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Abstract

While remarkable progress has been made on supervised
skeleton-based action recognition, the challenge of zero-
shot recognition remains relatively unexplored. In this pa-
per, we argue that relying solely on aligning label-level se-
mantics and global skeleton features is insufficient to ef-
fectively transfer locally consistent visual knowledge from
seen to unseen classes. To address this limitation, we intro-
duce Part-aware Unified Representation between Language
and Skeleton (PURLS) to explore visual-semantic alignment
at both local and global scales. PURLS introduces a new
prompting module and a novel partitioning module to gen-
erate aligned textual and visual representations across dif-
ferent levels. The former leverages a pre-trained GPT-3
to infer refined descriptions of the global and local (body-
part-based and temporal-interval-based) movements from
the original action labels. The latter employs an adaptive
sampling strategy to group visual features from all body
joint movements that are semantically relevant to a given
description. Our approach is evaluated on various skele-
ton/language backbones and three large-scale datasets, i.e.,
NTU-RGB+D 60, NTU-RGB+D 120, and a newly curated
dataset Kinetics-skeleton 200. The results showcase the
universality and superior performance of PURLS, surpass-
ing prior skeleton-based solutions and standard baselines
from other domains. The source codes can be accessed at
https://github.com/azzh1/PURLS.

1. Introduction
Human action recognition (HAR) is an important topic in
computer vision. As actions are the primary bridge for es-
tablishing communications between people and the outside
world, HAR is used in many application domains, such as
virtual reality [1, 37], automated driving [20, 44], video re-
trieval [49], and robotics [4, 39]. The visual input modal-
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Figure 1. Examples of a seen class (’Hit another person with
something’) and an unseen class (’Shoot at the basket’) from NTU-
RGB+D 120 [21]. While humans can quickly identify their simi-
lar hand movements and use this knowledge to distinguish the new
class from other unseen classes, label-based global feature learn-
ing does not facilitate the direct transfer of such local knowledge.

ity can vary, covering RGB videos, depth image sequences,
point clouds, and skeleton sequences [34]. During its early
stages and even until today, the advancement of HAR has
mainly been driven by RGB-based solutions due to their
natural data abundance [23, 35]. With the rise of pose
prediction and depth-sensing technologies [6, 21, 30], 3-
D skeleton sequences are becoming competitive substitutes
that can reach high-accuracy prediction while cutting down
computation, preserving profile privacy, and being robust by
excluding background or color noises from action subjects.
Due to these advantages, skeleton-based action recognition
is attracting increasing attention in recent years [24, 28, 47].

While remarkable progress has been made in this area,
most existing research [5, 11, 19, 22, 31, 32] focuses on rec-
ognizing actions in a fully supervised manner, i.e., their de-
signs require annotated data of all action classes for model
training. Nevertheless, gathering labeled data for every po-
tential action class is impractical, especially for rare or per-
ilous actions. Zero-shot learning (ZSL) is a research di-
rection that aims to address this issue. Previous ZSL ap-
proaches have focused on training models to align label em-
beddings with visual encoding outputs that are globally av-
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eraged from all skeleton features [15, 40, 48]. However, as
illustrated in Fig. 1, actions that are globally dissimilar (e.g.
Hit another person with something vs. Shoot at the basket)
may still exhibit similar local visual movements. The under-
standing of these shared movements should remain trans-
ferable across seen and unseen classes to enhance the prior
knowledge for recognizing new actions. On the other hand,
global semantic alignment concentrates on the cross-modal
consistency of overall body actions and does not encapsu-
late refined learning on such local visual concepts. This
constrains the generalization capability of the learned rep-
resentation when applied to unseen classes.

To overcome this issue, we present Part-aware Unified
Representation of Language and Skeleton (PURLS), a novel
framework that facilitates cross-modal semantic alignment
at both global and local levels for prior knowledge exploita-
tion. On the linguistic side, we start by enhancing the se-
mantics of the original action labels using large language
models. Specifically, we design a prompting module that
employs GPT-3 [2] to generate detailed descriptions for
the original actions and their spatially/temporally divisible
local movements (i.e., across human body parts/averaged
temporal intervals). We then utilize a pre-trained text en-
coder from CLIP [26] to extract their textual features. For
the visual aspect, a straightforward approach is to manu-
ally decompose a skeleton sequence into the corresponding
global/local movement for a particular description and take
the average features from the allocated body/temporal joints
to perform alignment. Yet, this simple method limits the vi-
sual representation by strictly collecting features from static
settings and thus may not always provide the most suitable
alignment objects. Hence, we introduce a unique partition-
ing module that adaptively finds the weights for each joint
feature to correlate with the given descriptions. This even-
tually leads the model to provide a more semantically rel-
evant visual representation for alignment. During training,
PURLS learns to project the closest visual → textual mani-
folds at both global and local scales, ensuring semantic con-
sistency with all descriptions in a balanced manner. This
enables the projection layer to still distill part-aware knowl-
edge when PURLS conducts prediction by only mappinig
global visual representations to label-level semantics dur-
ing testing.

Considering that PURLS is built upon feature-level oper-
ations, we test our model using multiple skeleton/language
backbones, and compare the results with previous skeleton-
based ZSL solutions and classic ZSL benchmarks from
other domains. The experiments follow the existing evalua-
tion setups on NTU-RGB+D 60 [30] and NTU-RGB+D 120
[21], as well as additional setups with gradually increased
unseen classes and decreased seen classes. We also evaluate
the model’s performance on a new dataset setting, Kinetics-
skeleton 200. Our results demonstrate that PURLS achieves

state-of-the-art performance in all experiments and exhibits
robust universality and generalizability.

To summarize, our contributions are as follows:
• We propose PURLS, a new framework for the exploration

and alignment of global and local visual concepts with en-
riched semantic information for zero-shot action recogni-
tion on skeleton sequences.

• PURLS offers an adaptive weight learning approach for
partitioning spatial/temporal local visual representations
to support local knowledge transfer from seen to unseen
actions.

• PURLS is steadily compatible with different feature ex-
traction backbones, and achieves state-of-the-art perfor-
mance on three of the public large-scale datasets for
skeleton recognition.

