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Abstract

Delivering automated real-time performance feedback in simulated
surgical environments is an important and challenging task. We
propose a framework based on patterns to evaluate surgical perfor-
mance and provide feedback during simulated ear (temporal bone)
surgery in a 3D virtual environment. Temporal bone surgery is com-
posed of a number of stages with distinct aims and surgical tech-
niques. To provide context-appropriate feedback we must be able
to identify each stage, recognise when feedback is to be provided,
and determine the nature of that feedback. To achieve these aims,
we train pattern-based models using data recorded by a temporal
bone simulator. We create one model to predict the current stage of
the procedure and separate stage-specific models to provide human-
friendly feedback within each stage. We use 27 temporal bone sim-
ulation runs conducted by 7 expert ear surgeons and 6 trainees to
train and evaluate our models. The results of our evaluation show
that the proposed system identifies the stage of the procedure cor-
rectly and provides constructive feedback to assist surgical trainees
in improving their technique.

CR Categories: I.2.1 [Artificial Intelligence]: Applica-
tions and Expert Systems—Medicine and science; H.5.2 [In-
formation Interfaces And Presentation]: User Interfaces—
Evaluation/methodology

Keywords: real-time feedback, surgical simulation, emerging pat-
tern

1 Introduction

Surgical trainees in the discipline of Otolaryngology dedicate years
of training to master the surgical skills required to safely perform
temporal bone surgery. Traditionally, they refine their psycho-
motor skills by practising on plastic bones or cadavers under the su-
pervision of expert surgeons. Experts guide trainees through surgi-
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cal procedures while providing feedback on the quality of their per-
formance. However, there are limitations to this approach, which
include a shortage of cadaver bones, limited availability of expert
supervision, and the subjective manner of surgical skill assessment.
Due to these challenges, computer-based virtual reality (VR) plat-
forms have recently attracted much attention in the field of surgi-
cal education [Agus et al. 2003; Bryan et al. 2001; Kerwin et al.
2009]. The introduction of new techniques such as 3D illusion,
haptic feedback and augmented reality have significantly improved
the realism of surgical simulators. Such simulators have the poten-
tial to provide a cost-effective platform, which allows trainees to
practice many surgical cases of varying difficulty, and provides the
flexibility of practising repeatedly at their own convenience.

1.1 Surgical Performance Feedback

Performance evaluation plays a critical and essential role in the de-
velopment of surgical expertise through deliberate practice [Erics-
son 2004]. In the traditional apprentice model, expert feedback is
usually divided into two categories: immediate and summative. An
expert surgeon provides immediate feedback on trainees’ perfor-
mance and guides them through the surgical procedure. Summative
feedback is delivered at the end of the procedure by evaluating the
end result (e.g. the drilled specimen) and grading their technical
skill based on a scale such as the Welling scale [Butler and Wiet
2007]. However, this training approach requires considerable time
commitment on behalf of expert surgeons, which is often difficult
to arrange. Moreover, grading is subjective and may be influenced
by human bias, while the level of detail to which the assessment is
carried out is limited. If simulated surgical environments could em-
ulate the role of expert surgeons in training by providing automated
performance feedback, the problems of traditional surgical training
could be mitigated considerably.

In the past few years, many efforts have been made to improve vari-
ous aspects of temporal bone surgery simulation. In terms of deliv-
ering performance feedback to trainees, recent work has focused
on scoring the outcome of surgical tasks (i.e. summative feed-
back) [Sewell et al. 2008; Kerwin et al. 2012]. Summative feedback
typically evaluates the end-product of a surgical task and ignores
the rich information provided by real-time performance attributes,
such as motion records. Furthermore, since summative feedback is
delivered at the end of each task, it does not allow any opportunity
to identify and address mistakes as they occur. The real-time data
generated by surgical simulators should be mined for knowledge
that can be used to help trainees improve their surgical technique as
well as their overall performance. There is little work focusing on
this aspect in the area of temporal bone surgical simulation.



1.2 Challenges of Feedback in Surgical Simulation

The following issues have to be considered when designing and
developing a real-time feedback system for a temporal bone surgery
simulator (though these issues exist in many other kinds of open
surgery simulation):

• The data stream has to be analysed as it is generated and feed-
back has to be delivered within a short time frame.

• Surgical assessment scales which are used to deliver human
expert feedback (such as the Welling Scale) lack clear quanti-
tative definition, thereby making them difficult to translate to
values that can be automatically measured by computers.

• Motion-level human classification of surgical technique for
training data is often unavailable, resulting in data-driven
models being inaccurate. That is, due to lack of class labels
at the motion level, we have to make the naive assumption
that all drilling movements made by experts are of “expert
quality” and all movements made by trainees are suboptimal.
However, since this assumption does not generally hold in real
life, making such an assumption would adversely affect any
model training process and lead to lower accuracy rates.

