary cluster-

ing, to smooth out position changes between two consecu-
tive snapshots. Similar to the individual snapshot encoding,
we can write the overall encoding cost as:

CsInd(< G1,T >, {C1, . . . CT }) =

C(n) + C(C1) +

T∑
t=2

C(Ct−1|Ct) + C(Gt|Ct)

The only term that is different from the individual snap-
shot encoding is C(Ct−1|Ct), which is the encoding cost of
describing the changes in position between Ct and Ct−1.
This can be encoded using a membership difference vector of
length n, where we can encode each symbol with an average
cost of H(Ψ(Ct) | Ψ(Ct−1)) bits:

C(Ct−1|Ct) = C(|Ct|) + n ∗H(Ψ(Ct)|Ψ(Ct−1))

4.2 Subsequence Encodings
These encodings are used to describe blockmodels that

span more than one snapshot and measure how close they
are to being block preserving and position preserving equiv-
alent. The graph sequence is represented as a series of con-
tinuous subsequences, where a single blockmodel holds for
each subsequence.

4.2.1 Block Preserving Encoding
This encoding scheme is designed to find block preserving

equivalent blockmodels. Let the subsequence be delimited
by the timing indices t1, t2, . . . , tL, where t1 < t2, . . . , < tL
(with t1 = 1 and tL = T) and L is the number of sub-
sequences up to time index T . Then the graph sequence
<G1,T> is divided into a series of subsequences, < Gt1,t2 >
· < Gt2,t3 > . . . < GtL−1,tL >. Let Cs represent the set of
positions for the subsequence < Gts,ts+1 >, 1 ≤ s ≤ T − 1.
The the overall encoding cost is:

C(< G1,T >, {C1, . . . CL}) = C(n)

+

L∑
s=1

C(ts+1 − ts) + C(Cs) + C(< Gts,ts+1 > |Cs)

Most of the cost terms are the same as the individual en-
codings, apart from C(ts+1−ts), which is the cost to encode

the length of the subsequence <Gts,ts+1>, and the block en-
coding cost C(< Gts,ts+1 > |Cs). Let Ats ,te (Ci ,Cj) denote
the multi-time slices of the adjacencies of the snapshots Gts

to Gte , between the positions Ci and Cj . Then the graph
description cost is:

C(< Gts,ts+1 > |Cs) =
∑

Ci∈Cs

∑
Cj∈Cs

C(Ats ,ts+1 (Ci ,Cj))

Each multi-time sliced block is encoded as one string. An
useful way to think of this is that we unroll each block of
each snapshot into a string. The strings are concatenated
and then encoded as a single string. The cost is:

C(Ats ,ts+1 (Ci ,Cj)) = C(m1(Ats ,ts+1 (Ci ,Cj)))

+ |Ci| ∗ |Cj | ∗H(Φ(Ats ,ts+1 (Ci ,Cj)))

When C(< Gts,ts+1 > |Cs) is minimal
(H(Φ(Ats ,ts+1 (Ci ,Cj))) = 0, ∀Ci, Cj ∈ Cs), then the multi-
sliced blocks must be all 0s or all 1s. This means the two
conditions of Lemma 1 are satisfied, which means the de-
composition is block preserving equivalent. Therefore this
encoding is a measure of block preserving equivalence.

4.2.2 Position Preserving Encoding
This encoding implements the position preserving equiv-

alence. The overall encoding cost formulation is similar to
the block preserving encoding, except for how the multi-time
block slices are encoded:

C(Ats ,ts+1 (Ci ,Cj)) =

ts+1∑
t=ts

(
|Ci| ∗ |Cj | ∗H(At(Ci ,Cj)) + C(m1(At(Ci ,Cj)))

)
The blocks are encoded per snapshot. Again,

C(Ats ,ts+1 (Ci ,Cj)) is minimal when H(At(Ci ,Cj)) = 0,
which occurs when the position preserving condition of
Lemma 2 is true, hence this encoding is a measure of position
preserving equivalence.

5. FINDING OPTIMAL BLOCKMODELS
In this section, we describe our common approach to opti-

mising the encodings and finding optimal blockmodels. We
use a similar approach to [15] to optimise our encodings
over subsequences, but we introduce a change point detec-
tion approach to segmenting the graph sequence, which we
will show is more accurate and faster than the one lookahead
approach of Graphscope.

