
Predict+Optimise with Ranking Objectives:

Exhaustively Learning Linear Functions

Emir Demirović
1 , Peter J. Stuckey

2 , James Bailey
1 , Jeffrey Chan

3 ,
Chris Leckie

1 , Kotagiri Ramamohanarao
1 , Tias Guns

4

1University of Melbourne, Australia
2Monash University and Data61, Australia

3RMIT University, Australia
4Vrije Universiteit Brussel, Belgium

Abstract

I submitted the camera-ready version!We study
the predict+optimise problem, where machine
learning and combinatorial optimisation must inter-
act to achieve a common goal. These problems are
important when optimisation needs to be performed
on input parameters that are not fully observed but
must instead be estimated using machine learning.
Our contributions are two-fold: 1) we provide the-
oretical insight into the properties and computa-
tional complexity of predict+optimise problems in
general, and 2) develop a novel framework that, in
contrast to related work, guarantees to compute the
optimal parameters for a linear learning function
given any ranking optimisation problem. We il-
lustrate the applicability of our framework for the
particular case of the unit-weighted knapsack pre-
dict+optimise problem and evaluate on benchmarks
from the literature.

1 Introduction

As we are entering the age of automation with large data,
there is an ever-growing need for the interpretability of the
huge volume of available information as well as efficient re-
source utilisation. This requires two major research areas:
machine learning and combinatorial optimisation. Advance-
ment in these fields has resulted in many success stories and
real-life applications over the last century. While a plethora
of sophisticated algorithms and approaches are available in
these fields respectively, an established methodology for solv-
ing problems which require both machine learning and com-
binatorial optimisation remains an open question.

Energy-aware scheduling [Mathaba et al., 2014; Grimes et
al., 2014] is an example, where the goal is to schedule ma-
chines to perform tasks over a time period while minimising
electricity costs. The electricity price, however, is not known
upfront and must rather be estimated with machine learning
based on weather forecasts. Therefore, optimisation needs to
be performed with input that is not necessarily accurate.

Traditionally, the machine learning and combinatorial opti-
misation components are viewed as independent black-boxes:
predict the input parameters and then optimise, hence the

term predict+optimise [Demirović et al., 2019]. The main
issue that arises, however, is that conventional machine learn-
ing metrics, such as mean-square error, are not necessarily
indicative for the outcome of the optimisation procedure.
Example 1. Consider a simplified project-funding problem.
A limited number of projects can be selected and each results
in a financial gain. There are two sets of estimates: P 0

1 =
(7, 6, 10) and P 0

2 = (3, 10, 25), where the i-th component is
the profit estimation of the i-th project pi. Let the true profits
be given as P = (p1, p2, p3) = (5, 6, 10). Assume only two
projects can be funded. Based on the estimates, the preferred
choices are decision(P 0

1) = {p1, p3} or decision(P 0
2) =

{p2, p3}. If the presented data was used in training a ma-
chine learning algorithm based on minimising mean-square
error, i.e., mse(P 0, P) =

P
j
(p0

j
� pj)2, estimate P 0

1 would
be deemed a more favorable prediction than estimate P 0

2 as
mse(P 0

1, P) = 4 < 245 = mse(P 0
2, P). However, in

the context of optimisation, P 0
2 yields a higher profit, i.e.,

P (decision(P 0
1)) = 15 < 16 = P (decision(P 0

2)).
Similar scenarios can be constructed with other standard

metrics. Ideally, the optimisation result would be used as the
machine learning metric, but as the combinatorial optimisa-
tion solutions are discrete, this gives rise to a nondifferen-
tiable function. Hence, widely used techniques in machine
learning, e.g., gradient descent, cannot be directly applied.
This motivates the development of new machine learning al-
gorithms that incorporate optimisation-problem knowledge.

Related work can be classified into three categories: 1)
direct methods aim to interact with the optimisation prob-
lem during training by simplifying the setting, 2) semi-direct
methods take into account features of the optimisation prob-
lem but do not directly interact during training, and 3) indirect
methods are oblivious to the optimisation problem, i.e., stan-
dard machine learning algorithms such as linear regression.
These approaches are discussed in more detail in Section 6.

Our contribution. In this work, we pose the following
research questions:

• What are the properties and computational complexity
of the predict+optimise problem?

• Can we design an algorithm that, based on the training
sample, provably computes the optimal function for the
predict+optimise setting?

• Can the computation be done efficiently in practice?

We address the first question by advancing the theoretical
foundations of predict+optimise by characterising the proper-
ties and computational complexity in relation to the machine
learning algorithm and optimisation problem. Individually,
machine learning and optimisation are based on well-founded
theories. However, such theories are not easily transferable to
the predict+optimise setting and the interaction between the
two components has yet to be understood. To obtain a deeper
understanding of the interplay between machine learning and
combinatorial optimisation, it is important to study the com-
putational properties and limits from a theoretical side. Our
results in Section 3 are a step in this direction.

The second research question is challenging as our the-
oretical results indicate that conventional techniques cannot
be applied in a straight-forward fashion in general, unless
P = NP. We tackle this question by providing a novel
framework in Section 4 for the particular case where the ma-
chine learning component is a linear function and the combi-
natorial problem has a ranking objective, i.e., the optimisation
outcome depends on the relative order of its input parameters
and not their absolute values. The setting, even though re-
stricted, covers an important class of problems in a theoret-
ical and practical sense. Ranking problems appear in a va-
riety of domains and some belong to the class of NP-hard
problems, e.g., document retrieval [Joachims, 2002], house-
allocation [Azizi et al., 2018], mean-average precision [Yue
et al., 2007]. Linear functions are widely used in machine
learning, e.g., regression and linear support vector machines.