1.3 Research Contributions

To address the above challenges in the context of temporal bone
surgery simulation, we propose a pattern-driven approach to pro-
viding real-time feedback focusing on surgical technique. First, we
label each stage (representing different sub tasks of the procedure)
for each surgical run in our training data set with the assistance of
a human expert. Then, we use low level data (such as drill position,
velocity, burr size, zoom level etc.) at each time interval of these
segmented runs to train an Emerging Patterns (EP) classifier [Dong
et al. 1999] to predict the current surgical stage. Second, we aggre-
gate the above low level data into surgical strokes using an online
k-cos method inspired by [Hall et al. 2008] and calculate high level
metrics for each stroke (such as stroke duration, stroke speed, dis-
tance to anatomical structures etc.). These stroke metrics are used
to train a separate Emerging Patterns classifier for each stage of the
procedure, to capture the differences in technique between expert
and trainee groups and propose real-time feedback to improve per-
formance. In using this pattern driven approach, we avoid making
the assumption of “polarising” the quality of drill strokes based on
expertise that was discussed in section 1.2, and only use the overall
classification of each surgical run as a soft label to mine discrimi-
native patterns. Different patterns are used for different stages since
surgical technique varies between sub tasks of the surgical proce-
dure.

In summary, this paper makes the following contributions:

• To the best of our knowledge, this is the first formal study
in the use of Emerging Patterns to detect surgical stage and
provide feedback in a simulation environment.

• The proposed algorithms are designed to satisfy the time con-
straints imposed by a real-time system and to maximise us-
ability by providing human understandable feedback.

• Experimental evaluation shows that the proposed Emerging
Patterns methods recognise surgical stages with a high level of
accuracy and generate useful feedback on surgical technique.

The rest of the paper is organised as follows. Section 2 discusses
related work. Section 3 describes our temporal bone simulator. In
section 4, we provide a brief background on Emerging Patterns.
Section 5 provides an overview of the proposed feedback system,

while sections 6 and 7 explain the stage prediction and feedback
models in detail. Section 8 reports the results of our algorithm eval-
uation, and section 9 concludes the paper.

2 Related work

In recent years, the analysis of surgical work-flow has been gain-
ing attention as it has become evident that an immense amount of
information can be obtained during a surgical procedure. Such in-
formation can be used to deliver context-aware evaluation of perfor-
mance and provide surgical technique feedback in real-time. How-
ever, most existing work on automated performance evaluation for
temporal bone surgery simulators is limited to the assessment of
surgical outcomes [Sewell et al. 2008; Kerwin et al. 2012].

Sewell et al. [2008] used coloured dots to indicate whether the cor-
rect bone region was drilled in an attempt to provide guidance to-
wards completion of a procedure. They also provided information
such as force and speed of the surgical drill in an evaluation console.
Quantitative information presented in this manner assumes that the
user possesses a “reference of correctness” to be able to usefully in-
terpret it. Providing comparative information using the raw metrics
is more useful, but could be difficult for simulation users to monitor
and react to while performing the procedure. It also does not sug-
gest to the user exactly what action to undertake to improve their
surgical technique.

In previous work, we have used random forest models to pre-
dict surgical expertise and generate meaningful automated real-time
feedback in a temporal bone surgery simulator [Zhou et al. 2013].
While this approach showed promise, the use of random forest
models necessitated the assumption that all data provided by ex-
perts contained optimal surgical techniques while all data provided
by trainees was sub-optimal. This assumption is generally not true
in the real world.

Other developments in this area can be observed in the field of min-
imally invasive surgery [Haro et al. 2012; Rosen et al. 2001; Sty-
lopoulos et al. 2004; Forestier et al. 2012]. Haro et al. [2012] used
multiple kernel learning of Support Vector Machines to identify
surgical gestures from intra-operative videos. Rosen at al. [2001]
used force/torque from endoscopic instruments to train two Hid-
den Markov Models (HMM) representing different surgical skill
levels and used likelihood to predict the expertise of new motions.
Forestier et al. [2012] used Dynamic Time Warping (DTW) to clas-
sify the surgical process of expert and trainee groups. Although
these studies provided online evaluation, an evaluation score alone
provides trainees with no specific suggestions for improvement.
Furthermore, classification models in minimally invasive surgery
are based on the use of a set of tools, and identifiable “gestures”
associated with these tools. On the other hand, open surgery such
as temporal bone surgery often utilises a small set of instruments
such as surgical drills and suction devices and there are many ways
to achieve a correct outcome. As such, it is difficult to identify
specific gestures that represent good surgical technique. Therefore,
it is not practical to extend the same models and algorithms used
in minimally invasive surgery to generate automated feedback for
temporal bone surgery.

