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Abstract
Datasets with significant proportions of noisy
(incorrect) class labels present challenges for
training accurate Deep Neural Networks (DNNs).
We propose a new perspective for understanding
DNN generalization for such datasets, by inves-
tigating the dimensionality of the deep represen-
tation subspace of training samples. We show
that from a dimensionality perspective, DNNs ex-
hibit quite distinctive learning styles when trained
with clean labels versus when trained with a pro-
portion of noisy labels. Based on this finding,
we develop a new dimensionality-driven learn-
ing strategy, which monitors the dimensionality
of subspaces during training and adapts the loss
function accordingly. We empirically demonstrate
that our approach is highly tolerant to significant
proportions of noisy labels, and can effectively
learn low-dimensional local subspaces that cap-
ture the data distribution.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated excellent
performance in solving many complex problems, and have
been widely employed for tasks such as speech recognition
(Hinton et al., 2012), computer vision (He et al., 2016) and
gaming agents (Silver et al., 2016). DNNs are capable of
learning very complex functions, and can generalize well
even for a huge number of parameters (Neyshabur et al.,
2014). However, recent studies have shown that DNNs may
generalize poorly for datasets which contain a high propor-
tion noisy (incorrect) class labels (Zhang et al., 2017). It is
important to gain a fuller understanding of this phenomenon,
with a view to development of new training methods that can
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achieve good generalization performance in the presence of
variable amounts of label noise.

One simple approach for noisy labels is to ask a domain
expert to relabel or remove suspect samples in a preprocess-
ing stage. However, this is infeasible for large datasets and
also runs the risk of removing crucial samples. An alterna-
tive is to correct noisy labels to their true labels via a clean
label inference step (Vahdat, 2017; Veit et al., 2017; Jiang
et al., 2017; Li et al., 2017). Such methods often assume
the availability of a supplementary labelled dataset contain-
ing pre-identified noisy labels which are used to develop
a model of the label noise. However, their effectiveness is
tied to the assumption that the data follow the noise model.
A different approach to tackle noisy labels is to utilize cor-
rection methods such as loss correction (Patrini et al., 2017;
Ghosh et al., 2017), label correction (Reed et al., 2014), or
additional linear correction layers (Sukhbaatar & Fergus,
2014; Goldberger & Ben-Reuven, 2017).

In this paper, we first investigate the dimensionality of the
deep representation subspaces learned by a DNN and pro-
vide a dimensionality-driven explanation of DNN general-
ization behavior in the presence of (class) label noise. Our
analysis employs a dimensionality measure called Local In-
trinsic Dimensionality (LID) (Houle, 2013; 2017a), applied
to the deep representation subspaces of training examples.
We show that DNNs follow two-stage of learning in this
scenario: 1) an early stage of dimensionality compression,
that models low-dimensional subspaces that closely match
the underlying data distribution, and 2) a later stage of di-
mensionality expansion, that steadily increases subspace
dimensionality in order to overfit noisy labels. This second
stage appears to be a key factor behind the poor general-
ization performance of DNNs for noisy labels. Based on
this finding, we propose a new training strategy, termed
Dimensionality-Driven Learning, that avoids the dimen-
sionality expansion stage of learning by adapting the loss
function. Our main contributions are:

• We show that from a dimensionality perspective, DNNs
exhibit distinctive learning styles with clean labels ver-
sus noisy labels.

• We show that the local intrinsic dimensionality can
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be used to identify the stage shift from dimensionality
compression to dimensionality expansion.

• We propose a Dimensionality-Driven Learning strategy
(D2L) that modifies the loss function once the turning
point between the two stages of dimensionality com-
pression and expansion is recognized, in an effort to
prevent overfitting.

• We empirically demonstrate on MNIST, SVHN,
CIFAR-10 and CIFAR-100 datasets that our
Dimensionality-Driven Learning strategy can ef-
fectively learn (1) low-dimensional representation
subspaces that capture the underlying data distribution,
(2) simpler hypotheses, and (3) high-quality deep
representations.