2. Related Work
2.1. Zero-shot Learning (ZSL)

Zero-shot Learning (ZSL) relies on training a model with
samples from seen classes and their belonging class aux-
iliary information (e.g., text descriptions, pre-trained at-
tribute features) to develop its recognition ability for un-
seen categories (assuming that their auxiliary information
is also available). The goal of the training is to enable
the model to establish a generalizable and meaningful con-
nection between the new visual features and prior semantic
knowledge for the unseen classes. The basic methods begin
with embedding-based models [12, 18, 45], which directly
construct a universal visual-to-textual projection to find the
nearest label neighbors by cosine distances. Kodirov [17]
pioneered using auto-encoders in ZSL, where the training
target is to encode images into semantic space and then de-
code them back to visual signals. When recognizing unseen
classes, the model can either use the pre-trained encoder
to project image features to label semantics or decode lan-
guage embeddings to visual dimensions as class prototypes.
Butcher [3] enabled linear metric learning with a cross-
modality alignment by creating a shared embedding space
transformed from both visual and label encodings. From an-
other perspective, mimicking human’s learning habits, un-
seen subjects can be regarded as a new mix of visual con-
cept components seen in training samples. [10] provided a
generative approach in which the embedding alignment is
established between disentangled local visual features and
attribute-based text vectors. The disentanglement is realized
by filtering out latent class-invariant features and verifying
the decoding capacity of the remaining. In [8], a learnable
attention module adaptively discovers the corresponding vi-
sual representation for each attribute. Applying similar intu-
ition to RGB-based zero-shot action recognition, JigsawNet
[25] recognized unseen actions by decomposing inputs in an
unsupervised manner into atomic action prototypes that are



Figure 2. Architecture diagram for PURLS. The matching action label is sent to GPT-3 [2] to obtain detailed descriptions for its global/local
body movements, whose textual features are generated by a pre-trained language encoder of CLIP [26]. The visual features of the input
skeleton sequence I can be extracted from an arbitrary skeleton backbone g (e.g., Shift-GCN [11]) pre-trained on the seen classes. The
output G is then fed to the partitioning module r to group the joint-level features into global and spatially/temporally-local representations
in an adaptive manner, which are later projected and aligned with their corresponding description embeddings.

pre-memorized from seen classes.
Compared to solutions that match global visual features

and label semantics, predictions based on local representa-
tions or attributes usually achieve more precise and robust
performance due to their wider knowledge transfer. How-
ever, these local-based solutions are developed for pixel-
format inputs or disentangled global features, which are in-
compatible with the irregular graph-format feature of skele-
ton sequences. PURLS is the first paper to implement an
automatic knowledge extraction and transfer for locally de-
composable visual concepts hidden in skeleton kinematics.

2.2. ZSL in Skeleton-based Action Recognition

While diverse techniques have been developed for ZSL
with RGB format inputs, limited research has been con-
ducted on approaches against skeleton sequences. In 2019,
[40] proposed two standard methodologies adapted from
traditional domains. These include a common-space met-
ric learning using a Relation-Net framework and a visual
→ semantic embedding-based classification using a De-
ViSE [14] model. Instead of learning to align every incom-
ing pair of visual feature vectors and corresponding labels,
[48] elucidated a more generalizable zero-shot prediction
by learning to estimate and maximize the mutual informa-
tion between overall visual and semantic distributions. In
addition, the work designed a temporal rank loss to help
the model capture more refined temporal information from
frame-level visual features. SynSE-ZSL [15] was the first
related work that considered skeleton-based local semantic
matching. It learned a dual-modal feature representation by
training the model to generate pseudo visual and linguis-
tic samples from the opponent modality. The authors high-
lighted that action labels are often constituted by duplicated

verb and noun phrases, and the visual patterns of most verbs
are repetitively learnable from multiple seen classes. There-
fore, discriminating the knowledge transfer of verbs from
label-level semantics can effectively improve the model’s
generalization ability on unseen classes. We argue that a
similar intuition can also be applied from the visual input
side, in which PURLS mines spatially and temporally lo-
cal visual concepts and uses language models to infer their
aligned semantics from original labels.

2.3. Multi-modal Representation Learning

Multi-modal representation learning is highly relevant to
ZSL, where different modalities can be mutually trans-
formed and interpreted for information exchange. For the
learning between image and language, CLIP[26] has pro-
vided a powerful backbone that utilizes contrastive learning
to pre-train massive visual concepts from web data. The
success of CLIP has constructed a universal representation
manifold that captures shared semantics between RGB in-
puts and texts, which is widely used as a backbone reference
for other downstream recognition tasks or ZSL baselines. In
3-D understanding, [46] enabled representation alignment
for point cloud data by converting inputs into depth map
images that fit the encoding format of CLIP. On the other
hand, [42] proposed ULIP, which directly unified the pro-
jected embeddings of images, texts, and point cloud val-
ues. Their experiments showed that distilling the knowl-
edge from the matching language-image manifold can ef-
fectively overcome the generalization shortage in the origi-
nal modality. In skeleton learning, [41] explored importing
comprehensive contrastive learning between static body-
part-based skeleton features and their corresponding move-
ment descriptions induced from original labels by GPT. Yet,



their method relies on data-driven training and focuses on
refining supervised recognition. In this paper, we provide
PURLS to support adaptive knowledge transfer from seen
to unseen classes according to a more powerful manifold
alignment against local movements extractable either spa-
tially or temporally.

3. Proposed Approach
While distinct human actions may differ holistically, they
often share similar local movements. The conventional
training approach of directly aligning seen action labels
with the overall representations of skeleton sequences fails
to capture the semantic information of such local move-
ments, thereby limiting the efficacy of zero-shot action
recognition. To overcome this, PURLS adopts a two-step
strategy. As shown in Fig. 2, it first focuses on the nu-
anced descriptions of each action label, considering global,
spatially local, and temporally local perspectives. Subse-
quently, it uses a unique adaptive partitioning module to
generate and align the visual representations from the corre-
sponding skeleton joint features with every derived descrip-
tion. In this section, we first list our problem definition and
introduce how we generate descriptions for both global and
local movements from the original action labels. Following
that, we expound on the process of partitioning the skeleton
sequences for optimal feature alignment.

3.1. Problem Definition

Suppose Dtr = {(xsc
tr , y

sc
tr )} to be the set of Ntr training

samples from available seen classes Ysc. A skeleton se-
quence xsc

tr ∈ RL×J×M×3 records the 3-D locations of J
body joints per actor in L frames. M is the maximum actor
number per sequence. ysctr ∈ Ysc is the corresponding ac-
tion label belonging to the seen class label set. Similarly, we
let Dte = {(xuc

te , y
uc
te )} denote the set of Nte testing samples

from the unseen classes Yuc. Under a standard ZSL setting,
we have Ysc∩Yuc = ϕ. Training with only seen class sam-
ples, we expect the model to learn an extensive alignment
of feature representations between the visual and language
modalities, whose knowledge is efficiently transferrable to
predict ŷ ∈ Yuc during evaluation.