There are three main advantages of our approach: it is an
entirely new method for predict+optimise, which is generic
for the considered problems, and complete, i.e., it can com-
pute the optimal linear function given a training sample. Our
framework admits any ranking optimisation problem, includ-
ing NP-hard variants, and optimises with it directly, whereas
in related work, challenging optimisation problems and/or re-
sulting learning metrics are approximated with differentiable
surrogates. Related work, in particular the relationship with
preference elicitation, is discussed in Section 6.

The completeness aspect brings several benefits: it pro-
vides guarantees on the outcome and opens the possibility of
new approximation methods that can directly use the optimi-
sation problem as the learning metric. In addition, regularisa-
tion is included in our framework as a means to avoid overfit-
ting. The flexible nature of our framework is paid in terms of
computational time: it requires repeatedly solving the optimi-
sation problem. Nevertheless, in Section 5, we demonstrate
that our approach can be used in practice. To the best of our
knowledge, our framework is the first of its kind for these
types of problems.

2 Preliminaries

We define an optimisation problem as:

max
X

obj(X,P) s.t. X 2 C, (1)

where P is the vector of optimisation parameters, C is the set
of feasible solutions implicitly defined by a set of constraints,

and obj is the objective function. Solving corresponds to
computing an optimal solution X⇤ that maximises the ob-
jective while respecting the constraints, i.e. X⇤ 2 {X|X 2
C ^ 8X 0 2 C : obj(X,P) � obj(X 0, P)}.
Example 2 (continued). The simplified project-funding prob-
lem can be posed as obj(X,P) =

P
i
Xi · pi and C =

{X | 8Xj , Xj 2 {0, 1} ^
P

j
Xj b}.

In the predict+optimise setting, the aim is to compute a
solution X that maximises the objective in the optimisation
problem, but the parameter vector P = (p1, p2, ..., pn) is hid-
den. To assist with the optimisation, a set of attribute vectors
A are given, where Ai = (ai1, ai2, ..., aim) encodes partial
information regarding the optimisation parameter pi.
Example 3 (continued Example 1). Each project pi is as-
signed an attribute vector Ai = (ai1, ai2), where ai1 and ai2
are integers denoting the experience of the project leader and
market demand for project pi. The attribute vector Ai can
assist in estimating the financial gain of project pi.

A common approach [Demirović et al., 2019; Wilder et
al., ; Elmachtoub and Grigas, 2017] is to take the solution
obtained by solving the original optimisation problem using
estimated parameters P 0 = f(A) rather than the hidden pa-
rameters P for a chosen function f . The predicted parameters
P 0 are used to construct a solution, but its optimality is eval-
uated with respect to the hidden parameter P .
Example 4 (continued Example 1). Estimates P 0

1 and P 0
2

were used to compute decision(P 0
1) and decision(P 0

2), but
only decision(P 0

2) is optimal with respect to P .
The challenge is to select a function f that, when used to

provide estimates, leads to an optimal solution with respect
to the true parameters. Given historical data (Ai, pi), the aim
is to compute f that minimises regret, i.e. the difference be-
tween the optimal solution and the resulting solution. As-
sume f belongs to a predetermined family of functions {f↵}
defined by their internal k-dimensional vector ↵. Therefore,
the predict+optimise problem can be posed in terms of ↵:

min
↵

Regret(↵) = min
↵

(obj(X⇤, P)� obj(X 0(↵), P)) (2)

X 0(↵) = argmax
X2C

{obj(X, f↵(A))} (3)

The above equations represent the computation of ↵ based
on historical data (Ai, pi) during training. Afterwards, once
an unknown instance consisting of attribute vectors A0

i
is

given, the solution is determined using the calculated f↵.
Similar definitions for this problem have appeared in liter-

ature, e.g. defining predict+optimise in terms of expected re-
gret [Demirović et al., 2019] and considering linear programs
[Wilder et al., ; Elmachtoub and Grigas, 2017].

3 Properties of the Regret Function

We study the properties of Regret(↵) (Equation 2) in terms
of its two main components: the optimisation problem
(obj, C) and the learning function f↵. We characterise the
co-domain of Regret(↵), a sufficient condition for comput-
ing the optimal value, and its behaviour in each point in terms

of discontinuity and gradient. This provides a basis for our
approach. Intuitively, the results show the practical difficulty
of predict+optimise.

Theorem 1. Regret(↵) has finite co-domain if there exists a
finite set of solutions ⇥ such that:

8P 0, 8X⇤ 2 X
⇤ : obj(X⇤, P) 2 {obj(X,P)|X 2 ⇥},

where X
⇤ = {X|X 2 C ^ 8X 0 2 C : obj(X,P 0) �

obj(X 0, P 0)}.
The proof is by contradiction. The main step is to prove

the existence of ⇥ for a particular predict+optimise setting.

Corollary 1. Regret(↵) has finite co-domain if:

• the optimisation problem has a finite co-domain; or

• the set of feasible solutions |C| is finite; or

• the optimisation problem is a linear program, i.e. it can
be posed as: maxX(cTX) s.t. AX b.

Proof. The first case is straight-forward, while the second
follows as it is sufficient to set ⇥ = C. For the third case,
it is known in linear programming theory that if there exists
a feasible solution, then there exists an optimal solution in an
extremal point of the polyhedron defined by the linear con-
straints. Let ⇥ be the set of all extremal points. It follows
that ⇥ is finite and given an arbitrary P , each optimal solu-
tion will be covered by at least one solution in ⇥.