2. Related Work
2.1. Generalization of DNNs

Zhang et al. (2017) showed that DNNs are capable of mem-
orizing completely random labels and exhibit poor general-
ization capability. They argued that DNNs employ case-by-
case memorization on training samples and their labels in
this scenario. Krueger et al. (2017) highlighted that DNNs
exhibit different learning styles on datasets with clean labels
versus those on datasets with noisy inputs or noisy labels.
They showed that DNNs require more capacity, longer train-
ing time to fit noisy labels and the learned hypothesis is
more complex. Arpit et al. (2017) further substantiated
this finding by identifying two stages of learning of DNNs
with noisy labels: an early stage of simple pattern learn-
ing and refining, and a later stage of label memorization.
They also showed that dropout regularization can hinder
overfitting to noisy labels. Shwartz-Ziv & Tishby (2017)
demonstrated that, on data with clean labels, DNNs with
tanh layers undergo an initial label fitting phase and then
a subsequent compression phase. They also argued that
information compression is related to the excellent general-
ization performance of DNNs. However, Saxe et al. (2018)
conducted experiments where information compression was
not found to occur for ReLU (Glorot et al., 2011) DNNs.

While these works have studied the differences between
learning with clean labels and learning with noisy labels,
a full picture of this phenomenon and its implications for
DNN generalization is yet to emerge. Our study adds an-
other perspective based on subspace dimensionality analysis,
and shows how this can lead to the development of an effec-
tive learning strategy.

2.2. Noisy Label Learning

A variety of approaches have been proposed to robustly
train DNNs on datasets with noisy labels. One strategy is to

explicitly or implicitly formulate the noise model and use
a corresponding noise-aware approach. Symmetric label
noise that is independent of the true label was modeled in
(Larsen et al., 1998), and asymmetric label noise that is con-
ditionally independent of individual samples was modeled
in (Natarajan et al., 2013; Sukhbaatar et al., 2014). There
are also more complex noise models for training samples
where true labels and noisy labels can be characterized by
directed graphical models (Xiao et al., 2015), conditional
random fields (Vahdat, 2017), neural networks (Veit et al.,
2017; Jiang et al., 2017) or knowledge graphs (Li et al.,
2017). These methods aim to correct noisy labels to their
true labels via a clean label inference step or by assigning
smaller weights to noisy label samples. For the modeling of
label noise, they often require an extra dataset with ground
truth of pre-identified noisy labels to be available, or an
expensive detection process. They may also rely on specific
assumptions about the noise model. Another approach is to
use a refined training strategy that utilizes correction meth-
ods to adjust the loss function to eliminate the influence of
noisy samples (Wang et al., 2018). Backward and Forward
are two such correction methods that use an estimated or
learned factor to modify the loss function (Patrini et al.,
2017). A linear layer is added on top of the network to fur-
ther augment the correction architecture in (Sukhbaatar &
Fergus, 2014; Goldberger & Ben-Reuven, 2017). Bootstrap
replaces the target labels with a combination of raw target
labels and their predicted labels (Reed et al., 2014).

Our proposed Dimensionality-Driven Learning strategy is
also a loss correction method, one that avoids overfitting by
using the estimation of the local intrinsic dimensionality of
learned local subspaces to regulate the learning process. In
Section 5 we empirically compare Dimensionality-Driven
Learning with other loss correction strategies.

2.3. Supervised Learning and Dimensionality

The Local Intrinsic Dimensionality (LID) model (Houle,
2017a) was recently used for successful detection of ad-
versarial examples for DNNs by (Ma et al., 2018). This
work demonstrates that adversarial perturbations (one type
of input noise) tend to increase the dimensionality of the
local subspace immediately surrounding a test sample, and
that features based on LID can be used for identifying such
perturbations. However, in this paper we show how LID can
be used in a new way, as a tool for assessing the learning
behavior of a DNN, and developing an adaptive learning
strategy against noisy labels.

Other works have also considered the use of dimensionality
measures for regularization in manifold learning (Roweis
& Saul, 2000; Belkin et al., 2004; 2006). For example, an
intrinsic geometry regularization over Reproducing Kernel
Hilbert Spaces (RKHS) was proposed in (Belkin et al., 2006)
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to enforce smoothness of solutions relative to the underlying
manifold, and a Laplacian-based regularization using the
weighted neighborhood graph was proposed in (Belkin et al.,
2004). In contrast to these works, which treated dimension-
ality as a characteristic of the global data distribution, we
explore how knowledge of local dimensional characteristics
can be used to monitor and modify DNN learning behavior
for the noisy label scenario.

3. Dimensionality of Deep Representation
Subspaces

We now briefly introduce the LID measure for assessing the
dimensionality of data subspaces residing in the deep repre-
sentation space of DNNs. We then connect dimensionality
theory with the learning process of DNNs.