Rhienmora et al. [2011] proposed a “follow me” approach to den-
tal surgery (which is also a type of open surgery) by providing a
ghost drill during the simulation to guide the trainee. However, the
pace of an expert is often faster than that of a trainee who is not
as familiar with the procedure. Reconciling this difference by syn-
chronising the expert run with the current run is not an easy task,
and was not addressed by the researchers. Rhienmora et al. [2011]
also assessed surgical skill in the context of a crown preparation



Figure 1: Using the temporal bone simulator

procedure and delivered feedback on drill force, position and orien-
tation by comparing them to the average value of an expert group.
This simple approach to real-time feedback cannot be extended to
other types of surgery where it may be hard to find a set of standard
force, position and orientation values across experts, as is the case
with temporal bone surgery.

In view of the limitations of the existing methods discussed above
and the requirements stated in section 1, we propose the use of
Emerging Patterns (EP) [Dong and Li 1999] to develop a real-time
feedback system for surgical simulators. EPs have been applied in
other fields such as body sensor networks, to recognise the activ-
ity of individual users in given environments (e.g. at home) [Wang
et al. 2012].

A detailed description of Emerging Patterns can be found in sec-
tion 4. This pattern-based idea was inspired by [Sewell et al. 2005],
who detected dangerous behaviours in temporal bone surgery using
visibility checking, that is, checking whether a user is drilling parts
of the bone that he/she cannot see directly. Our feedback model
extends this idea by using a pattern-based approach in two ways.
First, we identify patterns that represent low quality surgical tech-
nique such as dangerous behaviours or inefficient drilling. Second,
we use these patterns to generate constructive feedback to assist
users in improving their technique.

3 Virtual Reality Simulation Environment

Our simulation environment uses a 3D monitor and stereo shutter
glasses to display a 3D virtual temporal bone model constructed
from segmented micro-CT data of a human temporal bone. The
bone and key anatomical structures were segmented by an expert
surgeon using a semi-automatic segmentation method. Trainees in-
teract with the temporal bone model using a pen-like haptic device
which represents a surgical drill in the VR environment. The hap-
tic device provides force feedback to the user and can be used to
remove material from the virtual bone.

Figure 1 shows the simulator in-use and Figure 2 shows a screen
shot highlighting the underlying anatomical structures present in
the simulated temporal bone.

This high fidelity VR temporal bone simulator can be used to
perform any type of temporal bone drilling task. For this study,
the surgical procedure we considered consisted of a cortical mas-
toidectomy (removal of bone surrounding the important anatomi-
cal structures described in Figure 2, A-D), followed by posterior
tympanotomy (removal of most of the bone overlying the facial
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Figure 2: A transparent temporal bone showing seven anatomical
structures. A: dura, B: sigmoid sinus, C: facial nerve, D: ossicles,
E: stapedius tendon F: basilar membrane, G: round window

nerve and the small chorda tympani nerve that lies in front of it,
and then drilling away the bone between these two structures) and
cochleostomy (drilling a small hole into the cochlea as it is viewed
through the posterior tympanotomy). This procedure is part of
cochlear implantation surgery. We collected 27 temporal bone sim-
ulation runs of this procedure, performed by 7 expert ear surgeons
and 6 trainees. Each participant performed 1 to 3 runs which pro-
vided 16 expert runs and 11 trainee runs.

The simulator recorded two kinds of measures: outcome measures
and technique measures. Outcome measures consisted of a time se-
ries of drilled voxel positions. Technique measures were recorded
at the graphics frame rate of the simulator (which was approxi-
mately 30 Hz), and included kinetic metrics, simulator settings and
proximity to anatomical structures.

4 Emerging Patterns

An “Emerging Pattern” is a set of items (each item representing a
pair of attribute and value) that has a significantly higher support
(i.e. frequency) in one class than that in other classes [Dong and
Li 1999]. A comprehensive treatment can be found in [Dong and
Bailey 2013] book. We refer to these patterns as the EPs of class
ci. Emerging Patterns were proposed to capture multi-attribute
contrasts between data classes or trends over time. Formally, let
D = {d1, d2, ..., dn} be a dataset consisting of a list of instances.
Each row in a dataset is defined as one instance and each column
in a dataset is defined as one attribute. The value of an attribute is
required to be discrete. The class attribute is a special column in
a dataset. Let C = {c1, c2, ..., ck} be the set of class values that
the data in D falls into. Each attribute-value pair of an instance is
called an item and an itemset is a set of items in a dataset. Let I be
the set of all items in D, d be an instance within D and | ∗ | be the
number of members in the collection. The support of an itemset E
which is a subset of I is defined as:

supD(E) =
|{d ∈ D|E ⊆ d}|

|D| (1)

The growth rate GR (or differentiation power) of an itemset E is



defined as the ratio between the support of E in one class and the
support of E in other classes:

GRD(E) =


0 if supDc(E) = 0
∞ if supD−Dc(E) = 0

supDc (E)

supD−Dc (E)
otherwise

(2)

whereDc is the subset of data inD belonging to class c andD−Dc

is the subset of data in D not belonging to class c. An itemset
E is considered to be an Emerging Pattern (EP ) in a given class
dataset Dc when supDc(E) ≥ mSup and GRDc(E) ≥ ρ, where
mSup and ρ are predefined thresholds for support and growth rate
respectively. By defining a higher support thresholdmSup, we can
guarantee that the mined EP is minimally affected by noise in the
data.