Remark 1. According to Theorem 1, even though the sets
of feasible and optimal solutions are uncountable for linear
programs in general, Regret(↵) has a finite co-domain.

Theorem 1 gives rise to the following key theorem, which
makes a statement about optimality search:

Remark 2. For Regret(↵) with finite co-domain, it is suffi-
cient to evaluate a finite number of points ⇣ in the parameter
space to compute the optimal ↵ that minimises regret, even if
the domain of Regret(↵) is continuous.

Note that the previous theorem only asserts the existence of
⇣, but does not provide explicit guidance for its computation.
This is discussed in the next section for a special case.

Theorem 2. If Regret(↵) has finite co-domain, then given a
point ↵0, exactly one of the following holds:

• the gradient in ↵0 is zero, i.e. rRegret(↵0) = 0.

• ↵0 is a point of discontinuity of Regret(↵).

Remark 3. If Regret(↵) has finite co-domain, its set of non-
differentiable points is infinite in general.

Theorem 2 and Remark 3 provide an intuitive explanation
for the difficulty of solving predict+optimise in practice: the
resulting regret function that needs to be optimised is typi-
cally nonlinear, nondifferentiable, and has gradient zero in its
continuous points. Therefore, for instance, widely used gra-
dient descent methods cannot be directly applied.

Remark 4. The previous remarks and propositions hold in
general regardless of the characterisation of f↵.

3.1 Computational Complexity

We show the theoretical limitations of predict+optimise. The
results indicate that conventional techniques are unlikely to
provide satisfactory solutions. Intuitively, predict+optimise is
more difficult than each of its individual components, which
in turn motivates the development of novel approaches.
Definition 1. (Decision Problem for Regret - DPR)

• Input: Rational number c, regret function Regret(↵)
with an internal learning function f↵

• Question: Does there exist ↵ such that Regret(↵) c?

Definition 2. opt(P) = argmax
X2C

{obj(X,P)}.
Proposition 1. DPR is in the class NP if both f↵ and opt(P)
can be evaluated in polynomial time.

Proof. Given a particular value for ↵, the predicted param-
eters P 0 = f↵(A) and the solutions X 0(↵) = opt(P 0) and
X = opt(P) can be computed in polynomial time. There-
fore, DPR can be verified in polynomial time and belongs to
the class NP under the posed assumptions.

Proposition 2. DPR is NP-hard if f↵ or opt(P) is NP -
hard.

Informally speaking, the proof follows since solving the
NP-hard problem is part of computing the regret function.
Corollary 2. NP-completeness of DPR implies P = NP.

The corollary follows from the definition of NP-hardness.
In particular, Corollary 2 illustrates that, unless NP = P, we
cannot in general answer DPR by reducing it to standard NP-
complete combinatorial frameworks, such as the satisfiability
problem or integer programming.

4 Framework for Predict+Optimise

We provide a novel approach to compute ↵⇤ that minimises
Regret(↵) for the following predict+optimise setting:

• The ranking property is satisfied (Definition 5).
• f↵ is linear, i.e. f↵(Ai) = ↵ ·Ai for ↵ 2 R

n.

The advantage of our method is that we directly optimise
using the regret function in a complete fashion and therefore
guarantee to find the global minimum ↵⇤. We divide this sec-
tion into three subsections: 1) Core - the main results, 2) Ex-
tension - extends the results for the case where multiple opti-
misation instances must be optimised with the same ↵, corre-
sponding to a training set in machine learning with more than
one optimisation benchmark, and 3) Computational enhance-
ments - important techniques for practical computation.

4.1 Core

We introduce the class of problems considered and an algo-
rithm for the optimal ↵⇤ of Regret(↵) for these problems.

We give two definitions prior to the ranking property,
which characterises the optimisation problems covered.
Definition 3. TP (P) is the total preorder defined by P , i.e.
TP (P) = {(i, j) | i, j 2 {1, 2, ..., dim(P)} ^ pi � pj},
where dim(P) is the dimension of the parameter vector P .

Definition 4. optSols(P) = {X⇤ | X⇤ 2 C ^ 8X 0 2 C :
obj(X⇤, P) � obj(X 0, P)}.

Definition 5 (Ranking property). An optimisation problem
(obj(X,P), C) satisfies the ranking property if: 8P1, P2 :
TP (P1) = TP (P2) =) optSols(P1) = optSols(P2).

Example 5 (continued Example 2). The simplified project-
funding problem satisfies the ranking property. Consider
parameter vectors P1 = (50, 15, 25) and P2 = (3, 1, 2).
Both result in the same total preorder, i.e. TP =
{(p1, p2), (p1, p3), (p3, p2)}, and hence lead to the same op-
timal solution {p1, p3} for b = 2.

We label the resulting regret function as Regretrank
lin

(↵) to
differentiate it from the general case. The ranking property is
imposed as it represents a meaningful subclass of problems
with an exploitable structure which are practically relevant
e.g. document retrieval [Joachims, 2002] and youth-house
allocation [Azizi et al., 2018].

Proposition 3. The objective function of an optimisation
problem satisfying the ranking property has finite co-domain.

Corollary 3. Regretrank
lin

(↵) has finite co-domain.

The aim is to compute ↵ that minimises Regretrank
lin

(↵).
Corollary 3 implies Remark 2, and thus it is sufficient to com-
pute the finite set of points ⇣ from Remark 2 and evaluate each
point to obtain the minimising ↵⇤.

In the following, we provide an algorithm that computes a
finite set of points ⇣s that is guaranteed to be a superset of the
key points, i.e. ⇣ ✓ ⇣s.