3.2. Creating Description-based Text Features

Inspired by human learning habits, we regard an action as
a specific combination of local body movements that can
be spatially or temporally decomposed. In addition to the
label-level semantics, these local movements can also be in-
dependently learned as individual visual concepts transfer-
able across different classes. To intelligently extract such
underlying semantics, we adopt GPT-3 to produce textual
descriptions for these movements at different scales. Tab. 1
and Tab. 2 show the questions and example answers we used
for generating local and global descriptions to enrich the

original labels. For local movements, we design to gener-
ate detailed descriptions that are individually performed ei-
ther by P (P = 4) body parts (i.e., ‘head’, ‘hands’, ‘torso’,
and ‘legs’) or in Z (Z = 3) contiguous temporal intervals
(e.g., ‘start’, ‘middle’, and ‘end’). To format the generated
answers for each local part, we wrap the designed ques-
tions in a fixed prompt template as ‘Using the following
format, <QUESTION>: <LOCAL PART 1> would: ...;
<LOCAL PART 2> would ...; ...; <LOCAL PART H>
would: ....’ where H ∈ {P,Z} and <LOCAL PART i>
refers to the corresponding local part name in P body parts
(i ∈ [0, P )) or Z intervals (i ∈ [0, Z)). For the global se-
mantic, we request GPT-3 to provide descriptions that aug-
ment the original label names. Note that one can also pre-
pare different questions and generate multiple descriptions
to calculate averaged text embeddings for later alignment.
However, we consider that this does not lead to the key im-
provement in the later ZSL experiments, so we maintain us-
ing one question for each type of generation. After acquir-
ing the targeted answers, we calculate their text embeddings
using a pre-trained CLIP [26] text encoder ftext after con-
verting them into standard prompts as “a (cropped/trimmed)
video of [DESCRIPTION]”. For a given original label of
y ∈ Ysc ∪ Yuc, after GPT-3 produces its relevant descrip-
tions Dy = {dhead, dhands, ..., dstart, ..., dend, dglob}, we
have F =

fDy

d ftext(d) ∈ R(P+Z+1)×m in which m refers
to the text embedding dimension size and (P + Z + 1) de-
notes the concatenation of P body-part-based, Z interval-
based, and one global-based semantic encodings.

3.3. Partitioning Skeleton Feature Representations

Following [15], we first conduct the same padding and nor-
malization pre-process from [11] to get the standard input
I ∈ RL×J×M×3 of a raw skeleton sequence x and then
adopt a pre-trained Shift-GCN [11] to extract its visual fea-
tures G = g(I) ∈ RS×n, where S = L′ × J . n is the
skeleton encoding dimension and L′ is the temporal feature
dimension size after I being convoluted in g. To simplify
the calculation, we average the features for M performers.
To align with the output from the language branch, a parti-
tioning module is further applied to extract the correspond-
ing local and global representations from G.

A straightforward method to generate spatially local rep-
resentations involves manually breaking down the skeleton
joints into body parts as shown in Fig. 3. The feature of each
body part can then be derived by averaging the features of
the joints inside itself over the whole sequence. For tem-
poral partitioning, one can averagely divide G along tem-
poral dimensions into Z consecutive segments. The repre-
sentation for each segment can then be computed by aver-
aging the features of all body joints over the segment. The
global representation can be achieved by averaging the fea-
tures of all body joints over the whole sequence. We refer



Action Question: Describe in very short how each body part moves for <Action>.
Head Hands Torso Legs

Hit another person
with something

Turn towards the
other person.

Grip the object tightly
and thrust it forward.

Twist and turn to generate
momentum for the strike.

Stomp the ground to provide
additional force for the strike.

Shoot at the
basket

Turn and look up
towards the basket.

Grip the basket
and release it.

Twist and extend to generate
power for the shot.

Bend slightly and
propel slightly upward.

Table 1. Example body-part-based descriptions generated by GPT-3. The refined explanations correlate similar head and hand movements
between ‘hit another person with something’ and ‘shoot at the basket’.

Action Question: Separate the motion of <Action> into three phases. Question: Describe in very short
how a person does <Action>.Start Middle End

Hit another person
with something Raise arm. Swing arm. Strike other person.

Swing their arm and strike the
other person with the object.

Shoot at the
basket Raise arm. Throw ball. Aim at basket.

Raise their arm and throw the ball
towards the basket.

Table 2. Example temporal-interval-based and global descriptions generated by GPT-3. The refined explanations correlate similar starting
global postures between ‘hit another person with something’ and ‘shoot at the basket’.

Figure 3. Spatial partitioning scheme for decomposing body joints
into four body parts: (i) Head, (ii) Hands, (iii) Torso, (iv) Legs.

Figure 4. Illustration of how the adaptive partitioning module sam-
ples local visual representations.

to this method as static partitioning. While simple, these
pre-defined partitions often exhibit instability in presenting
the visual information that matches their corresponding de-
scriptions. Below, we discuss our reasoning behind this ob-
servation and present our solution to resolve the issue.

Adaptive partitioning: Static partitioning extracts lo-
cal movements from fixed allocated node features. This re-
quires considerable manual examination of potential train-
ing datasets to determine the most suitable division prin-

ciples. Furthermore, local recognition can benefit from
detecting its combinative context postures in other body
parts or intervals. For example, the leg-lifting movement
for walking can be more robustly recognized by simultane-
ously acknowledging an arm-swinging movement. There-
fore, a more flexible approach for generating a local rep-
resentation is to adaptively sample all description-relevant
node features from G. Fig. 4 presents our cross-attention-
based adaptive partitioning module. To represent a particu-
lar body part or interval, we identify the nodes semantically
related to its description in terms of spatial and temporal di-
mensions and then contribute their visual information based
on a correlation weight. Specifically, with the text embed-
ding F and the visual output G, we define Q = FWQ

as the language queries, and K = GWK as the visual
keys. WQ ∈ Rm×h and WK ∈ Rn×h are learnable lin-
ear transformation matrices, where h is the projection di-
mension size. The module estimates an attention matrix
A ∈ R(P+Z+1)×S by applying a cross product between Q
and K, followed by a normalization and a softmax process
as