Given a subsequence segment, the greedy algorithm ap-
proach used to optimise the positions will iteratively try to
merge positions, split them and move vertices between po-
sitions to minimise the encoding cost.

5.1 Determining the Optimal Segments
Graphscope determines a change point by comparing the

encoding costs of extending the existing, single model against
the costs of two models, the existing model up to the change
point and a new model for describing the rest of the sequence
(the lookahead subsequence). Graphscope uses a lookahead
of 1 snapshot, and as our results show, it can sometimes
miss change points. Once a change point is missed, the ob-
jective generally favours extending the current subsequence,

Algorithm 1 Main procedure in SeqiBloc.

1: Input: New snapshot Gt, Current subsequence
<Gts,te>, prev. blockmodel Ct−1

2: Output: Cts
3: // Compute partitioning on single snapshot
4: Ct = updatePos(Gt)
5: deltaCost = M(Ct, Ct−1)
6: if isChangePoint(deltaCost)) then
7: Cts = updatePos(<Gts,t>)
8: end if
9: updateTimeSeries(deltaCost)

because the lookahead is too short. Hence, a greater looka-
head is needed, but there is no principled and inexpensive
way to determine the appropriate lookahead, and the opti-
mal lookhead is likely to change across time.

Instead, we propose a simple change point detection ap-
proach (see Algorithm 1 for an overview). First, note that
a new blockmodel should only be induced when there is a
change point and the existing one is no longer accurate for
describing the new snapshots. This means that the opti-
mal blockmodel over the new snapshots varies significantly
from the existing blockmodel. Conversely, when there is no
change point and only (uniformly) random noise, then the
likelihood of dense or sparse sub-blocks appearing by chance
is low and therefore the blockmodel over the new snapshots
is likely to be similar to the existing blockmodel. Therefore,
if we found the best blockmodels for each snapshot (using
one of the individual encodings), and monitored the differ-
ences between consecutive blockmodels (see next section),
then the actual change points are likely to occur when there
are significant spikes in the difference, which can be detected
using traditional change point detection methods.

5.1.1 Blockmodel Difference Measures
In this subsection, we describe the two measures we used

to determine the change points in the graph streams.
To detect the change points of position preserving block-

models, we monitor for differences in the positions of two
time-adjacent blockmodels. Existing measures from exter-
nal clustering validation can be used to measure this position
difference. We found that the Variation of Information (VI)
measure [13] performed well for this task. We denote this
change point approach with the VI measure as pos-cp.

To detect change points in block preserving blockmodels,
we know from Lemma 1 that we need to monitor for changes
in the positions and the block densities. There are no mea-
sures that satisfy our requirements; the closest are spatially
aware cluster comparison techniques [6], but these assume
the entities are points embedded in a Euclidean space, which
is generally non-trivial to map from graphs.

Hence, we propose a measure, called BMDD that com-
pares the differences in densities across the blocks of the
two blockmodels. We cannot directly compare blocks, be-
cause the positions and blocks between two models might
not align. Instead, we compute the expected difference in
densities across the blocks of the two models. Recall that
Ψ(C) is the random variable of the position memberships and
event space of C. Let d() denote a distance between densities
(we will elaborate shortly) and the probability p(Ψ(Ct) =
i,Ψ(Ct) = j,Ψ(Ct−1) = x,Ψ(Ct−1) = y) be simplified to
p(i, j, x, y). Then BMDD is defined as

BMDD(Ct, Ct−1)

=
∑

r1,c1,r2,c2

p(r1, c1, r2, c2)d(At (Cr1 ,Cc1),A
t−1 (Cr2 ,Cc2))

=
∑

r1,c1,r2,c2

p(r1, r2)p(c1, c2)d(At (Cr1 ,Cc1),A
t−1 (Cr2 ,Cc2))

where p(r1, r2) = |Cr1∩Cr2|
n

and p(c1, c2) = |Cc1∩Cc2|
n

. BMDD
effectively weighs the difference between block densities based
on the amount of overlap the two blocks have.

