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Abstract

The local intrinsic dimensionality (LID) model assesses the complexity of data
within the vicinity of a query point, through the growth rate of the probability
measure within an expanding neighborhood. In this paper, we show how LID
is asymptotically related to the entropy of the lower tail of the distribution of
distances from the query. We establish relationships for cumulative Shannon
entropy, entropy power, Bregman formulation of cumulative Kullback-Leibler di-
vergence, and generalized Tsallis entropy variants. Leveraging these relationships,
we propose four new estimators of LID, one of them expressible in an intuitive
analytic form. We investigate the effectiveness of these new estimators, as well
as the effectiveness of entropy power as the basis for feature representations in
classification.

Keywords: entropy, tail entropy, cumulative entropy, entropy power, intrinsic
dimensionality, local intrinsic dimension, cumulative divergence, Bregman
divergence

1. Introduction

Assessing the complexity of high dimensional data is a fundamental task that
underpins many activities in machine learning and data mining. One well-known
measure of data complexity is the intrinsic dimensionality, a unitless quantity that
can be interpreted as the minimum number of latent variables needed to describe
the data.

The many extant formulations of intrinsic dimensionality can be divided into
two broad groups, global and local. Global intrinsic dimensionality, which takes
contributions from the full dataset to measure its complexity as a whole, has been
more widely investigated. By contrast, local variants of intrinsic dimensionality
assess the complexity of the data in the vicinity of a designated query location,
most notably in terms of the growth rate in the probability measure captured
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by an expanding neighborhood. Local variants can therefore associate different
intrinsic dimensional values to different locations in the data domain.

Our focus in this paper is on the local intrinsic dimension (LID) as formulated
in [1, 2], and in particular, establishing how it relates to entropy, perhaps the most
fundamental and widely-used model of data complexity. In its essence, entropy
can be regarded as a measure of the uncertainty of a distribution. Our study
of entropy considers the distribution of distances to a query location, where the
distances are induced by a global data distribution. In particular, we consider the
entropy of the lower tail of the neighbor distance distribution (the tail entropy),
and consider its asymptotic tendency as the neighborhood radius approaches zero.

Our analysis of the relationship between the tail entropy and local intrinsic
dimensionality has further implications due to an established relationship between
the latter and the statistical theory of extreme values (EVT) [3]. For any distri-
bution of distances satisfying appropriate smoothness assumptions in the lower
tail, as the neighborhood radius approaches zero, the tail distribution takes the
form of a power law. Asymptotically, power law distributions can be said to arise
naturally in the lower tail, with the exponent of the power law corresponding to
the LID value.

We formulate asymptotic results that relate local intrinsic dimensionality with
multiple variants of tail entropy. In particular, we relate LID to:

• The cumulative tail entropy. Cumulative entropy [4, 5] is an information-
theoretic measure popular in reliability theory, where it is used to model
uncertainty over time intervals. It corresponds to the expected value of the
mean inactivity time. Compared to ordinary Shannon differential entropy,
cumulative entropy has certain attractive properties, such as non-negativity
and ease of estimation.

• The cumulative tail entropy divergence: The cumulative KL diver-
gence has been proposed for comparing the cumulative distribution functions
(CDFs) of two distributions [6, 7], and is closely related to the cumulative
entropy. In this paper, we will be concerned with the Bregman variant of
the cumulative KL divergence [8].

• The tail entropy power. The entropy power is the exponential of the
entropy, and is also known as perplexity in the natural language processing
community.

• Generalized tail entropies (tail cumulative q-entropy and tail q-entropy
power). Generalized Tsallis entropies [9, 10] are a family of entropies
characterized via an exponent parameter q applied to the probabilities, in
which the traditional (Shannon) entropy variants are obtained as the special
case q → 1. The use of such a parameter can often facilitate more accurate
fitting of data characteristics and robustness to outliers.
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We believe our theoretical results are interesting in that they capture fundamen-
tal properties of local neighborhood geometry, and since they hold asymptotically
for essentially all smooth data distributions.

These results also have two interesting applications which we explore in this
paper:

• Estimation: Our theoretical results connect LID to a range of entropic
quantities. These relationships immediately open the door to formulation of
new estimators for LID, based on estimation of the entropic quantities. Our
theory allows the development of several new estimators for the LID of a
query point, by applying existing estimators for entropy [11], cumulative
entropy [4] and cumulative q-entropy [10] to samples of a sufficiently-small
neighborhood of the query. We are also formulate a new LID estimator
with an appealing analytic form related to Bregman divergences, based
on minimization of the cumulative KL divergence between the empirical
distribution and an estimate of the true distribution.