Although each EP is a good indicator of its representative class,
it only covers a small portion of the data. Therefore, an EP score
function can be defined to aggregate the evidence contained in a set
of EPs representing a class.

S(d, c) =
∑

E⊆d,E∈EPc

GRD(E)

GRD(E) + 1
× supDc(E) (3)

where, S is the score, d is a data instance, E is an EP, EPc is the
set of EPs of class c,GRD(E) is the growth rate ofE in the dataset
D, supDc(E) is the support for E in class c. S(d, c) considers all
the EPs of a class ci to decide whether d should be in class ci.

Table 1: Example data for stage prediction

Force Speed Stage
(0, 0.2] (4, 6] 1
(0, 0.2] (4, 6] 1
(0.2, 0.5] (1, 4] 1
(0, 0.2] (4, 6] 2
(0.2, 0.5] (6, 8] 2

To illustrate these concepts we provide a toy example of a dataset
for stage prediction, shown in Table 1. The dataset has three at-
tributes (force, speed and stage). Stage is the class attribute. Force
and speed are discretised from numerical values. The dataset has
five instances, three of which belong to stage 1 and two of which
belong to stage 2.

Now let us consider an itemset consisting of two items: ‘force in
(0, 0.2]; speed in (4, 6]’. The support of this itemset in the subset
of instances belonging to stage 1 is 2

3
. The support of it in the stage

2 subset is 1
2

. It is an EP of stage 1 with a growth rate 2
3
÷ 1

2
= 4

3
,

for any 1 < ρ ≤ 4
3

. If we set mSup = 1
3

and ρ = 4
3

, then stage 1
has totally five EPs as illustrated in Table 2.

Table 2: EP list in stage 1

EP itemset sup1 GR1

Force in (0, 0.2] 2/3 4/3
Speed in (4, 6] 2/3 4/3
Speed in (1, 4] 1/3 ∞
Force in (0, 0.2]; Speed in (4, 6] 2/3 4/3
Force in (0.2, 0.5]; Speed in (1, 4] 1/3 ∞

Suppose we have an unseen instance ‘(0, 0.2];(1, 4]’, given these
five EPs, it only contains EP 1) and 3). Therefore, its score for
stage 1 is S(d, 1) = 1.33

1.33+1
× 0.66 + ∞

∞+1
× 0.33 ≈ 0.71.

5 Feedback System Overview

Figure 3 provides an overview of the proposed real-time feedback
system. This system operates in two steps.

1. Surgical stage prediction: Surgical technique varies between
different stages (sub-tasks) of the procedure, and therefore,
it is important to predict the current stage before providing
feedback.

2. Feedback construction: Different feedback should be pro-
vided for different stages of the procedure and therefore, sep-
arate models should be trained for each stage.

To predict the stage, we build an EP-based stage model [Dong et al.
1999]. To train this model, we first segment the collected surgical
runs into stages with the assistance of a human expert. Then, the
stage model is trained offline by mining a set of EPs from low-level
data (such as drill position, velocity, burr size, zoom level etc.) and
their corresponding stage label, using the algorithm proposed by [Li
et al. 2007]. During a simulation procedure, stage predictions are
made in real-time by reporting the stage with the highest EP score
computed from the mined EPs.

After predicting the current stage of the procedure, feedback should
be generated and delivered at appropriate times to improve surgi-
cal skills. Since the granularity of low-level data is too small to
contain enough information about surgical technique, we adopt an
approach based on k-cos [Hall et al. 2008] to aggregate a list of
low-level data into a series of surgical strokes and obtain high-level
metrics for each stroke, such as stroke distance, speed and force.
EPs require nominal data, so we use the entropy-based discretisa-
tion method [Fayyad and Irani 1993] to discretise numeric attributes
into a number of disjoint intervals. This discretised vector stream is
used to discover EPs that can be used to provide feedback.

To train the EP feedback models for each stage, we use the expertise
label of each run as a soft label. We mine a set of EPs to represent
these two groups offline. During a procedure, a sliding window is
used to store the discretised stroke data. Once this buffer is full,
we choose the EP representing a low quality surgical technique that
appears the most in this window. If the recurrence of this EP is
above a predefined threshold, we regard it as a potential fault that
needs to be rectified. Then, we iteratively change each item in this
pattern and evaluate each change using its feedback score (defined
in section 7.2). Finally we choose the change with highest feedback
score as the proposed suggestion to the user.

6 Stage Prediction

As mentioned above, to successfully provide feedback on surgical
technique, we divide the surgical procedure into stages. A stage
is defined as a time interval where a certain sub-task is performed
within which time the surgical technique is relatively uniform. This
ensures that the different techniques used during different stages of
the procedure can be treated separately.

