Proof. We first note that the following holds true for the generalized correlation integral in Equation (4):

\[C_\alpha(X, r) = \left(\int \left(\int f(y) \mathbb{1}(x, y, r) \, dy \right)^{\alpha - 1} f(x) \, dx \right)^{-1} \]

\[= \left(\int F_R^{\alpha - 1}(x, r) f(x) \, dx \right)^{-1}, \]

where \(F_R(x, r) = \int f(y) \mathbb{1}(x, y, r) \, dy \) is the number of points at distance smaller than \(r \) from \(x \). Then, we use l'Hôpital's rule on the definition of \(\dim_{\alpha}(X) \) in Equation (5):

\[\dim_{\alpha}(X) = \lim_{r \to 0^+} \log \left(\frac{\int F_R^{\alpha - 1}(x, r) f(x) \, dx}{\alpha - 1} \right) \]

\[= \lim_{r \to 0^+} \frac{r \int (\alpha - 1) F_R^{\alpha - 2}(x, r) f(x) \, dx}{\int F_R^{\alpha - 1}(x, r) f(x) \, dx} \]

\[= \lim_{r \to 0^+} \frac{\int F_R^{\alpha - 1}(x, r) f(x) \, dx}{\int F_R^{\alpha - 1}(x, r) \mathbb{1}(x, r) \, dx} \]

As \(r \) tends to \(0^+ \), \(F_R(x, r) \) tends to \(f(x) \). Therefore:

\[\dim_{\alpha}(X) = \frac{\int f(x) \mathbb{1}(x, r) \, dx}{\int f(x) \, dx}. \]

Theorem 2. The kNN estimator of \(\dim_{\alpha}(X) \) is:

\[\widehat{\dim}_{\alpha}(X) = \frac{\sum_{i=1}^n \widehat{\text{ID}}(x_i)(d_k(x_i)^{-(D-\alpha)})^{-1}}{\sum_{i=1}^n (d_k(x_i)^{-(D-\alpha)})^{-1}}. \]

Proof. We first prove a more general result: if \(K(\cdot) \) is a kernel function with width \(h \), then for \(\alpha \geq 1 \),

\[\widehat{\dim}_{\alpha}(X) = \frac{\sum_{i=1}^n \widehat{\text{ID}}(x_i) \left(\sum_{j=1}^n K(\|x_i - x_j\|, h) \right)^{-1}}{\sum_{i=1}^n \left(\sum_{j=1}^n K(\|x_i - x_j\|, h) \right)^{-1}}. \]

To prove this, note that for \(\alpha \geq 1 \), \(\dim_{\alpha}(X) = \frac{\int f(x) f(x)^{\alpha - 1} \mathbb{1}(x, r) \, dx}{\int f(x) f(x)^{\alpha - 1} \, dx} \). The p.d.f. \(f(x) \) of \(X \) can be estimated with kernel functions \(K(\cdot) \) via summation over all data points \(x_i \):

\[f(x) = \frac{1}{n} \sum_{j=1}^n \frac{1}{\pi d_k(x_j)^2} K(\|x - x_j\|, h). \]

If we have a reliable sample of \(n \) i.i.d. data points from \(X \), the expected value \(\int f(x) g(x) \, dx \) of any function \(g(x) \) over the p.d.f. \(f(x) \) can be estimated using the formula: \(\frac{1}{n} \sum_{i=1}^n g(x_i) \). Therefore the denominator of \(\dim_{\alpha}(X) \) can be estimated with \(\frac{1}{n} \sum_{i=1}^n f(x_i)^{\alpha - 1} = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{n} \sum_{j=1}^n K(\|x_i - x_j\|, h) \right)^{\alpha - 1} \). The numerator is instead equal to \(\frac{1}{n} \sum_{i=1}^n \widehat{\text{ID}}(x_i) \left(\frac{1}{n} \sum_{j=1}^n \frac{1}{\pi d_k(x_j)^2} K(\|x_i - x_j\|, h)^{\alpha - 1} \right) \). The formula in Eq. (9) can be easily obtained with algebraic simplifications.

