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Abstract. Emerging Patterns (EPs) are a data mining model that is
useful as a means of discovering distinctions inherently present amongst
a collection of datasets. However, current EP mining algorithms do not
handle attributes whose values are asscociated with taxonomies (is-a hi-
erarchies). Current EP mining techniques are restricted to using only
the leaf-level attribute-values in a taxonomy. In this paper, we formally
introduce the problem of mining generalised emerging patterns. Given a
large data set, where some attributes are hierarchical, we find emerging
patterns that consist of items at any level of the taxonomies. Generalised
EPs are more concise and interpretable when used to describe some dis-
tinctive characteristics of a class of data. They are also considered to
be more expressive because they include items at higher levels of the
hierarchies, which have larger supports than items at the leaf level. We
formulate the problem of mining generalised EPs, and present an al-
gorithm for this task. We demonstrate that the discovered generalised
patterns, which contain items at higher levels in the hierarchies, have
greater support than traditional leaf-level EPs according to our experi-
mental results based on ten benchmark datasets.

1 Introduction

An important problem in data mining is how to characterise the differences
between two data sets. A widely used approach to this problem is to find emerging

patterns (EPs), which can be used to describe significant changes between two
data sets [4]. EPs are conjunctions of simple conditions representing a particular
class of records. Emerging patterns have strong discriminating power and are
thus very useful for describing the contrasts that exist between two classes of
data. A key advantage of emerging patterns is that since they are basically
conjunctions of simple conditions, they are very easy to understand.

In many application domains, taxonomies (is-a hierarchies) are available for
attribute values. For example, an attribute corresponding to a geographical lo-
cation can be represented at many levels of detail, such as city, state or country.
Until now, emerging patterns have only been capable of representing contrasts
between datasets whose attributes are non-hierarchical. The patterns discovered
have been at the lowest level of representation. This can lead to a large number
of similar patterns being discovered, involving attribute values that are distinct,
yet semantically related, e.g., cities that are all part of the same state. This



creates two problems. First the support of each such pattern in isolation will be
less than the support of the group of related patterns. Second, a large group of
similar patterns is more difficult for an expert to understand and verify, com-
pared to a single, more general pattern. Therefore, our motivation has been to
develop an algorithm to mine generalised emerging patterns, which has the ca-
pability of dealing with data sets whose attribute values are associated with is-a

taxonomies, such that the contrasts discovered will contain information not only
from the lowest-level but also from any other levels in the hierarchy.

In this paper, we introduce a new knowledge pattern, called generalised

emerging patterns. With the introduction of the concept of generalised EPs,
we now allow a much larger and semantically extended pattern base by asso-
ciating membership hierarchies with some attributes in a dataset. Quantitative
data such as age or income can have meaningful attribute hierarchies achieved
by aggregating base values into increasing, non-overlapping ranges. For example,
dates of birth can be generalised to month and year of birth.

A critical challenge in this problem is that attribute hierarchies greatly ex-
pand the size of the space of potential EPs that could be mined. Patterns can
now express a mixed level of concept aggregation realized by using combinations
of values across different levels in the hierarchy. These patterns have improved
expressiveness, potential usefulness and understandability for decision makers
over traditional EPs. The resultant multi-dimensional generalised EPs are more
concise and interpretable. If we are given a large number of leaf-level EPs, we
might prefer having fewer, but more expressive EPs that have stronger discrim-
inating power when used to describe distinctive characteristics of a class of data
objects. However, the pattern space is greatly expanded after including attribute
values from higher levels in the hierarchy. This makes the efficient computation
of generalised EPs an important research challenge.

There are three main contributions of this research. First, we introduce the
concept of generalised emerging patterns and formulate the problem of mining
generalised emerging patterns. Second, we develop an algorithm for mining these
patterns, and analyse the behaviour of the mining method over a variety of
real-life datasets. Third, we analyse the compactness and expressiveness of the
discovered generalised EPs in comparison with traditional non-hierarchical EPs.

2 Background and Related Work

In this section we present basic definitions which are used throughout this paper.
All definitions in this section are adapted from [7]. A dataset is a collection of
data objects of the form (a1, a2, ..., an) following the schema (A1, A2, ..., An)
where each of the objects is called an instance and A1, A2, ..., An are called
attributes. Each data object in the dataset is also labelled by a class label
C ∈ {C1, C2, ..., Ck} which indicates the class to which the data object belongs.