This section describes how we build a stage prediction model from
the low-level training data and how this model is used to recognise
the current surgical stage of an ongoing simulation run.

6.1 Stage Definition and Low-Level Metrics

After consultation with expert ear surgeons, we have divided the
surgical procedure into five stages, as shown in Table 3. To detect
the stage, a low-level data stream is collected from the simulator at
the graphics frame rate of approximately 30 Hz. This data stream
is comprised of the attributes listed in Table 4.



Figure 3: Overview of EP-based real-time feedback system

Table 3: Definition of stages in the surgical procedure

Stage ID Stage purpose
1 Exposing the dura and sigmoid sinus
2 Exposing the incus
3 Identifying the facial nerve
4 Drilling through the facial recess
5 Making the cochleostomy

Table 4: 37 low level metrics collected from temporal bone simu-
lator

Time stamp (seconds)
Tool position, orientation and force metrics
Current force applied by drill tool (X,Y,Z)
Current position of drill tool (X,Y,Z)
Current orientation of drill tool (X,Y,Z, Angle)
Simulator settings
Current burr spinning speed
Radius of the current burr
Current zoom Level
Anatomical structure metrics
Current specimen position (X,Y,Z)
Current specimen orientation (X,Y,Z, Angle)
Number of drilled voxels from each segment (bone and anatom-
ical structures) of the specimen
Distance of the drill tip from the closest point of each anatomi-
cal structure

6.2 EP-Based Stage Prediction

To carry out stage prediction, we first train an EP-based classifier
offline. To this end, the low-level dataset comprised of 37 contin-
uous metrics is discretised using the entropy-based discretisation
method [Fayyad and Irani 1993]. From these discrete vectors, we
mine a set of EPs for each stage from using the algorithm discussed
in [Li et al. 2007]. Next, we derive the base score for each class
(i.e. stage in this case). The training process is illustrated in Algo-
rithm 1.

Since there may be imbalance in the spread of EPs across the
classes, the raw score would be biased towards the classes occurring
more frequently in the dataset. To overcome this issue, a normalised
score NS is defined as the ratio of the raw score and a base score
BS [Dong et al. 1999]. The base score is defined as the median of
the raw EP scores for each class. If the median is zero, the smallest
non-zero value is used as the base score. NS(d, c) = S(d,c)

BS(c)
, where

S is the EP score, d is an instance of the dataset, c is the class. This
normalised score can be used to classify a new instance dn. The
class ci with the highest normalised score NS(dn, ci) is chosen as
the predicted class for dn.

Input: D : dataset;
Stages S={s1,s2,...,s5};

1 Discretise dataset D;
2 Mine EP set Ei for each class with mSup = 1% and ρ = 3;
3 Compute EP score for all instances in D for corresponding stage;
4 For each stage sk, use median as base score;
5 if basescore[k] == 0 then
6 basescore[k] = smallest non-zero EP score for stage sk;
7 end

Algorithm 1: Training phase of stage prediction model

In the prediction phase, instead of predicting the stage for each in-
dividual data instance, we use a sliding-window to ensure smoother
results. For each low-level instance in the sliding-window, the nor-
malised EP score is calculated. The stage that has the largest nor-
malised EP score is assigned as the stage for that instance. The
stage that occurs the most within the sliding-window is set as the
predicted stage. The sliding-window is then moved to collect the
next set of instances from the low-level data stream. The prediction
stage is described in Algorithm 2.

7 EP-Based Real-Time Feedback

Different stages of the surgical procedure require different surgical
techniques, therefore the feedback provided should be customised
for each stage. For example, a short stroke might be inefficient in
stage 1, but may be common behaviour in stage 4, and a high force
magnitude in stage 1 may be an efficient way to open up the field
of view, but the same stroke may be dangerous in later stages due
to proximity to sensitive anatomical structures. Therefore, we train
a separate model for each stage, which is used to generate feed-
back once the stage is predicted using the stage prediction model
discussed in section 6.

The goal of developing these feedback models is to emulate the
role of an expert trainer by providing human-friendly suggestions
to improve the surgical technique of trainees using the simulator.
For example, an expert trainer would suggest that the trainee should
increase/decrease parameters such as burr size or stroke length.
They would also ask the trainees to drill parallel to anatomical
structures and open up the bone for a better field of view. While
the former is relatively easy to automate, the latter is more difficult.
In this paper, the models we develop only provide feedback on one



Input: Window of low-level metrics W = w1,w2,...,wl;
Stages S = {s1,s2,...,s5}
Output: Predicted Stage for the window W