A = softmax((Q×KT )/
√
h). (1)

Intuitively, denoting the i-th row of A as Ai ∈ R1×S , it
calculates the respective semantic relevance for all S nodes
against the i-th description di (i ∈ [0, P + Z + 1)). Hence,
the paired visual representation Ri ∈ Rn for di can be com-
puted as a weighted sum from all node features, where the
weights are defined by Ai. Promoting this to a matrix-level
calculation, we can compute the paired visual representa-
tions R ∈ R(P+Z+1)×n for all P + Z + 1 descriptions as

R = AG. (2)



3.4. Aligning dual-modal representations

A pre-trained CLIP model [26] understands a wide range of
visual concepts shared among natural language and images.
To realize part-aware matching between skeleton sequences
and texts, we design PURLS to evenly map each visual rep-
resentation Ri ∈ Rn (the i-th row of R) to an aligned distri-
bution of its description encoding Fi ∈ Rm (the i-th row of
F ). As shown in Fig. 2, we construct an MLP layer fskel to
project each Ri to the textual embedding space as Vi ∈ Rm.
Then, we conduct contrastive learning between Vi and Fi as
follows:

L(Vi, Fi) =− 1

2
log

exp(ViFi

τ )∑Ysc

o exp(
ViF o

i

τ )

− 1

2
log

exp(ViFi

τ )∑
w exp(

V w
i Fi

τ ),

(3)

where F o
i refers to the text embedding of the i-th descrip-

tion from other o (negative) seen action classes, and V w
i is

the i-th projected visual embedding from other w (negative)
skeleton samples in the same batch. The temperature pa-
rameter τ controls the training gradient. The overall train-
ing loss of PURLS is a weighted sum of alignment losses
for all local and global representations:

Ltrain(x, y) =
∑P+Z

i=0
αiL(Vi, Fi), (4)

in which the weights αi are either set to 1/(P + Z + 1) or
learnable. During the training, fskel controls the visual→
textual mapping for all representations and thus learns to
adaptively balance the semantic alignments for local and
global projections. This helps fskel to distill local-aware
interaction knowledge when it encodes for global represen-
tations. Therefore, at the testing stage, given an input xte,
we can simplify the inference and predict ŷte that yields the
lowest alignment loss directly on its global representation:

Ltest(xte, y) = −1

2
log

exp(
V te
k Fk

τ )∑Yuc

o exp(
V te
k F o

k

τ )
, k = P + Z,

(5)

ŷte = argmin
y∈Yuc

Ltest(xte, y). (6)

4. Experiments
4.1. Datasets

NTU-RGB+D 60 [30] contains 56, 880 skeleton sequence
samples of 60 actions, with 40 individual subjects captured
from 80 distinct camera viewpoints. Each sample provides
a temporal sequence of the 3-D location coordinates for
25 human body joints per performer. The maximum per-
former number is 2, and the coordinate values are padded

as 0 when the corresponding performer is unavailable (e.g.
single-person actions). We use the two splits suggested by
[15] - a 55/5 split (with 55 seen classes and 5 randomly cho-
sen unseen classes) and a 48/12 split. We then create two
more difficult splits of 40/20 and 30/30 to further challenge
the generalization ability of our solutions on more unseen
classes with less available training.

NTU-RGB+D 120 [21] is an enlarged dataset based on
NTU-RGB+D 60 and includes 60 additional action classes.
It contains 114, 480 samples for 120 actions performed by
106 individual subjects captured from 155 distinct camera
viewpoints. Analogous to the above, we use two existing
splits of 110/10 and 96/24 in [15] and two new splits of
80/40 and 60/60 for our evaluation setups.

Kinetics-skeleton 200 is a customized subset containing
samples from the first 200 classes of the Kinetics-skeleton
400 dataset [43]. When reviewing the ZSL experimental
setups in other domains, we find that the existing proto-
cols for skeleton understanding are very limited, as only the
NTU-RGB+D series provides standard ZSL benchmarks.
This motivates us to establish initial benchmarks on other
common action datasets. Kinetics-skeleton 400 includes the
skeleton sequences extracted from the samples of 400 hu-
man action classes in Kinetics 400 [16]. Its classes range
from daily activities to complex actions. Each category
contains at least 400 YouTube video clips, from which the
skeleton data is extracted using OpenPose [6] in [43]. Dur-
ing the experiments, we observed that the ZSL accuracy
gradually diminished as the number of unseen classes in-
creased to a certain large number. This is probably because
the difficulty of the task eventually surpasses the feature ex-
traction capacity of the pre-trained visual backbones, which
is not a research focus of our paper. Therefore, we limit our
learning scenarios to cover under 200 classes. Similarly, we
create four splits of 180/20, 160/40, 140/60, and 120/80
for our setups. For the full experiment results on the com-
plete Kinetics-skeleton 400 and other small datasets (NW-
UCLA [38], UTD-MHAD [7], and UWA3D II [27]), please
refer to our supplementary materials.

4.2. Implementation Details

To prepare the skeleton backbone, we follow [15] and only
use seen class samples to pre-train feature extraction for the
setup of each split. The visual features are realized by the
256-dimensional penultimate layer feature from Shift-GCN
[11] (n = 256). We use the GPT-3 DaVinci-003 model and
the questions in Tab. 1 and Tab. 2 to generate detailed de-
scriptions for the original action labels. The textual features
are then realized by the 512-dimensional encoding output
from CLIP [26] equipped with the frozen weight of ViT-
B/32 (m = 512). For the architectural details of PURLS,
we always set P = 4, Z = 3, WQ ∈ R512×150,WK ∈
R256×150 where h = 150. fskel is a 2-layer MLP in which



Model NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %) Kinetics-skeleton 200 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60 180/20 160/40 140/60 120/80

ReViSE [36] 75.37 26.44 24.26 14.81 57.92 37.96 19.47 8.27 24.95 13.28 8.14 6.23
DeViSE [14] 77.61 35.80 26.91 18.45 61.52 40.91 19.50 12.19 22.22 12.32 7.97 5.65
JPoSE [40] 64.82 28.75 20.05 12.39 51.93 32.44 13.71 7.65 - - - -

CADA-VAE [29] 76.84 28.96 16.21 11.51 59.53 35.77 10.55 5.67 - - - -
SynSE [15] 75.81 33.30 19.85 12.00 62.69 38.70 13.64 7.73 - - - -
SMIE [48] 77.98 40.18 - - 65.74 45.30 - - - - - -

Global 64.69 35.46 27.15 16.29 66.96 44.27 21.31 14.12 25.96 15.85 10.23 7.77

PURLS 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63 32.22 22.56 12.01 11.75

Table 3. Zero-shot action recognition results (%) on NTU-RGB+D 60, NTU-RGB+D 120 and Kinetics-skeleton 200. Experiments for
JPoSE, CADA-VAE, and SynSE on Kinetic-skeleton 200 are omitted because their pre-trained text features from their work are not consis-
tent with other customized approaches. The experiments for SMIE is excerpted from its original paper.

the size of each hidden layer is 512. In the experiments on
NTU-RGB+D 60 and NTU-RGB+D 120, we set L = 300,
J = 25, M = 2. For Kinetic-skeletons 200, we adopt the
same data input configs from [43], where L = 300, J = 18,
M = 2.