• Feature representation: LID estimates can be used as features or as
characterizations within machine learning models, such as for the detection
of adversarial examples [12] or overfitting during learning [13]. However, the
nonlinearity of LID may degrade its utility as a feature when used in linear
classifiers, resulting in lower accuracy of trained models. However, we may
instead use the tail entropy power as a feature. As we show in this paper,
it tends toward a nonlinear transformation of LID as the tail size tends to
zero, and thus has potential for use as a feature in linear models. In this
paper, we provide experimental evidence of its effectiveness, by comparing
its performance against raw LID features for an adversarial classification
scenario.

Overall, our key contributions are the development of new theory that asymp-
totically relates tail entropy quantities and LID, with applications of this theory
for estimation and feature representation.

2. Related Work

Our work relates to intrinsic dimensionality and its estimation, as well as
tail entropy and its varieties such as generalized tail entropy and cumulative tail
entropy, which we will define formally in Section 4. We briefly review each of
these in turn.

Intrinsic dimensionality can be assessed either globally (for all data points)
or locally (with respect to a chosen query point). Surveys of the field provide
more detail [14, 15, 16]. In the global case, considerable work has focused on
topological models, with accompanying estimation methods [17, 18, 19]. Examples
here include PCA and its variants [20], graph based methods [21] and fractal
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models [14, 22]. Other types of techniques such as IDEA [23, 24] and DANCo [25]
estimate the dimension based on concentration of norms and angles, or 2-nearest
neighbors [26].

For local intrinsic dimensionality, a popular estimator is the maximum likeli-
hood estimator, studied in the Euclidean setting by Levina and Bickel [27] and
later formulated under more general assumptions in the context of EVT by Am-
saleg et al. [2, 3], who showed it to be equivalent to the classic Hill estimator [28].
Other local estimators include expected simplex skewness [29], the tight locality
estimator [30], the MiND framework [24] and the manifold adaptive dimension
[31]. A recent estimator, LIDL [32], leverages neural density estimation methods
to achieve strong performance for scenarios where the LID is very high.

Local intrinsic dimensionality has been used in a range of applications. These
include modeling deformation in complex materials [33, 34], dimension reduction
via local PCA [35], interpreting basketball player tracking data [36], climate
science [37], assessing the complexity of COVID-19 data [38], similarity search
[39], outlier detection [40], adversarial example detection [12], adversarial nearest
neighbor [41, 42] and deep learning understanding [13, 43], clustering [44] and
statistical manifold learning [45]. For example, in deep learning, it has been
shown that adversarial examples are located in high-LID subspaces, and such a
characteristic can be leveraged to build accurate adversarial example detectors
[12]. It has also been found that the LID of deep representations [43] or input
data [46] is an indicator of the generalization performance of deep neural networks
(DNNs). A manifold dimensionality expansion phenomenon has been observed
when DNNs overfit to noisy labels [13].

Cumulative entropy was formulated in [4] and is a variant of cumulative
residual entropy [5]. Outside of reliability theory analysis, it has been used in
such data mining tasks as dependency analysis [47] and subspace cluster analysis
[48], where it has proved effective due to the existence of good estimators. Such
investigation has been at a global level (over the entire data domain), rather than
at the local level as in our study. Generalized variants based on Tsallis q-statistics
have been developed for both entropy [9] and cumulative entropy [10].

Cumulative entropy has also been used as a building block in the cumulative
Kullback-Leibler (KL) divergence [49] for comparing the CDFs of two distribu-
tions [6, 7]. This form of KL divergence is similar to the cumulative residual KL
information [50]. Another alternative formulation, which we will consider in this
paper, is the Bregman variant of the KL divergence. The broad family of Bregman
divergences can be regarded as a generalization of the notion of distance, one
that does not satisfy the triangle inequality. Many types of Bregman divergence
exist [8], with a wide range of applications [51, 52].

The concept of tail entropy has been used in financial applications for assessing
the expected shortfall [53] in the upper tail using quantization. This is different
from our context, where we analyze lower tails and develop exact results for an
asymptotic regime.
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This paper is an extended version of a preliminary conference paper [54].
It extends that work by i) establishing a theoretical connection to LID for the
cumulative Bregman KL divergence (requiring extension of technical lemmas
from [54] to be able to handle divergences as well as entropies); ii) proposing
four new estimators based on variants of tail entropy and tail divergence; and
iii) providing an experimental investigation of both the effectiveness of these new
estimators and the effectiveness of using tail entropies (instead of raw LID) for
feature representation.

Another related paper by Bailey et al. [55] extends the results of [54] to a wide
range of statistical divergences and distances, as well as formulating extensions of
the theory to a multivariate context. The analysis differs from that of [54] (and
this paper), in that [55] provides a only theoretical toolkit by which relationships
to LID can be derived through many steps — no fully-worked general formulations
are given. Also, it should be emphasized that [54, 55] do not deal with Bregman
divergences or the cumulative KL divergence, nor do they deal with the estimation
and feature representation issues that are the main focus of this paper (Sections 5
and 6).