Remark 5. The function f↵ defines a total preorder over the
optimisation parameters P and attribute vectors Ai.

Definition 6. (change in ranking) Given ↵1 and ↵2, opti-
misation parameters pi and pj with corresponding attribute
vectors Ai and Aj , we say that there is a change in rank-
ing from ↵1 to ↵2 for pi and pj (and consequently for Ai

and Aj) if f↵1(Ai) �1 f↵1(Aj) ^ f↵2(Ai) �2 f↵2(Aj) for
(�1, �2) = (<,>) or (�1, �2) = (>,<).

Proposition 4. The domain of Regretrank
lin

(↵) can be re-
duced to a finite set.

This is consistent with Remark 2. The remaining challenge
is to efficiently calculate the reduced domain. A key ingredi-
ent is given in the following theorem.

Proposition 5. For ↵1 and ↵2 such that Regretrank
lin

(↵1) 6=
Regretrank

lin
(↵2), there exist two optimisation parameters for

which there is a change in ranking from ↵1 to ↵2.

Proof. Assume Regretrank
lin

(↵1) 6= Regretrank
lin

(↵2), but no
change of ranking took place. This implies that f↵1 and f↵2

define the same preorder for P . By Definition 5 of the ranking
property, identical total preorders lead to the same optimal so-
lutions. Thus, Regretrank

lin
(↵1) = Regretrank

lin
(↵2), arriving

at a contradition with the initial assumption.

Remark 6. A change in ordering is not a sufficient condition
for a change in regret in general.

According to Proposition 5, we conclude it is sufficient to
restrict the domain of Regretrank

lin
(↵) to the set of points that

are infinitesimally close to the points where pair-wise opti-
misation parameters pi and pj are considered equivalent with
respect to the total preorder defined by f , i.e. domain =S

i,j
{t | f↵(Ai) = f↵(Aj) ^ |↵ � t| ✏} for some small

✏ � 0. We label these values as transition points, as a change
in regret can only occure in their small neighbourhood.
Example 6. Figure 1(a) shows the transition points for two
parameters p1 and p2 and a vector ↵ = (↵1,↵2) of two di-
mensions. The line represents the transition points. The rel-
ative ranking of the parameters p1 and p2 only changes in
the neighbourhood of the transition points. Consecutively,
Proposition 5 and Remark 6 state that considering the close
neighbourhoods of transition points does not remove all opti-
mal ↵⇤ which minimise regret.

However, the resulting set of points is infinite for a vector
↵ with more than one dimension. Therefore, further filtering
is required to obtain the finite set of points ⇣ from Remark 2.
Before presenting the main theorem for computing the finite
set, we first provide several definitions. Furthermore, to ease
the understanding of the approximation in Section 4.3, with-
out loss of generality, assume that f adds a constant ci to each
prediction depending on the optimisation parameter pi.
Definition 7. H{i,j} is the hyperplane where the parameters
i and j have equal rank according to f↵, i.e. for i 6= j,
H{i,j} = {↵ | f↵(Ai) = f↵(Aj)}.
Example 7. Figure 1(a) shows a 2D hyperplane H{1,2} for
↵ = (↵1,↵2) where p1 = p2. Each hyperplane separates the
space into two regions: all points above and below H{1,2}
define an ordering with p1 > p2 and p1 < p2, respectively.
Definition 8. Let dim(P) = n. H⇤ is the set containing all
H{i,j}, i.e. H⇤ = {H{i,j} | i, j 2 {1, 2, ..., n} ^ i 6= j}.

Definition 9. H |↵| is the set of sets of H{i,j} with cardinality
dim(↵), i.e. H |↵| = {K | K ✓ H⇤ ^ |K| = dim(↵)}.
Definition 10. Let rand(S) be the function that arbitrary se-
lects a point from the set S.
Definition 11. I(K) for K 2 H |↵| is the set of intersection
points of hyperplanes H{i,j} 2 K, i.e.

T
H{i,j}2K

H{i,j}.

Definition 12. Let order(S) be the set of total preorderings
of elements from S.
Example 8. Let order({a, b}) = {{(a, b)}, {(b, a)}, {(a, b),
(b, a)}}. The pairs (a, a) and (b, b) present in each total
preorder omitted for clarity. The first two preorders define
strict orderings, while elements are considered equal in the
last case.
Definition 13. �(E,↵, ord) is the set of points infinitesi-
mally close to ↵ for which ft2� respects the order defined
in ord for elements in E, i.e. �(E,↵, ord) = {t : |↵� t|
✏ ^ ft =) (8i, j 2 E, i 6= j : ft(Ai) � ft(Aj) ! (i, j) 2
ord)} for some small ✏ � 0.
Example 9. Figure 1(b) shows the intersection point
I({H{1,2}, H{1,3}}). �(G, I, {(p1 < p2), (p1 < p3)}) con-
sists of every point in between the arc of radius ✏ and the two

(a) Hyperplane example (b) I and � example. (c) ⇣s example (d) Regularised point.

hyperplanes, while G would be the circle containing the arc
(G not shown in image). Note that each of the four areas
around the intersection define a different ordering.
Definition 14. �(K) is the set of indices that were used in
defining the dim(↵)-tuple K, i.e. �(K) = {i | H{i,j} 2 K}.

Definition 15. E
k

n
is the set of subsets of {1, 2, ..., n} with

cardinality k, i.e. Ek

n
= {e | e ✓ {1, 2, ..., n} ^ |e| = k}.

