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Abstract Clustering is often referred to as unsupervised learning which aims
at uncovering hidden structures from data. Unfortunately, though widely being
used as one of the principal tools to understand the data, most conventional
clustering techniques are limited in achieving this goal since they only attempt
to find a single clustering solution from the data. For many real-world applica-
tions, especially those being described in high dimensional data, it is common
to see that the data can be grouped into di↵erent yet meaningful ways. This
gives rise to the recently emerging research area of mining alternative cluster-
ings. In this paper, we propose a framework named MACL that is capable of
discovering multiple alternative clusterings from a given dataset. MACL seeks
alternative clusterings in sequence and a novel solution is found by condition-
ing on all previously known clusterings. The framework takes a mathematically
appealing approach by combining the maximum likelihood framework and mu-
tual information. Consequently, its resultant clustering quality is achieved by
the likelihood maximization over the data whereas the dissimilarity is ensured
by the minimization over the information sharing amongst alternatives. We
test the proposed algorithm on both synthetic and real-world datasets and the
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2 Xuan Hong Dang, James Bailey

experimental results demonstrate its potential in discovering multiple alterna-
tive clusterings from data.

Keywords Unsupervised learning · Alternative clustering · Expectation
Maximization · Mutual Information

1 Introduction

Cluster analysis has long been identified as one of the core tasks in data mining.
Many clustering techniques have been developed so far including k-means [25,
2], hierarchical agglomerative clustering [14], mixture densities [16], spectral
partitioning [27], and density-based clustering [17,1]. Although it is common
to produce only a single clustering from a given empirical data (that these
algorithms have extensively focused on), it is observed in many cases that the
data can be clustered along many di↵erent yet reasonable ways. For example,
while most conventional work on text clustering widely attempts to classify
documents according to the topics, it is conceivable that grouping them to
writing styles is also valid and meaningful. Likewise, extensive research in bio-
information has largely been focused on categorizing data proteins according
to their structures, it is possible to see that grouping them by their functions
is also useful. In both these applications and many other ones, one may see
that the natural structure behind high dimensional data is not unique and
there exist many di↵erent ways to interpret the data. Therefore, to further
understand the data and to achieve the ultimate goal of data exploration of
unsupervised clustering, there is a strong demand to devise novel techniques
that are able to generate multiple di↵erent yet high qualitative clusterings
from the data.

In addressing this problem, several algorithms have been developed in the
literature and based on whether or not prior information is required during the
clustering process, it is possible to classify them into two di↵erent approaches:
unsupervised [23,10,29] and semi-supervised [20,5,9,13] strategies. In the for-
mer approach, two alternative clusterings are sought at the same time whereas
in the latter one, a novel alternative clustering is found by conditioning on a
given solution. Although being demonstrated to work well in some applica-
tions, it is unclear how to extend these algorithms to find multiple alternative
clusterings since their objective functions are only suitable to find up to two
alternative clusterings from the data. It is also worth mentioning that seek-
ing alternative clustering can be considered related to ensemble clustering [32,
35,18]. However, there is a significant di↵erence in the clustering objective of
these two areas. While alternative clustering aims at finding di↵erent cluster-
ing solutions from the data, the final objective of ensemble clustering remains
searching for a single clustering, where each cluster can be picked up from a
clustering solution, that is most consistent throughout the entire data [9].

We develop in this paper a framework to uncover multiple alternative clus-
terings from an input data. The proposed algorithm, namely MACL (Multiple
Alternative Clusterings), takes an iterative procedure to search for alternative
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A Framework to Uncover Multiple Alternative Clusterings 3

clusterings and at each iteration, a novel clustering is uncovered by condition-
ing on all previously found clusterings. Though this work can be considered
as an extension from our previous one [10], a clear distinction in this work
is that we address a more general problem by searching for multiple possible
alternative clusterings, not limited to two alternative clusterings as tackled
in [10] (and in most of the work aforementioned above). Moreover, while [10]
addresses the problem in an unsupervised manner, the work in this paper seeks
alternative clusterings in sequence by conditioning on all previously found clus-
terings. In other words, it is only able to ensure the alternative clustering’s
novelty if all previous clustering solutions were taken into account. For this rea-
son, compared to those developed in [10,23], MACL is considered to be more
closely related to the semi-supervised learning techniques and we thus provide
experimental comparisons against most of these algorithms in Section 5 of the
paper.

In summary, in this work we make the following contributions:

– We propose a framework for handling the problem of discovering multi-
ple alternative clusterings over data. Specifically, we develop an e�cient
EM-based algorithm that well optimizes a dual-objective function of both
clustering quality and dissimilarity.

– Unlike most of the algorithms that exploit the orthogonality between clus-
tering solutions, we exploit the mutual information, which is firmly rooted
from information theory, to minimize the uncorrelation amongst alterna-
tive clusterings. Such a measure directly manipulates over data distribu-
tions and further enables practical computation when being combined with
the maximum likelihood framework.

– We conduct experiments over both synthetic and real world benchmark
datasets, compare our proposed approach against most well-known algo-
rithms in the literature. The experimental results demonstrate the e↵ec-
tiveness of our approach in uncovering multiple alternative clusterings.

The remaining of the paper is organized as follows. We review related work
to our study in Section 2 and provide the preliminaries along with the formal
definition of our problem in seeking multiple alternative clusterings from data
in Section 3. We describe our framework to address this problem in Section 4
by first constructing the clustering objective function, then developing an al-
gorithm relied on the expectation-maximization technique to optimize it. The
convergence property of the algorithm is also proved in this section. In Sec-
tion 5, we present the experimental results of our proposed solution on a
number of synthetic and real-life datasets and in Section 6, we conclude the
paper.

2 Related Work

The problem of discovering alternative clusterings is relatively young and re-
cently it has drawn much attention from both data mining and machine learn-
ing communities. As mentioned in the previous section, one can generally
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4 Xuan Hong Dang, James Bailey

divide most of algorithms developed in this area into two approaches: unsu-
pervised [23,10,29] and semi-supervised [20,5,9,13] strategies. The algorithms
developed in [23,29] and [10] are unsupervised learning techniques which at-
tempt to seek two alternative clusterings at the same time and without requir-
ing any prior provided clustering. In these techniques, the objective function
of a partitioning method is adapted by incorporating a measure of the uncor-
relation between two disparate clusterings. Such a quantity in [23] is the dot
product between pairwise mean vectors of two clustering solutions whereas
in [10], it is the information sharing between two solutions. For example, when
minimizing the cluster means’ inner products along with the objective func-
tion of k-means technique, one can ensure that two solutions (represented by
cluster-means) not only approach orthogonality but also have good quality (in
terms of the k-means’ objective). The work in [29] takes a di↵erent approach
by combining the uncorrelated subspace learning into the process of spectral
clustering. In quantifying for the independence between two subspaces, it uses
the Hilbert-Schmidt Independence Criterion (HSIC) [3] and such a combina-
tion results in a nice objective function represented in matrix trace forms.
Consequently, an iterative approach can be employed to learn two matrices
of projections of which solutions based on spectral partitioning [38,27] are
generally supported.