3. Local Intrinsic Dimensionality

In this section, we summarize the LID model using the formulation of [2].
LID can be regarded as a continuous extension of the expansion dimension

due to Karger and Ruhl [56, 57]. Like earlier expansion-based models of intrinsic
dimension, it draws its motivation from the relationship between volume and
radius in an expanding ball, where (as originally stated in [1]) the volume of the
ball is taken to be the probability measure associated with the region it encloses.
The probability as a function of radius — denoted by F (r) — has the form of a
univariate cumulative distribution function (CDF). The model formulation (as
stated in [2]) generalizes this notion to real-valued functions F for which F (0) = 0,
under appropriate assumptions of smoothness.

Definition 1 ([2]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r 6= 0. The intrinsic dimensionality of F at r is
defined as follows whenever the limit exists:

IntrDimF (r) , lim
ε→0

ln (F ((1+ε)r)/F (r))

ln(1+ε)
.

When F satisfies certain smoothness conditions in the vicinity of r, its intrinsic
dimensionality has a convenient known form:

Theorem 1 ([2]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r 6= 0. If F is continuously differentiable at r,
then

IDF (r) ,
r · F ′(r)
F (r)

= IntrDimF (r) .
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Let x be a location of interest within a data domain S for which the distance
measure d has been defined. To any generated sample y ∈ D we can associate the
distance r = d(x,y); in this way, the global distribution that produces samples y
can be said to induce a local distance distribution with CDF F with respect to x.
In characterizing the local intrinsic dimensionality in the vicinity of location x,
we are interested in the limit of IDF (r) as the distance r tends to 0, which we
denote by

ID∗F , lim
r→0

IDF (r) .

Henceforth, when we refer to the local intrinsic dimensionality (LID) of a function
F , or of a point x whose induced distance distribution has F as its CDF, we will
take ‘LID’ to mean the quantity ID∗F .

To gain a better intuitive understanding of LID and how it can be interpreted,
consider the ideal case in which points in the neighborhood of x are distributed
uniformly within a submanifold in D. Here, in this ideal setting, the dimension
of the submanifold would equal ID∗F . In general, however, data distributions are
not ideal, the manifold model of data does not perfectly apply, and ID∗F is not
necessarily an integer. In practice, estimation of the LID at x would give an
indication of the dimension of the submanifold containing x that best fits the
distribution.

The function IDF can be seen to fully characterize its associated function F .
This result is analogous to a foundational result from the statistical theory of
extreme values (EVT), in that it corresponds under an inversion transformation to
the Karamata representation theorem [58] for the upper tails of regularly varying
functions. For more information on EVT and how the LID model relates to it, we
refer the reader to [59, 2, 60]. This is captured in the following theorem, whose
proof can be found in [2].

Theorem 2 (LID Representation Theorem [2]). Let F : R → R be a real-
valued function, and assume that ID∗F exists. Let x and w be values for which x/w
and F (x)/F (w) are both positive. If F is non-zero and continuously differentiable
everywhere in the interval [min{x,w},max{x,w}], then

F (x)

F (w)
=
( x
w

)ID∗
F · AF (x,w), where AF (x,w) , exp

(∫ w

x

ID∗F − IDF (t)

t
dt

)
,

whenever the integral exists.

In [2], conditions on x and w are provided for which the factor AF (x,w) can
be seen to tend to 1 as x,w → 0. The convergence characteristics of F to its
asymptotic form are expressed by the factor AF (x,w), which is related to the
slowly-varying component of functions as studied in EVT [59]. In the next section,
we make use of the LID Representation Theorem in our analysis of the limits of
tail entropy variants under a form of normalization.

6



4. Tail Entropy and LID

In this section, we will establish relationships between local intrinsic dimen-
sionality and several forms of entropy conditioned on the lower tails of smooth
functions on domains bounded from below at zero. The results presented in this
section all hold asymptotically as the tail boundary tends toward zero, when
normalized with respect to the length of the tail.

4.1. Definitions of Tail Entropy Variants

We begin with formal definitions of the tail entropies considered in this paper.
In each case, we assume that we are given a function F over the non-negative real
numbers, whose restriction to the lower tail [0, w] satisfies the following smooth
growth properties:

• F (0) = 0, and F (t) > 0 for t ∈ (0, w];

• F is strictly monotonically increasing;

• F is continuously differentiable.

The function Fw(t) , F (t)/F (w) thus satisfies the conditions of a cumulative
distribution function over t ∈ [0, w] (recall that F (t|t ≤ w) = F (t)/F (w) over
t ∈ [0, w]), with the derivative F ′w(t) = F ′(t)/F (w) as its corresponding probability
density function (PDF).

The following definitions apply to any functions F and G satisfying the
conditions stated above.