Assume the hyperplanes H{i,j} are nonparallel and |H⇤| �
dim(↵). We may now state the main definition and theorem.
Definition 16. ⇣s is the set of points infinitesimally close
to all possible dim(↵)-hyperplane intersections that locally
define unique rankings of attribute vectors, i.e. ⇣s =
{rand(�(�(K), rand(IK), ord)) | K 2 H |↵| ^ ord 2
order(�(K)) ^ �(�(K), rand(IK), ord) 6= {;}}.
Example 10. Figure 1(c) shows ⇣s for a problem with three
optimisation parameters. The set ⇣s consists of 12 points,
each located within ✏ distance from an intersection point.
Theorem 3. ⇣s is a superset of ⇣ from Rm. 2, i.e. ⇣ ✓ ⇣s.
Corollary 4. The optimal ↵⇤ = argmin

↵
Regretrank

lin
(↵)

can be computed by evaluating each point in ⇣s.
Proof of Th. 3 follows from Lemmas 1 and 2 given below.

Lemma 1. For each ↵ 2 R, there exists ↵0 2 ⇣s such that
Regretrank

lin
(↵) = Regretrank

lin
(↵0).

Lemma 2. ⇣s may contain redundant points, i.e. points that
map to the same co-domain.

The redundant points from Lemma 2 are partially due to
Remark 6. A subset of the points from ⇣s induce changes in
the ranking of the optimisation parameters that do not have
an effect on the final solution.

Theorem 3 and ⇣s provides the key points among which is
at least one point that minimises the regret. Thus, evaluating
each point from ⇣s leads to the computation of the optimal ↵.
Remark 7. The set of optimal points is uncountable for con-
tinuous f↵. In particular, the points are given by the polyhe-
dron enclosed by the neighbouring Hi,j .
Example 11. Let ↵⇤ be the middle point in Figure 1(d). Each
point on the polygon is an optimal point.

4.2 Extension

In real-life scenarios, the input data might contain multiple in-
stances of the optimisation problem where learning ↵ is done
across all problems. The previous results can be generalised

for this case. Formally, the setting is analogous to before,
but the input consists n benchmarks, i.e. n sets of Pi, Ai,
and Ci. Regret is extended as the sum of the regret of in-
dividual benchmarks, i.e. Regret(↵) =

P
i
Regreti(↵) =P

i
(obj(X⇤

i
, Pi) � obj(Xi(↵)0, Pi)). The goal is, as before,

to compute a single ↵ to minimise the regret. Note that if
n = 1, we obtain the previously discussed setting.
Example 12. In the simplified project-funding problem, one
might consider historical data of the past ten years. In this
setting, assuming the funding decisions are made annually,
the task is to compute a learning function that leads to min-
imum regret when considering the sum of regrets of each in-
dividual year, where the regret of each year is represented by
an instance of the project-funding problem from Example 2.

We now extend the definition of the main set, ⇣s.
Proposition 6. Given n benchmarks, the extended ⇣s

ext
can

be computed as the union of the individual ⇣s
i

, i.e. ⇣s
ext

=
[i⇣si , where ⇣s

i
is the ⇣s from Thm. 3 for the i-th benchmark.

Proof. Let ↵⇤ = argmin
↵2⇣

s
ext

Regretrank
lin

(↵) and assume
9↵0 : Regretrank

lin
(↵0) < Regretrank

lin
(↵⇤) and therefore

↵0 62 ⇣s
ext

. It follows from Prop. 5 that there must
be a change in ranking from ↵⇤ to ↵0 for at least one
benchmark, implying 9↵00 2 ⇣s

ext
: f↵0 = f↵00 . Thus,

Regretrank
lin

(↵⇤) Regretrank
lin

(↵00), but by assumption we
have Regretrank

lin
(↵0) < Regretrank

lin
(↵⇤) which is a contra-

dition as Regretrank
lin

(↵0) = Regretrank
lin

(↵00).

4.3 Computational enhancements

We provide techniques to reduce the number of points in
⇣s, which naturally provides speed-ups in practice. In addi-
tion, we discuss an approximation of our approach, offering
a trade-off between computational time and optimality.

Filtering based on the preorder. Lemma 2 consequently
offers insight for practical computation. Speed-ups could be
obtained by discarding a point that defines the same total pre-
ordering as a previously computed point.

Filtering based on objective. Motivated by Remark 6,
given an ↵0, we may filter the set H |↵| based on the contribu-
tion of the correct ordering of the optimisation parameters.
Definition 17. Let F ⇤ = {f | argmin

f
Regret(f)|}.

Definition 18. Let rank(Ai, f) be the rank of the i-th opti-
misation parameter induces by the total preorder of f .
Definition 19. Given an f↵, the i-th optimisation parameter
is violating in f↵ if @f 2 F ⇤ : rank(Ai, f↵) = rank(Ai, f).

Proposition 7. Given f↵0 , we may remove K from H |↵| with-
out losing optimality if �(K) does not contain any violating
optimisation parameter in f↵0 .

Exploiting Proposition 7 requires efficiently testing if a pa-
rameter is violating, which depends on the optimisation prob-
lem. This can be done for the project-funding problem.

Filtering based on multiple benchmarks. The regret of
the individual benchmark can be used as an additional filter:
Proposition 8. For ↵ 2 ⇣s

ext
, we can remove every ↵0

i
2 ⇣s

i

from ⇣s
ext

such that Regreti(↵0
i
) > Regreti(↵) without re-

moving all ↵⇤ = argmin
↵002⇣

s
ext

Regretrank
lin

(↵00) from ⇣s
ext

.