On the other hand, the approaches developed in [20,5,9,13] are semi-
supervised as they require an existing clustering solution to be provided as
prior information, and search for another clustering that is uncorrelated (i.e.,
di↵erent) from that given one. While the CIB technique developed in [20] is an
extension of the information bottleneck method [33,31] in which the mutual
information between data features and the new clustering is maximized con-
ditioning on the given clustering, COALA proposed in [5] generates a set of
cannot-link constraints [36,37] based on the provided clustering and it builds
up an alternative clustering by conforming these constraints in the agglom-
erative clustering process. Two algorithms developed in [9] take a di↵erent
approach by exploring the property of orthogonality. They first character-
ize the existing clustering by either a set of centroids or data features, and
then form a subspace orthogonal to these representative vectors. An alter-
native clustering is then simply found by partitioning the data projected on
this new orthogonal subspace. It is noticed that though [9] can discover for
more than one alternative clustering, they only condition on a single previous
clustering and thus may not ensure the novelty of the alternative clustering.
The ADFT algorithm developed in [13] adopts an approach that employs a
distance metric [39] for clustering’s representatives rather than the clusters’
means. Compared to the work [9], this approach is more advantageous as it
can further handle the case in which the data dimension can be smaller than
the number of clusters (e.g., spatial datasets). The work developed in [22]
proposes an interesting approach which combines a model-based clustering
paradigm and a subspace projection to discover alternative clusterings and
further allows the overlapping between alternative clusterings. The study [15]
proposes a quantity named self-information defined over a cluster or set of clus-
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A Framework to Uncover Multiple Alternative Clusterings 5

ters. It then seeks clusters/clusterings iteratively in which a subsequent one
is maximally interesting given the previously found patterns. The technique
developed in [11] takes a di↵erent approach stemmed from information theory
which aims to maximize the mutual information between data observations
and the cluster labels of the alternative clustering while at the same time to
minimize such information between the alternative and the given clustering. A
resemble clustering objective is also adopted in [28] yet is optimized by using
an iterative approach, in contrast to the hierarchical technique adopted in [11].
We provide experimental comparison to most of these reviewed algorithms in
Section 5.

3 Preliminaries and Problem Definition

In information theory, the entropy quantity plays a central role as a measure
of uncertainty or information. Let X be a continuous random variable and
associated with X is the probability density function p(x), then the entropy
of X is mathematically defined as:

H(X) = �
Z

p(x) log p(x)dx (1)

This definition for a single variable can be extended for a pair of random
variables and in such case, we have a joint entropy between two continuous
random variables defined as:

H(X,Y ) = �
ZZ

p(x, y) log p(x, y)dxdy (2)

of which p(x, y) is the joint density function of two variables X and Y . When a
variable is known and the other is not, the remaining information (uncertainty)
is measured by the conditional entropy:

H(X|Y ) = �
ZZ

p(x, y) log p(x|y)dxdy (3)

A closely related concept with the entropy is the mutual information which
is defined as the relative entropy (also called Kullback-Leibler distance) be-
tween the joint distribution p(x, y) and the product of two marginal distribu-
tions p(x)p(y):

I(X;Y ) =

ZZ
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (4)

Since I(X;Y ) = H(X) � H(X|Y ) = H(Y ) � H(Y |X), it can be said
that the mutual information quantifies for the amount of information that
one random variable contains about another variable. When this measure is
large, two random variables are closely correlated and conversely when it is
small, the two variables are highly uncorrelated. And it is not di�cult to prove
that X and Y are independent if and only if the mutual information between
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6 Xuan Hong Dang, James Bailey

them is equal to zero. These definitions and relationships are straightforwardly
extended for multiple random variables [8].

We apply the concepts above into our clustering problem by treating each
clustering solution as a random variable. With this setting, it is possible to
formulate the problem of uncovering multiple alternative clusterings as follows:

Problem Definition: We are given a set ofN data points X = {x1, x2, ..., xN

}
with each data instance x

n

(1  n  N) is a vector in the D-dimensional
space. The task is to seek for a set of non-redundant alternative clusterings
C = {C(1), C(2), ...} from X such that the clustering quality of each C(s) is
high (e.g., fulfilled by an objective function), while at the same time, each of
them is pairwise uncorrelated to one another, i.e. I(C(r);C(s)) is minimized
and as close to zero as possible for all C(r), C(s) 2 C and C(r) 6= C(s).

4 Multiple Alternative Clusterings

4.1 Clustering Objective Function

In many practical machine learning and pattern recognition problems, the
maximum likelihood is widely used as a statistical technique to estimate the
parameters of a density mixture model. Under the framework of maximum
likelihood, one aims to maximize the following log-likelihood function:

L(⇥|X ) = logP (X|⇥) =
NX

n=1

log p(x
n

|⇥) (5)

where the set of data instances x
i

is assumed to be independently drawn from
the distribution p(x|⇥) parameterized by ⇥. The function L(⇥|X ) can also be
thought of as the likelihood of the parameters ⇥ given the data observation X .
The goal of maximum likelihood is thus to find the ⇥ that maximizes L(⇥|X ).

The cluster analysis problem turns out to be a special case of estimating
parameters for a density mixture model. From this view, one may model a
clustering solution as a mixture density model of K probability distributions
and associate each individual distribution (referred as component distribution)
with a cluster. For most cases, all component distributions have the same
functional form and often the Gaussian probability density function is used.
The cluster analysis is therefore equivalent to the process of maximizing the
parameters of the density mixture model which has the form below:

b⇥ = argmax
⇥

L(⇥|X ) = argmax
⇥

NX

n=1

log
KX

i=1

↵
i

p(x
n

|✓
i

) (6)

in which ↵1,↵2, ...,↵K

are the prior or mixing probabilities, and

p(x|✓
i

) = G(x� µ
i

,⌃
i

) =
exp

�
� 1

2 (x� µ
i

)t⌃�1
i

(x� µ
i

)
 

(2⇡)D/2|⌃
i

|1/2
(7)
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A Framework to Uncover Multiple Alternative Clusterings 7

is the ith Gaussian function in the mixture model, which is completely iden-
tified by the parameters ✓

i

= (µ
i

,⌃
i

). Together with ↵
i

’s, these parameters
need to be found (as being explicitly presented in the next Section).

Our clustering objective will be formulated under this framework of maxi-
mum likelihood for a mixture model. Specifically, our clustering framework is
iterative and we seek for a novel alternative clustering (represented by a mix-
ture model) at each time. Information of all previously uncovered clusterings
will be used as the background knowledge to derive a novel alternative clus-
tering and this process is repeated until the new clustering has high sharing
information with any of the reference clusterings1. This signifies that most of
the high quality groupings from the data have been uncovered and all of them
are independent from each other. We therefore shall regularize the likelihood
function by the mutual information sharing between the novel clustering and
each of the reference clusterings. This ensures that the resultant clustering is
pairwise uncorrelated from any of the previously known clusterings. The selec-
tion of mutual information accounting for the clustering dissimilarity is advan-
tageous in two folds. First, unlike most orthogonal projection/transformation
techniques (reviewed in the introduction section) which explicitly simplify clus-
terings by some forms of representatives (e.g., clusters’ means [9], or distance
metric [13]), mutual information naturally manipulates directly on the data
distribution and thus it does not loose important details in the data. Second,
as also being defined as the function over the probability density distributions,
mutual information is completely comparable with the likelihood term by mea-
suring the clusterings’ dissimilarity in the same unit of clustering quality. We
therefore naturally formulate our alternative clustering objective function as
follows:

b⇥ = argmax
⇥

eL(X|⇥)

= argmax
⇥

(
NX

n=1

log
KX

i=1

↵
i

p(x
n

|✓
i

) ��
X

s

I(C;C(s))

)
(8)

where C(s)’s are known (reference) clusterings and the novel C is parameter-
ized by ⇥. This dual objective function ensures that the clustering quality of
the alternative clustering C is maximized (by the first term) while at the same
time its similarity with respect to all previously found solutions is minimized
(assured by the second term). The tradeo↵ between these dual objectives is
controlled by the regularization parameter �. It is noted here that whether our
combination of mutual information and the maximum likelihood is reasonable
- i.e. do they measure comparable quantities? As shortly seen in the next sec-
tion, our formulation based on mutual information will be consistent with the
objective of maximum likelihood since both are defined based on the proba-
bility density functions over the observed data. In other words, they quantify

1 In our experiment, we consider the sharing or mutual information of 0.5 as a high value.
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8 Xuan Hong Dang, James Bailey

the same unit and thus make our combination between clustering quality and
clustering dissimilarity feasible to be optimized.