For training details, the model is optimized by an Adam
optimizer with a learning rate of 1e − 4 and a batch size
of 256. The training epoch number is set to 300 but allows
early stops if the training accuracy does not improve in the
latest 20 epochs. All of our experiments are conducted us-
ing PyTorch on one A100 GPU.

For experiment details, since few previous works are
available for skeleton-based ZSL, we implemented some
classic baselines used in RGB-based classification from
scratch and also referred to the existing skeleton ZSL solu-
tions from [15] and [48]. These include visual-to-language
embedding models (DeViSE [14], JPoSE [40]), common-
space embedding models (ReViSE [36]), generative solu-
tions (CADA-VAE [29], SynSE [15]) and contrastive learn-
ing (SMIE [48]). Additionally, we have another baseline
that only learns from the global feature alignment with the
label-level encoding from CLIP. We mark this method as
‘Global’ in all of our evaluation tables. While JPoSE,
CADA-VAE, SynSE, and SMIE have their original linguis-
tic feature configurations, the text features used in other cus-
tomized baselines are uniformly encoded by the same CLIP
we use for PURLS. The results for ReViSE and DeViSE are
better than their records in the previous papers [15, 48] as
they use better language models for text embedding.

4.3. Results & Analysis

Tab. 3 presents the classification results using all mentioned
baselines and PURLS under the given setups. The learning
difficulty increases in the order of NTU-RGB+D 60, NTU-
RGB+D 120, and Kinetics-skeleton 200. Under the same
dataset, the setups become more challenging with the de-
crease of seen classes and the increase of unseen classes.

Our method gives the highest performing predictions in
every experimental setting. We observe that all previous

Encoder Descriptor Model NTU-RGBD 60 (Acc %)
55/5 48/12 40/20 30/30

AA [33] GPT3 Global 62.79 28.09 25.66 13.86
AA [33] GPT3 PURLS 76.75 32.39 31.00 21.86
CTR [9] GPT3 Global 65.16 34.56 26.12 15.92
CTR [9] GPT3 PURLS 79.97 39.42 32.26 24.59
DG [32] GPT3 Global 64.28 34.04 27.63 16.71
DG [32] GPT3 PURLS 80.41 41.06 33.77 25.12

PoseC3D [13] GPT3 Global 63.45 35.71 27.88 20.66
PoseC3D [13] GPT3 PURLS 81.14 41.60 34.47 28.11

Shift GPT3 Global 64.69 35.46 27.15 16.29
Shift GPT3 PURLS 79.23 40.99 31.05 23.52
Shift GPT3.5 Global 66.49 38.01 26.31 17.35
Shift GPT3.5 PURLS 79.17 40.98 30.07 19.95
Shift GPT4 Global 64.71 40.76 25.68 20.58
Shift GPT4 PURLS 81.53 41.90 27.28 21.45

Table 4. Ablation study on NTU-RGB+D 60 (%) for examining
the universality of PURLS by replacing the skeleton encoder back-
bone or the action descriptor.

NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)Partitioning
Strategy 55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

Global (Original) 64.69 35.46 27.15 16.29 66.96 44.27 21.31 14.12
Global (GPT-3) 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46

Static 76.46 33.03 29.57 22.00 67.62 46.83 26.98 18.03
Adaptive 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63

Table 5. Ablation study (%) on NTU-RGB+D 60 and NTU-
RGB+D 120 for using different alignment learning with/without
partitioning strategies, including direct global feature align-
ment to label or global description semantics, and PURLS with
static/adaptive partitioning.

baselines experience different levels of generalization dete-
rioration when the ratio of seen classes reduces to a certain
degree. Meanwhile, PURLS effectively mitigates this issue
and consistently maintains its prediction preciseness.

4.4. Ablation Study

We borrowed the setups in the NTU-RGB+D series to con-
duct a careful ablation study on PURLS. We analyzed
the method universality with auxiliary benefits from using
description-based textual features and incorporating local



αi BP TI NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

- 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46

Average ✓ 76.68 37.80 30.92 22.20 68.11 30.93 24.36 18.67
Learnable ✓ 76.32 37.62 29.06 21.91 71.73 40.92 23.49 19.13

Average ✓ 78.65 38.80 28.14 22.69 55.73 50.67 27.50 17.50
Learnable ✓ 77.70 40.69 28.84 22.46 71.26 46.13 24.43 18.57

Average ✓ ✓ 79.02 39.92 31.00 23.47 73.55 51.38 27.67 18.66
Learnable ✓ ✓ 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63

Table 6. Ablation study (%) on NTU-RGB+D 60 and NTU-
RGB+D 120 for (1) using different αi (i ∈ [0, P +Z+1)) to sum
for Ltrain, (2) adding body-part-based (BP) alignment learning,
(3) adding temporal-interval-based (TI) alignment learning. Note
that when Ltrain only contains global alignment learning (Row
1), αi is not applicable.

semantic alignment. This includes the examination of four
factors: (1) the universality among different skeleton back-
bones and description generators, (2) the disparity between
using original labels and expanded descriptions for global
feature alignment learning, (3) the efficiency of various par-
titioning strategies when sampling local visual concepts, (4)
the respective influence of distilling spatially and tempo-
rally local knowledge for global prediction.