Regularisation. In the previous text, we considered points
infinitesimally close to an intersection. To account for over-
fitting, we may consider the centroid point of the polyhedron
enclosed by neighbouring Hi,j which contains the infinitesi-
mally close point, as regret is constant along the polyhedron.
Example 13. Let the three points in the middle polygon in
Figure 1(c) be optimal points. The centroid point displayed
in Figure 1(d) is the regularised point.

Approximation - Large Neighbourhood Search (LNS).

Given an initial ↵init = (↵1,↵2, ..., ...↵n), we proceed with
our approach as before but fix a subset of the coefficients to
their current values in ↵init, effectively treating them as con-
stants. This reduces the search and any solution that improves
the regret for the reduced problem does so for the original
problem as well. The procedure can be repeated iteratively
with different subsets of the coefficients until a specified time-
out is reached, providing a trade-off between optimality and
computational time. This resembles large neighbourhood
search [Pisinger and Røpke, 2010] from the meta-heuristic
community, but applied to parameters of the regret function.

5 Experimental Results

The goal is to provide a proof-of-concept implementation that
illustrates the effectiveness of our approach in practice. We
provide two sets of experiments. The first demonstrates the
computational benefits of techniques from Section 4.3. The
second compares our approach with the state-of-the-art.

Benchmarks and data. We experiment with artificial
and real-life energy-price datasets as used in [Demirović et
al., 2019] with the unit-weighted knapsack predict+optimise
problem [Gilmore and Gomory, 1966], which corresponds to
the project-funding problem introduced in the examples.

The artificial dataset was constructed such that the profits
cannot be easily learned: the tuples (pk, Ak) are generated as
pk = 103sin(i)sin(j) and Ak = (i, j), and partitioned into
benchmarks. The profits are further multiplied by a differ-
ent constant for each benchmark. The dataset contains 1000
benchmarks and 48 optimisation parameters per benchmark.

The real-life datasets contain two years of historical energy
price data from the day-ahead market of SEM-O, the Irish
Single Electricity Market Operator. The data was used in the
ICON energy-aware scheduling competition and a number of
publications, e.g. [Grimes et al., 2014; Dooren et al., 2017].
The attributes consist of the date of the day, weather infor-
mation, e.g. estimates of the temperature, wind speed, and
CO2 intensity in Cork, and lastly the price predictions given

by the energy company. Note that predictions are not made
from scratch, but rather based on predictions of the company
together and weather information. As is common in energy
price predictions, it is difficult to derive accurate estimates
and due to price swings, there is a large variance in the prices
and prediction errors. Each benchmark represents a day and
each optimisation parameter represents the price for one half-
hour. The dataset contains 37,872 benchmarks, 48 optimisa-
tion parameters per benchmark, and the attribute vectors are
compressed to eight features.

Learning methods We compare with the state-of-the-art
techniques for predict+optimise detailed in Section 6. (In-

direct) Ridge regression; SVMR; (direct) SPO, smart predict
then optimise [Elmachtoub and Grigas, 2017]; (semi-direct)

QPTL-s, quadratic programming task loss [Wilder et al.,]
specific to the knapsack problem [Demirović et al., 2019];
and SVM-s, learn-to-partition[Demirović et al., 2019]. Multi-
output ridge regression [Borchani et al., 2015] was not used
as it was dominated by its single output variant.

Methodology. Training and test sets are divided at a 70%-
30% ratio. Our approach solves the artificial dataset opti-
mally and uses LNS from Section 4.3 for the energy dataset,
optimising one parameter at a time. Initial coefficients were
based on SVM-s. For other methods, we performed 5-fold
hyperparameter tuning with regret as the measure.

Results and Discussion.
Effect of techniques from Section 4.3. We run our algo-

rithm for the energy-pricing dataset with different combina-
tions of techniques. The capacity was set to 10% of total
number of optimisation parameters, i.e. b = 4 in Example
2. In Table 1, each row shows the runtime and number of
points fully evaluated followed by entries indicating which
technique was used. The baseline is given in the last row. Us-
ing multiple benchmark- and objective-based filtering indi-
vidually provides a substantial reduction in time as they both
avoid fully evaluating a large number of points. Multiple
benchmark filtering is stronger, i.e. produces fewer points,
albeit more computationally demanding when compared to
objective-based filtering, and hence the runtime difference.
Combining both techniques leads to better results. Further
including preorder filtering discards additional points. The
best variant is composed of all three techniques, and achieves
an order-of-magnitude improvement in terms of runtime and
points evaluated over the baseline.

Comparison with the state-of-the-art. We discuss both
datasets by setting b to 10%, 30% and 50% of the number
of optimisation parameters. In Table 2, each entry (x, y) rep-
resents the average regret for the training (x) and testing set
(y). The values are in thousands for the artificial dataset.

Our approach, labelled LinRankOpt, computes the optimal
coefficients for the artificial dataset. Thus, on the training set,
it achieves the minimum regret and provides the best results
when compared to other techniques. The exception is SVM-
s, which obtains the best results as well. Small differences
can be observed in the test set due to different regularisation
policies. In addition, our approach was able to provide slight
improvements over the baseline SVM-s for the energy dataset.

The experimentation illustrates the practicality of our novel
method: it achieves better or comparable results to the state-

Techniques from Section 4.3
Runtime (s) # points preorder objective multi-bench

129 1k 1 1 1
140 1.2k 0 1 1
259 2.2k 0 1 0
351 1.7k 0 0 1

2152 18k 0 0 0

Table 1: Effects of techniques from Section 4.3.

