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Abstract

With the emergence of large-scale graphs and deeper graph

neural networks (GNNs), sparsifying GNNs including graph

connections and model parameters has attracted a lot of at-

tention. However, most existing GNN sparsification meth-

ods apply traditional neural network pruning techniques to

sparsify graphs in an iterative cycle (train-then-sparsify),

which not only incurs high training costs but also limits

model performance. In this paper, we propose a novel Prun-

ing and Sprouting framework for GNN (PSGNN) that not

only enhances the efficiency of inference, but also boosts the

performance of GNN trained on a core subgraph beyond the

original graph. Based on during-training pruning, our frame-

work gradually sparsifies the graph connections and model

weights simultaneously. More specifically, PSGNN removes

edges in the original graph according to the predicted label

similarity between nodes from a global view. Additionally,

with our graph sprouting strategy, PSGNN can generate new

edges to include important yet missing topological and fea-

ture information in the original graph, while maintaining the

sparsity of the graph. Extensive experiments on node clas-

sification task across different GNN architectures and graph

datasets demonstrate that our proposed PSGNNmethod im-

proves the performance over existing methods while saving

training and inference costs.
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1 Introduction.

Graph neural networks (GNNs) [1, 2] have shown su-
perior performance on many graph-related tasks. How-
ever, GNNs tend to suffer from severe efficiency issues
in both training and inference when trained on large-
scale graphs or when the network is complex. As the
analyzed graphs grow rapidly in size, it is imperative
to develop more effective sparsification techniques for
efficient graph representation learning.

Motivated by the success of neural network pruning
[3], several works [4, 5, 6, 7] have attempted to apply
network pruning techniques to GNNs. As the computa-
tional cost of GNNs comes mainly from the information
propagation among edges and the huge number of model
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Figure 1: The performances of a two-layer GCN trained
on different versions of the Citeseer dataset. Left : We
randomly remove 10% edges or edges between two nodes
with different labels in the original graph and repeat 20
times for each case. Right : We randomly add 10% edges
or edges between two nodes with the same label. The
black dashed line marks the performance obtained on
the original graph, while the improved results are all
above the line.

parameters, these pruning methods strive to find a sub-
graph from the original graph and a subnetwork from
the GNN that can best maintain the GNN’s final perfor-
mance. However, they generally follow the lottery ticket
hypothesis (LTH) [3] to sparsify the graph and GNN in
an iterative manner, which leads to significant training
costs. To reduce the computational cost of LTH-based
GNN sparsification methods, a gradual pruning method
[8] was recently proposed to sparse GNNs during train-
ing. While showing both training and inference accel-
eration benefits, it is still a naive application of neural
network pruning techniques to graphs and pays less at-
tention to improving the performance of sparse graphs.

For GNN sparsification, it has been found that the
final performance is more sensitive to graph structure
sparsification than model parameter sparsification [8].
Thus, finding accurate and important graph connections
is of great significance for effective sparsification. The
trainable mask-based graph pruning approach adopted
by most existing methods cannot fully capture the im-
portance of the edges to the entire graph, since it ne-
glects the global view. On the other hand, information
loss inevitably occurs in real-world graphs, e.g., missing
edges between two strongly associated nodes. As such,
conventional pruning that only reduces edges from the
original graphs often fails to obtain a superior subgraph.
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In this paper, we aim to achieve efficient inference
while saving training cost in GNNs based on during-
training pruning (sparse training) [9] and obtain a core
sparse subgraph beyond the original graph that can
lead to even better performance. Ideally, for GNNs,
the message is propagated among the nodes that share
the same labels. From this point of view, the edges
between two nodes with different labels can be pruned,
while those between the nodes that have the same labels
can be added. In Fig. 1, we show how different edge
modification strategies to the original graph of Citeseer
[1] can impact the final performance of a GCN model.
As shown in the figure, the GCN can achieve an even
better performance if removing edges between nodes
with different labels or adding edges between nodes with
the same labels. As a comparison, randomly removing
or adding edges does not have such a strong impact.