1 for each wi ∈ W do
2 Discretise wi;
3 for each sj in S do
4 Compute S(wi, sj) as the raw score of wi in sj ;
5 Calculate normalised score NS(wi, sj) by dividing the

raw score by the base score BS(sj);
6 end
7 if sum of NS for all stages are zero then
8 #No EPs found for wi;
9 #Assign the previous stage prediction #since stage do not

change frequently;
10 stage[wi]=stage[wi−1];
11 else
12 Assign the stage with largest normalised score to

stage[wi];
13 end
14 end
15 return mode of stage

Algorithm 2: Prediction phase using pattern-based stage model

Table 5: Stroke metrics aggregated from the low level metrics

Motion-based metrics
Stroke duration
Stroke length
Average stroke speed
Average acceleration
Average force
Stroke straightness
Average centroid distance
No. of bone voxels removed by stroke
Average force near 7 anatomical structures
Average speed near 7 anatomical structures
Proximity metrics
Average distance to the facial nerve
Average distance to the ossicles
Average distance to the basilar membrane
Average distance to the dura
Average distance to the sigmoid sinus
Average distance to the stapedius tendon
Average distance to the round window

stroke attribute at a time.

7.1 Stroke Metrics

To meaningfully analyse and classify surgical technique, we divide
drill trajectories into surgical “strokes”. A stroke is a collection
of low-level data points segmented using an adapted k-cos algo-
rithm based on [Hall et al. 2008]. Only the drill motions that result
in material removal are considered to be part of a stroke. Once a
stroke is detected, the low-level data is aggregated into a set of more
meaningful metrics to be used in the feedback models. Stroke met-
rics include aggregated motion-based metrics and proximity data as
shown in Table 5.

To calculate the average force and speed near each anatomical
structure, we define a proximity threshold of 5mm. The metrics are
then calculated as the average force and speed of the stroke during
the time when the drill tip is within less than 5mm of each anatom-

Figure 5: Example of a surgical performance model in stage 3
of an expert and a trainee. Black indicates common techniques;
red indicates low quality techniques; green indicates high quality
techniques.

ical structure. In total, we derive 29 stroke-level metrics that are
used to describe stroke technique.

7.2 Stroke Quality Model

To build a traditional data-driven feedback model [Witten and Frank
2005], an expert surgeon would have to go through all the strokes in
each simulation run and label them as ‘Expert’ or ‘Trainee’. If we
use the label of the entire simulation run to train the model, we as-
sume that all strokes performed by an expert are expert strokes and
vice versa, which results in inaccurate models. For example, force
and speed are two common physical measures that model stroke
technique. Figure 4 shows the distribution of these two measures
for expert and trainee groups for stage 3. It can be observed that
the histograms of these two measures for the two groups are very
similar.

An alternative that allows the modelling of different motions in
surgery is clustering [Witten and Frank 2005]. However, cluster-
ing suffers from two drawbacks: 1) It is difficult to guide clustering
algorithms to find clusters that differentiate stroke quality using do-
main knowledge. The clusters that are formed may have different
meanings (e.g. each cluster may represent strokes of similar shape
instead of stroke technique). 2) Clustering also ignores the label of
the simulation run, which should be used in some way to discover
the techniques that distinguish experts and trainees.

We illustrate a more suitable model to evaluate surgical perfor-
mance in Figure 5, which shows the predicted surgical performance
of an expert and trainee simulation run in stage 3 using an EP-based
algorithm. Black indicates common techniques, red indicates low
quality techniques, and green indicates high quality techniques.

The strategy is to use the label of each simulation run as a soft label
when we find EPs in our dataset. These patterns are divided into
two categories: 1) EPs of high quality strokes are those EPs that
appear often in expert surgeries but rarely in trainee surgeries. We
call these expert EPs; 2) EPs of poor quality strokes are those that
appear frequently in trainee surgeries but not so frequently in expert
surgeries. We call these trainee EPs.

These two sets of EPs allow us to deliver online feedback using the
sliding-window approach. This online feedback approach consists
of two steps: 1) We examine each stroke in the sliding window and
identify the most popular EP. 2) If the most popular EP is a trainee
EP and it occurs more frequently than a predefined percentage (50%
of strokes in our case), we conclude that the surgical technique qual-
ity is poor. In such a case we want to provide feedback to help the
trainee improve their technique.

In order to generate feedback, we iterate through all discrete
attribute-value pairs in the most popular EP and regard each pair
as a potential candidate for feedback. Out of these possibilities, we
need to choose the pair that would produce the largest improvement
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Figure 4: Histograms of force and speed in stage 3 for expert and trainee groups

Table 6: Example of mined EPs

Mined EP [Suppos, Supneg]
EP1: force in (0.01, 0.09], speed in (2,5] [12%,1%]
EP2: force in (1.0, 4.0], speed in (1,2] [1%,4%]
EP3: force in (0.01, 0.09], speed in (1,2] [1%,3%]

Figure 6: Example of potential feedback

in stroke technique.