Universality: Tab. 4 illustrates the detailed performance
of PURLS on NTU-RGB+D 60 when it uses different skele-
ton encoders g for visual feature extraction and GPT mod-
els for description generation. As a comparison, we also
test the replacements on the ‘Global’ baseline (i.e., align-
ing between the globally averaged skeleton features and la-
bel semantics) to verify the improvements brought by our
method. For the skeleton backbone, we considered al-
ternatives from several state-of-the-art extractors, includ-
ing AA-GCN[33], CTR-GCN[9], DG-STGCN[32], and
PoseC3D[13]. In particular, PoseC3D is a unique back-
bone whose output format is a convoluted feature map from
its 2-D heatmap input processed from an original skele-
ton sequence. In this situation, static partitioning is no
longer compatible because it cannot pre-define which fea-
ture map pixels should belong to a specified body part. On
the other hand, PURLS can still easily adapt itself to the
new input structure by finding pixel-wise attention weights
when generating a global/local visual representation. For
the GPT descriptors, we attempted replacements based on
model versions, iterating from GPT-3 to GPT-4. The re-
sults show that PURLS achieves an absolute advantage over
‘Global’ across all examined settings, revealing that our so-
lution steadily supports a better ZSL ability for most skele-
ton backbones and language models.

Label Semantics vs. Description Semantics: The first
two rows of Tab. 5 present the performance difference
of only learning global feature alignment using label se-
mantics or action description semantics. In most scenar-
ios, description-based learning effectively boosts the results

with richer semantic correlations across seen and unseen
classes.

Partitioning Strategy: The following two rows of Tab. 5
demonstrate the performance of PURLS using either static
or adaptive partitioning. Using static partitioning shows un-
stable performance improvement compared to only learn-
ing global alignment from action descriptions. This is nat-
ural since the manual joint assignment may not capture all
meaningful local movements in a given action but can also
introduce noises. On the other hand, adaptive partitioning
can effectively ameliorate these defects.

Local Semantics & Aggregation: In Tab. 6, we further
examine the concrete improvement brought by distilling the
knowledge of body-part-based and temporal-interval-based
local movements from adaptive partitioning. For the aggre-
gation method of different alignment losses, we provided
two options to sum the contrastive loss L(Vi, Fi) for each
global/local representation i, including either averaging the
weight of each term or applying a learnable weight (see
Eq. (4)). According to the results on Row 2-7, we find
that the extra alignment losses from spatial and temporal
dimensions can bring various prediction accuracy increases.
This reveals that the model managed to extract local trans-
ferrable knowledge that improves the generalization of pre-
dictions for unseen classes. By adaptively distilling action-
relevant knowledge from all possible global/local scales in a
balanced manner, PURLS can achieve a robust recognition
enhancement.

5. Conclusion
We have introduced a novel framework, PURLS, that glob-
ally and locally aligns language and skeleton feature rep-
resentations. We implement this by leveraging label se-
mantic enrichment with large language models, as well as
adaptive node feature partitioning on the skeleton structure.
This enables PURLS to transfer various visual knowledge
from seen classes to unseen classes at different scales. Ex-
perimental results demonstrate that PURLS achieves state-
of-the-art performance not only in the existing ZSL setups
on the NTU-RGB+D series, but also in the more challeng-
ing setups of a customized dataset Kinetics-skeleton 200.
Furthermore, PURLS shows powerful generality on differ-
ent backbones and effectively mitigates the generalization
drops when the pre-training on seen classes is severely lim-
ited. It holds promise for future related cross-modal tasks
by providing flexible feature alignment between natural lan-
guage and joint-based motion data.
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Part-aware Unified Representation of Language and Skeleton for Zero-shot
Action Recognition

Supplementary Material

In this supplementary material, we present additional
information to explain and support our design choices
and their concrete effects in each methodology module of
PURLS. Additionally, we list the remaining experiment per-
formance that we omitted in the main paper and provide a
qualitative visualization of the learning outcome of our so-
lution.

1. Additional Information for Local Semantic
Divison

PURLS aligns local visual semantics with global/body-part-
based/temporal-interval-based descriptions against a given
label. In the submission, we meticulously analyze the spa-
tial and temporal local semantics when they are respectively
extracted, resulting in a total of P + Z + 1 aligned rep-
resentations. Alternatively, if we jointly consider spatial-
temporal semantics, there will be P ∗ Z + 1 aligned repre-
sentations (i.e. finding temporal local movements for each
spatial local area). To streamline computational costs, we
opt for the approach of separately considering spatial and
temporal local semantics.

2. Additional Information for Creating
Description-based Text Features

The descriptions for each label from every evaluation
dataset are provided in the supplement repository under the
path of ‘supplement/gpt3 desc.xlsx’. For body-part-based
local movements, we generated descriptions for four body
areas including ‘Head’, ‘Hands’, ‘Torso’, and ‘Legs’. For
temporal-interval-based local movements, we generated de-
scriptions for three phases including ‘Start’, ‘Middle’, and
‘End’. A manual inspection was applied to ensure that all
descriptions properly enhance the original label semantics.

2.1. Hyperparameter selection for generating de-
scriptions

In the main submission, we used only one question and one
generated answer for each description type when preparing
the text encoding inputs for CLIP. Meanwhile, we also at-
tempted to use varying numbers of questions and answers to
check their influence on the model performance. In Tab. 1,
we present the wrapping prompts for each global/local part
and all the alternative questions we designed for each type
of description generation (see the design explanation in
Sec. 3.2 of our main paper). Tab. 2 records the hyperparam-
eter ablation when we use different numbers of questions

and answers for the generation. When multiple descrip-
tions are generated, we respectively encode each answer
and average all output features to calculate the linguistic
embeddings later used for semantic alignments. Yet, unlike
traditional supervised learning, we observed that including
multiple questions and answers does not improve ZSL clas-
sification in most cases. Therefore, we only use one ques-
tion and one answer for each description in our main exper-
iments.

2.2. Preprocessing for CLIP inputs

A pre-trained text encoder from CLIP requires proper
prompting on its input to ensure the backbone outputs fit the
required downstream tasks. Hence, as shown in Tab. 3, we
prepared customized prompting sentences to further stan-
dardize each generated description before encoding them.

3. Additional Information for Adaptive Parti-
tioning

3.1. Hyperparameter selection for Local Represen-
tations

In the main submission, we choose to align local move-
ments using four body-part-based (BP) partitions and three
temporal-interval-based (TI) partitions (i.e. P = 4, Z = 3).
Tab. 4 provides the hyperparameter ablation when we try
different numbers of spatial/temporal local representations.
In the case of BP, using one body part means directly calcu-
lating the global features along the spatial dimension. Using
two body parts refers to splitting spatial features into upper
and lower body movements. Using six body parts requires
further decomposing hand and leg movements into individ-
ual single-hand and single-leg movements. In the case of
TI, the original sequence is averagely divided into multiple
time intervals according to the specified number. The re-
sults reveal that having four body parts and three temporal
intervals yields the best performance for PURLS.