We begin by defining the tail entropy. When F corresponds to the CDF of
the lower tail of a query’s neighbor distance distribution, the tail entropy assesses
the uncertainty in the possible distances.

Definition 2 (Tail Entropy). The entropy of F conditioned on [0, w] is given
by

H(F,w) , −
∫ w

0

F ′w(t) lnF ′w(t) dt .

The cumulative entropy is a variant of entropy proposed in [4, 5] due to its
attractive theoretical properties. When F corresponds to the CDF of a query’s
neighbor distance distribution, the cumulative entropy can be regarded as an
alternative measure of uncertainty for the possible distances.

Tail conditioning on the cumulative entropy has the same general form as that
of the tail entropy.

Definition 3 (Cumulative Tail Entropy). The cumulative entropy of F con-
ditioned on [0, w] is

cH(F,w) , −
∫ w

0

Fw(t) lnFw(t) dt .
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There are several standard definitions of entropy power in the research liter-
ature. For our purposes, we adopt the simplest — the exponential of Shannon
entropy — for our definition conditioned to the tail. Entropy power can be
interpreted as a statistical measure of a distribution’s dispersion [61]. We will find
that using the tail entropy power to be more appropriate than using the entropy,
in our formulation for asymptotically small neighborhoods.

Definition 4 (Tail Entropy Power). The entropy power of F conditioned on
[0, w] is defined to be

HP(F,w) , exp (H(F,w)) .

For each of the tail entropy variants introduced above, we also propose anal-
ogous variants based on the q-entropy formulation due to Tsallis [9]. Tsallis
q-entropies are a type of generalized entropy characterized by the use of a param-
eter q; due to their flexibility, they have found a wide range of applications [62].
In general, q-entropy formulations can be shown to be identical to their Shannon
entropy analogues in the limit as q tends to 1.

Definition 5 (Tail q-Entropy). For any q > 0 (q 6= 1), the q-entropy of F
conditioned on [0, w] is defined to be

Hq(F,w) ,
1

q − 1

(
1−

∫ w

0

(F ′w(t))
q

dt

)
=

1

q − 1

∫ w

0

F ′w(t)− (F ′w(t))
q

dt .

Definition 6 (Cumulative Tail q-Entropy). For any q > 0 (q 6= 1), the cu-
mulative q-entropy of F conditioned on [0, w] is defined to be

cHq(F,w) ,
1

q − 1

∫ w

0

Fw(t)− (Fw(t))q dt .

We define the tail q-entropy power using the q-exponential function from

Tsallis statistics [9], expq(x) , [1 + (1− q)x]
1

1−q . Note that L’Hôpital’s rule can
be used to show that expq(x)→ ex as q → 1.

Definition 7 (Tail q-Entropy Power). For any q > 0 (q 6= 1), the q-entropy
power of F conditioned on [0, w] is defined to be

HPq(F,w) , [1 + (1− q)Hq(F,w)]
1

1−q .

In addition to the entropies of lower tails, we will also consider comparison of
the lower tails of two distributions F and G. The Bregman divergence [8] is one
natural approach for such comparison. The KL form of the Bregman divergence
between two positive real numbers x, y ∈ R+ is defined as:

dKL(x, y) , x ln
x

y
− x+ y . (1)

Using the Bregman KL divergence, one can compute the divergence between
the lower tails of two distributions with CDFs F and G.
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Table 1: Asymptotic relationships between normalized tail entropy variants and local intrinsic
dimensionality.

Entropy Variant Normalized Tail Entropy Limit as w→ 0+

Cumulative Entropy ncH(F,w) , 1
w

cH(F,w)
ID∗

F

(ID∗
F +1)2

Cumulative q-Entropy ncHq(F,w) , 1
w

cHq(F,w)
ID∗

F

(ID∗
F +1)(q ID∗

F +1)

Entropy Power nHP(F,w) , 1
w

HP(F,w) 1
ID∗

F
exp

(
1− 1

ID∗
F

)
q-Entropy Power nHPq(F,w) , 1

w
HPq(F,w)

(
(ID∗

F )q

q ID∗
F −q+1

) 1
1−q

C. B. KL Divergence dnKL(F,G,w) , 1
w
dKL(F,G,w)

(ID∗
F − ID∗

G)2

(ID∗
F +1)2(ID∗

G +1)

Definition 8 (Cumulative Tail Bregman KL Divergence). The cumulative
(Bregman) KL divergence between F and G, conditioned on [0, w], is given by

dKL(F,G,w) ,
∫ w

0

dKL (Fw(t), Gw(t)) dt

=

∫ w

0

Fw(t) ln
Fw(t)

Gw(t)
− Fw(t) +Gw(t) dt .