3.1. Local Intrinsic Dimensionality (LID)

Local Intrinsic Dimensionality (LID) is an expansion-based
measure of intrinsic dimensionality of the underlying data
subspace/submanifold (Houle, 2017a). In the theory of in-
trinsic dimensionality, classical expansion models (such as
the expansion dimension (Karger & Ruhl, 2002) and gener-
alized expansion dimension (Houle et al., 2012)) measure
the rate of growth in the number of data objects encountered
as the distance from the reference sample increases. Intu-
itively, in Euclidean space, the volume of an D-dimensional
ball grows proportionally to rD when its size is scaled by
a factor of r. From the above rate of volume growth with
distance, the dimension D can be deduced from two volume
measurements as:

V2/V1 = (r2/r1)
D ⇒ D = ln(V2/V1)/ ln(r2/r1). (1)

The aforementioned expansion-based measures of intrinsic
dimensionality would determine D by estimating the vol-
umes in terms of the numbers of data points captured by the
balls. Transferring the concept of expansion dimension from
the Euclidean space to the statistical setting of continuous
distance distributions, the notion of ball volume is replaced
by the probability measure associated with the balls. This
leads to the formal definition of LID (Houle, 2017a):
Definition 1 (Local Intrinsic Dimensionality).
Given a data sample x ∈ X , let r > 0 be a random variable
denoting the distance from x to other data samples. If
the cumulative distribution function F (r) is positive and
continuously differentiable at distance r > 0, the LID of x
at distance r is given by:

LIDF (r) , lim
ε→0

ln
(
F ((1 + ε)r)

/
F (r)

)
ln(1 + ε)

=
rF ′(r)

F (r)
, (2)

whenever the limit exists. The LID at x is in turn defined as
the limit of the radius r → 0:

LIDF = lim
r→0

LIDF (r). (3)

LIDF describes the relative rate at which its cumulative
distance function F (r) increases as the distance r increases.
In the ideal case where the data in the vicinity of x are
distributed uniformly within a local submanifold, LIDF
equals the dimension of the submanifold. Nevertheless, in
more general cases, LID also provides a rough indication of
the dimension of the submanifold containing x that would
best fit the data distribution in the vicinity of x. We refer
readers to (Houle, 2017a;b) for more details about LID.

Estimation of LID: Given a reference sample point x ∼ P ,
where P represents a global data distribution, P induces
a distribution of distances relative to x — each sample
x∗ ∼ P being associated with the distance value d(x, x∗).
With respect to a dataset X drawn from P , the smallest
k nearest neighbor distances from x can be regarded as
extreme events associated with the lower tail of the induced
distance distribution. From the statistical theory of extreme
values, the tails of continuous distance distributions can
be seen to converge to the Generalized Pareto Distribution
(GPD), a form of power-law distribution (Coles et al., 2001;
Hill, 1975). Several estimators of LID were developed in
(Amsaleg et al., 2015; Levina & Bickel, 2005), of which the
Maximum Likelihood Estimator (MLE) exhibited the best
trade-off between statistical efficiency and complexity:

L̂ID(x) = −

(
1

k

k∑
i=1

log
ri(x)

rmax (x)

)−1
. (4)

Here, ri(x) denotes the distance between x and its i-th
nearest neighbor, and rmax (x) denotes the maximum of
the neighbor distances. Note that the LID defined in Equa-
tion (3) is a distributional quantity, and the L̂ID defined in
Equation (4) is its estimate.

3.2. LID Estimation through Batch Sampling

Since computing neighborhoods with respect to the entire
dataset X can be prohibitively expensive, we will estimate
LID of a training example x from its k-nearest neighbor
set within a batch randomly selected from X . Consider
a L-layer neural network h : P → Rc, where h(i) is the
intermediate transformation of the i-th layer, and c is a
positive number indicating the number of classes. Given a
batch of training samples XB ⊆ X , and a reference point
x ∼ P (not necessarily a training sample), we estimate the
LID score of x as:

L̂ID(x,XB) = −

(
1

k

k∑
i=1

log
ri(g(x), g(XB))

rmax (g(x), g(XB))

)−1
,

(5)
where g = h(L−1) is the output of the second-to-last layer of
the network, ri(g(x), g(XB)) is the distance of g(x) to its i-
th nearest neighbor in the transformed set g(XB), and rmax

represents the radius of the neighborhood. L̂ID(x,XB)
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(a) CIFAR-10

(b) MNIST

Figure 1. The subspace dimensionality (average LID scores) and
train/test accuracy throughout training for a 12-layer CNN on
CIFAR-10 (a) and a 5-layer CNN on MNIST (b) dataset with clean
(left subfigures) and noisy labels (right subfigures). The average
LID scores were computed at layer 11 for CIFAR-10 and layer 4
for MNIST.

reveals the dimensional complexity of the local subspace in
the vicinity of x, taken after transformation by g. Provided
that the batch is chosen sufficiently large so as to ensure that
the k-nearest neighbor sets remain in the vicinity of g(x),
the estimate of LID at g(x) within the batch serves as an
approximation to the value that would have been computed
within the full dataset g(X).