Let us consider an example where we mined one expert EP (EP1)
and 2 trainee EPs (EP2 and EP3) from our training dataset as
shown in Table 6. The first column is the EP and the second col-
umn is the support for the expert and trainee classes respectively.
Suppose inside a window of ten strokes, we find that all the strokes
contain EP3. If we assume that speed and force have two different
value intervals, then there are 2 possible changes we can suggest:
changing the force to (1.0, 4.0] or changing the speed to (2, 5] (see
Figure 6). The former change would result in EP2 being present
in all modified strokes. The latter would result in EP1 being the
most popular EP in the modified strokes. Since EP1 is an expert
EP with a high support, this change gets a higher feedback score.
Therefore, the optimal feedback to provide is “increase speed to
(2,5]”. Changing the force does not achieve expert stroke technique
as it results in trainee EPs. Now let us consider a real trainee EP
that appears frequently in our training dataset for stage 3: stroke
length in ‘(11.47, inf)’, stroke straightness in ‘(0.38, inf)’, force
in ‘(0.17, 0.67]’

From a surgical point of view, this means that when long strokes are
used by trainees, they are more likely to apply more force. Apply-
ing too much force is dangerous in stage 3, as it may damage the
facial nerve and cause facial paralysis. Therefore, the ideal feed-

back should be a suggestion to decrease force at this stage. To de-
termine the best possible change to suggest, we generate a window
of synthetic strokes from the original sliding window of stroke data,
by changing the value of one attribute in all strokes to the value of
each potential change. Then, we compute a feedback score (FS)
for each change, as the increase in the likelihood of expert stroke
technique caused by that change.

FS(s, s′, EP ) =

l∑
s′=1

S(s′, EP (exp))

l∑
s′=1

S(s′, EP )

−

l∑
s=1

S(s, EP (exp))

l∑
s=1

S(s, EP )

(4)
where s is a stroke in the original window, s′ is a stroke modified
from s according to one of the possible changes, l is the number of
strokes in the window, EP (exp) is an expert EP, and S is the score
defined in equation (3).

We select the change that has the highest FS value as the feedback
suggestion. The process for selecting the optimal feedback is illus-
trated in Algorithm 3. Since attributes are all discretized, there is
a finite candidate value set for each attribute. Our idea is to iterate
through this finite set to select the optimal feedback. Note that when
we consider all possible changes in attribute values, we ignore at-
tributes such as “force near structure” and “speed near structure”,
as they can only be changed when near a structure, and even then
it is often not practical. We call these “near structure” attributes in
Algorithm 3.

8 Evaluation and Results

In this section, we present the results of experiments conducted to
evaluate our system. We first illustrate the performance of the stage
prediction model. Then we show the effectiveness of using EPs to
deliver feedback.

8.1 Stage Prediction Performance

Examination of simulator performance videos revealed that stage 2
is often not distinct from stage 1 or stage 3. For example, a user
is drilling bone near the incus (stage 2) and then goes back to re-
moving bone near the dura (stage 1). Our stage labelling assumed
sequential progression through the stages and did not account for
non-sequential stage progression. As a result of this problem and
the fact that stage 2 is a relatively short stage, few EPs were found



Input: A window of strokes S = {s1,s2,...,sl};
A list Expert EPs EEP = {EPe1,EPe2,EPe3,...,EPen};
A list Trainee EPs TEP = {EPt1,EPt2,EPt3,...,EPtm};
Threshold t;
Output: Proposed Feedback fb

1 countTEP= count each EP in TEP for S;
2 if max(countTEP) > t then
3 maxFbScore = −∞;
4 fb = null;
5 mEP = most popular Trainee EP;
6 for each item in mEP do
7 if not near structure attribute then
8 for each possible change of this attribute do
9 value = change;

10 fbCandidate = <attribute, value>;
11 S′= modify all strokes in S according to

fbCandidate ;
12 score = FS(S, S′, EEP ∪ TEP );
13 if score > maxFbScore then
14 maxFbScore = score;
15 fb = fbCandidate;
16 end
17 end
18 end
19 end
20 end
21 return fb;

Algorithm 3: EP-based feedback algorithm
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Figure 7: Stage prediction of different approaches

for stage 2. Therefore, stage 2 has been omitted from the stage
prediction evaluation results.

To evaluate the performance of EP-based stage prediction, we com-
pared it to some other popular models. For this purpose, we built a
sequential Hidden Markov Model (HMM) with four states to repre-
sent the surgical stages, and calculated the probability of each stage
over a sliding window of input. In addition, we carried out the same
tests using a Naive Bayes (NB) classifier, and decision trees (J48).
We calculated the performance of each model across different slid-
ing window sizes. We also identified the highest accuracy achieved
for each approach by selecting the optimal window size. We used
ten-fold cross-validation for the calculation of accuracy. We se-
lected 90% of the 27 simulation runs to build the models and used
the remaining 10% for testing.