With regards to the kNN estimator, it is possible to prove that \(K(\|x_i - x_j\|) = \frac{1}{\pi d_k(x_j)^2} \mathbb{1}(x, r) \) is a proper kernel, where \(r \) is a given radius and \(V_D(r) = \frac{\pi^D}{D/2 + 1} \) is the volume of a \(D \)-dimensional sphere with radius \(r \). A valid choice for the radius \(r \) is the distance \(d_k(x_i) \) from \(x_i \) to its \(k \)th nearest neighbor. Given that the number of data points at distance less than or equal to \(d_k(x_i) \) from \(x_i \) is exactly \(k \), we have \(\frac{1}{n} \sum_{i=1}^n \frac{1}{\pi d_k(x_i)^2} \mathbb{1}(x, r) = \frac{1}{n} V_D(d_k(x_i)) = \frac{1}{n} V_D(d_k(x_i)) \). The result follows from algebraic manipulations.

Proposition 1. Let \(X \) be a set of \(D \) continuous variables:

1) \(0 \leq \text{IDD}(X) \leq 1 \);
2) \(\text{IDD}(X) = 0 \) iff all \(X_i \) are independent;
3) \(\text{IDD}(X) = 1 \) if there exist one or more manifolds of dimension 1 whose union embeds \(X \);
4) \(\text{IDD}(X) = 1 \) if there exists \(1 \leq i \leq D \) such that for all \(j \neq i \), \(X_j \) is a function or multivalued function of \(X_i \).

Proof. Point 1. By definition, \(\dim(X) = \lim_{t \to 0^+} \frac{H(X, \delta)}{\log 1/\delta} \). Then regarding the lower bound of IDD, \(\sum_{i=1}^D \dim(X_i) - \dim(X) \) is equal to:

\[= \sum_{i=1}^D \lim_{\delta \to 0^+} \frac{H(X_i, \delta)}{\log 1/\delta} - \lim_{\delta \to 0^+} \frac{H(X, \delta)}{\log 1/\delta} \]

\[= \lim_{\delta \to 0^+} \frac{1}{\log 1/\delta} \left(\sum_{i=1}^D H(X_i, \delta) - H(X, \delta) \right) \]

\[= \lim_{\delta \to 0^+} \frac{1}{\log 1/\delta} \left(\sum_{i=1}^D H(X_i, \delta) - H(X, \delta) \right) \]

where \(KL \) is the Kullback-Leibler divergence, which is greater or equal to 0 for any \(\delta > 0 \). Regarding the upper bound of IDD, we use the known fact that the Shannon entropy satisfies \(H(X) \geq \max_i H(X_i) \) to prove the following inequalities for
\[\sum_{i=1}^D \text{dim}(X_i) - \dim(X) : \]
\[= \sum_{i=1}^D \lim_{\delta \to 0^+} \frac{H(X_i, \delta)}{\log 1/\delta} - \lim_{\delta \to 0^+} \frac{H(X, \delta)}{\log 1/\delta} \]
\[\leq \sum_{i=1}^D \lim_{\delta \to 0^+} \frac{H(X_i, \delta)}{\log 1/\delta} - \max_i \lim_{\delta \to 0^+} \frac{H(X_i, \delta)}{\log 1/\delta} \]
\[= \sum_{i=1}^D \lim_{\delta \to 0^+} \frac{H(X_i, \delta)}{\log 1/\delta} - \max \dim(X_i). \]

Since the Shannon entropy is a continuous function, and since \(X \) is continuous, it is possible to interchange the limit and max operations.

Point 2: As shown for Point 1 above, \(\sum_{i=1}^D \text{dim}(X_i) - \text{IDD}(X) \) is equal to
\[\lim_{\delta \to 0^+} \frac{1}{\log 1/\delta} \text{KL} \left(p_X(x, \delta) \| p_{X_1}(x_1, \delta) \cdots p_{X_D}(x_D, \delta) \right). \]

The result follows from the fact that for any \(\delta > 0 \), the KL divergence is equal to 0 iff all variables \(X \) are independent.

Point 3: If there exist at least a manifold of dimension 1 embedded in \(X \), then \(\text{ID}(x) = 1 \) for any locality \(x \). With \(\dim(X) = 1 \) being the expected ID over the p.d.f. of \(X \), we have that \(\text{IDD}(X) = 1 \). According to Theorem 1 in [10] if \(X_i \) is a continuous random variable, \(\dim(X_i) = 1 \). Given that we are considering continuous random variables \(X_i \), \(\max_i \dim(X_i) = 1 \), and therefore \(\text{IDD}(X) = 1 \).

Point 4: follows immediately from Point 3.