3.3. Subspace Dimensionality and Noisy Labels

We now show by means of an example how the subspace
dimensionality of training and test examples is affected by
the quality of label information, as the number of training
epochs is increased. For our example, we trained a 5-layer
Convolutional Neural Network (CNN) on MNIST (an image
data set with 10 categories of handwritten digits (LeCun
et al., 1998)) and a 12-layer CNN on CIFAR-10 (a natural
image data set with 10 categories (Krizhevsky & Hinton,
2009)) using SGD, cross-entropy loss, and two different la-
bel quality settings: (1) clean labels for all training samples;
(2) noisy labels for 40% of the training samples, generated
by uniformly and randomly replacing the correct label with
one of the 9 incorrect labels. LID values at layer 4 for
MNIST and layer 11 for CIFAR-10 were averaged over 10
batches of 128 points each, for a total of 1280 test points.
The resulting LID scores and the train/test accuracies are
shown in Figure 1. When learning with clean labels, we
observe a decreasing trend in LID score and an increasing
trend in accuracy as the number of training epochs increases.
However, when learning with noisy labels, we see a very dif-
ferent trend: first a decrease in LID followed by an increase,

accompanied by an initial increase in test accuracy followed
by a decrease. We observed similar dimensionality trends
for a 6-layer CNN on SVHN (Netzer et al., 2011) and a 44-
layer ResNet (He et al., 2016) on CIFAR-100 (Krizhevsky
& Hinton, 2009).

Clearly, in these two situations, the DNNs are exhibiting
different learning styles. For training data with clean labels,
the network gradually transforms the data to subspaces of
low dimensionality. Once the subspaces of the lowest di-
mensionality has been found, the network effectively stops
learning: the test accuracy stabilizes at its highest level and
the dimensionality stabilizes at its lowest. On the other
hand, for training data with noisy labels, the network ini-
tially learns a transformation of the data to subspaces of
lower dimensionality, although not as low as when training
on data with clean labels. Thereafter, the network progres-
sively attempts to accommodate noisy labels by increasing
the subspace dimensionality.

3.4. Two-Stage of Learning of DNNs on Noisy Labels

From the above empirical results, we find that DNNs follow
two-stage of learning in the presence of label noise: 1) an
early stage of dimensionality compression, in which the di-
mensionalities associated with the underlying data manifold
are learned; and 2) a later stage of dimensionality expansion,
in which the subspace dimensionalities steadily increase as
the learning process overfits to the noisy data.

One possible explanation for this phenomenon can be found
in the effect of transformation on the neighborhood set of
test points. Given a training point x ∈ X , its initial spatial
location (before learning) would relate to a low-dimensional
local subspace determined by the underlying manifold (call
this subspace A). Although the initial neighborhood of x
would likely contain many data points that are also close to
manifold A, the LID estimate would not necessarily be the
exact dimension of A. LID reveals the growth characteris-
tics of the distance distribution from x, which is influenced
by — but not equal to — the dimension of the manifold to
which x is best associated.

As the learning process progresses, the manifold undergoes
a transformation by which it progressively achieves a better
fit to the training data. If x is labeled correctly, and if many
of its neighbors also have clean labels, the learning process
can be expected to converge towards a local subspace of
relatively low intrinsic dimensionality (as observed in the
left-hand plot of Figure 1); however, it should be noted
that the learning process still risks overfitting to the data, if
carried out too long. With overfitting, the dimensionality of
the local manifold would be expected to rise eventually.

If x is incorrectly labeled, each epoch in the learning process
progressively causes x — or more precisely, its transform
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(call it x′) — to migrate to a new local subspace (call it A′)
associated with members of the same label that was incor-
rectly applied to x. During this migration, the neighborhood
of x′ tends to contain more and more points of A′ that share
the same label as x, and fewer and fewer points from the
original neighborhood in A. With respect to the points of
A′, the mislabeled point x′ is spatially an outlier, since
its coordinates relate to A and not A′; thus, the presence
of x′ forces the local subspace around it to become more
high-dimensional in order to accommodate (or compress) it.
This distortion results in a dimensionality expansion in the
vicinity of x′ that would be expected to be reflected in LID
estimates based at x′. Stopping the learning process earlier
allows x′ to find its neighborhood in A before the local sub-
space is corrupted by too many neighbors from A′, which
thus leads to better learning of the true data distribution and
improved generalization to test data.