Observe that the divergence can be written as

dKL(F,G,w) =

∫ w

0

Fw(t) lnFw(t) dt −
∫ w

0

Fw(t) lnGw(t) dt

−
∫ w

0

Fw(t) dt +

∫ w

0

Gw(t) dt ,

where the first term is the cumulative entropy of F , and the second term can
be regarded as a ‘cross cumulative entropy’ between Fw and Gw. The ‘cross
cumulative entropy’ has been termed the cumulative inaccuracy in [49].

For the cumulative tail entropy and divergence variants, and the tail entropy
power variants, we will also consider a normalization given by the ratio with w,
the length of the tail. In the remainder of this section, we will show that as w
tends to zero, the limits of these normalized entropies can be expressed in terms of
the local intrinsic dimensionality of F . The notation for these normalized variants,
and our theorems for their limits in terms of LID, are summarized in Table 1.
The following subsections explain and prove these results.

4.2. Technical Preliminaries

Before presenting the main theoretical results of the paper, we begin with
several technical lemmas. The first lemma concerns a slight generalization of the
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cumulative entropy formulation, that allows it to greatly facilitate the proofs for
two tail entropy variants, the cumulative entropy and the entropy power.

Lemma 1. Let F : R≥0 → R≥0 and G : R≥0 → R≥0 be functions such that
F (0) = G(0) = 0, and assume that ID∗F and ID∗G exist and are positive. For some
value of r > 0, let us further assume that within the interval [0, r), F and G are
continuously differentiable and strictly monotonically increasing. Let φ and ψ be
functions over (0, r), with ψ positive. Then for any constants u and v such that
u < ID∗F ,

lim
w→0+

φ(w)

∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

= lim
w→0+

w1−uφ(w)

ID∗F +1− u

[
ln
ψ(w)

wv
− ID∗G−v

ID∗F +1− u

]
whenever the right-hand limit exists or diverges to +∞ or −∞.

Proof: Since the limit ID∗F = limx→0+ IDF (x) is assumed to exist, we have
that for any real value ε > 0 satisfying ε < min{r, ID∗F −u, | ID∗G−v|}, there must
exist a value 0 < δ < ε such that x < δ implies that | IDF (x) − ID∗F | < ε and
| IDG(x)− ID∗G | < ε. Therefore, when 0 < t ≤ w < δ,

|lnAF (t, w)| =

∣∣∣∣∫ w

t

ID∗F − IDF (x)

x
dx

∣∣∣∣ < ε ·
∣∣∣∣∫ w

t

1

x
dx

∣∣∣∣ = ε · ln w
t
,

and similarly,

|lnAG (t, w)| < ε · ln w
t
.

Exponentiating, we obtain the bounds(w
t

)−ε
< {AF (t, w) , AG (t, w)} <

(w
t

)ε
. (2)

Applying Theorem 2 to Gw(t) in the theorem statement, and making use of
the upper bound on AG from Inequality 2, the integral becomes∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

=

∫ w

0

Fw(t)

tu
· ln

(
ψ(w)

tv

(
t

w

)ID∗
G

AG(t, w)

)
dt

<

∫ w

0

Fw(t)

tu
·

[
ln

(
ψ(w)

tv

(
t

w

)ID∗
G

)
+ ln

(
t

w

)−ε]
dt .
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Similarly, using the lower bound on AG, we obtain a lower bound on the integral:∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

>

∫ w

0

Fw(t)

tu
·

[
ln

(
ψ(w)

tv

(
t

w

)ID∗
G

)
+ ln

(
t

w

)ε]
dt .

Since ε can be chosen arbitrarily close to 0, the upper and lower bounds converge
to one another. The squeeze theorem for integrals therefore gives us the following
equivalence. ∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

=

∫ w

0

Fw(t)

tu
· ln

(
ψ(w)

tv

(
t

w

)ID∗
G

)
dt

=

∫ w

0

Fw(t)

tu
·
[
ln
ψ(w)

wID∗
G

+ (ID∗G−v) ln t

]
dt . (3)

Continuing along the same lines, applying Theorem 2 to Fw(t) in Equation 3,
the bound on AF from Inequality 2 lead us to further simplifications. However, the
argument is complicated by the fact that the sum of logarithmic terms produces
a factor that could have different signs for different choices of t and w. Using
the following notation, we distinguish the two cases in which the (non-zero)
contribution of the logarithmic terms is positive or negative:

Ψw(t) , ln
ψ(w)

wID∗
G

+ (ID∗G−v) ln t

Ψ+
w(t) , max {Ψw(t), 0}

Ψ−w(t) , min {Ψw(t), 0} .