The above observation motivates us to consider
the node similarity by the representation from feature
and label propagation to help prune (remove) as well
as sprout (generate) edges in the graphs to achieve
both target sparsification and improved performance.
Different from the conventional trainable mask-based
pruning, our label propagation based method has two
advantages: (1) it enjoys the theoretical foundation of
label smoothing. Clearly, the intuition behind GNN is
feature smoothing, while that behind label propagation
is label smoothing. As demonstrated in [10], if the
weights of edges in a graph smooth the node features
with high precision, they also smooth the node labels
with guaranteed upper bound on the smoothing error;
(2) it considers the global structure information of the
graph via the propagated labels.

While pruning edges from the original graph can be
easily done, sprouting (generating) new edges can be
more challenging in achieving efficient edge generation
during training without extra costs. Besides predicted
node similarity, we propose to first consider candidate
edges, specifically, a hypergraph is constructed to en-
code the high-order and similarity correlations of the
nodes to obtain a candidate edge set. Based on the
candidate edge set, we can then apply the label prop-
agation based sprouting method to generate the new
edges. By pruning and sprouting the original graph,
we can obtain a core sparse subgraph. Correspond-
ingly, a magnitude-based gradual pruning approach and
momentum-based sprouting strategy are applied to ob-
tain a sparse GNN network. Experimental results show
that our proposed PSGNN can improve the perfor-
mance of GNNs on node classification with different
GNN architectures and graph datasets in a sparse man-
ner while achieving more efficient training and inference
than LTH-based GNN sparsification methods. To sum-

marize, our main contributions are:

• We propose a novel Pruning and Sprouting (PS-
GNN) framework for GNN sparsification. PSGNN
not only prunes existing edges but also sprouts new
edges in the graph to obtain a core sparse graph
that can lead to an even better performance be-
yond the original graph.

• We propose to use feature and label propagation
to obtain feature and label information and then
prune or sprout the edges based on the similarity
between its two associated nodes. This presents a
more graph-oriented strategy for GNN sparsifica-
tion.

• We conduct extensive experiments on both small-
and large-scale graph datasets to show the effec-
tiveness of our proposed PSGNN on node classifi-
cation tasks. PSGNN improves upon GCN by a
margin of 2.4% and 1.4% on Citeseer and Pubmed,
and a margin of over 30% on heterophilic datasets.
Compared to standard LTH-based methods UGS,
PSGNN saves up to 45× training time.

2 Related Work.

2.1 Graph Neural Networks. Graph neural net-
works have been developed as powerful models for
graph-related tasks [1, 11]. The popular GNN mod-
els are developed to update the node embedding with
messages from its neighboring nodes. As shallow GNNs
have limited expressive power on large graphs, deeper
GNN architectures are designed to achieve more power-
ful graph representation. For example, ResGCN [12] in-
troduced residual connections and dilated convolutions
to build a 56-layer GCN model. However, deep GNN
models applied on large-scale graphs usually suffer from
high computational costs due to the increased scale of
the graph as well as the model parameters.

2.2 GNN Sparsification. The lottery ticket hy-
pothesis (LTH) [3] indicates that a dense randomly-
initialized neural network contains a sparse subnetwork
that—when trained in isolation—can achieve compara-
ble test accuracy to the original network with the same
number of iterations. Based on this hypothesis, Chen
et al. [4] proposed a unified GNN sparsification frame-
work (UGS) to obtain a sparse graph and a sparse GNN,
showing the existence of graph lottery tickets. Follow-
ing this, several works [5, 6, 7] based on LTH were pro-
posed to identify tickets. However, these LTH-based
methods often need to train the dense models fully and
iteratively for up to 20 times, to obtain a sparse graph
and GNN, significantly increasing the computational
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cost. To boost both training and inference efficiency,
Liu et al. [8] proposed a novel gradual pruning frame-
work CGP to prune the graph structure and network
parameters simultaneously during training. However,
CGP also directly applied the traditional neural net-
work pruning technique to graphs without considering
the unique properties and challenges of graph structure
sparsifying. All these sparsification methods pay less
attention to improving the performance of the sparse
graph and GNN. In this paper, we develop a graph-
oriented sparsification technique to achieve sparsifica-
tion and performance boosts at the same time.