Indirect Semi-direct Direct
Capacity ridge SVMR QPTL-s SVM-s SPO LinRankOpt

Artificial Dataset
5 (10%) (12.0; 12.0) (1.12; 0.99) (24.22; 23.68) (0.08; 0.41) (20.49; 20.36) (0.07; 0.09)

15 (30%) (11.0; 12.0) (2.29; 2.54) (35.34; 34.76) (0.5; 0.27) (30.31; 29.75) (0.25; 0.032)
25 (50%) (1.1; 0.9) (4.71; 6.07) (0.1; 0.0) (0.04; 0.03) (0.38; 0.13) (0.03; 0.06)

Energy-Pricing Dataset
5 (10%) (43; 51) (39; 44) (50; 64) (41; 42) (40; 55) (39; 44)

15 (30%) (59; 67) (55; 53) (76; 105) (55; 51) (59; 72) (53; 51)
25 (50%) (42; 48) (38; 41) (49; 70) (39; 45) (36; 45) (37; 40)

Table 2: Artificial (top) and energy-pricing (bottom) dataset results.

of-the-art for the two datasets. Its advantage is that it can di-
rectly optimise the linear function with respect to the ranking
combinatorial problem. The drawback is that, at its current
state, the runtime can be longer than the other approaches, as
it involves repeatedly solving the optimisation problem. Nev-
ertheless, the runtime in experiments was within minutes.

6 Related Work

Predict+optimise. Previous approaches for predict+optimise
can be partitioned into three groups. Indirect methods use
standard learning methods and loss functions that are in-
dependent of the optimisation problem. Two algorithms
in this category have been applied in [Demirović et al.,
2019]: linear regression and SVMRank [Joachims, 2002;
Joachims, 1998]. Both compute a value for an optimisation
parameter as a linear combination of its attributes with differ-
ent goals: linear regression optimises to capture the precise
value of the parameter, while SVMRank computes the rela-
tive ranking between parameters.

Semi-direct methods [Demirović et al., 2019] take into ac-
count the optimisation problem, but in an indirect fashion.
For example, a learning algorithm may learn to classify items
in knapsack problems as desirable and not desirable. This
results in a ranking algorithm that aims to produce a ranking
which separates items into two groups. This approach may
offer advantages over pure ranking approaches.

Direct methods [Wilder et al., ; Elmachtoub and Grigas,
2017] interact with the optimisation problem during training.
For convex quadratic programs, the gradient of argmax can be
computed [Donti et al., 2017]. For combinatorial problems,
convex surrogates are employed in training through gradient
descent techniques of proxy problems, thus simplify the prob-
lem and not consider it directly. It is not trivial to incorporate
combinatorial problem in the learning metric, as it leads to a
nondifferentiable metric function. This is a critical difference
in our approach, where we provide means of directly optimis-
ing the learning algorithm with the optimisation problem.

Other related approaches. Our approach falls into the
broad research theme of combining machine learning and
constraint optimisation [Passerini et al., 2017]. Most research
has focussed on using machine learning to improve the solv-
ing process, e.g. algorithm selection and hyperparameter op-
timisation [Kotthoff, 2014] and using machine learning to

improve mixed-integer programming solvers [Liberto et al.,
2016]. This is different from our setting, where the aim is
to develop machine learning algorithms specifically designed
for use with combinatorial optimisation problems where the
parameters, e.g. profit values for items in the knapsack prob-
lem, are estimated with machine learning rather than given
precisely. Optimisation and machine learning are necessary
to solve predict+optimise rather than having machine learn-
ing to boost the optimisation process.

In terms of modelling, constraint acquisition [Bessiere et
al., 2017] uses machine learning techniques to learn struc-
tural constraints from data, while other works are concerned
with finding the most likely parameters of given hard con-
straints [Picard-Cantin et al., 2017].

The emerging topic of constructive machine learning and
preference elicitation [Dragone et al., 2018; Teso et al., 2016]
is closely related, where the goal is to learn to synthesize
structured objects from data, e.g. interactively learning the
preferences of a user and searching for the most preferred
object. Our setting bears several similarities with preference
elicitation, e.g. both frameworks aim to learn a linear function
with unknown parameters whilst minimising a related notion
of regret. Solutions and weights in preference elicitation cor-
respond to attribute vectors and ↵. However, there are no-
table differences. Incremental preference elicitation consid-
ers querying the user, uses a single optimisation problem, and
considers pairwise comparisons with additional constraints.
In contrast, our setting assumes a fixed dataset, simultane-
ously optimises multiple problems with the same ↵, use a test
set in addition to a training set, and our ranking property al-
lows capturing certain nonlinear relationships between input
data. In both settings, the predictions are used in the objec-
tive, but our work is concerned with learning the weights of
the objective on a per-instance basis.

Two-phase approaches, which view the machine learn-
ing and optimisation component as independent black-boxes,
were used in energy-aware load shifting [Mathaba et al.,
2014; Grimes et al., 2014]. In addition, it has been applied
in a setting where the objective function is learned based
on data extracted from simulations [Lombardi et al., 2017].
The learnt function is afterwards embedded into a declarative
statement of the optimisation problem. The approach can be
seen as indirect with the main challenge of gathering repre-
sentative training data from a simulation and analysing the
feasibility of embedding machine learning approaches into
the declarative statement of the optimisation problem.

7 Conclusion

We presented theoretical insights into the predict+optimise
problem and provided a novel framework that can learn lin-
ear functions by directly interacting with the underlying com-
binatorial ranking optimisation problem. There are several
main directions for future work: 1) an extension for arbitrary
optimisation problems, which seems challenging but Theo-
rem 1 indicates that it is possible, 2) develop a heuristic to
visit the most prominent points first, similar to the simplex al-
gorithm, and 3) knowledge compilation [Berman et al., 2016]
which may speed-up resolving the optimisation problem.