An item is a pair of the form (attribute-name, attribute-value). A set of
items is called an itemset (or a pattern). We say any instance S contains an
itemset X , if X ⊆ S. The support of an itemset X in a dataset D, denoted as



supD(X), is CountD(X)/|D|, where CountD(X) is the number of instances in
D containing X , and |D| is the total number of instances in D.

We follow the definition of Emerging Patterns used in [4],[3],[2],[6], also
known as Jumping Emerging Patterns. An EP is an itemset whose support
increases abruptly from zero in one data set (known as the negative data set),
to non-zero in another data set (known as the positive data set) - the ratio of
support-increase being infinite. An itemset X is said to be an Emerging Pat-
tern (EP) from D1 to D2 if supD1

(X) = 0 and supD2
(X) > 0. An EP X is

said to be minimal if there does not exist another EP Y such that Y ⊂ X .

A related field is the problem of mining association rules. The aim of mining
association rules is to find all rules that satisfy a user-specified minimum sup-

port and minimum confidence [9],[11],[12]. The concept of generalised association
rules first appeared in [10]. The problem of mining generalised association rules
was defined informally as – given a set of transactions and a taxonomy, find
association rules where the items may be from any level of the taxonomy. The
approach taken by [10] was to first add all ancestors of each item in a trans-
action T , so that an extended transaction T ′ is obtained. After extending all
transactions, any non-generalised association rule mining algorithm could then
be applied to the extended transactions. Work presented in [5] further improved
efficiency by imposing a lexicographic order on the itemsets such that rightmost
Depth-First-Search could be used. In more recent work [8], “more-general-than”
hierarchies were associated with each attribute in a large dataset. This is more
closely related to our research, since in the context of mining emerging patterns,
attributes are often multivalued and are independent from any other attributes
in the data set. Their algorithm, GenTree [8], uses a tree structure which rep-
resents the multi-dimensional generalisation relations among all data tuples in
a relational dataset over a set of hierarchical attributes.

Current techniques of mining EPs do not handle hierarchical attributes.
Moreover, the techniques of dealing with taxonomy structures in the context
of association rule mining cannot be applied directly to EP mining. A key dif-
ference is that while association rule learning requires search for high support
rules in a single data set, EPs must satisfy the additional constraint of low sup-
port in the negative data set. This additional constraint creates the need for an
efficient algorithm to prune candidate generalisations that match the negative
data set. Therefore, the aim of our research is to address the problem of mining
emerging patterns for data sets whose attributes are associated with hierarchies.
This problem is formally described in the next section.

3 Generalised Emerging Patterns

The type of datasets we consider have a set of attributes, one or more of which
is associated with a taxonomy which represents is-a relations on its attribute-
values. Figure 1 shows an example of two such attribute taxonomies.



Fig. 1. Examples of taxonomic hierarchies

A generalised emerging pattern is an itemset whose support increases
from zero in one class of data, to non-zero in another class, and consists of items
from any level of the taxonomy associated with the corresponding attributes.

Given a data set D1 of positive instances and data set D2 of negative in-
stances, there are many different EPs that can be found. An EP space is de-
fined as the set of all EPs with repsect to D1 and D2 [9]. It has been shown that
the EP space can be concisely represented by two bounds 〈L,R〉 [9]. The left
bound L contains the most general EPs, and the right bound R contains the
most specific EPs, where an itemset X is said to be more general than another
itemset Y if X ⊂ Y .

Note that in the case of generalised EPs, the pattern space has been greatly
expanded since items are not only restricted to leaves of the taxonomies. Our
aim is to find the most general EPs from a class of data. The traditional ap-
proach is to take the collection from the left bound of the border representation
because the concept of generality is equivalent to the concept of minimality (or
most expressive). However, with the introduction of non-leaf-level items in the
patterns, the word general here no longer implies minimal only, it also implies the
highest-level possible in the hierarchy. Therefore an extended generalisation mea-
sure must be introduced to allow comparison of two patterns and decide whether
or not one is considered more general than the other in both dimensions.