This explanation of the effect of incorrect labeling in terms
of local subspaces is consistent with the one recently given
in (Ma et al., 2018) for the effect of adversarial perturbation
on DNN classification. In this situation, rather than directly
assigning an incorrect label to the test item while leaving its
spatial coordinates unchanged, the adversary must instead
attempt to move a test point into a region associated with an
incorrect class by means of an antagonistic learning process.
In both cases, regardless of how the test point is modified,
the neighborhoods of the transformed points are affected in
a similar manner: as the neighborhood membership evolves,
the local intrinsic dimensionality can be expected to rise.
The associated changes in LID estimates have been used
as the basis for the effective detection of a wide variety of
adversarial attacks (Ma et al., 2018). Recent theoretical
work for adversarial perturbation in nearest-neighbor classi-
fication further supports the relationship between LID and
local transformation of data, by showing that the magnitude
of the perturbation required in order to subvert the classifi-
cation diminishes as the local intrinsic dimensionality and
data sample size grow (Amsaleg et al., 2017).

4. Dimensionality-Driven Learning Strategy
In the previous section, we observed that learning in the
presence of noisy labels has two stages: dimensional com-
pression, followed by dimensional expansion. Motivated
by these observations, we propose a Dimensionality-Driven
Learning (D2L) strategy whose objective is to avoid the
overfitting and loss of test accuracy associated with dimen-
sional expansion.

Given a training sample x, we denote its raw label as y
and its predicted label as ŷ, where both y and ŷ are ‘one-
hot’ indicator vectors. (L̂ID0, · · · , L̂IDi, · · · , L̂IDT ) is a
sequence of LID scores, where L̂IDi represents the LID
score computed from the second-to-last DNN layer at the

i-th training epoch (T epochs in total). Each LID score is
produced as follows. m batches of samples are randomly
selected X1

B , . . . , X
m
B and for each Xi

B and each of its
members x, L̂ID(x,Xi

B) is computed. This givesm×|Xi
B |

LID estimates, which are then averaged to compute the
LID score for the epoch (later, in the experiments, we use
m = 10 and |Xi

B | = 128

To avoid dimensionality expansion during training with
noisy labels, we propose to reduce the effect of noisy labels
on learning the true data distribution using the following
adaptive LID-corrected labels:

y∗ = αiy + (1− αi)ŷ, (6)

where αi is a LID-based factor that updates at the i-th train-
ing epoch:

αi = exp
(
− λ L̂IDi

mini−1j=0 L̂IDj

)
, (7)

where λ = i/T is a weighting that indicates decreasing
confidence in the raw labels when the training proceeds
to the dimensionality expansion stage (that is, when LID
begins to increase). The training loss can then be refined as:

L = − 1

N

N∑
n=1

∑
y∗n

y∗n logP (y
∗
n|xn), (8)

where N is the total number of training samples and
P (y∗n|xn) is the predicted class probability of y∗n given xn.

Interpreting Equations (6) - (8), we can regard D2L as a sim-
ulated annealing algorithm that attempts to find an optimal
trade-off between subspace dimensionality and prediction
performance. The role of α is an exponential decay factor
that allows for interpolation between raw and predicted label
assignments according to the degree of dimensional expan-
sion observed over the learning history. Here, dimensional
expansion is assessed in terms of the ratio of two average
LID scores: the score observed at the current epoch, and the
lowest score encountered at earlier epochs. As the learning
enters the dimensional expansion stage, this ratio exceeds
1, and the exponential decay factor begins to favor the cur-
rent predicted label. The complete D2L learning strategy is
shown in Algorithm 1. Note that the computational cost of
LID estimation through batch sampling is low compared to
the overall training time (tLID/ttraining ≈ 1− 2%), as it
requires only the pairwise distances within a few batches.