3.2. Visualization for Adaptive Partitioning

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 visualize the learned weights
for acquiring the corresponding visual representations to-
wards the descriptions for the classes ‘apply cream on face’,
‘running on the spot’, ‘kicking other person’, and ‘cutting
nails’. We analyze the impacts of adaptive partitioning in
four scenarios. Two spatial-based scenarios include learn-
ing the actions characterized by specific local body move-
ments (e.g. ‘applying cream on face’) or the movement from



Description Type Questions

Body-part-based

Using the following format, describe in very short how each body part moves
/ how a person’s body part would act / individual body part action for <Action>.

Head would: {text}
Hands would: {text}
Torso would: {text}
Legs would: {text}

Temporal-interval-based

Use the following format, separate in very short how a person performs the
action of / the motion of / the sub-motions when a person carries

out <Action>into three phases.
1: The person would {text}.
2: The person would {text}.
3: The person would {text}.

Global
Using the following format, describe in very short the motion of a person who / the motion

of a person carries out / how a person does <Action>.
The person would {text}.

Table 1. The full version of the designed questions used to generate label-relative descriptions under different scales. The bold texts
represent the question alternatives, while {text} refers to the blanks for GPT-3 to fill.

# Prompt question # Description per question NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

1 1 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
2 1 75.44 45.64 26.38 24.72 61.87 45.28 25.10 15.76
3 1 76.90 43.63 26.37 24.67 63.00 43.96 25.01 15.73
1 5 78.50 41.57 27.25 22.02 67.59 44.06 26.32 16.39
1 10 77.7 41.99 27.01 22.33 66.51 44.60 26.56 16.96

Table 2. Hyperparameter ablation (%) of applying different numbers of prompt questions & generated descriptions on GPT-3. ‘# Prompt
question’ refers to the number of used questions. ‘# Desc per question’ means the number of generated descriptions for each question.

the entire body (e.g. ‘running on the spot’). Two temporal-
based scenarios include learning the actions that can be bro-
ken down into sequentially local movements (e.g. ‘kicking
other person’), and the actions that involve repetitive move-
ments (e.g. ‘cutting nails’). To showcase the different learn-
ing focus in a more intuitive manner, we demonstrate the
respective feature sampling weight of each body joint on
every temporal dimension.

Adaptive partioning for spatially local movements:
For the actions characterized by specific local body move-
ments (Fig. 1), against body-part-based descriptions (Row
1-4 in each phase), adaptive partitioning effectively high-
lights the feature sampling from the body joints belonging
to the ‘hands’. It also assigns contextual significance to a
few body-joint features from the ‘torso’ and ‘legs’ during
the middle phase, as some co-movements may exist when
raising arms to one’s face. The local representation of hand
movements emphasizes these features the most. The repre-
sentations for other descriptions learn each joint feature in
a more averaged manner while still giving the most impor-
tance to hand features, as they become the most valuable
context features. Against the actions characterized by the
entire body movement (Fig. 2), we find the module more
averagely samples the body-joint-level features for each de-
scription.

Adaptive partioning for temporally local movements:
For the actions that can be broken down into sequentially
local movements (Fig. 3), against temporal-interval-based
descriptions (Row 5-7 in each phase), adaptive partitioning
emphasizes the overall features in the third phase, which
contains the most representative postures of the kicking
movement. The representation for the ‘end’ phase assigns
the highest weights to these features to represent its local
description as ‘Strike other person.’ Meanwhile, multiple
hand-related features are collected with higher priority in
the first two phases, while some leg-related features are also
collected in the second phase. This implies that PURLS
also allocates attention to sampling the hand and leg move-
ments for representing the descriptions of ‘Raise leg’ and
‘Extend foot’. Against the actions that repeat temporally
local movements (Fig. 4), we observe a relatively balanced
distribution of learning focus. In particular, the distribu-
tion tends to concentrate slightly more in the first phase.
We believe this is because most relevant visual information
is already available at the beginning. On the other hand,
the ending phase may contain noises from the zero-padding
frames.



Description Type Prompts
A cropped video of people’s head motions that <Description>.
A cropped video of people’s hand motions that <Description>.
A cropped video of people’s torso motions that <Description>.Body-part-based

A cropped video of people’s leg motions that <Description>.
Temporal-interval-based A trimmed video of the motion that <Description>.

Global A video of people’s motion that <Description>.

Table 3. The customized prompts used to wrap each description before it is sent to CLIP.

Figure 1. Visualized illustration of the learned adaptive weights used for sampling joint features to generate the visual representation of
each description on ‘apply cream on face’. The horizontal axis lists each body joint, and the vertical axis is the convoluted temporal
dimension with a length of L′. We trunk the temporal dimension into three groups for the phases of ‘start’ (1), ‘middle’ (2), and ‘end’ (3).
And we label the default body part that each body joint usually belongs to according to Fig. 3 in our main paper. For the demonstration
in one phase, from top to bottom is the feature weight distribution against the description for body-part-based (‘head’, ‘hands’, ‘torso’,
‘legs’), temporal-interval-base (‘start’, ‘middle’, ‘end’), and global semantics.

BP TI NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60

1 3 77.70 40.69 28.84 22.46 71.26 46.13 24.43 18.57
2 3 78.31 33.15 30.81 23.03 72.77 45.90 26.26 19.65
4 3 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
6 3 72.18 37.65 30.10 23.35 62.67 47.81 26.39 18.78
4 1 76.32 37.62 29.06 21.91 71.73 40.92 23.49 19.13
4 3 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
4 6 74.54 38.89 28.70 23.03 71.00 48.81 26.11 17.71

Table 4. Hyperparameter ablation (%) on NTU-RGB+D 60 and
NTU-RGB+D 120 of (1) using different numbers of body-part-
based (BP) local partitioning, (2) using different numbers of
temporal-interval-based (TI) local partitioning.