3 Methodology.

Overview. Our proposed GNN Pruning and Sprouting
(PSGNN) framework is illustrated in Fig. 2. Via grad-
ual pruning and sprouting applied on both the graph
structure and model weights, we obtain a core sparse
subgraph and subnetwork to 1) speed up model infer-
ence, and 2) improve the final performance of GNNs in
a sparse manner. In PSGNN, we pay more attention to
graph structure sparsification which has been proven to
be more critical for graph learning. Specifically, we re-
move the unimportant edges of the original graph struc-
ture using a label propagation based pruning method.
Meanwhile, considering the given graph may have miss-
ing but important edges, we generate new edges via a
label propagation based sprouting method while main-
taining the target sparsity. The pruning and sprout-
ing steps are gradually and iteratively applied during
training to obtain an optimal subgraph. For model
weight sparsification, we simply use the traditional mag-
nitude based strategy for pruning while introducing a
momentum-based sprouting strategy to help recover the
pruned yet critical connections to refine the pruning
process. Next, we will introduce the preliminary defini-
tions, the two important components of PSGNN: graph
structure sparsification and model weight sparsification,
and the overall sparsification process.

3.1 Preliminaries. Given a graph G = (V, E) with
N nodes in V and edges (vi, vj) ∈ E . The graph
topology can be described by the adjacency matrix A,
where Aij = 1 if there exists an edge (vi, vj), Aij = 0
otherwise. The feature space X ∈ RN×d with each
node i ∈ V has a d-dimensional feature vector. For
a semi-supervised node classification task with a subset
of node labels YL ∈ Rm×C with m and C representing
the number of labeled samples and classes, the objective
is to learn an embedding function f that can predict the
labels of the remaining nodes.

Modern GNNs usually follow the message-passing
scheme, where node representation is iteratively up-

dated by aggregating representations of its neighbors.
Taking GCN as an example, a two-layer GCN model
can be formulated as:

(3.1) H = softmax
(
ÂReLU(ÂXW(0))W(1)

)
,

where, H is the GCN’s output predictions, Â =
D̂− 1

2 (A+ In) D̂
− 1

2 is the normalized A + In matrix

by the degree matrix D̂, and W = (W(0),W(1)) are
the weights of the two-layer GCN model. For semi-
supervised learning, the objective function L is:

(3.2) L = − 1

YL

∑
vi∈YL

yi log (hi) ,

where YL is the label set, and yi and hi are the label
and prediction of node vi.

3.2 Graph Structure Sparsification. For graph
learning in which the message propagates and aggre-
gates along the edges, the ideal scenario is that the edge
connects two nodes with the same label. With this in
mind, we introduce our label propagation based pruning
and sprouting techniques as follows.

3.2.1 Label Propagation. For semi-supervised
learning, we assume the initial label matrix

Yl(0) = [y
l(0)
1 , y

l(0)
2 , · · · , yl(0)N ] consists of one-hot

label indicator vectors for labeled nodes i = 1, · · · ,m
while zero vectors for unlabeled nodes. Propagating
the labels with the normalized adjacency D−1A, the
kth iteration of label propagation is formulated as:

(3.3) Yl(k) = D−1AYl(k−1).

It then resets the labeled samples to their initial labels

via y
l(k)
i = y

l(0)
i ,∀i ≤ m. This is to maintain the label

information of the labeled nodes so that the unlabeled
nodes do not overpower the labeled ones, as the initial
labels would otherwise fade away.

After K-order label propagation, we can obtain the
label matrix Y, and get the labels of nodes as following:

(3.4) Z = softmax(Y + αH),

where, Y is the representation obtained from label prop-
agation, H is the prediction from feature propagation,
Z ∈ RN×C , and α is a learnable attention parameter.
The above equation combines label propagation and fea-
ture propagation with the attention parameter α bal-
ancing the two. In GNN sparsification, the prediction
H is obtained with the sparse GNN. After obtaining
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Figure 2: The GNN Pruning and Sprouting (PSGNN) framework. During the training process of GNNs, PSGNN
gradually prunes and sprouts the graph structure and model weights to obtain a sparse graph and sparse GNNs.

predicted outputs, the supervised objective of the graph
node classification task is defined as

(3.5) L = − 1

YL

∑
vi∈YL

yi log (zi) ,

where YL is the label set, and yi and zi are the label
prediction of node vi.