References

[Azizi et al., 2018] Mohammad Javad Azizi, Phebe
Vayanos, Bryan Wilder, Eric Rice, and Milind Tambe.
Designing fair, efficient, and interpretable policies for
prioritizing homeless youth for housing resources. In
Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research - 15th International
Conference, CPAIOR 2018, Delft, The Netherlands, June
26-29, 2018, Proceedings, pages 35–51, 2018.

[Berman et al., 2016] David Berman, Andre Cire, and
Willian van Hoeve. Decisions diagrams for optimization.
Springer, 2016.

[Bessiere et al., 2017] Christian Bessiere, Frédéric Koriche,
Nadjib Lazaar, and Barry O’Sullivan. Constraint acquisi-
tion. Artificial Intelligence, 244:315 – 342, 2017. Com-
bining Constraint Solving with Mining and Learning.

[Borchani et al., 2015] Hanen Borchani, Gherardo Varando,
Concha Bielza, and Pedro Larrañaga. A survey on multi-
output regression. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 5(5):216–233, 2015.

[Demirović et al., 2019] Emir Demirović, Peter J. Stuckey,
James Bailey, Jeffrey Chan, Chris Leckie, Kotagiri Ra-
mamohanarao, and Tias Guns. An investigation into pre-
diction + optimisation for the knapsack problem. Techni-
cal report, 2019. https://tinyurl.com/yxp5dffo.

[Donti et al., 2017] Priya L. Donti, Brandon Amos, and
J. Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. In Proceedings of the 31st Con-
ference on Neural Information Processing Systems (NIPS
2017), pages 5484–5494, 2017.

[Dooren et al., 2017] David Van Den Dooren, Thomas Sys,
Túlio A. M. Toffolo, Tony Wauters, and Greet Vanden
Berghe. Multi-machine energy-aware scheduling. EURO
J. Computational Optimization, 5(1-2):285–307, 2017.

[Dragone et al., 2018] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Pyconstruct: Constraint programming
meets structured prediction. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18, pages 5823–5825. International Joint
Conferences on Artificial Intelligence Organization, 7
2018.

[Elmachtoub and Grigas, 2017] Adam N. Elmachtoub and
Paul Grigas. Smart ”predict, then optimize”. Technical
report, 2017. https://arxiv.org/pdf/1710.08005.pdf.

[Gilmore and Gomory, 1966] PC Gilmore and Ralph E Go-
mory. The theory and computation of knapsack functions.
Operations Research, 14(6):1045–1074, 1966.

[Grimes et al., 2014] Diarmuid Grimes, Georgiana Ifrim,
Barry O’Sullivan, and Helmut Simonis. Analyzing the im-
pact of electricity price forecasting on energy cost-aware
scheduling. Sustainable Computing: Informatics and Sys-
tems, 4(4):276–291, 2014. Special Issue on Energy Aware
Resource Management and Scheduling (EARMS).

[Joachims, 1998] Thorsten Joachims. Making large-scale
svm learning practical. Technical report, Technical Report,

SFB 475: Komplexitätsreduktion in Multivariaten Daten-
strukturen, Universität Dortmund, 1998.

[Joachims, 2002] Thorsten Joachims. Optimizing search
engines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, pages
133–142, New York, NY, USA, 2002. ACM.

[Kotthoff, 2014] Lars Kotthoff. Algorithm selection for
combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

[Liberto et al., 2016] Giovanni Di Liberto, Serdar Kadioglu,
Kevin Leo, and Yuri Malitsky. DASH: dynamic approach
for switching heuristics. European Journal of Operational
Research, 248(3):943–953, 2016.

[Lombardi et al., 2017] Michele Lombardi, Michela Milano,
and Andrea Bartolini. Empirical decision model learning.
Artificial Intelligence, 244:343–367, 2017.

[Mathaba et al., 2014] Tebello Mathaba, Xiaohua Xia, and
Jiangfeng Zhang. Analysing the economic benefit of elec-
tricity price forecast in industrial load scheduling. Electric
Power Systems Research, 116:158–165, 2014.

[Passerini et al., 2017] Andrea Passerini, Guido Tack, and
Tias Guns. Introduction to the special issue on combining
constraint solving with mining and learning. Artif. Intell.,
244:1–5, 2017.

[Picard-Cantin et al., 2017] Émilie Picard-Cantin, Mathieu
Bouchard, Claude-Guy Quimper, and Jason Sweeney.
Learning the parameters of global constraints using
branch-and-bound. In Principles and Practice of Con-
straint Programming - 23rd International Conference, CP
2017, Melbourne, VIC, Australia, August 28 - September
1, 2017, Proceedings, pages 512–528, 2017.

[Pisinger and Røpke, 2010] David Pisinger and Stefan
Røpke. Large neighborhood search. In Michel Gendreau
and Jean-Yves Potvin, editors, Handbook of Metaheuris-
tics, volume 146 of International Series in Operations
Research & Management Science, chapter 13, pages
399–420. Springer, 2nd edition, 2010.

[Teso et al., 2016] Stefano Teso, Andrea Passerini, and
Paolo Viappiani. Constructive preference elicitation by
setwise max-margin learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 2067–2073, 2016.

[Wilder et al.,] Bryan Wilder, Bistra Dilkina, and Milind
Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI-19).

[Yue et al., 2007] Yisong Yue, Thomas Finley, Filip Radlin-
ski, and Thorsten Joachims. A support vector method for
optimizing average precision. In Proceedings of the 30th
annual international ACM SIGIR conference on Research
and development in information retrieval, pages 271–278.
ACM, 2007.