4.2 The EM based algorithm

Our objective of optimizing a set of parameters ⇥ characterized for the novel
alternative clustering C can be achieved by using the Expectation Maximiza-
tion (EM) technique. Generally, EM interprets X as the incomplete data and it
views the cluster label C as an additional but unknown variable. The complete-
data likelihood is therefore maximized and the EM involves two E- and M-
steps. In the E-step, it computes a lower bound approximation to the likelihood
function and maximizes it with respect to the distribution of the unobserved
data. This leads to the finding of the distribution of C given the observed
data X and the current parameter estimates. In the M-step, the algorithm
determines a new set of parameters that maximizes this lower bound provided
the distribution of the cluster label computed in the E-step. This procedure
is iterated until the algorithm converges (i.e., when the variation of the log-
likelihood is small enough).

We employ this technique to solve our clustering objective function pro-
posed in Eq.(8) and it is noticed that minimizing the mutual information be-
tween C and any of the reference clusterings C(s)’s is equivalent to maximizing
its conditional entropy with respect to each of these solutions (cf. Section 3).
Hence, the second term in our objective function can be replaced by:

X

s

H(C|C(s)) = �
X

s

X

i,j

↵
j

p(c
i

|c
j

) log
p(c

i

, c
j

)

↵
j

(9)

where c
i

’s denote for the set of clusters in our novel alternative clustering
C and c

j

’s denote for clusters in each of the reference clusterings C(s)’s. In
estimating the joint probability p(c

i

, c
j

), it is possibly assumed that c
i

and
c
j

are conditionally independent given observed data x
n

’s (i.e., p(c
i

, c
j

, x
n

) =
p(x

n

)p(c
i

|x
n

)p(c
j

|x
n

) as widely used in graphical learning models [7]). There-
fore,

p(c
i

, c
j

) =
NX

n=1

p(c
i

|x
n

)p(c
j

|x
n

)p(x
n

)

=
NX

n=1

p(c
i

)p(x
n

|c
i

)

p(x
n

)

p(c
j

)p(x
n

|c
j

)

p(x
n

)
p(x

n

)

= p(c
i

)p(c
j

)
NX

n=1

p(x
n

|c
i

)p(x
n

|c
j

)

p(x
n

)
(10)

in which we have used the Bayes’ theorem. Additionally, since p(x|c
i

), p(x|c
j

)

and p(x
n

) are all non-negative, it is always true that
P

N

n=1
p(xn|ci)p(xn|cj)

p(xn)
�
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PN
n=1 p(xn|ci)p(xn|cj)PN

n=1 p(xn)
.2 We thus approximate p(c

i

, c
j

) by its lower bound, and

by replacing the integrals for the summations (due to continuous values of
x
n

’s), we have:

p(c
i

, c
j

) �
p(c

i

)p(c
j

)
R
p(x|c

i

)p(x|c
j

)dxR
p(x)dx

= p(c
i

)p(c
j

)G(µ
i

� µ
j

,⌃
i

+⌃
j

) (11)

Our strategy of optimizing the lower bound of the objective is in line with
the philosophy of the standard EM technique, which also aims at optimizing
the log-likelihood lower bound (as shortly shown in Theorem 1 below). The
corresponding regularized log-likelihood function therefore can be written as:

Q(⇥|⇥(t)) =
NX

n=1

KX

i=1

p(c
i

|x
n

;⇥) log
↵
i

G(x
n

� µ
i

,⌃
i

)

p(c
i

|x
n

;⇥)

� �
X

s

X

i,j

↵
j

p(c
i

|c
j

;⇥) log↵
i

G(µ
j

�µ
i

,⌃
j

+⌃
i

) (12)

The expectation step in the EM technique can thus be separated into two
terms. The first one is the conditional probability of c

i

with respect to each
observed data x

n

:

p(c
i

|x
n

;⇥(t)) =
↵
i

G(x
n

� µ
i

,⌃
i

)P
m

↵
m

G(x
n

� µ
m

,⌃
m

)
(13)

The second one is the conditional probability of c
i

with respect to each known
cluster c

j

of each reference clustering C(s):

p(c
i

|c
j

;⇥(t)) =
↵
i

↵
j

G(µ
j

� µ
i

,⌃
j

+⌃
i

)P
m

↵
m

↵
j

G(µ
j

� µ
m

,⌃
j

+⌃
m

)
(14)

Notice that
P

i

p(c
i

|x
n

;⇥(t)) = 1, and
P

i

p(c
i

|c
j

;⇥(t)) = 1 within each of
solution C(s).

In the M-step, we maximize the lower bound with respect to the parameters
of the mixture model. This procedure involves more computation. First, we
need to di↵erentiate the lower bound with respect to the prior probabilities
subject to the constraints ↵

i

> 0 and
P

i

↵
i

= 1. This requirement can be
handled by replacing ↵

i

as a function of unconstrained variables as follows:

↵
i

=
exp(�

i

)P
i

0 exp(�
i

0)
(15)

2 Notice that a
b + c

d � a+c
b+d for all non-negative a, b, c, d.
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10 Xuan Hong Dang, James Bailey

which enforces both constraints automatically[6]. Notice that:

@↵
i

@�
i

0
=

⇢
↵
i

� ↵2
i

if i0 = i
�↵

i

0↵
i

otherwise
(16)

For each data instance x
n

in the first term and each cluster c
j

of each
solution C(s) in the second term in Eq.(12), we have from the chain rule that:

@Q(⇥|⇥(t))
xn

@�
i

=
X

i

0

@Q(⇥|⇥(t))
xn

@↵
i

0

@↵
i

0

@�
i

=
X

i

0

p(c
i

0 |x
n

)

↵
i

0
(↵

i

0�
ii

0 � ↵
i

0↵
i

)

@Q(⇥|⇥(t))
cj

@�
i

=
X

i

0

@Q(⇥|⇥(t))
cj

@↵
i

0

@↵
i

0

@�
i

=
X

i

0

↵
j

p(c
i

0 |c
j

)

↵
i

0
(↵

i

0�
ii

0 � ↵
i

0↵
i

)

in which �
ii

0 = 1 if and only if i0 = i. With this in mind, the expansion of the
first above derivative directly leads to p(c

i

|x
n

) � ↵
i

P
i

0 p(c
i

0 |x
n

) whereas of
the second one leads to ↵

j

p(c
i

|c
j

)� ↵
i

↵
j

P
i

0 p(c
i

0 |c
j

). Summing over all data
instances x

n

’s and clusters c
j

’s of all reference solutions C(s), it straightfor-
wardly follows that:

↵
i

=

P
n

p(c
i

|x
n

)� �
P

s

P
j

↵
j

p(c
i

|c
j

)
P

n

P
i

0 p(c
i

0 |x
n

)� �
P

s

P
j,i

0 ↵
j

p(c
i

0 |c
j

)
(17)