3.2.2 Graph Pruning. After obtaining the label
prediction of all nodes, we use the similarity between
the two nodes to assess the importance of the existing
edge between them. Assuming there is an edge between
nodes vi and vj , we compute the edge score sij =
||Zi − Zj ||2. As a smaller score sij means nodes vi and
vj have a stronger relationship, we thus sort these edges
in an ascending order to obtain a sorted edge set Er,
where the front edges are the critical connections that
we want to preserve.

We next prune the graph structure via an adjacency
mask ma ∈ RM which is gradually sparsified during the
pruning process. Note that M > ∥A∥0 (∥A∥0 is the
total number of edges in the original graph), because of
the sprouting process afterward. The elements of mask
ma are initialized to 1 if there exists an edge in the
original graph and 0 otherwise. Based on the candidate
removing edge list Er, the graph structure is updated
by:
(3.6)

ma = select-p (ma,TopK ({Er}, ⌈(1− pa)∥A∥0⌉))
A = ma ⊙A,

where pa is the sparsity level, pa∥A∥0 is the number of
pruned edges, TopK(v, k) returns the top k edge indexes

from Er, ⌈·⌉ is the rounding up operation. The function
select-p(v, k) updates the mask by keeping the returned
edge indexes unchanged and setting all others to 0.
The adjacency relationship used in the next training
iteration will be updated by dot multiplying the new
mask.

3.2.3 Graph Sprouting. To obtain an optimal sub-
graph, it is important to explore candidate important
yet missing edges from the original graph structure.
However, generating new edges can be extremely chal-
lenging for two reasons. First, as the adjacency matrix
is often sparse, there are an enormous number of can-
didate edges to consider, which brings large memory
and computational costs. Second, it is difficult to eval-
uate the importance of a non-existing edge relative to
existing edges. To tackle these challenges, we first de-
fine a candidate edge set of high potential connections
to restrict the search space, and then propose a label
propagation based and computationally cheap sprout-
ing method.

Intuitively, the missing important edges can be dis-
covered from the nodes that are close in the feature
space or the topological space. Viewing node vi as a
center, its neighbors in the feature space can be con-
nected by an edge (Fig. 3(a)). Under the assumption
that two vertices that are close in topology are more
likely to share the same label, we also need to consider
the higher-order correlations based on the original graph
structure (Fig. 3(b)).

Hypergraphs [13] have been widely adopted to
present the high-order relationship among the nodes
via hyperedges. Here, we introduce hypergraphs to en-
code the high-order relationship missing in the origi-
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Figure 3: Candidate edges from feature and topology
space. Viewing each node as a centroid, (A) finding
its k neighbors in the feature space; (b) finding its 1-
hop neighbors in the topology space; (c) generating
a hyperedge for each node with its neighbors in the
feature and topology space; (d) obtaining the candidate
edges (grey lines) based on clique expansion of the
hypergraph.

nal graph structure. Viewing each node as a centroid,
we generate a hyperedge for each node with its 1-hop
neighbors in the original graph structure and its k-
nn neighbors in the feature space (see in Fig. 3(c)).
Consequently, the generated hyperedges contain struc-
tural information and feature similarity. The correla-
tions of nodes and hyperedges can be represented in
a |V | × |E| incidence matrix H with entries h(v, e) ={

1, if v ∈ e
0, if v /∈ e.

. Then, we get the extended correla-

tions: Θ = D
−1/2
v HD−1

e H⊤D
−1/2
v , with the diagonal

matrices Dv and De denote the vertex and hyperedge
degrees, respectively. All edges are the clique expan-
sion based on the constructed hypergraph. We can now
obtain the candidate edges that are not in the origi-
nal graph by selecting strong-link edges from Θ with
respect to a threshold θ.