4. Additional Information for Experiments
4.1. Seen/unseen Split Setups

The specific lists of seen/unseen classes in each experi-
ment split are provided as numpy files in the supplement

repository under the path of ‘supplement/label splits’. Each
split setting belongs to one of the following dataset fold-
ers: ‘ntu60’, ‘ntu120’, ‘kinetic200’, ‘kinetic400’, ‘nw-
ucla’, ‘utd-mhad’, ‘uwa3dii’. The first three datasets are
the ones we focus on in the main paper. For a given split,
the file that contains the corresponding unseen class list
is named as ‘ru + the number of unseen classes’. Sim-
ilarly, the file recording the corresponding seen classes
is named as ‘rs + the number of seen classes’. For
example, for the split with 55 seen classes and 5 un-
seen classes on the NTU-RGB+D 60 dataset, the corre-
sponding seen and unseen class lists are recorded in the
files of ‘supplement/label splits/ntu60/rs55.npy’ and ‘sup-
plement/label splits/ntu60/ru5.npy’.



Figure 2. Visualized illustration of the learned adaptive weights for the class ‘running on the spot’.

Figure 3. Visualized illustration of the learned adaptive weights for the class ‘kicking other person’.

4.2. Extra Visualization for Experiment Results

Fig. 5, Fig. 6 and Fig. 7 visualize the accuracy gaps
and changing curves of every baseline and PURLS when
predicting different numbers of unseen classes on NTU-
RGB+D 60, NTU-RGB+D 120, Kinetic-skeletons 200. Our
method reaches state-of-the-art prediction accuracies in ev-
ery experimental setting. The performance conclusion on
each dataset is consistent with the analysis in Sec. 4.3 of
our main paper.

4.3. Full Ablation Results

Tab. 5 and Tab. 6 add extra results for the experiment setups
we used for ablation study (see Sec. 4.4 of our main paper)
on the Kinetic-skeletons 200 dataset.

4.4. Other Experiment Results

Kinetic-skeleton 400: We provide Tab. 7 to record the per-
formance results of ReViSE, DeViSE, Global, and PURLS
on Kinetics-skeleton 400 (See the dataset description in



Figure 4. Visualized illustration of the learned adaptive weights for the class ‘cutting nails’.

NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %) Kinetic 200 (Acc %)Partitioning Strategy 55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60 180/20 160/40 140/60 120/80

Global (Original) 64.69 35.46 27.15 16.29 66.96 44.27 21.31 14.12 25.96 15.85 10.23 7.77
Global (GPT-3) 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46 24.44 14.08 8.31 7.06

Static Partitioning 76.46 33.03 29.57 22.00 67.62 46.83 26.98 18.03 24.04 15.60 8.14 7.74
Adaptive Partitioning 79.23 36.77 31.05 23.52 71.95 52.01 28.38 19.63 32.22 22.56 12.01 11.75

Table 5. Full ablation study (%) on NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-skeleton 200 for using different alignment learn-
ing with partitioning strategies, including direct global feature alignment to label or global description semantics, and PURLS with
static/adaptive partitioning.
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Figure 5. Visualized accuracy variation on NTU-RGB+D 60.

Sec. 4.1 of our main paper). Fig. 8 visualizes the accuracy
gaps and changing curves of every baseline and PURLS.
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Figure 6. Visualized accuracy variation on NTU-RGB+D 120.

We created four splits of 360/40, 320/80, 300/100, and
280/120 for evaluation. These setups are replaced with



αi BP TI NTU-RGBD 60 (Acc %) NTU-RGBD 120 (Acc %) Kinetic 200 (Acc %)
55/5 48/12 40/20 30/30 110/10 96/24 80/40 60/60 180/20 160/40 140/60 120/80

- 78.50 33.47 29.21 22.27 64.89 47.15 25.16 17.46 24.44 14.08 8.31 7.06

Average ✓ 76.68 37.80 30.92 22.20 68.11 30.93 24.36 18.67 22.32 7.12 3.63 5.60
Learnable ✓ 76.32 37.62 29.06 21.91 71.73 40.92 23.49 19.13 22.73 14.79 8.24 7.69

Average ✓ 78.65 38.80 28.14 22.69 55.73 50.67 27.50 17.50 21.81 20.04 8.61 6.81
Learnable ✓ 77.70 40.69 28.84 22.46 71.26 46.13 24.43 18.57 24.85 18.73 7.97 7.95

Average ✓ ✓ 79.02 39.92 31.00 23.47 73.55 51.38 27.67 18.66 26.87 21.10 10.03 11.55
Learnable ✓ ✓ 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63 32.22 22.56 12.01 11.75

Table 6. Full ablation study (%) on NTU-RGB+D 60, NTU-RGB+D 120 and Kinetics-skeleton 200 for (1) using different αi (i ∈ [0, P +
Z+1)) to sum for Ltrain, (2) adding body-part-based (BP) alignment learning, (3) adding temporal-interval-based (TI) alignment learning.
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Figure 7. Visualized accuracy variation on Kinetics-skeleton 200.
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Figure 8. Visualized accuracy variation on Kinetics-skeleton 400.

a similar but simpler testing protocol on Kinetics-skeleton
200.

Small-scale datasets: Tab. 8 records the performance
of ReViSE, DeViSE, Global, and PURLS on multiple
small-scale datasets, including NW-UCLA, UTD-MHAD,
and UWA3D II (respectively containing 10, 27 and 10 com-

Model Kinetic 400 (Acc %)
360/40 320/80 300/100 280/120

ReViSE 20.84 11.82 9.49 8.23
DeViSE 18.37 10.23 9.47 8.34
Global 22.50 15.08 11.44 11.03
PURLS 34.51 24.32 16.99 14.28

Table 7. Zero-shot action recognition results (%) on Kinetics-
skeleton 400 for PURLS & all available baselines introduced in
Sec. 4.2 of our main paper.

Model NW-UCLA UTD-MHAD UWA3D II
8/2 5/5 22/5 18/9 14/13 24/6 20/10 15/15

ReViSE 69.12 44.99 29.37 19.86 12.26 30.33 10.91 10.43
DeViSE 72.81 36.02 12.50 13.59 13.94 34.16 12.51 11.41
Global 73.49 46.83 23.00 18.47 14.38 32.18 15.63 11.02

PURLS 75.84 49.47 57.50 31.71 19.23 35.65 18.91 13.98

Table 8. Zero-shot action recognition results (%) on NW-UCLA,
UTD-MHAD and UWA3D II for PURLS & all available baselines.

mon daily action classes). As shown in the table, PURLS
also outperforms other baselines in these testing environ-
ments where a minimal semantic overlap between seen and
unseen classes makes zero-shot recognition more challeng-
ing.
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