To identify the turning point between the two stages of learn-
ing, we employ an epoch window of size w ∈ [1, T − 1] so
as to allow w epochs of initialization for the network, and to
reduce the variation of stochastic optimization. The turning
point is flagged when the LID score of the current epoch is
two standard deviations higher than the mean LID score of
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Algorithm 1 Dimensionality-Driven Learning (D2L)

Input: dataset X , network h(x), total epochs T , epoch
window w, number of batches for LID estimation m.
Initialize: epoch i ← 0, lids ← [], α0 ← 1, turning
epoch u← −1.
repeat

Train h(x) for one epoch.
lid ← 0, λ← i/T .
for j = 1 to m do

Sample XB from X.
lid ← lid + 1

|XB |
∑|XB |
k=1 L̂ID(x,XB).

end for
lids[i ]← lid/m.
if i ≥ w and u = −1 and
lid −mean(lids[i− w : i− 1]) > 2 · std(lids[i− w :
i− 1]) then
u← i− 1. # turning point found
Rollback h(x) to the u-th epoch.

end if
if u > −1 then
αi = exp

(
−λ · lids[i]/min(lids[0 : i− 1])

)
.

else
αi = α0

end if
y∗ = αiy + (1− αi)ŷ.
Update loss to L = − 1

N

∑N
n=1

∑
y∗n
y∗n logP (y

∗
n|xn).

i← i+ 1.
until i = T or early stopping.

the w preceding epochs, until which the D2L loss is equiva-
lent to the cross-entropy loss (enforced by setting α equal to
1). The epoch at which the turning point is identified can be
regarded as the first epoch at which overfitting occurs; for
this reason, we roll the model state back to that of the previ-
ous epoch, and begin the interpolation between the raw and
predicted label assignments. Although we find in the exper-
imental results of Section 5 that this strategy works consis-
tently well for a variety of datasets, further variations upon
this basic strategy may also be effective. The D2L code
is available at https://github.com/xingjunm/
dimensionality-driven-learning.

5. Experiments
We evaluate our proposed D2L learning strategy, comparing
the performance of our model with state-of-the-art baselines
for noisy label learning.

5.1. Empirical Understanding of D2L

We first provide an empirical understanding of the proposed
D2L learning strategy on subspace learning, hypothesis
learning, representation learning and model analysis.

(a) CIFAR-10 with 40% noisy labels.

(b) CIFAR-10 with 60% noisy labels.

Figure 2. The trend of test accuracy and subspace dimensionality
on CIFAR-10 with 40% and 60% noisy labels.

Experimental Setup: The experiments were conducted on
the benchmark dataset CIFAR-10 (Krizhevsky & Hinton,
2009). We used a 12-layer CNN architecture. All networks
were trained using SGD with momentum 0.9, weight decay
10−4 and an initial learning rate of 0.1. The learning rate
was divided by 10 after epochs 40 and 80 (T = 120 epochs
in total). Simple data augmentations (width/height shift and
horizontal flip) were applied. Noisy labels were generated
by introducing symmetric noise, in which the labels of a
given proportion of training samples are flipped to one of the
other class label, selected with equal probability. In (Vahdat,
2017) this noisy label generation scheme has been verified
to be more challenging than that of restricted (asymmetric)
label noise, which assumes that mislabelling only occurs
within a specific set of classes (Reed et al., 2014; Patrini
et al., 2017).

Competing Strategies: 1) Backward (Patrini et al., 2017):
training via loss correction by multiplying the cross-entropy
loss by a noise-aware correction matrix; 2) Forward (Patrini
et al., 2017): training with label correction by multiplying
the network prediction by a noise-aware correction matrix;
3) Boot-hard (Reed et al., 2014): training with new labels
generated by a convex combination (the “hard” version)
of the noisy labels and their predicted labels; 4) Boot-soft
(Reed et al., 2014): training with new labels generated by a
convex combination (the “soft” version) of the noisy labels
and their predictions; and 5) Cross-entropy: the conven-
tional approach of training with cross-entropy loss.

The parameters of the competitors were configured accord-
ing to their original papers. For our proposed D2L, we set
k = 20 for LID estimation, and used the average LID score
over m = 10 random batches of training samples as the

https://github.com/xingjunm/dimensionality-driven-learning
https://github.com/xingjunm/dimensionality-driven-learning


Dimensionality-Driven Learning with Noisy Labels

overall dimensionality of the representation subspaces.

Effect on Subspace Learning: We illustrate the effect of
D2L on subspace learning by investigating the dimensional-
ity (measured by LID) of the deep representation subspaces
learned by DNNs and the test accuracy throughout train-
ing. The results are presented in Figure 2 for the CIFAR-10
dataset, with noisy label proportions set to 40% and to 60%.
First, examining the test accuracy (the left-hand plots), we
see that D2L can stabilize the test accuracy after around 60
epochs regardless of the noise rate, whereas the competitors
experience a substantial decrease in test accuracy. This indi-
cates the effectiveness of D2L in limiting the overfitting to
noisy labels. Second, we focus on the dimensionality of the
representation subspaces learned by different models (the
right-hand plots). We observe that D2L is capable of learn-
ing representation subspaces which have significantly lower
dimensionality than other models. It can also be noted that
lower-dimensional subspaces lead to better generalization
and higher test accuracy. This supports our claim that the
true data distribution is of low dimensionality, and that D2L
is capable of learning the low-dimensional true data distri-
bution even with a large proportion of noisy labels. Note
that for the case of 60% label noise, the low test accuracy
of the ‘backward’ model, as well as the low dimensionality
of the learned subspaces, together show that this competitor
suffered from underfitting.