Expanding Equation 3 and applying the bounds of Inequality 2,∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

=

∫ w

0

1

tu

(
t

w

)ID∗
F

· AF (t, w) ·
[
ln Ψ+

w(t) + ln Ψ−w(t)
]

dt

<

∫ w

0

1

tu

(
t

w

)ID∗
F

·

[
ln Ψ+

w(t) ·
(
t

w

)−ε
+ ln Ψ−w(t) ·

(
t

w

)ε]
dt

and

>

∫ w

0

1

tu

(
t

w

)ID∗
F

·

[
ln Ψ+

w(t) ·
(
t

w

)ε
+ ln Ψ−w(t) ·

(
t

w

)−ε]
dt .
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Once again, the squeeze theorem for integrals yields an exact relationship:∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

=

∫ w

0

1

tu

(
t

w

)ID∗
F

· ln Ψw(t) dt

=
1

wID∗
F

∫ w

0

tID
∗
F −u ·

[
ln
ψ(w)

wID∗
G

+ (ID∗G−v) ln t

]
dt . (4)

Noting that u < ID∗F implies that limt→0 t
ID∗

F −u ln t = 0, integration by parts
of the right-hand side of Equation 4 yields a closed expression that depends on F
and G only through their LID values. Letting m , ID∗F −u and n , ID∗G−v,

lim
w→0+

φ(w)

∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

= lim
w→0+

φ(w)

wm+u

∫ w

0

tm ·
[
ln
ψ(w)

wn+v
+ n ln t

]
dt

= lim
w→0+

φ(w)

wm+u

[
ntm+1

m+ 1
ln t

∣∣∣∣w
0

−
∫ w

0

ntm+1

m+ 1
· 1

t
dt +

wm+1

m+ 1
ln
ψ(w)

wn+v

]
= lim

w→0+

φ(w)

wm+u

[
nwm+1

m+ 1
lnw − nwm+1

(m+ 1)2
+
wm+1

m+ 1
ln
ψ(w)

wn+v

]
= lim

w→0+

w1−uφ(w)

m+ 1

[
n lnw − n

m+ 1
+ ln

ψ(w)

wn+v

]
= lim

w→0+

w1−uφ(w)

ID∗F +1− u

[
ln
ψ(w)

wv
− ID∗G−v

ID∗F +1− u

]
whenever the limit exists, or diverges to +∞ or −∞. �

From this result, we observe that the existence of a non-trivial (finite but
non-zero) limit imposes strong conditions on both φ and ψ. For the former,
the limit limw→0+ w

1−uφ(w) must exist and be non-zero; for the latter, the limit
limw→0+ w

−vψ(w) must exist and be positive.
The second and third technical lemmas are obtained as byproducts of the

proof of Lemma 1.

Corollary 1. Let F : R≥0 → R≥0 and G : R≥0 → R≥0 be functions such that
F (0) = G(0) = 0, and assume that ID∗F and ID∗G exist and are positive. For some
value of r > 0, let us further assume that within the interval [0, r), F and G are
continuously differentiable and strictly monotonically increasing. Let φ and ψ be
functions over (0, r), with ψ positive. Then for any constants u and v such that

12



u < ID∗F ,

lim
w→0+

φ(w)

∫ w

0

Fw(t)

tu
ln
ψ(w)Gw(t)

tv
dt

= lim
w→0+

φ(w)

∫ w

0

Fw(t)

tu
·
[
ln
ψ(w)

wID∗
G

+ (ID∗G−v) ln t

]
dt

whenever the right-hand limit exists or diverges to +∞ or −∞.

Proof: Follows directly from Equation 3. �

Corollary 2. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is positive. For some value of r > 0, let us further assume that
within the interval [0, r), F is continuously differentiable and strictly monotonically
increasing. Let φ be a functions over (0, r). Then for any constant u,

lim
w→0+

φ(w)

∫ w

0

Fw(t)

tu
dt = lim

w→0+

w1−uφ(w)

ID∗F +1− u

whenever the right-hand limit exists or diverges to +∞ or −∞.

Proof: Omitted, since the result follows from bounding arguments very similar
to (but much simpler than) those found in Lemma 1. �

The final technical lemma also follows as a corollary of Lemma 1, since it uses
much of the same proof strategy, albeit more simply and directly. Analogous
with Lemma 1, it concerns a slight generalization of the cumulative q-entropy
formulation that facilitates the proof of the results for the q-entropy and q-entropy
power variants.

Corollary 3. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is positive. For some value of r > 0, let us further assume that
within the interval [0, r), F is continuously differentiable and strictly monotonically
increasing. Let φ be a positive function over (0, r). Then for any constants u < ID∗F
and z > 0,

lim
w→0+

wzu−1
∫ w

0

(
φ(w)Fw(t)

tu

)z
dt =

limw→0+ φ
z(w)

z ID∗F −zu+ 1

whenever the right-hand limit exists, or diverges to +∞ or −∞.