For the density distance dd, we used the absolute dif-
ference of their densities d(At(Cr1 ,Cc1),At−1 (Cr2 ,Cc2)) =
|At(Cr1 ,Cc1) − At−1 (Cr2 ,Cc2)|, which we found to work
well. We denote this change point approach with the BMDD
measure as pos-cp.

5.1.2 Change Point Detection Approaches
The change point we seek is a large, significant spike.

There are many different change point measures we can
use (our framework can accommodate any that can detect
spikes), but we found the basic control chart measure [3]
worked well. The control chat measure tracks the mean and
standard deviation of our blockmodel difference measures,
and flags a change point when the standard deviation is sig-
nificantly (∆ ∗ σ, where ∆ is the alarm threshold) above
the mean. Because we do not make any assumptions on the
underlying graph stream, we cannot use techniques like gen-
eralised likelihood tests to quantify significance. Hence, the
alarm threshold is the only parameter in our approach. We
found ∆ = 0.5 works well for many datasets, and this can
be used as the default value.

6. EVALUATION
In this section, we will show that our change point detec-

tion based algorithms, pos-cp and pos-cp, are more accurate
and efficient than the corresponding Graphscope algorithms
at detecting change points and learning new blockmodels. In
addition, we demonstrate the difference between the block
and position preserving formulations. We use a combination
of synthetic data and three real datasets.

We evaluate against two baseline Graphscope algorithms,
block-gs and pos-gs. block-gs and pos-gs use the one-lookahead
approach of Graphscope to optimise the block preserving
and position preserving encodings respectively.

6.1 Synthetic Evaluation
To construct the synthetic graphs, we use a static stochas-

tic blockmodel algorithm [2] to generate initial static block-
models of 250 vertices, 10 uniformly sized positions, 30%
of blocks having 75% density and rest having 5% density.
We then introduced change points at 10 uniformly random
locations, where we change the underlying blockmodel by
moving vertices between positions, flipping the densities of
some blocks (e.g., 0.75 to 0.25) or adding or deleting a posi-
tion. Each subsequence (of 100 snapshots) is then generated
from a static blockmodel, with some uniformly distributed
noise (flipping of edges) added to the snapshots between the
change points. For each parameter setting, we generated
three blockmodels, and from each, three subsequences, and
ran each of the algorithms three times, for a total of 27 runs
per algorithm for each dataset2 setting.
2Available at http://eng.unimelb.edu.au/jeffreyc/data

Algor. Precision Recall VI / sshot
pos-cp 1.000(0.000) 0.733(0.267) 4.101(1.931)
pos-cp 0.626(0.000) 1.000(0.000) 3.990(1.992)
block-gs 0.500(0.000) 0.933(0.047) 4.956(0.936)
pos-gs 0.000(0.000) 0.000(0.000) 5.035(0.843)

(a) Results for datasets with 5% noise, and an aver-
age of 1 position addition/deletion and 5% position
membership changes at the change points.

Algor. Precision Recall VI / sshot
pos-cp 0.222(0.416) 0.033(0.067) 5.550(0.357)
pos-cp 0.717(0.081 0.989(0.031) 5.529(0.442)
block-gs 0.500(0.000) 0.900(0.000) 5.677(0.242)
pos-gs 0.000(0.000) 0.000(0.000) 5.689(0.148)

(b) Results for datasets with 5% noise, and no posi-
tion additions/deletions and 5% block density flips at
the change points.

Algor. Precision Recall VI / sshot
pos-cp 1.000(0.000) 1.000(0.000) 5.663(0.227)
pos-cp 0.627(0.023) 1.000(0.000) 5.739(0.257)
block-gs 0.500(0.000) 0.900(0.082) 5.794(0.184)
pos-gs 0.000(0.000) 0.000(0.000) 5.792(0.190)

(c) Results for datasets with 5% noise, and no posi-
tion additions/deletions and 5% position membership
changes at the change points.

Table 2: Segmenting results for generated datasets.
Results are reported as average (std. deviation).