Figure 3. The hypothesis complexity (measured by CSR) on
CIFAR-10 with 40% (left) and 60% (right) noisy labels.

Effect on Hypothesis Learning: We investigate the com-
plexity of the hypotheses learned from different models.
Given a hypothesis space H, a learned hypothesis h ∈ H
from a DNN with lower complexity is expected to gener-
alize better. Here, we use the recently proposed Critical
Sample Ratio (CSR) (Arpit et al., 2017) as the measure for
hypothesis complexity. CSR measures the density around
the decision boundaries, where a high CSR score indicates
a complex decision boundary and hypothesis.

As shown in Figure 3, the complexity of the learned hy-
pothesis from D2L is significantly lower than that of its
competitors. Recalling the results from Figure 2, where
D2L achieved the highest test accuracy, we conclude that a
simpler hypothesis does lead to better generalization, and
that D2L is capable here of learning smoother decision

Figure 4. Representations (t-SNE 2D embeddings) of two CIFAR-
10 classes, ‘airplane’ (A) and ‘cat’ (B), learned by cross-entropy
(left) and our D2L model (right), with 60% of the class labels set
to noise.

Figure 5. Grid searching neighborhood size k (left) and number
of batches m (right) for the estimation of LID on CIFAR-10 with
various noise rate.

boundaries and a simpler hypothesis than its competitors.

Effect on Representation Learning: To analyze the effec-
tiveness of D2L for representation learning, we visualize
dataset representations in 2-dimensional embeddings us-
ing t-SNE (Maaten & Hinton, 2008), a commonly-used
dimensionality reduction technique for the visualization
of high-dimensional data (LeCun et al., 2015). Figure 4
presents the reduced 2D embeddings of 500 randomly se-
lected samples from each of two classes on CIFAR-10. For
each class, 40% of the samples were assigned correct labels
(the ‘clean’ samples), and 60% were assigned incorrect la-
bels chosen uniformly at random from the 9 other classes
(the ‘noisy’ samples). We see that D2L (the right-hand
plot) can learn high-quality representations that accurately
separate the two classes of objects (blue vs red), and can
effectively isolate noisy samples (magenta/cyan) from clean
samples (blue/red). However, for both classes, represen-
tations learned by cross-entropy (the left-hand plot) suffer
from significant overlapping between clean and noisy sam-
ples. Note that the representations of noisy samples learned
by D2L are more fragmented, since the noisy labels are
from many different classes. Overall, D2L is able to learn a
high-quality representation from noisy datasets.

Parameter Sensitivity: We assess the sensitivity of D2L
to the neighborhood size k and the number of batches m
used to compute the mean LID. Figure 5 shows that D2L is
relatively insensitive to these two hyper-parameters on the
CIFAR-10 dataset. We observed similar behavior with the
other three datasets.
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Table 1. Test accuracy (%) of different models on MNIST, SVHN, CIFAR-10 and CIFAR-100 with varying noise rates (0% – 60%). The
mean accuracy (±std) over 5 repetitions of the experiments are reported, and the best results are highlighted in bold.

Dataset / Noise Rate cross-entropy forward backward boot-hard boot-soft D2L

MNIST

0% 99.24±0.0 99.30±0.0 99.23±0.1 99.13±0.2 99.20±0.0 99.28±0.0
20% 82.66±1.8 96.45±0.4 84.69±1.2 80.69±2.2 83.50±1.2 98.84±0.0
40% 60.14±3.9 88.90±0.9 64.89±1.0 60.49±1.6 59.19±1.8 98.49±0.0
60% 38.51±3.7 72.88±1.6 42.83±3.3 40.45±1.6 39.04±3.0 94.73±1.2

SVHN

0% 90.12±0.3 90.22±0.1 90.16±0.2 89.47±0.0 89.26±0.0 90.32±0.0
20% 76.10±0.9 85.51±0.7 74.61±0.5 76.10±0.3 75.26±0.2 87.63±0.1
40% 57.92±1.4 74.09±0.7 59.15±0.8 58.25±0.2 58.30±0.3 84.68±0.6
60% 36.54±0.62 60.57±0.6 50.54±0.7 42.51±1.2 37.21±0.9 80.92±0.8