Proof: Following the same proof strategy of Lemma 1 that led to Equation 4,
we arrive at the following upper bound on the integral:∫ w

0

(
φ(w)Fw(t)

tu

)z
dt <

φz(w)

wz(m+u−ε)

∫ w

0

tz(m−ε) dt =
φz(w)

(zm− zε+ 1)wzu−1
,

13



where m = ID∗F −u as before.
Continuing according to the proof strategy of Lemma 1, we use the lower

bound from Equation 2, and let ε vanish by applying the limit w → 0+ with an
introduced factor of wzu−1. This brings us to

lim
w→0+

wzu−1
∫ w

0

(
φ(w)Fw(t)

tu

)z
dt

= lim
w→0+

wzu−1
φz(w)

(z ID∗F −zu+ 1)wzu−1
=

limw→0+ φ
z(w)

z ID∗F −zu+ 1
,

as required. �

4.3. Cumulative Tail Entropy and LID

Using the technical lemmas established in Section 4.2, we present the main
results for the cumulative tail entropy variants. The first result shows that as
the tail length w tends to zero, the normalized cumulative entropy ncH(F,w) ,
1
w

cH(F,w) tends to a value entirely determined by the local intrinsic dimensionality
associated with F .

Theorem 3. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is positive. For some value of r > 0, let us further assume that
within the interval [0, r), F is continuously differentiable and strictly monotonically
increasing. We have

lim
w→0+

ncH(F,w) = lim
w→0+

− 1

w

∫ w

0

Fw(t) lnFw(t) dt =
ID∗F

(ID∗F +1)2
.

Proof: Follows directly from Lemma 1, for the choices G = F , u = v = 0,
ψ(w) = 1, and φ(w) = w−1. �

The second result uses Corollary 3 to show that as the tail length w tends to
zero, the normalized cumulative q-entropy ncHq(F,w) , 1

w
cHq(F,w) tends to a

value determined by q together with the local intrinsic dimensionality associated
with F .

Theorem 4. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is positive. For some value of r > 0, let us further assume that
within the interval [0, r), F is continuously differentiable and strictly monotonically
increasing. Then for q > 0 with q 6= 1,

lim
w→0+

ncHq(F,w)

= lim
w→0+

1

w(q − 1)

∫ w

0

Fw(t)− (Fw(t))q dt =
ID∗F

(ID∗F +1)(q ID∗F +1)
.

14



Proof: Separating the integral and applying Corollary 3 twice,

lim
w→0+

1

w(q − 1)

∫ w

0

Fw(t)− (Fw(t))q dt

=
1

q − 1

(
1

ID∗F +1
− 1

q ID∗F +1

)
=

ID∗F
(ID∗F +1)(q ID∗F +1)

follows for the choices u = 0, φ(w) = 1, and (respectively) z = 1 and z = q. �

Observe that as q tends to 1, the cumulative q-entropy variant ncHq(F,w)
does tend to the cumulative entropy ncH(F,w), as one would expect.

4.4. Tail Entropy Power and LID

We find that we encounter convergence issues when attempting to use the
machinery of Lemma 1 to formulate a relationship between LID and either the
tail entropy H(F,w) or the normalized tail entropy nH(F,w), in that the limits
diverge as the tail size tends to zero.

Instead, we show that the entropy power, when normalized, does have a limit
expressed as a function of the LID of F .

Theorem 5. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is greater than 1. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then

lim
w→0+

nHP(F,w)

= lim
w→0+

1

w
exp

(
−
∫ w

0

F ′w(t) lnF ′w(t) dt

)
=

1

ID∗F
exp

(
1− 1

ID∗F

)
.

Proof: For convenience of expression, we make use of the notation xlnx(x) ,
x lnx. Applying the formula of Theorem 1,

lim
w→0+

HP(F,w)

w
= lim

w→0+

1

w
exp

(
−
∫ w

0

xlnx

(
F ′(t)

F (w)

)
dt

)
= lim

w→0+

1

w
exp

(
−
∫ w

0

xlnx

(
IDF (t)F (t)

tF (w)

)
dt

)
.

Since ID∗F is assumed to exist, for any real value ε > 0 satisfying ε <
min{r, ID∗F −u}, there must exist a value 0 < δ < ε such that v < δ implies
that | IDF (v)− ID∗F | < ε. Therefore, when 0 < t ≤ w < δ, IDF (t) falls within the
interval (ID∗F −ε, ID∗F +ε) over the entire integral. Since ε can be chosen to be
arbitrarily small, IDF (t) can be replaced by ID∗F in the limit.
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Next, we apply Lemma 1 for the choices G = F , u = v = 1 and φ(w) = ψ(w) =
ID∗F . The choice of u is valid for Lemma 1 since by assumption ID∗F > 1 = u.

lim
w→0+

HP(F,w)

w
= lim

w→0+

1

w
exp

(
−
∫ w

0

xlnx

(
ID∗F Fw(t)

t

)
dt

)
= lim

w→0+

1

w
exp

(
− ID∗F

ID∗F +1− 1

[
ln

ID∗F
w1
− ID∗F −1

ID∗F +1− 1

])
= lim

w→0+

1

w
exp

(
1− 1

ID∗F
− ln ID∗F + lnw

)
=

1

ID∗F
exp

(
1− 1

ID∗F

)
.