Let r denote the ratio of the number of regenerated
connections to the total number of connections. To
achieve and maintain the target graph sparsity, we first
remove r proportion of edges by:
(3.7)
ma = select-p (ma,TopK ({Er}, ⌈(1− sa − r)∥A∥0⌉)) ,

where sa is the current sparsity. Immediately after this,
we generate r proportion of new connections. We first
calculate the similarity scores of the candidate edges
and all removed edges from the original graph, i.e., the
edges with zero values in mask ma. Then, similar to the
sorting strategy of the pruning process, we sort edges
in ascending order into a sorted edge set Ea. The front
edges in Ea are edges we want to sprout. After obtaining

the sprouting edge list, we update the mask by:

(3.8)
ma = select-s (ma,TopK ({Ea}, ⌈r∥A∥0⌉))
A = ma ⊙A,

where, function select-s(v, k) updates the mask by set-
ting the returned indexes from TopK(v, k) to 1. The
adjacency matrix is then updated by mask ma.

3.3 Model Weight Sparsification. Model weight
sparsification also consists of two steps: weight pruning
and sprouting. A conventional magnitude-based weight
pruning strategy is adopted for weight pruning, while for
weight sprouting, a momentum-based strategy is used.

3.3.1 Weight Pruning. Arguably, weight pruning
is the most typical approach for model simplification.
Here, we prune a certain proportion of the weights
that have the smallest magnitude, a standard pruning
strategy for neural network pruning. Specifically, we
create a binary mask mw that is of the same size
as the model weights W and initialize its elements
to one at the time of model initialization. During
the pruning process, the mask matrix is updated by
removing pw proportion of the weights that have the
smallest magnitude as follows:
(3.9)
mw = select-p (mw,TopK (|W|, ⌈(1− pw)∥W∥0⌉))
W = mw ⊙W,

where ∥W∥0 is the total number of the weights,
TopK(v, k) returns the top k elements. The select-p
function keeps the values inmw with indices from TopK
and sets all others to 0. The model weights are updated
by dot multiplying with mask mw. Note that we adopt
a global pruning strategy, that is, pruning the weights
of different layers together.

3.3.2 Weight Sprouting. During the weight prun-
ing progress, especially in the early iterations, prema-
ture pruning may occur. To correct the “mistaken”
pruning, we also introduce a sprouting scheme for model
weight. Specifically, we adopt the momentum-based
[14] strategy for sprouting the model weights, specifi-
cally, leveraging exponentially smoothed gradients (mo-
mentum) at different layers to distribute the pruning
budget and also grow weights according to the momen-
tum magnitude of zero-valued weights. Whilst sparse
momentum based sprouting works reasonably well in
our experiments, it can potentially be replaced by other
strategies such as random sprouting or gradient-based
sprouting. In order to maintain the network sparsity be-
fore and after sprouting, we first remove r proportion of
the elements in the weight mask mw and then perform
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sprouting. This process can be formulated as follows:
(3.10)
mw = select-p (mw,TopK (|W|, ⌈(1− sw − r)∥W∥0⌉))
mw = select-s (mw,TopK (∥M i/∈W∥, ⌈(r)∥W∥0⌉))
W = mw ⊙W,

whereM i/∈W are the momentum magnitudes of the zero
weights. The last step in the above updates the model
weights by the mask.

3.4 Overall Sparse Training Procedure. We now
present the sparse training procedure of our pro-
posed PSGNN framework. The detailed procedure
is described in Algorithm 1. Given a graph G =
(A,X,Yl(0)), GNN model f(G,W), masks ma and
mw, we gradually sparsify [15] the dense GNN to the
target sparsity level over n pruning iterations under the
objective f(ma ⊙A,X,mw⊙W). Let us define sai and
swi

as the initial graph sparsity and weight sparsity, saf

and swf
are the target graph sparsity and weight spar-

sity, t0 is the starting epoch of gradual pruning, tf is the
ending epoch of gradual pruning, and ∆t is the pruning
frequency. The pruning rates for graph sat and weights
swt

in each pruning iteration are dynamically set to be
as follows:

(3.11)

sat
= saf

+
(
sai

− saf

)(
1− t− t0

n∆t

)3

,

swt
= swf

+
(
swi

− swf

)(
1− t− t0

n∆t

)3

,

where, t ∈ {t0, t0 +∆t, . . . , t0 + n∆t}. This sparsity
function can prune the networks rapidly in the initial
phase when the redundant connections are abundant
and gradually reduce the number of weights or edges
being pruned each time as there are fewer and fewer
remaining in the networks. During the training stage,
at every ∆t training step, the pruning rate of edges
and weights are calculated by Eq. (3.11), and the
specific pruning operations are presented in Eq. (3.6)
and Eq. (3.9). After the pruning operation, we apply
the sprouting operation to generate edges by Eq. (3.7)
and Eq. (3.8), and ”correct weight” by Eq. (3.10) before
the next round’s training.

4 Experiments.

We conduct extensive experiments to evaluate the ef-
fectiveness of our PSGNN framework for node classifi-
cation on diverse graph datasets and GNN models.

4.1 Experimental Setting. We consider 10 graph
datasets of different scales including small-scale graphs
and large-scale graphs from Open Graph Benchmark

Algorithm 1 GNN Pruning and Sprouting (PSGNN)

Require: Graph G = (A,X,Yl(0)), GNN f = (G,W),
trainable parameter α, initial masks ma, mw, tar-
get sparsity saf

and swf
, gradual pruning starting

point t0, gradual pruning endpoint tf , gradual prun-
ing frequency ∆t.

Ensure: f(ma ⊙A,X,mw ⊙W)
1: for each training step t do
2: Forward f({ma ⊙A,X},mw ⊙W)
3: Label prediction by Eq. (3.3), Eq. (3.4)
4: Backpropagate to update W and α
5: if t0 ≤ t ≤ tf and (t mod ∆t) == 0 then
6: Pruning A by Eq. (3.6) with dynamic pruning

rate produced by Eq. (3.11)
7: Pruning W by Eq. (3.9) with dynamic pruning

rate produced by Eq. (3.11)
8: Sprouting A by Eq. (3.7) and Eq. (3.8)
9: Sprouting W by Eq. (3.10)

10: end if
11: end for

(OGB) [16]. These datasets cover both homophilic
graphs and heterophilic graphs. We use their original
train-val-test splits for our experiments.

Classification Baseline Methods. We consider
three representative baseline models including GCN [1],
GAT [2], and APPNP [17]. For large-scale datasets,
we consider deeper GNNs, i.e., 28-layer deep ResGCNs
[12]. While our focus is to improve the performance of
existing GNNs by sparsifying the graph structure and
model weight, we also compare the performance of our
PSGNN method with state-of-the-art standard (non-
sparse) GNN training methods, including DropEdge [18]
and GPRGNN [19], to show its effectiveness.

Sparsification Baseline Methods. We compare
our method with 4 state-of-the-art GNN sparsification
methods including UGS [4], GEBT [5], ICPG [6], and
one during-training pruning based GNN sparsification
method, Comprehensive Graph Pruning (CGP) [8].
CGP is the closest method to our PSGNN.

Our method needs to generate the candidate edges
in the sprouting phase of graph structure sparsification.
For homophilic datasets, we construct the hypergraph
by considering the high-order connections in topology
and feature spaces. For heterophilic datasets, the hyper-
graphs for these heterophilic datasets are constructed
based on the nearest k neighbors in the feature space.
In label propagation, we control the number of propa-
gation layers K in {8, 10, 12}. In the sprouting, we con-
struct a hypergraph, and introduce hyper-parameter k
with knn algorithm. We choose k from {3, 5, 8} and set
θ with 0.15 to restrict the candidate edge set. The other
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Figure 4: Comparison with SOTA GNN sparsification
methods on different datasets at different weight sparsi-
ties and graph sparsities. The baseline model is a stan-
dard GCN. The dashed lines mark the baseline (unspar-
sified) performance, above which are improved results.
(GEBT OOM on Pubmed.)

experimental settings are similar to CGP[8].