The expression for the new update of a mean vector can be found by
taking the derivative of Q(⇥|⇥(t)) with respect to µ

i

. It notes that the termP
N

n=1

P
K

i=1 p(ci|xn

;⇥) log p(c
i

|x
n

;⇥) in deploying the logarithm in the first
sum of Eq.(12) can be omitted due the availability of p(c

i

|x
n

;⇥) computed in
the E-step. Second, we only concern the terms related to µ

i

which exists in two
logarithms log G(x

n

� µ
i

,⌃
i

) and log G(µ
j

�µ
i

,⌃
j

+⌃
i

). Thus, the derivative
of Q(⇥|⇥(t)) w.r.t. µ

i

can be simplified as follows: 3

3 For clarity, we omit the term ⇥ in p(.|.).
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@

@µ
i

"
NX

n=1

KX

i

p(c
i

|x
n

) log G(x
n

� µ
i

,⌃
i

)

� �
X

s

X

i,j

↵
j

p(c
i

|c
j

) log G(µ
j

� µ
i

,⌃
j

+⌃
i

)

3

5

=
NX

n=1

p(c
i

|x
n

)

✓
�x

n

� µ
i

⌃
i

◆
� �

X

s,j

↵
j

p(c
i

|c
j

)

✓
� µ

j

� µ
i

⌃
j

+⌃
i

◆

Setting this derivative equal to 0, we obtain:

µ
i

=

P
n

p(c
i

|x
n

)⌃�1
i

x
n

� �
P

s

P
j

↵
j

p(c
i

|c
j

)(⌃
i

+⌃
j

)�1µ
j

P
n

p(c
i

|x
n

)⌃�1
i

� �
P

s

P
j

↵
j

p(c
i

|c
j

)(⌃
i

+⌃
j

)�1
(18)

In calculating the new update of the covariance matrix ⌃
i

, we need to take
the derivative of Eq.(8) with respect to ⌃

i

. Nevertheless, it is observed that the
derivative of Q(⇥|⇥(t)) with respect to ⌃

i

cannot be solved directly due to the
existence of the inverse matrix (⌃

i

+⌃
j

)�1 appearing in the Gaussian kernel.
One solution is to use the Cauchy-Schwartz inequality to find a new bound for
the function. Particularly, since the Gaussian kernel is always nonnegative, we
can write (based on the Cauchy-Schwartz inequality):

log (G(µ
j

� µ
i

,⌃
i

+⌃
j

))

=
1

2
log

✓Z
G(x� µ

i

,⌃
i

)G(x� µ
j

,⌃
j

)dx

◆2

 1

2
log

Z
(G(x� µ

i

,⌃
i

))2dx

Z
(G(x� µ

j

,⌃
j

))2 dx

=
1

2
log G(0, 2⌃

i

)G(0, 2⌃
j

) (19)

It follows that the lower bound for the covariance matrix is given by:

Q(⇥|⇥(t))
⌃i =

NX

n=1

X

i

p(c
i

|x
n

) logN (x
n

� µ
i

,⌃
i

)

��

2

X

i

X

i,j

↵
j

p(c
i

|c
j

) log G(0, 2⌃
i

)G(0, 2⌃
j

) (20)

Taking the derivative of this equation respect to ⌃
i

and let it equal to 0,
the new estimate for the covariance matrix is followed:
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@
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i

⇣ NX

n=1

X

i

p(c
i

|x
n

) log G(x
n

� µ
i

,⌃
i

)

� �

2

X

s

X

i,j

↵
j

p(c
i

|c
j

) log G(0, 2⌃
i

)G(0, 2⌃
j

)
⌘

=
NX

n=1

p(c
i

|x
n

)

✓
�1

2⌃
i

+
1

2⌃
i

(x
n

� µ
i

)(x
n

� µ
i

)T
1

⌃
i

◆

� �

2

X

s

X

j

↵
j

p(c
i

|c
j

)

✓
� 1

2⌃
i

◆
= 0

or

⌃
i

=

P
N

n=1 p(ci|xn

)(x
n

� µ
i

)(x
n

� µ
i

)T
P

N

n=1 p(ci|xn

)� �

2

P
s

P
j

↵
j

p(c
i

|c
j

)
(21)

Theorem 1 Let ⇥
i+1 and ⇥

i

be the parameter estimates of two successive it-

erations, the proposed algorithm always ensures that

eL(X|⇥(i+1)) � eL(X|⇥(i))
with its E- and M-steps and thus is converged at certain point.

Proof. We prove the convergence of the proposed algorithm under the frame-
work of the classical EM technique [19].

In the M-step, given the fixed observation data X and reference cluster-
ings C(s), the updates computed in Eqs.(17),(18) and (21) minimize the lower
bound of the regularized likelihood function with respect to the set of param-
eters. Thus, we always have Q(⇥(i+1)|⇥(i)) � Q(⇥(i)|⇥(i�1)). Furthermore,
Q(⇥|⇥(t)) is derived by applying the Jensen inequality solely on the first term
(likelihood) of the objective function. This implies that eL(X|⇥(i+1)) is equal
to or greater than Q(⇥(i+1)|⇥(i)).

On the other hand, given ⇥(t) is fixed, updating the new distributions of
p(c

i

|x
n

;⇥(t)) and p(c
i

|c
j

;⇥(t)) (Eqs.(13) and (14) respectively) in the E-step

makes Q(⇥(i)|⇥(i�1)) = eL(X|⇥(i)). Thus, in summary we have eL(X|⇥(i+1)) �
Q(⇥(i+1)|⇥(i)) � Q(⇥(i)|⇥(i�1)) = eL(X|⇥(i)) and thus eL(X|⇥(i+1)) � eL(X|⇥(i)),
which confirms the regularized likelihood function is monotonically increased
after each iteration.

It is therefore if eL(X|⇥) has a local maximum, we are bound to reach that
maximum at some point.

⇤
Interpretation: In an attempt to interpret our computations, we borrow

terms from physics to explain the intuition behind the E- and M-steps above.
As illustrated in Figure 1, let us assume that data instances x

n

’s are negative

particles (black small points in the figure) and there is a given reference clus-
tering C(s) with its two cluster means c

j

’s (i.e., K = 2) as positive particles

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A Framework to Uncover Multiple Alternative Clusterings 13

Data instances as negative particles�
(a)� (b)�

Cluster means in novel clustering �C� as positive particles�

Cluster means in reference clustering � C�(s)� as positive particles�

c�i�

c�j�

x�
n�

c�i�

c�j�

Fig. 1 An illustration based on interactions amongst positive and negative particles. Data
points are represented as negative particles whereas cluster means are represented as positive
ones.

(red big points in the figure). The red dotted ellipses in Figure 1(a) represents
this reference clustering C(s). Likewise, we may consider cluster means c

i

’s in
our seeking alternative C as also positive particles (blue big points in the fig-
ure). It is noticed that while the particles x

n

’s and c
j

’s are fixed in the space,
c
i

’s are free to move according to the forces imposed on them from both x
n

’s
and c

j

’s. However, since the polarities of x
n

’s and c
i

’s are oppositive, c
i

’s are
pulled close to x

n

’s with the corresponding magnitude/intensity of the force
computed in Eq.(13) of the E-step. In contrast, the polarities between c

i

’s and
c
j

’s are the same (i.e., positive), c
i

’s will be pushed far apart from c
j

’s with
the pushing magnitude given in Eq.(14). Consequently, the new position of
c
i

’s are identified by both kinds of forces, yet with di↵erent directions (i.e.,
opposite signs) as shown in Eq.(18) of the M-step. The movements of c

i

’s are
stabilized once all these imposed forces on c

i

’s are balanced (as visualized in
Figure 1(b)) which is equivalent to the convergence status of the algorithm.