Figure 7 shows the results of the comparison for window sizes rang-
ing from 1 to 4000 data points. Table 7 shows the best accuracy that
could be obtained for each method and the corresponding window
size. The results show that EP-based stage prediction accuracy sig-

nificantly outperformed decision trees and HMM models. The size
of the sliding window did not significantly affect the level of accu-
racy in any of the methods. Although EP and NB models showed
similar accuracy levels, it is hard to use a NB model to deliver feed-
back. Since NB assume that each stroke attribute is independent,
which does not hold in real world and thus adversely affects feed-
back quality. Hence we consider EP to be a more suitable algorithm
for this area of application, as it can predict the stage of the proce-
dure with high accuracy and also deliver useful feedback.

Table 7: Stage prediction with optimal window size

Method Optimal Window Size Accuracy
EP 2200 86.60%
NB 1200 86.86%
J48 1 77.40%
HMM 1 55.57%

To determine the accuracy of each stage prediction, we calculated
the confusion matrix as shown in Table 8. The columns show the
ground truth stage labels and the rows show the predicted stages.
We observe that stage prediction accuracy is high. Moreover, the
majority of errors that are made are predictions for adjacent stages.
For example, all the data from stage 4 were predicted to be stages
3, 4, or 5, with the majority (85.17%) being correctly classified as
stage 4. These results are acceptable as there is no clear definition
of the stages and some overlap between adjacent stages is unavoid-
able.

Table 8: Confusion matrix for EP-based stage prediction

XXXXXXXXPredict
Truth S1 S3 S4 S5

S1 89.76% 10.24% 0% 0%
S3 12.43% 81.38% 6.19% 0%
S4 0% 11.94% 85.17% 2.89%
S5 0% 0% 6.55% 93.46%

8.2 EP-Based Feedback Performance

To illustrate the importance of selecting the correct attribute to
change when delivering feedback, we established a baseline by ran-
domly choosing an attribute to change. We then carried out a com-
parison of the results from the random selection method with the
EP-based approach. Since different support (mSup) and growth
rate (ρ) thresholds result in different sets of EPs, we varied them in
our tests in order to discover the optimal thresholds for best feed-
back score FS (as defined in section 7.2). For a given support, we
started the growth rate from 2 and increased it until we could find no
more than two EPs in each class. Figure 8 shows the results of these
tests for stage 3. In all cases, we can see that the feedback score FS
of the EP-based feedback selection significantly outperformed the
random selection.

We also observe that the feedback quality is highly correlated to
the support and growth rate thresholds. Given a certain support, the
general trend of the feedback score is to increase in tandem with
the growth rate. Since patterns with higher growth rate have more
discriminative power, raising the growth rate threshold results in
patterns with higher contrast between experts and trainees. On the
other hand, a high growth rate threshold will reduce the number
of patterns discovered, which could adversely affect the delivery of
feedback. The support threshold also affects the feedback quality.
In Figure 8, feedback score drops from 0.34 at mSup = 0.05 to
0.24 at mSup = 0.15. Based on these tests, the optimal support
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Figure 8: Feedback scores for different supports and growth rates in stage 3

and growth rate for stage 3 is mSup = 0.11 and ρ = 2.55 respec-
tively and the corresponding feedback score is 0.46.

Table 9: Contingency table of stroke quality across two groups.
Columns show stroke quality classification according to the EP
model and rows show the different groups.

Expert
Stroke

Common
Stroke

Trainee
Stroke

Expert Runs 29.20% 63.18% 7.62%
Trainee Runs 12.93% 73.16% 13.91%

Using the optimal values for support and growth rate, we examined
stroke quality among expert and trainee groups. We used ten-fold
cross-validation to evaluate stroke quality. We selected 90% of the
27 simulation runs to build the stroke quality model and used the
remaining 10% for testing. Table 9 shows the results of this evalua-
tion. We can see that common strokes are dominant in both groups,
but experts are more likely to perform expert strokes (29.20% vs
12.93%) compared to trainees, and less likely to perform trainee
strokes (7.62% vs 13.91%).

9 Discussion and Conclusion

We have presented a framework to automatically deliver online
context-aware feedback in a temporal bone surgical simulation. We
discussed two pattern-based models: 1) to predict the current stage
of the surgical procedure and 2) to detect poor surgical technique
and deliver feedback. Both models build a set of EPs offline from a
training dataset and deliver predictions in real-time during simula-
tor training.

Our evaluation showed that the pattern-based stage prediction
model achieves a high accuracy when compared to other methods.
The evaluation of the pattern-based feedback models also demon-
strated that they have the potential to successfully to deliver con-
structive feedback on surgical technique.

The next step in this research is to test the effectiveness of these
models in improving the surgical technique of trainee ear surgeons.
This will be achieved by prospectively running trials with trainee
surgeons using the temporal bone simulator with real-time feedback
and comparing their performance with that of a control group. The
feedback generated by the models will also be assessed by expert
surgeons to evaluate its usefulness and meaningfulness in practice.
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