4.2 Main Results. We conduct experiments to eval-
uate the effectiveness of our PSGNN in node classifi-
cation and compare its performance with the baseline
models and GNN sparsification methods. Based on the
results, we summarize the key observations as follows.

Obs.1. PSGNN can improve the perfor-
mance of the baseline GNNs (in a sparse man-
ner). As shown in Fig. 4, PSGNN can improve the per-
formance of the original GCN model (the dashed lines)
significantly on different datasets, with a sparse graph
and sparse network. On Pubmed, at 90% weight spar-
sity and 10% graph sparsity, PSGNN improves upon
GCN by a margin of 1.7%. PSGNN can achieve compa-
rable performance to the dense baseline with 40% graph
sparsity on Pubmed. The superiority of PSGNN can
also be observed on other GNN models including GAT
and APPNP in Fig. 5.

On heterophilic datasets, i.e., Texas, PSGNN can
improve the performance consistently at different spar-
sity levels. Particularly, as shown in Table 1, PSGNN
brings up to 30% improvement in classification accuracy

Figure 5: Performance of PSGNN at different weight
sparsities (curves) and graph sparsities (the x-axis)
on different datasets (columns), with different baseline
models APPNP (top row) and GAT (bottom row).

compared to the corresponding baseline GCN, APPNP,
and GAT. In a low homophilic graph, the connected
nodes may have different class labels and dissimilar
features with high probability. Therefore, most edges
should be pruned while a lot of missing edges should be
added. By pruning and sprouting, PSGNN can quickly
correct the graph connections and achieve better per-
formance at a low graph sparsity. This indicates the
importance of pruning, and more importantly, sprout-
ing in graph sparsification.

Obs.2. PSGNN outperforms GNN sparsifi-
cation methods. The improvement of our PSGNN
over other GNN sparsification methods is shown in Fig.
4, where it surpasses the baseline sparsification methods
in most cases across different datasets. Specifically, on
Pubmed, the baseline sparsification methods perform
poorly without comprehensively considering significant
graph connections. On Texas, the advantage of PSGNN
over existing methods is more pronounced for sparsity
less than 90%.

Obs.3. PSGNN achieves comparable or even
better performance than SOTA dense GNN
models. As can be observed in Table 1, PSGNN
achieves comparable or higher accuracy than some stan-
dard GNN models (dense) consistently across different
datasets. DropEdge [18] can be viewed as a graph spar-
sification method as it removes edges from the original
graph structure. The GNN models trained by PSGNN
are noticeably better than those trained by DropEdge
on homophilic datasets as shown in Table 1 (except Cora
which is sensitive to pruning [4]). This is also the case
on heterophilic datasets. PSGNN achieves comparable
or even better performance than SOTA GNN models
(H2GCN [21], GPRGNN [19], and FAGCN [22]) which
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Table 1: Classification accuracy (%) on different datasets. The results of PSGNN are reported over 10 runs. For
heterophilic datasets, the results of PSGNN are reported with over 80% graph sparsity.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Actor

MLP 54.9±0.5 53.7±0.6 70.2±0.5 71.6±5.6 78.0±5.2 82.2±6.9 33.3±0.9
DropEdge [18] 82.8 72.3 79.6 - - - -
SGC [20] 81.0±0.0 71.9±0.1 78.9±0.0 43.0±5.5 60.3±5.1 53.1±4.8 27.0±1.4
H2GCN [21] 75.3±0.6 67.9±0.7 76.0±0.7 75.4±4.1 79.7±3.3 77.6±4.1 36.2±0.5
GPRGNN [19] 83.5±0.7 71.4±0.8 79.2±0.7 76.7±2.2 81.1±4.4 82.7±5.6 35.3±0.8
FAGCN [22] 83.3±0.4 72.6±0.6 79.4±0.2 67.6±5.26 75.7±4.7 75.3±3.1 32.1±1.3