It is worth noting that, compared to a conventional EM technique, MACL
has an extra step in computing the conditional probability of c

i

w.r.t. c
j

and
incorporates this quantity into the calculations of three parameters in the
M-step. For each epoch, the E-step computes N ⇥ K conditional probabili-
ties of each cluster w.r.t. each data instance and J ⇥ K w.r.t. each known
cluster (where J denotes the total number of all previous clusters). Similarly,
within each epoch, the M-step involves the computation over (N + J) entries
of p(c

i

|x
n

)’s and p(c
i

|c
j

)’s which also amounts to (N + J)⇥K for K clusters.
However, computing ⌃

i

, µ
i

in the M-step and Gaussian distributions in the
E-step can be cubically proportional to the number of data dimensions (due
to involving the matrix-vector multiplication and determinant computation).
The overall computation of both steps is thus O

�
(N + J)KD3

�
. Certainly,

this evaluation is only within each epoch of the algorithm. The overall com-
putation of MACL, analogous to k-means or a classical EM technique, is also
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14 Xuan Hong Dang, James Bailey

dependent on the number of E and M iterations (until convergence) which can
be varied across di↵erent initial parameters, structures of data distributions
as well as the accuracy degree of a Gaussian mixture model assumption [26,
12].

5 Experiments

5.1 Experimental Setup

We provide experimental results on both synthetic and real-world benchmark
datasets. The proposed MACL algorithm is compared against six alternative
clustering algorithms: the CIB method [20], COALA [5], two methods from [9]
denoted by Algo1 and Algo2, the ADFT algorithm[13], and the mSC technique
recently developed in [29].

We set the maximum number of iteration in MACL to 100 and consider it
converged when the di↵erence in two consecutive likelihoods is smaller than
1e?10�3. MACL’s outputs are post-processed by assigning each data instance
to the cluster to which it has the highest probability. For � parameter, we
varied its value from 0.1 to 0.2 and found that the range between 0.12 and
0.18 often leads to good outcomes. We therefore report our results when � is
set at 0.15 for most datasets examined, except Syn2 dataset (described below)
at 0.13. An alternative clustering is considered novel if its mutual information
with any previous clustering is no more than 0.5. We run the algorithm 5 times
and choose the best result which has the highest likelihood value.

For ADFT, we implement the gradient descent method integrated with the
iterative projection technique (in learning the full family of the Mahalanobis
distance matrix) [39]. We also use the EM technique as the core clustering
technique for the approaches developed in [9,13]. Similar to MACL, we run
each algorithm 5 times and choose its best clustering solution. Also, for each
run, we initialize the prior probabilities of all clusters equally, same covariance
matrices (equal to the data covariance) yet randomly selected cluster means
within the data space.

For the CIB method, we implement the iterative version [20] and its out-
put clustering is also post-processed by assigning data points to clusters with
highest probability. Following the suggestion by the authors [29], for the mSC
technique, we initialize the subspace views by grouping dependent features
(measured by the HSIC) into the same view. The kernel function is Gaussian
and we use the spectral clustering technique [27] for mSC’s core clustering
algorithm.

5.2 Clustering Evaluation

We evaluate the clustering results based on both clustering dissimilarity and
clustering quality measures. For measuring dissimilarity between two cluster-
ings, we report the values of two di↵erent measures. The first also most popular
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A Framework to Uncover Multiple Alternative Clusterings 15

one is the normalized mutual information[24,34,21] defined by:NMI(C(r);C(s)) =

I(C(r);C(s))/(H(r)H(s)), where I(C(r);C(s)) =
P

i

P
j

nij

n

log
⇣

n.nij

ni.nj

⌘
and n

ij

denotes the number of shared data instances between two clusters c
i

2C(r),
c
j

2C(s). In addition to NMI which might favor techniques with information
theory approaches, we use another measure, the Jaccard index (JI), which is
defined as: J(C(r);C(s)) = n11

n11+n01+n10
, where n11 is the number of pairs of

data instances in the same cluster for both C(r) and C(s), n01 and n10 are the
number of samples’ pairs belonging to the same cluster in one solution, but
not in the other.

For measuring clustering quality we divide into two cases: if ground truth
class labels are known, the agreement between clustering results and the cor-
rect labels is calculated by the F-measure: F = 2P ⇥ R/(P + R), in which
P and R are respectively the precision and recall. If the true labels are not

known, we use the Dunn Index, similar to [5,13]: DI(C) = mini 6=j{ �(ci,cj)}
max1kK{4(ck)} ,

where C is a clustering, �: C⇥C !R+
0 is the cluster-to-cluster distance and

4: C !R+
0 is the cluster diameter measure. In addition to Dunn Index, we

also use the vector quantization error VQE [13] to evaluate clustering qual-
ity. These measures are widely used in alternative clustering [5,13,23,29] and
it is worth to remind that for the NMI and JI measures, a smaller value is

desirable, indicating higher dissimilarity between clusterings, while for the F-
measure and Dunn Index, a larger value is desirable and for VQE, a smaller

value is expected, indicating a better clustering quality.

5.3 Results on Synthetic Datasets

We generate two synthetic datasets in order to evaluate the performance of
our proposed algorithm against other alternative clustering techniques. For
the first dataset Syn1, we extend the popular one from [5,9,13] into three
dimensions to include more clustering solutions. As such, Syn1 consists of 8
Gaussian sub-classes, each having 200 data points located at each corner of a
cube. The goal of using this dataset, when setting the number of clusters to 2,
is to test whether our algorithm is able to uncover three alternative clusterings
that are pairwise orthogonal. For the second synthetic dataset Syn2, we use
a more complicated scenario of which 6 Gaussians are generated and located
in a ring shape. Though it is not always true in practice, we assume that the
number of clusters within each alternative clustering is equal to 2 and thus
there are three di↵erent yet equally important clustering structures embedded
in this dataset. It is noticed that, unlike the Syn1 where alternative clusterings
can be found by projecting the data onto di↵erent subspaces (dimensions),
clustering structures in Syn2 are not orthogonal and simply projecting data
on any subspace does not reveal solutions. Moreover, we assume that no feature
selection/extraction is applied to Syn2 and it is directly provided to MACL
and other algorithms.
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Fig. 2 Three alternative clusterings returned by MACL on Syn1 dataset.

NMI JI F NMI JI F
Methods Syn1 Syn2
COALA 0.00 0.33 1.00 0.12 0.40 0.84

CIB 0.15 0.39 0.89 0.14 0.42 0.83
ADFT 0.10 0.36 0.94 0.10 0.39 0.78
Algo1 0.12 0.37 0.92 0.15 0.41 0.76
Algo2 0.14 0.39 0.90 0.15 0.42 0.74
mSC 0.05 0.34 0.97 0.16 0.43 0.83

MACL 0.10 0.35 0.95 0.09 0.38 0.98

Table 1 Clustering performance of all algorithms on two synthetic datasets Syn1 and Syn2.