The existence of hierarchies on attribute-values now enables us to compare
one item with another within the same attribute domain. We say that one item
X is more general than another item Y if and only if X ∈ ancestors(Y ). In our
small example above, item A1 is considered more general than a2. Considering
the fact that hierarchies exist on individual attributes, only items from the same
attribute are comparable. Therefore, only EPs consisting of items from the same
combinations of attributes are are allowed to be compared with each other.
For example, {A1, c1} and {b2, c1} are not comparable because they have items
from different attributes. However, {A1, c1} and {a3, c2} are considered to be
comparable. We refer to pattern X = {x1, x2, ..., xm} as a generalisation of
pattern Y = {y1, y2, ..., ym} if xi ∈ ancestors(yi) for at least one i (i = 1 to m);
and xk = yk for k = 1 to m where k 6= i. X is also said to be more general
than Y . Y is referred to as a specialisation of (or more specific than) X .



3.1 Problem Description

Given a set of instances D, our aim is to mine the most general set of generalised
EPs which contain items from any level of the taxonomies and have infinite
growth rate from one class to all others.

Considering a generalised pattern X , if any of its specialisations is supported
by the positive instances, X itself is then supported by the positive instances.
Likewise, if any of its specialisatons is supported by the negative instances, X
itself is then supported by the negative instances. Therefore, all legal generalised
emerging patterns must have the following properties: (1) At least one of its
specialisations must have non-zero support in the positive class; (2) None of its
specialisations should have non-zero support in the negative class.

The set of most general EPs that could be mined with respect to a set of
positive instances and a set of negative instances should satisfiy the properties
of completeness and conciseness.

– Completeness: The set of most general EPs mined, S, can be used as the
left bound of the border representation such that < S,R > represents all
generalised EPs in a set.

– Conciseness: The set S is in its most concise form because any pattern
which is either a subset or a generalisation of some EP in the set is not an
EP anymore.

4 Algorithms for Mining Generalised EPs

Let us consider the problem of mining generalised EPs in terms of the problem
of mining traditional EPs. A set of EPs mined from a dataset can be represented
using a border representation < L,R >, where the left bound L is the set of
minimal EPs, while the right bound R is the set of most specific EPs. Since
we intend to discover the most general set of generalised EPs, we can therefore
post-process on the left bound to obtain a more general set L′ such that the new
border < L′,R > represents the complete set of generalised emerging patterns
in a dataset. In this generalised case, a pattern is considered an EP if:

– it is a superset or a specialisation or a specialisation of a superset of a certain
EP in L′ and

– it has a leaf-level specialisation that is a subset of an EP in R

Hence, the problem of discovering the most general generalised EPs can be
decomposed into three subproblems:

1. Mine the set of non-hierarchical EPs from the dataset using an existing
mining algorithm

2. Enumerate all possible generalised patterns based on the set L of minimal
EPs (the left bound)

3. Prune all generalised patterns that are not legal emerging patterns

Since existing EP mining techniques can be used for subproblem 1, our algorithm
has been developed to address subproblems 2 and 3.



4.1 Algorithm GTree

Let us motivate our algorithm by first considering a brute-force approach to
mining generalised EPs. The brute-force approach is to take each EP from the
collection and enumerate all possible generalised patterns using ancestors of the
items this EP contains. For each generalised pattern, check through the negative
instances to see whether it is supported in the negative class and delete it if
it has non-zero support in the negative class. All generalised patterns that do
not have support in the negative class are considered as legal generalised EPs.
Before each generalised EP is added to the final set, it must be checked against
the EPs that are already in the set to make sure that it is removed if it is a
specialisation of any existing patterns or the specialisations of it are removed if
it is considered more general than any existing patterns.

We have added several important optimisations to the Brute-Force algorithm
to develop an algorithm called GTree. In this algorithm, the enumeration of
generalised patterns is now achieved through building a set enumeration tree
for each input non-hierarchical EP. There are several important optimisations
introduced by this approach. First, fewer passes are needed over the negative
class data, since only one pass over the negative instances is required for each
tree, instead of for each generalised pattern. In addition, taxonomic information
can improve pruning efficiency. When an item is pruned, its corresponding gen-
eralisations are also pruned, since all generalisations will also be supported by
the negative class. Let us now examine the GTree algorithm in detail.