GCN [1] 81.5 70.3 79.0 45.7±7.9 60.8±8.0 52.6±4.3 28.1±1.2
GAT [2] 83.0±0.7 72.5±0.7 79.0±0.3 47.0±7.6 62.2±4.5 57.5±3.5 28.3±1.1
APPNP [17] 83.8±0.3 71.6±0.5 79.7±0.3 41.4±7.2 61.6±5.4 55.3±3.9 29.4±0.8

PSGNN (GCN) 81.4±0.3 72.7±0.3 80.4±0.3 83.8±0.0 83.8±0.0 88.2±0.0 36.9±0.0
PSGNN (GAT) 81.4±0.3 73.1±0.4 80.9±0.2 81.1±0.0 81.1±0.0 86.3±0.0 36.5±0.0
PSGNN (APPNP) 83.5±0.4 72.5±0.3 80.5±0.2 83.8±0.0 81.1±0.0 88.2±0.0 38.4±0.0

designed specifically for heterophilic datasets. This con-
firms the benefit of improving the graph topology with
our proposed pruning and sprouting.

Obs.4. PSGNN achieves comparable or bet-
ter inference efficiency than the baselines. In Fig.
6, we see that, when the inference FLOPs (floating point
operations, 1 FLOPs ≈ 2 MACs) reduces (from left to
right) to about only 500M, PSGNN saves up to 90%
FLOPs/MACs of the baseline models while achieving
a similar performance as the original graph and model.
For less inference speed up, e.g., 10% FLOPs saving,
the performance is considerably improved beyond the
original graph and network.

Obs.5. PSGNN is more training efficient
than LTH-based sparsification methods. In Fig.
7, we plot the training time of different GNN sparsi-
fication methods relative to standard training (1×) on
Citeseer and Cornell datasets. For a fair comparison,
we set the same target sparsification rate (90% spar-
sity of graph and 99% sparsity of model weights) for
all the compared methods. It is evident that UGS is
the least training-efficient method which takes about
100 times more than the baseline. The sparse train-
ing based methods CGP and our PSGNN demonstrate
the best training efficiency, while the LTH-based meth-
ods (UGS, GEBT, and ICPG) are far less efficient. This
highlights the training acceleration advantage of during-
training pruning methods.

4.3 Scaling to Deeper GNNs on Large-Scale
Datasets. We conduct experiments with a deeper
GNN model ResGCN on 3 large-scale datasets (ogbn-
arxiv, ogbn-products, and ogbn-proteins). As shown in
Fig. 8, on ogbn-arxiv and ogbn-proteins datasets, PS-

GNN is able to maintain the original performance of
ResGCN (dashed lines) while reducing 50%, 25% of the
FLOPs, respectively. The speedup is more significant
on ogbn-products dataset where it improves the base-
line performance by a considerable margin while saving
up to 80% FLOPs. Our PSGNN has a similar train-
ing time to the dense ResGCN, while the lottery ticket
hypothesis based method UGS needs nearly 50× more
training time.

Figure 6: Comparison inference efficiency (FLOPs) of
different sparsification methods based on GCN. Note
that FLOPS are computed based on the same GNN
sparsity level for different GNN sparsification methods.

Figure 7: Relative training time (x-axis) vs. perfor-
mance (y-axis) of different sparsification methods based
on GCN. The training time of dense GCN is 1×.
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Figure 8: The performance of 28-layer ResGCNs on
large-scale graph datasets. The inference FLOPs is
computed based on different graphs and weight sparsity.

5 Conclusion.

In this paper, we proposed a novel GNN Pruning
and Sprouting framework (PSGNN) to gradually and
simultaneously sparsify the graph structure and model
weights during training. Besides pruning, a sprouting
process is also introduced in PSGNN to generate
new and important edges and model weights to help
maintain or even boost the final performance. The
effectiveness of PSGNN has been verified in node classi-
fication. Our method can serve as a strong baseline for
GNN sparsification. Note that our proposed method
is a transductive setting and thus cannot be applied
for graph classification. In future work, we aim to
efficiently identify the core subgraph by considering
more graph structural information.
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