For these two synthetic datasets, we first run MACL without any reference
clustering (i.e., EM algorithm). Once the first clustering is found, it is incor-
porated into the objective function as a reference clustering and we iterate
MACL to find another alternative clustering. This process is repeated until
a newly generated clustering is found having the NMI value higher than 0.5
(thus, not considered dissimilar) with respect to any reference clustering. In
Figure 2, we show all clustering solutions returned by MACL on Syn1 dataset.
It is observed that three orthogonal yet equally important clusterings have
been successfully uncovered by our algorithm. Its average results computed
from these clusterings are reported in Table 1 (under Syn1). The F-measure is
used for clustering quality evaluation as the ground truth labels are known and
it is averaged on the second and third alternative clusterings. We also apply a
similar computation to mSC and the algorithms developed in [9] and similarly,
their results are averaged and reported in Table 1). However, as the remaining
techniques are only able to uncover a single alternative clustering, we thus
run them with a random reference clustering from Figure 2. Their F-measure
values reported in Table 1 are computed based on their single alternative clus-
tering. One may observe that these algorithms also perform well with this Syn1
dataset. The performance of mSC technique is better than MACL as Gaussian
sub-classes presented in the eigenvector space are quite separated and mSC’s
results are only slightly a↵ected by the k-means’s initialization applied on
the eigenvector space. However amongst all algorithm, COALA achieves the
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Fig. 3 Alternative clusterings returned by all algorithms on Syn2 dataset (see text for
explanation)

highest results since its core technique is based on agglomerative hierarchical
clustering and thus is not sensitive to initial parameters.

We show the clustering results returned by all algorithms on Syn2 dataset
in Figure 3 and their corresponding average clustering measures are reported in
Table 1 (under Syn2). Figure 3(a) shows three alternative clusterings returned
by MACL. For COALA, CIB and ADFT which are capable of producing only
a single alternative clustering, we demonstrate two solutions corresponding
the first and second clusterings (first two graphs in Figure3(a)) provided as a
reference clustering. We omit the case where the third clustering is given as a
pre-defined clustering since the results are similar (yet opposite) to the case
where the first clustering is provided. Their alternative clusterings are shown
in Figure 3(b-d). The alternative clusterings of Algo1 is shown in Figure 3(e)
and those of mSC is shown in Figure 3(f).

It is observed that while MACL can easily discover three uncorrelated clus-
terings by minimizing the pairwise information, all other algorithms perform
limitedly with this dataset. COALA seems to work well if the first alternative
clustering is given but its clustering result is poor if the second clustering is
provided (Figure 3(b)). Likewise, both alternative clusterings returned by CIB
are quite di↵erent from the true ones as seen in Figure 3(c). Unlike MACL
where we directly minimize the mutual information between the alternative
and all existing clusterings, it is noted that CIB only conditions on the ref-
erence clustering in its process of maximizing the information between the
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new clustering and the set of data features. This might explain for its inferior
performance.

Observed from Figure 3(d) that the resultant clustering of ADFT is close
to the true one if the first clustering is provided. However, we also see that its
alternative clustering on the second case is not as expected. This is probably
explained by the property of the stretcher matrix where its diagonal elements
are actually the stretching factors along each dimension. Thus, varying any
of the elements (corresponding to dimensions) does not make the alternative
clusterings easier to be discovered. It is also observed in Figure 3(e) that, the
resultant clusterings returned by Algo1 are far from the true structures for
both cases. This can be justified by the step of data projection orthogonal to
the set of provided clusters’ means that has made the data being distorted
and more overlapping in the orthogonal space. Moreover, though reported to
be able to uncover multiple alternative clusterings, Algo1 solely conditions
on the previous clustering to find a new clustering. For this low dimensional
dataset, we have found that it is unable to find the third alternative clustering
as the third alternative is highly overlapping with the first provided one (thus
not shown in the figure). Also, we do not show the results returned by Algo2
since they are quite similar to that of Algo1. However, it is worth to note that
the second transformation performed by Algo2 is undefined (since the PCA
solution reduces the number of dimensions to obtain a new subspace). For the
results of mSC reported in Figure 3(f), notice that mSC seeks 3 alternative
clusterings concurrently and as observed, except the first solution, the other
two ones are less successful (in term of clustering quality) though they are quite
orthogonal to each other. These algorithms might get more advantageous in
high dimensional data, especially when clusterings exist in subspaces [30], but
less advantageous in cases of low dimensions. Finally, it is worth noting that
for both Syn1 and Syn2 datasets, our algorithm is only able to uncover up
to 3 alternative clusterings. When � is set to 15% and slightly higher values
(to maintain clustering quality), keeping searching for the fourth one results
in a clustering having high overlapping (i.e., large value of NMI) with one
of the previously found solutions. Therefore, in both datasets, our algorithm
terminates with the number of alternative clusterings at 3, which is intuitive
to our observation from Figures 2 and 3.

5.4 Results on Pen Digit Dataset

We use the hand written pen digit dataset from [13], which consists of 1602
data samples and each single sample corresponds to a hand written digit from
0 to 9. A digit is written in a pen-based pressure sensitive tablet and 8 x, y
positions of the pen are recorded to form 16 attributes of the digit (the stylus
pressure level values are ignored). Certainly, the most prominent partitioning
over this dataset is the one based on the ten digits. Nonetheless, for the purpose
of generating multiple alternative clusterings and for explanation, analogous
to the one adopted in [13], our objective of using this dataset is to observe how
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Fig. 4 Three alternative clusterings returned by MACL on Pen Digit dataset

our algorithm can interpret the ways that the digits have been written. It has
been found that, by setting the cluster number to 2, our MACL algorithm is
able to uncover up to three alternative clusterings from this dataset. Also, we
use the Dunn Index and Vector Quantization Error to evaluate its clustering
quality and compare against other algorithms. Moreover, since many trials of
MACL, ADFT, Algo1 and Algo2 often return one similar clustering, we thus
view it as a dominant clustering, denoted by C(1), and provide it to other
algorithms, except mSC, as the first reference clustering.

We report the clustering results on this dataset of all algorithms in Table 2
and in Figure 4, we demonstrate three alternative clusterings uncovered by
our MACL algorithm. Each picture in the figure corresponds to a cluster’s
centroid. It is observed that three resultant clusterings provide three di↵er-
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Method COALA CIB ADFT Algo1 Alog2 mSC MACL
DI(C1) 1.7 1.7 1.7 1.7 1.7 1.67 1.7
DI(C2) 1.66 1.67 1.6 1.58 1.57 1.60 1.62
DI(C3) 1.69 1.6 1.71 1.67 1.66 1.55 1.8

VQE(C1) 1924 1924 1924 1924 1924 1931 1924
VQE(C2) 1932 1919 1920 1918 1925 1923 1919
VQE(C3) 1923 1921 1926 1919 1927 1919 1915
JI(C1,C2) 0.62 0.4 0.42 0.38 0.36 0.36 0.37
JI(C1,C3) 0.91 0.78 0.91 0.83 0.86 0.44 0.41
JI(C2,C3) 0.36 0.42 0.45 0.37 0.39 0.49 0.44

NMI(C1,C2) 0.4 0.02 0.01 0.01 0.02 0.02 0.01
NMI(C1,C3) 0.84 0.7 0.83 0.74 0.74 0.34 0.03
NMI(C2,C3) 0.01 0.12 0.01 0.01 0.02 0.06 0.2

Table 2 Clustering performance of all algorithms on Pen Digit datasets. Other than MACL,
most algorithms find C(3) close to C(1) as indicated by the high values of NMI(C1, C3).

ent interpretations regarding how the digits have been written. Notice that
though it might not be really convincing when cluster’s means are used for vi-
sualizing the writing styles since the most frequently occurring digits appeared
in each cluster may not be much in common. However, the visualization can
somewhat show the di↵erence between data clusters as well as the contrast
amongst clustering solutions. Also, it is noticed that x and y positions of all
digits are recorded at fixed time intervals (i.e., sampling rates). Therefore,
di↵erent person may write di↵erently for the same stroke of the same digit
or even strokes of the same digit might be written in various sequences. This
might cause some pen-digits with the same identity possibly being grouped
into di↵erent clusters.