CIFAR-10

0% 90.39±0.6 90.27±0.0 89.03±1.2 89.06±0.9 89.46±0.6 89.41±0.2
20% 73.12±1.3 84.61±0.3 79.41±0.1 79.19±0.4 82.21±0.4 85.13±0.6
40% 65.07±3.3 81.84±0.1 74.69±1.3 76.67±0.8 75.81±0.3 83.36±0.5
60% 52.55±1.6 72.41±0.7 40.42±0.4 70.57±0.3 68.32±0.6 72.84±0.6

CIFAR-100

0% 68.20±0.4 68.54±0.1 68.48±0.2 68.31±0.2 67.89±0.2 68.60±0.3
20% 52.88±0.5 60.25±0.2 58.74±0.3 58.49±0.4 57.32±1.1 62.20±0.5
40% 42.85±0.3 51.27±0.3 45.42±0.6 46.44±0.7 45.77±1.1 53.01±0.7
60% 30.09±0.2 44.22±0.7 34.49±1.1 42.65±0.9 40.29±1.2 45.21±0.4

5.2. Robustness against Noisy Labels

Finally, we evaluate the robustness of D2L against noisy
labels under varying noise rates (0%, 20%, 40%, and 60%)
on several benchmark datasets, comparing to state-of-the-art
baselines for noisy label learning.

Experimental Setup: Experiments were conducted on sev-
eral benchmark datasets: MNIST (LeCun et al., 1998),
SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hin-
ton, 2009) and CIFAR-100 (Krizhevsky & Hinton, 2009).
We used a LeNet-5 network (LeCun et al., 1998) for MNIST,
a 6-layer CNN for SVHN, a 12-layer CNN for CIFAR-10
and a ResNet-44 network (He et al., 2016) for CIFAR-100.
All networks were trained using SGD with momentum 0.9,
weight decay 10−4 and an initial learning rate of 0.1. The
learning rate is divided by 10 after epochs 20 and 40 for
MNIST/SVHN (50 epochs in total), after epochs 40 and 80
for CIFAR-10 (120 epochs in total), and after epochs 80,
120 and 160 for CIFAR-100 (200 epochs in total) (Huang
et al., 2016). Simple data augmentations (width/height shift
and horizontal flip) were applied on CIFAR-10 and CIFAR-
100. Noisy labels were generated as described in Section 5.1.
On a particular dataset, the compared methods differ only
in their loss functions — they share the same CNN architec-
ture, regularizations (batch normalization and max pooling),
and the number of training epochs. We repeated the ex-
periments 5 times with different random seeds for network
initialization and label noise generation.

Results: We report the mean test accuracy and standard
deviation over 5 repetitions of the experiments in Table
1. D2L outperforms its competitors consistently across all
datasets and across all noise rates tested. In particular, the
performance gap between D2L and its competitors increases

as the noise rate is increased from 20% to 60%. We also
note that as the noise rate increases, the accuracy drop of
D2L is the smallest among all models. Even with 60% label
noise, D2L can still obtain a relatively high classification
accuracy, which indicates that D2L may have the potential
to be an effective strategy for semi-supervised learning.

6. Discussion and Conclusion
In this paper, we have investigated the generalization be-
havior of DNNs for noisy labels in terms of the intrinsic
dimensionality of local subspaces. We observed that di-
mensional compression occurs early in the learning process,
followed by dimensional expansion as the process begins to
overfit. Employing a simple measure of local intrinsic di-
mensionality (LID), we proposed a Dimensionality-Driven
Learning (D2L) strategy for avoiding overfitting that identi-
fies the learning epoch at which the transition from dimen-
sional compression to dimensional expansion occurs, and
then suppresses the subsequent dimensionality expansion.
D2L delivers very strong classification performance across
a range of scenarios with high proportions of noisy labels.

We believe that dimensionality-based analysis opens up new
directions for understanding and enhancing the behavior of
DNNs. Theoretical formulation of DNN subspace dimen-
sionality, and investigation of the effects of data augmenta-
tion and regularization techniques such as batch normaliza-
tion (Ioffe & Szegedy, 2015) and dropout (Srivastava et al.,
2014) are possible directions for future research. Another
open issue is the investigation of how other forms of noise
such as adversarial or corrupted inputs and asymmetric label
noise can affect local subspace dimensionality and DNN
learning behavior.
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