6.1.1 Measures
To evaluate the ability of the algorithms to detect the in-

troduced change points, we use the precision and recall mea-
sures. Let Itrue and Iact denote the set of true and detected
change points respectively. Then precision = |Itrue∩Iact|

|Iact|

and recall = |Itrue∩Iact|
|Itrue| . We measure how similar the de-

tected and generated blockmodels are by comparing their
sets of positions across the snapshots and averaging the re-
sults. We use the average variation of information (VI) per
snapshot as our comparison measure. Lower VI means more
similar sets of positions. Although the mean of the total ob-
jective values for the change point algorithms are 20–30%
lower than the corresponding Graphscope variants, we do
not report these values because we found they vary greatly
between the datasets (large variance) and hence are incon-
clusive for our analysis.

6.1.2 Results
In this subsection, we evaluate the segmenting accuracy

of SeqiBloc. We first evaluate its ability to locate the intro-
duced change points, varying the amount of noise and the
size of the blockmodel shift at the change points.

We first changed the amount of noise introduced from 1%
of edges to 10% of edges. We found that the algorithms were
mostly invariant to the amount of noise introduced, hence
we only show one of the results (5% of edges changed) in
Table 2a. The results indicate that when pos-cp detects a
change, it is always correct in these tests (100% precision),
but it can sometimes miss some change points (73% recall).
On the other hand, pos-cp is able to detect all the introduced
changed points (100% recall), but is sometimes oversensitive
and makes a false detection (62.6% precision). block-gs has
less precision and recall than both our algorithms, indicating
it is overly sensitive due to its greedy nature. pos-gs cannot

Dataset Vert. # Seq. Length Resolution
Reality Mining 97 290 day
Enron 141 209 week
BGP 30k 13 2 days

Table 3: Real datasets statistics.

detect any change points at all. The variation of information
values indicate that both pos-cp and pos-cp obtained block-
models that are significantly closer to the true blockmodels
than the Graphscope variants.

Next, we show the results of experiments where we only
change the block densities (Table 2b) and the position mem-
berships (Table 2c). The first test should favour pos-cp, as
pos-cp and its position-preserving formulation generally can-
not detect change points with block densities changes only.
The results in Table 2b confirm this. The second test should
favour pos-cp, as it only involves position change and our
measure BMDD monitors for a change in position and den-
sity. Again, the results confirm this. Note that for both
tests, pos-gs could not detect any change points, and when
comparing the block-preserving algorithms, block-gs is al-
ways less accurate than the equivalent pos-cp.

The synthetic results show that the change point algo-
rithms are more accurate than their Graphscope counter-
parts.

6.2 Real Data Evaluation
In this subsection, we demonstrate the blockmodels and

segmenting produced by the different formulations for the
MIT reality mining proximity graphs [10], the Enron email
graph [8] and the BGP Internet routing network [12]. Their
statistics are described in Table 3.

The Reality Mining graph measures the proximity of users
in a laboratory environment over a period of a few months.
Each vertex in the graph represents a user, and an undi-
rected edge represents proximity. The Enron email graph
tracks the email communications among Enron employees3.
Each vertex in the Enron graph represents a person, and a
directed edge represents sending at least one email from the
person represented by the source vertex to the person repre-
senting the target vertex. Finally, the BGP Internet routing
graph represents the connectivity among organisations in
the Internet. A vertex represents an organisation, and an
undirected edge represents connectivity between them. The
time spanned by each snapshot of the Reality Mining, En-
ron and BGP graphs are one day, one week and two days
respectively. The datasets span a variety of data types, with
the MIT and Enron data being unstable and noisy in general
and the BGP data being larger and relatively stable.

6.2.1 Reality Mining
To provide an illustration of the blockmodels found, we

first show a 10 day graph sequence of the proximity net-
work, with each snapshot spanning a day. We show the
results from the pos-cp, pos-cp and block-gs algorithms (Fig-
ures 3a to 3c). Each figure shows the adjacency matrix of
each snapshot, with the red dotted lines as delimiters of the
positions/blocks. Time runs top to bottom, left to right. We
used a basic matching algorithm to align the blocks and ver-
tices as best we can, but vertices of different snapshots that

3We use the version of dataset that only tracks the internal
communications within Enron.

(a) Blockmodels obtained using pos-cp.