As seen from the first clustering C(1), the writing style of the digits seems
to follow clockwise trend with a slightly constant speed for digits grouped in
the first cluster but increasing writing speed for those grouped in the second
cluster. For the second clustering C(2), it is possible to observe from the first
cluster that the digit writing style is in counter-clockwise, as opposed to the
first clustering, with a smooth speed for most of the strokes. For clustering
C(3), we further observe that two clusters’ centroids demonstrate two di↵er-
ent novel writing styles. While the digit writing manner in the first cluster
starts with a stroke from left to right, then with strokes going down to create
a very far distance of two ends, the writing style in the second cluster begins
with a stroke from right to left, going down then up again to create an al-
most closed-end circle. These two ways of grouping digit writing are not only
themselves contrasted to each other but are also clearly distinguished from
those discovered from the first two previous found clustering partitions C(1)

and C(2).
For comparison against other techniques over this dataset, we observe the

clustering performance reported in Table 2. It is noticed that COALA and CIB
are unable to uncover multiple alternative clusterings. The results reported
related to C(3) in Table 2 therefore were computed by providing C(2) as the
reference clustering for these algorithms. It is seen that, for these algorithms,
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C(3) was found indeed very close to that of clustering C(1). It is also observed
that the similar results are with Algo1 and Algo2. As observed from Table 2,
the NMI and Jaccard Index between C(1) and C(3) of these algorithms are
very large, which demonstrate the highly overlapped clustering structure be-
tween C(3) and C(1). The mSC seeks three uncorrelated subspaces along with
clusterings simultaneously and its performance is better than these algorithms
in searching for clustering C(3). However, its Dunn index over three resultant
clusterings is still smaller than that of MACL while both the NMI and Jaccard
index is higher. By conditioning on both C(1) and C(2) in searching for a new
alternative clustering, our MACL algorithm has successfully discovered C(3).
This alternative solution is not only highly independent from both C(1) and
C(2) as indicated by the low values of NMI and Jaccard Index, its clustering
quality is also high confirmed by the large value of Dunn Index as well as the
small one of VQE. It is worth to mention that the first two clustering solutions
are also found and reported by the ADFT [13]. However, our MACL technique
can further uncover the third alternative which has meaningful interpretation.
Similar to the two synthetic datasets, the fourth alternative clustering re-
turned by MACL is often highly overlapped with the first clustering solution.
The algorithm is thus terminated with the number of alternative clusterings
at 3.

5.5 Results on CMUFace Dataset

The CMUFace data obtained from the UCI KDD repository [4] is an interesting
dataset, since its data samples can be partitioned in several di↵erent ways (e.g.
by individual, by pose, etc.). The dataset consists of images of 20 people taken
at various features such as facial expressions (neutral, happy, sad, angry), head
positions (left, right or straight), and eye states (open or sunglasses). Each
person has 32 images captured in every combination of these features. Though
it is possible to select all images for experiments, we have found that clustering
result might be a↵ected by the chosen number of clusters. For example if K =
3, an algorithm may derive di↵erent alternative clusterings. However if setting
K = 20, any algorithm can only be able to derive a single clustering solution
that is based on di↵erent people. This implies that meaningful clusterings
are very much dependent on how K is chosen. For this reason, we therefore
randomly select 3 people along with all their images to create the dataset in
order to alleviate the e↵ect of K selection on the alternative clustering results.
In addition, since it is known which image comes from which person, this
forms an existing partition over the set of images. We thus run MACL and
other algorithms (except mSC) with this reference clustering. As the dimension
of this dataset is 960 which is substantially high compared to the number of
data instances, we use the PCA technique as a preprocessing step to reduce
the number of dimensions, in which we retain the number of first principal
components that cover 90% of the original data variance.
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22 Xuan Hong Dang, James Bailey

Fig. 5 MACL’s clustering results on the CMUFace dataset. First row’s images correspond
to the cluster means in the reference clustering. Second row’s images correspond to the
cluster means found in MACL’s alternative solution.

Given the reference clustering based on person, MACL is able to find an-
other di↵erent clustering from this dataset. For visualization purpose, we show
the mean vectors of the reference clustering in the first row and those of
the alternative clustering returned by MACL in the second row of Figure 5.
Graphically, it is possible to observe that the uncovered alternative clustering
returned by MACL provides another di↵erent, yet equally important cluster-
ing on this set of image data. While pictures in the first row show that they
represent for di↵erent individuals, pictures in the second row clearly reveal
that images have been partitioned according to di↵erent poses. This obviously
provides another meaningful interpretation about the data. Despite being able
to find multiple alternative clusterings, we found that the third one returned
by MACL was highly overlapped with either of two solutions above and thus
stopped running the algorithm. In order to compare against other techniques,
we report in Table 3 the clustering measures returned by MACL as well as
by other algorithms. As observed from this table, COALA and CIB perform
slightly better than Algo1 and Algo2, which attempt to find alternative cluster-
ings in an orthogonal transformation space. However, their clustering results
are still worse than those of MACL. The clustering dissimilarity returned by
MACL is slightly better than that of COALA when it is measured in term of
Jaccard Index, but clearly better in term of normalized mutual information.
Its clustering accuracy is also better than all of algorithms examined. We also
test another strategy by which the clustering labels based on poses are pro-
vided as the reference clustering. The clustering accuracy for the person based
partitioning of all algorithms is summarized in the fourth column of Table 3.

Since we know both ground truth clusterings (one is based on persons
and the other is based on poses) of this dataset, we test another scenario
on the influence of the provided knowledge. More specifically, we want to see
how well MACL can uncover two inherent clusterings when it is not provided
by a proper ground truth clustering but the one that is close to it found by a
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Methods NMI JI F(pose) F(person)
COALA 0.27 0.32 0.71 0.87

CIB 0.28 0.34 0.69 0.86
ADFT 0.29 0.33 0.69 0.89
Algo1 0.31 0.34 0.68 0.87
Algo2 0.33 0.36 0.67 0.84
mSC 0.32 0.36 0.59 0.87

MACL 0.23 0.31 0.74 0.91
MACL(0.86/0.64) 0.27 0.34 0.72 0.81
MACL(0.82/N/A) 0.3 0.35 0.7 N/A

Table 3 Clustering performance of all algorithms on the CMUFace dataset. Values in the
last two rows are reported for the alternative clusterings with a reference clustering provided
by a conventional EM technique.

conventional EM technique. Across multiple runs, it was found that a grouping
close (in terms of F-measure) to the person-based clustering is often returned
by the classical EM. We thus use it as the reference clustering for MACL
and see how close it can uncover a clustering based on poses. In the last two
rows of Table 3, we report the results corresponding to two cases: one uses
the reference having F-measure of 0.86 and the other of 0.82 (first number
in the bracket). One can observe that in two cases, the alternative clustering
returned by MACL is still close to the ground truth pose-based clustering as
indicated by the high F-measure values (under the F(pose) column) while also
independent from the person-based clustering as revealed by the small values
of NMI and JI. These values are slightly less successful compared to the case
in which the proper person-based grouping is provided (e.g., F-measure of 0.72
and 0.7 compared to 0.74).

We also test the circumstance when a clustering close to the pose-based
clustering is provided as prior knowledge. Amongst multiple runs, we found
that there was only one clustering whose F-measure w.r.t. the ground truth
pose-based clustering is above 0.5 and reaches 0.64 4 (precision of 0.84 and
recall of 0.51). Using this grouping as the reference knowledge, MACL has
found an alternative clustering that has F-measure of 0.81 w.r.t. the person-
based clustering, which is somewhat much less successful compared to the
ideal case (conditioning on the ground truth pose-based clustering). These
experiments also reveal an interesting result that while it is hard to uncover
a clustering based on poses by running a conventional EM multiple times (F-
measure only achieves 0.64), we still can find it with much higher clustering
quality (F-measure of 0.72) by conditioning on the first prominent person-
based clustering.