4.2 GTree Construction

A GTree is a set-enumeration tree constructed from a set of leaf-level EPs in the
left bound L. The tree represents all possible generalised patterns that can be
enumerated from the leaf-level EPs. The tree has a root, which does not contain
any value. The height of the tree is the length of the EP. Each path from root to
leaf represents one possible generalised pattern. There is an imposed ordering on
the tree, such that paths from left to right are patterns from the most specific
to the most general.

Before constructing the tree, we first divide the set of non-hierarchical EPs
into a number of groups (G1 to Gk) according to the combination of attributes
in each pattern, such that each group should only contain patterns with items
from the same combination of attributes. For each group, we then construct one
tree for all EPs in that group. For example, consider a dataset where {a1, b2} and
{a1, b3} are both non-hierarchical EPs. Each of these EPs will result in the same
generalisation tree. Consequently, these patterns should be grouped together, so
that a single tree can be constructed for both patterns, and then pruning on the
negative patterns need occur only once.

The formal algorithm for constructing a tree is outlined as follows:



Given E = {input non-hierarchical minimal EPs}
for each group of EPs Gk ∈ L do

Tree r ← buildTree( Gk )

buildTree( group G )
initialise empty tree with root node r

for each EP pj ∈ G do
insertPattern( r, pj , 1 )

return tree r;

Let p[l] denote the Lth item in pattern p

e.g., if p = (a1, b1), p[1] = a1, p[2] = b1
assign ordering of values in attribute l and their generalisations,
most specific to most general

insertPattern( node n, pattern p, l )
for each item i ∈ p[l] ∪ generalisations(p[l])

if ( i 6∈ n.children ) then
insert i in n.children according to ordering of attribute l

find node ni ∈ n.children that corresponds to item i

insertPattern( ni, p, ++l );

As an example, consider a group of EPs from {a1, b1}, {a2, b2}, {a3, b3},
{a3, b4}, {a4, b3}. The resulting GTree is shown in Figure 2. We can see that
items along each path from the root to the leaf forms a generalised itemset and
paths from left to right are from the most specific to the most general.

Fig. 2. A GTree built based on the example in Figure 1. Note that underlined nodes
correspond to nodes that are pruned in the discussion in Section 4.3

4.3 Pruning from GTree

Pruning invalid EPs from the tree requires testing all negative instances one by
one.

For each pattern p from the negative dataset

pruneTree( root r, p, 1 )

pruneTree( node n, pattern p )
for each item i ∈ pattern p

if ( attribute type of item i 6= attribute type of n.children ) then

skip to next item i

else

for each node nc ∈ nc.children

if ( nc.children 6= null ) then

pruneTree( nc, p )
else delete nc from nc.children



For example, if the training dataset contains the negative instances {a1, b2},
{a1, b3}, {a2, b1}, {a4, b4}, then the underlined nodes are pruned from the tree
in Figure 2.

4.4 Extracting the most general EPs

After pruning, only complete paths (from root to leaf) that are left in the tree
are legal generalised EPs. However, these EPs do not necessarily represent the
most general set since there might still exist some patterns that are specialisa-
tions of others. Since the paths in the tree have an imposed order as introduced
previously, we can take out patterns from the tree in order from right to left,
such that more general ones are always taken out first. In this way, when each
EP is extracted it can be compared with those that were extracted earlier to see
whether it is a specialisation of those.

For example in Figure 2, once {A2, B1} has been extracted, {A2, b3} is re-
dundant, since b3 is a specialisation of B1. Finally, the set of generalised EPs
obtained from each group of input leaf-level EPs are unioned together, in order
to ensure that only the most general EPs are kept.

5 Evaluation

We now present experimental results to demonstrate the performance of our
GTree algorithm on various data sets and with different taxonomy structures.
The data sets used were acquired from the UCI Machine Learning Repository
[1]. All experiments were performed on a 1GHz Pertium III machine, with 2GB
of memory, running Solaris 86. The programs were coded in Java. Since none of
the UCI data sets have taxonomy structures defined on their attribute values, we
manually added three-level hierarchies for numerical attributes by aggregating
values into increasing, non-overlapping ranges.