(b) Blockmodels obtained using pos-cp.

(c) Blockmodels obtained using block-gs.

Figure 3: Adjacency matrices of a 10 day graph sequence extracted from the Enron graph. Red dotted lines
delimit blockmodel decompositions of each snapshot.

have the same labels in the figures might not correspond to
the same actual vertex.

As the Figure 3c shows, block-gs fragments very easily.
Once the number of positions increases, the greedy algo-
rithm is unable to recover and all subsequent parts of the
graph sequence are lumped into one blockmodel.

Now consider the blockmodels obtained from pos-cp and
pos-cp (Figures 3a and 3b respectively). They clearly reflect
the weekday (5 days of high levels of proximity) and week-
ends (almost no proxmity detected). Because the position
preserving equivalence is easier to satisfy, pos-cp is generally
able to find blockmodels of longer lengths (e.g. d6–d9 in Fig-
ure 3b vs. individual blockmodels over the same period in
Figure 3a). In contrast, the block preserving equivalence
is less likely to fragment (compare the subsequence d1–d8).
Both equivalences are able to produce blockmodels that ap-
pear to be visually reasonable.

To analyse the amount of fragmentation and the length
of segments obtained, we analysed the number of segments,
their average length and the number of positions found over
time. The results are in Table 4a and Figure 4a, which shows
the number of positions found across time.

The results in Table 4a and Figure 4a confirm that block-gs
cannot segment the proximity graph sequence and only man-
aged two fragmented segments. pos-cp, being more strict
than pos-cp, had more segments, but the larger standard
deviation of segment lengths show that they vary more in
length than ones obtained from pos-cp. The reason for this
is that pos-cp tends to be more sensitive to changes (recall
the synthetic results), hence more likely to segment during

Algor. Seg. # Seg. len. Run time Obj. Val.
pos-cp 125 2.33 (4.51) 5.316s 212572
pos-cp 97 3.0 (3.09) 8.873s 188077
block-gs 2 146 (89) 52.384s 348253

(a) Reality Mining Results.

Algor. Seg. # Seg. len. Run time Obj. Val.
pos-cp 90 2.32 (4.96) 5.036s 155959
pos-cp 59 3.54 (4.75) 7.732s 137817
block-gs 1 209 (0.0) 704.178s 286972

(b) Enron Results.

Table 4: Segmenting results for Reality Mining and
Enron. Segment length results are reported as av-
erage (standard deviation).

fluctuating periods than pos-cp. In addition, both change
point models used much less positions to describe the data
than block-gs, even after we capped the maximum number
of positions to 51. The lower objective value of pos-cp over
block-gs suggest that the evolving blockmodels found by pos-
cp are a better fit. The running time of block-gs is much
slower than the other two algorithms, because the optimis-
ing algorithm’s complexity scales at least quadratically with
the number of positions.

6.2.2 Enron
We repeat the previous analysis to evaluate the segment-

ing quality on the Enron data. Consider Table 4b and Fig-
ure 4b. They show that block-gs is unable to segment the
stream at all, producing one segment for the whole stream.

(a) Reality Mining. (b) Enron.

Figure 4: Plots of the number of partitions vs. time
for the Reality Mining and Enron datasets.

This caused the single blockmodel to fragment into many
positions and causing the run time to grow to 700 seconds.
In contrast, both pos-cp and pos-cp were able to segment the
sequence into a number of segments, with pos-cp producing
more segments again. Again, it shows block-gs fragmenting
and not being able to produce meaningful blockmodel de-
compositions, pos-cp having more positions in general while
pos-cp being the most stable of the three, in terms of number
of positions.

6.2.3 BGP
The BGP data is largely stable, and for the period we

analysed over November 2011, there was no known out-
ages. For both pos-cp and pos-cp we correctly found one
segment, with the set of positions found illustrated in Fig-
ure 1. The running time was several hours, which is about
10-100 times more scalable than state of the art blockmod-
elling algorithms [17].

In summary, both pos-cp and pos-cp can mine blockmod-
els that are a balance between accuracy (one blockmodel per
snapshot) and simplicity (one blockmodel for the whole se-
quence). We found weekday/weekend structure in the Real-
ity Mining data, a stable hierarchical structure for the BGP
graph, and showed that the change point formulations in
SeqiBloc performed well in synthetic datasets and do not
fragment like Graphscope does.