4 The second number in the bracket of the last two rows of Table 3. Values for the last
row are not available as only one clustering having F-measure above 0.5. was found.
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NMI JI DI VQE NMI JI DI VQE
Methods Vehicle Vowel

Algo1 0.27 0.31 1.15 6.21 0.47 0.39 1.66 4296
Algo2 0.27 0.32 1.09 6.12 0.49 0.41 1.62 4271
ADFT 0.29 0.33 1.3 6.03 0.48 0.46 1.63 4241

COALA 0.31 0.34 1.2 6.43 0.44 0.4 1.62 4331
CIB 0.32 0.39 1.16 6.61 0.47 0.38 1.59 4352
mSC 0.28 0.31 1.63 7.46 0.34 0.52 1.62 4283

MACL 0.25 0.27 1.34 5.82 0.37 0.31 1.7 4203

Table 4 Clustering performance of all algorithms on Vehicle and Vowel datasets

5.6 Results on Real World Datasets

We further compare seven algorithms on two real-world datasets selected from
the UCI repository: the Vehicle Silhouette and the Vowel. Though it is not
always practical, we make an assumption that the existing clusterings are the
ones defined by the class labelled attributes of these datasets and limit the
number of alternative clusterings to 3 (including the ground truth clustering).
Also, as we do not have ground truth for alternative clusterings, the Dunn
Index and VQE (averaged on the two novel alternative clusterings) are used
for clustering quality comparison amongst the seven clustering techniques.
For COALA, CIB and ADFT, the third alternative clustering is found by
conditioning on the second alternative clustering. Moreover, since mSC does
not require pre-identified clusterings, we select two out of its three alternative
clusterings that are most uncorrelated (measured in NMI) from the pre-defined
class labels for comparison. We report the results of all techniques on these
datasets in Table 4.

It can be seen that MACL also performs well on these datasets. Its clus-
tering results, both in terms of quality and dissimilarity, are better than those
of COALA, CIB and ADFT. This is obvious since MACL conditions on all
previously known clusterings to find a novel clustering while these algorithms
are only able to condition on a single clustering. It is also seen that the VQE
values of COALA and CIB are sightly higher than those of ADFT. This might
be explained by the core clustering techniques that these algorithms have been
used. While CIB optimizes an objective function purely based on mutual in-
formation and COALA is a hierarchical clustering technique, ADFT is an
EM-based technique and thus implicitly minimizes the VQE measure. We also
find that our MACL’s clustering performance is better than that of Algo1,
Algo2 and mSC, which all attempt to search alternative clusterings indirectly
via transformed spaces. The performance of mSC is better than MACL on the
Vowel dataset if measuring in the NMI. However, it is observed that its resul-
tant clusterings are quite imbalanced as revealed by the large values of Jaccard
index. MACL’s clustering quality, measured in term of Dunn Index and VQE,
is slightly better than that of Algo1 in the Vowel dataset, but there is a large
di↵erence between two algorithms in the Vehicle dataset. Our clustering algo-
rithm also achieves better clustering dissimilarity compared to Algo1 and 2 in
both datasets.
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5.7 Impact of Regularization Parameter

As mentioned in Section 3, the parameter � is used to regularize the trade-o↵
between the degree of the dissimilarity of a novel alternative clustering with
respect to all previously found clusterings and its clustering quality. We next
report the behavior of MACL when this parameter is varied.

In order to be consistent with the expectation maximization framework
used in MACL, we do not use the available class labels, instead, the conven-
tional EM technique is run to obtain the first clustering from a dataset. It is
then supplied to MACL as a reference clustering and we evaluate how the alter-
native clustering is di↵erent from the first one when � is changed. In Figure 6,
the relationship between the normalized mutual information, the VQE mea-
sure, and the regularization parameter � is shown for two real world datasets:
Vehicle and Vowel. The results are reported when � is varied between 1% and
20% of each dataset’s size. As we expected, when the regularization parameter
is small, MACL usually converges to an alternative clustering that is highly
overlapped with the provided clustering. This is indicated by the high value of
the normalized mutual information between two solutions. As we increase the
value of �, the normalized mutual information is decreased, implying that the
resultant alternative clustering is also more dissimilar from the provided one.
However, its clustering quality, in term of VQE, is somewhat compromised and
increased. This inverse relationship between clustering quality and dissimilar-
ity is intuitive and visualizing it can suggest ways to choose an appropriate
value of �. As observed from two graphs in Figure 6, both requirements of high
qualitative and dissimilar clusterings can be achieved when the value of � is set
around 15%, since the value of VQE in this range is relatively small, whereas
that value of the NMI is also not high. It is noted that though there is no
proper value of � working for all datasets, this experiment suggests a general
way to find it by tracking down both values of clustering quality (e.g., VQE)
and clustering dissimilarity (e.g., NMI) and choose one that best compromises
between these two objectives. This strategy would also be applied when more
reference clusterings are involved in the objective function. However, as done
in the previous sections, in the range between 10% and 20%, we still found
that setting � to 15% remains good in searching for the second alternative
clustering.

6 Conclusion and Discussion

In this paper, we have proposed a novel framework called MACL to discover
multiple alternative clusterings that are both of high quality and distinctively
di↵erent from each other. We address this important problem by combin-
ing two mathematically well founded areas of maximum likelihood framework
learning and mutual information. Consequently, a dual-objective function is
devised and we develop an expectation maximization technique to optimize
it. The clustering quality of alternatives is thus achieved by the maximization
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(b) Vowel dataset

Fig. 6 Impact on MACL when varying the regularization parameter � on the clustering
performance. For an ideal result, both NMI and VQE should be small.

over the data likelihood whereas the dissimilarity amongst them is ensured by
the minimization over their mutual information. Interestingly, the computa-
tions in both E- and M-steps of the proposed technique are all intuitive and
they resemble the world of force interaction amongst physical particles. We
evaluated the performance of the proposed framework on both synthetic and
real-world datasets and compared against most well-known algorithms in the
literature. The experimental results demonstrated the appealing performance
of MACL in searching for multiple alternative clusterings and thus confirmed
the potential approach of combining maximum likelihood framework and mu-
tual information.

Nevertheless, we observe that MACL also su↵ers from several drawbacks.
First, being based on the assumption of Gaussian mixture models, MACL’s
solutions thus converge to convex shaped clusters. For datasets where clus-
tering structures do not strictly follow this assumption (e.g. when clustering
boundary boundaries are non-linear), its performance may be compromised.
Second, in the circumstance when there is no background information regard-
ing the number of clusters within each alternative clustering, MACL assumes
the number to the same across alternatives, which might not be practical in
some real world applications. Finally, although MACL is able to seek multiple
alternative clusterings, it still may not ensure every possible alternative clus-
tering is uncovered. In our work, we have opted to use a comparison of the
similarity (via the NMI measure) between the novel clustering and all previous
ones as a criterion to terminate the search process of the algorithm. However,
a significant di↵erence in the likelihood could also be a good factor to stop
searching for a novel clustering if the number of clusters is the same across all
alternative clusterings. In the general case, nonetheless, the likelihood quantity
can be biased if the number of clusters is not the same for di↵erent clustering
solutions. Therefore, seeking to optimise both the number of clusters within
each alternative and the total number of alternatives truly embedded in the
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data is particularly challenging. We believe that these issues are worth further
exploration as part of future work.
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