5.1 Dimensionality and scalability

Our goal is to evaluate the scalability of our algorithm by measuring its run-
time performance on data sets with different dimensionalities. As a basis for
comparison, we have implemented a Brute-Force algorithm, which enumerates
all generalised patterns for each EP, and compares each generalised pattern
against the negative class data. In terms of implementation, both algorithms
used the Border-Diff algorithm for mining non-hierarchical EPs, although any
other existing EP mining technique can be used. Therefore the total execution
time recorded did not include the time taken for the mining of non-hierarchical
EPs. The following table shows the experimental results of using the the two
algorithms. Note that GTree is able to find all generalised EPs for all datasets,
and in substantially less time than the brute force approach.



Input Output Execution Times(s)

Dataset No. No. No. No. No. Brute GTree
Attr Hierarchical EPs Groups G.EPs -Force

Attributes

iris 4 4 9 4 6 0.16 0.10

glass 9 9 84 63 96 15.3 1.0

autos 25 15 662 658 675 108.6 8.4

breast-w 9 9 781 243 860 188.9 7.1

breast-cancer 9 3 949 302 933 7.4 1.2

diabetes 8 8 1015 224 1038 455.8 12.0

credit-a 15 6 3015 1375 2982 65.7 13.8

heart-statlog 13 6 4032 1792 4016 295.7 16.8

vehicle 18 18 34463 14253 36902 >10000 994.1

ionosphere 34 20 126330 79060 125434 >10000 5035.2

Table 1. Experimental results on 10 data sets

5.2 Compactness and support evaluation of generalised EPs

Having examined the efficiency of our algorithm, we now want to evaluate its
effectiveness, in terms of the quantity and quality of the generalised EPs.

There are generally three classes of generalised EPs that occur, namely:

– Class 1: patterns consisting of leaf-level items only; e.g.{a1, b2}
– Class 2: patterns consisting of at least one non-leaf item and at least one

leaf item; e.g. {a1, B2}, and
– Class 3: patterns consisting of non-leaf items only; e.g. {A1, B2}

Note that when we talk about non-leaf and leaf items, we refer to those attributes
that are associated with hierarchies.

We now observe the quantity and quality of the patterns that belong to each
of the three classes. The term quality refers to the expressiveness of each pattern.
A pattern is considered powerful or expressive if it is sharply discriminative or
strongly representative of the instances of a particular class, and this can be
measured in terms of its support. The results shown in Table 2 are obtained
from the same ten data sets which were used for producing Table 1. Average

support of each pattern in the table reflects the average support of each pattern
from a particular category, which is a direct indication of the expressiveness of
a pattern. The results obtained are averaged over the ten data sets.

Property Class 1 Class 2 Class 3

Proportion of the complete set 23.5% 51.4% 25.1%

Average support of each pattern 1.7% 3.9% 10.7%

Table 2. Experimental results showing the proportion of generalised EPs in each class

After post-processing, more than 76% of the output set are patterns that
include items from higher levels in the taxonomy. Only less than 24% still remain



as leaf-level EPs, without being generalised. Table 2 shows that the average
support of Class 3 patterns is significantly higher than that of the patterns
belonging to the other two classes. Class-1 patterns, which are a subset of the
original EPs, have the smallest average support. It is clear that Class 3, which
corresponds to generalised EPs, has the highest average support. Overall, we
find that the generalised EPs that are mined using our algorithm have much
higher support than the traditional non-hierarchical EPs. This improvement
means that the generalised EPs are representative of a larger proportion of the
positive dataset, and are thus of higher quality than the original leaf-level EPs.

6 Conclusion and Future work

We have introduced the concept of Generalised Emerging Patterns. We have pre-
sented an algorithm for generating generalised EPs in data sets whose attributes
are associated with membership hierarchies. Our experimental results based on
ten real-life data sets show that our GTree algorithm is capable of mining gen-
eralised EPs from high-dimensional data sets within a small period of time. The
complete set of most general generalised EPs mined from a data set has ap-
proximately the same size as its minimal non-hierarchical EP set. Moreover, the
generalised EPs have higher support than traditional leaf-level EPs.
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