7. CONCLUSION
In conclusion, we have presented a novel framework, Seqi-

Bloc, to decompose a dynamic graph into a series of multi-
snapshot blockmodels that summarises the evolving struc-
tural patterns. In this framework, we have introduced two
new definitions of dynamic structural equivalence and showed
what this means in terms of adjacency matrix structure and
blockmodelling. Based on these definitions, we have for-
mulated four different information theoretic encodings that
correspond to the new equivalence definitions and provide
an intuitive tradeoff between the number of positions in a
blockmodel, the time it spans and how well it fits the subse-
quence spanned. We then introduced a change point detec-
tion approach with a new blockmodel comparison measure,
BMDD, to find the appropriate length of these blockmodels.
Using synthetic and real datasets like the Reality Mining,
Enron and BGP dynamic graphs, we showed our approach
can find relevant segments and discover interesting and in-
tuitive blockmodels across time.

For future work, it will be interesting to mine for frequent
multi-snapshot blockmodels. For example, in the Reality

Mining results, we saw there were clear weekday and week-
end structural patterns. If we can group the similar weekend
and weekday behaviours (in terms of blockmodels), then we
can find normal patterns of interactions and detect outliers.

Another possible future direction is to extend the frame-
work to weighted blockmodels. There are no standard defini-
tions of weighted equivalences and blockmodels, hence there
is a need to find intuitive definitions of weighted equiva-
lences.

8. REFERENCES
[1] C. C. Aggarwal, Y. Zhao, and P. S. Yu. On Clustering

Graph Streams. In Proceedings of SDM, 2010.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P.
Xing. Mixed membership stochastic blockmodels. J. of
Machine Learning Research, 9, June 2008.

[3] B. Brodsky and B. Darkhovsky. Nonparametric
Methods in Change Point Problems. Springer, 1993.

[4] D. Chakrabarti, R. Kumar, and A. Tomkins.
Evolutionary clustering. In Proceedings of KDD, 2006.

[5] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng.
Evolutionary spectral clustering by incorporating
temporal smoothness. In Proceedings of KDD, 2007.

[6] M. Coen, H. Ansari, and N. Fillmore. Comparing
clusterings in space. In Proceedings of ICML, 2010.

[7] T. Cover and J. Thomas. Elements of Information
Theory. Wiley-Interscience, 2006.

[8] J. Diesner, T. Frantz, and K. Carley. Communication
Networks from the Enron Email Corpus It’s Always
About the People. Enron is no Different. Comp. &
Math. Org. Theory, 11(3), 2005.

[9] T. N. Dinh, I. Shin, N. K. Thai, M. T. Thai, and
T. Znati. A General Approach for Modules
Identification in Evolving Networks. Springer, 2010.

[10] N. Eagle and A. (Sandy) Pentland. Reality mining:
sensing complex social systems. Personal Ubiquitous
Comput., 10, March 2006.

[11] D. Greene, D. Doyle, and P. Cunningham. Tracking
the Evolution of Communities in Dynamic Social
Networks. In Proceedings of ASONAM, 2010.

[12] Y. Hyun, B. Huffaker, D. Andersen, E. Aben,
M. Luckie, kc claffy, and C. Shannon. The IPv4
Routed /24 AS Links Dataset - November 2011.

[13] M. Meila. Comparing clusterings by the variation of
information. In Proceedings of the 16th Annual
Conference on Learning Theory and 7th Kernel
Workshop, page 173. Springer Verlag, 2003.

[14] J. Rissanen. Modeling by shortest data description.
Automatica, 14, 1978.

[15] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In Proceedings of KDD, 2007.

[16] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge Uni. Pr., 1994.

[17] E. P. Xing, W. Fu, and L. Song. A State-Space Mixed
Membership Blockmodel for Dynamic Network
Tomography. Annals of Applied Statistics, 4(2), 2010.

[18] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin.
Detecting communities and their evolutions in
dynamic social networks - a Bayesian approach.
Machine Learning, 82, 2011.