�

For the case of the normalized tail q-entropy power nHPq(F,w), we have the
following result.

Theorem 6. Let F : R≥0 → R≥0 be a function such that F (0) = 0, and assume
that ID∗F exists and is greater than 1. For some value of r > 0, let us further
assume that within the interval [0, r), F is continuously differentiable and strictly
monotonically increasing. Then for q > 0 (q 6= 1),

lim
w→0+

nHPq(F,w)

= lim
w→0+

1

w
expq

(
1

q − 1

[
1−

∫ w

0

(F ′w(t))
q

dt

])
=

[
(ID∗F )q

q ID∗F −q + 1

] 1
1−q

.

Proof: Applying the formula of Theorem 1, and using arguments similar to
that of the proof of Theorem 5, we obtain

lim
w→0+

HPq(F,w)

w
= lim

w→0+

1

w
expq

(
1

q − 1

[
1−

∫ w

0

(
ID∗F F (t)

tF (w)

)q
dt

])
.

Since ID∗F is assumed to exist, for any real value ε > 0 satisfying ε <
min{r, ID∗F −u}, there must exist a value 0 < δ < ε such that v < δ implies
that | IDF (v)− ID∗F | < ε. Therefore, when 0 < t ≤ w < δ, IDF (t) falls within the
interval (ID∗F −ε, ID∗F +ε) over the entire integral. Since ε can be chosen to be
arbitrarily small, IDF (t) can be replaced by ID∗F in the limit.

Applying Corollary 3 for the choices u = 1, φ(w) = ID∗F , and z = q, we arrive
at the following. The choice of u is valid for Corollary 3 since by assumption
ID∗F > 1 = u. Here, we also make use of the definition of the q-exponential,
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expq = [1 + (1− q)x]
1

1−q .

lim
w→0+

HPq(F,w)

w
= lim

w→0+

1

w
expq

(
1

q − 1

[
1− w1−q(ID∗F )q

q ID∗F −q + 1

])
= lim

w→0+

1

w

(
w1−q(ID∗F )q

q ID∗F −q + 1

) 1
1−q

=

(
(ID∗F )q

q ID∗F −q + 1

) 1
1−q

.

�

4.5. Tail Bregman KL Divergence and LID

We also consider a normalization by a factor of w for the limit of the cumulative
tail Bregman KL divergence, as w tends to zero.

Theorem 7. Let F,G : R≥0 → R≥0 be functions such that F (0) = 0, and assume
that ID∗F and ID∗G exist and are positive. For some value of r > 0, let us further
assume that within the interval [0, r), F and G are continuously differentiable and
strictly monotonically increasing. Then

lim
w→0+

1

w
dKL(F,G,w)

= − lim
w→0+

1

w

∫ w

0

Fw(t) · ID∗G ln
t

w
dt − 2 ID∗F +1

(ID∗F +1)2
+

1

ID∗G +1
.

Proof: Expanding the Bregman KL divergence gives us a sum of limits of
integrals:

lim
w→0+

1

w
dKL(F,G,w) = − lim

w→0+

1

w

∫ w

0

Fw(t) lnGw(t) dt

+ lim
w→0+

1

w

∫ w

0

Fw(t) lnFw(t) dt

− lim
w→0+

1

w

∫ w

0

Fw(t) dt + lim
w→0+

1

w

∫ w

0

Gw(t) dt .

Of the three terms in the result, the first is derived from the first integral in
the expansion, using Corollary 1 with u = v = 0, ψ(w) = 1, and φ(w) = 1

w
.

The second term is obtained from the sum of the second and third integrals; the
second integral can be expressed in terms of ID∗F using Theorem 3 directly, and
Corollary 2 can be applied to the third integral with u = 0 and φ(w) = 1

w
. The

third term in the result is obtained from the fourth integral of the expansion,
again from Corollary 2 with u = 0 and φ(w) = 1

w
. �
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Corollary 4. Let F,G : R≥0 → R≥0 be functions such that F (0) = 0, and assume
that ID∗F and ID∗G exist and are positive. For some value of r > 0, let us further
assume that within the interval [0, r), F and G are continuously differentiable and
strictly monotonically increasing. Then

lim
w→0+

1

w
dKL(F,G,w) =

(ID∗F − ID∗G)2

(ID∗F +1)2(ID∗G +1)
.

Proof: The proof reduces to finding an expression in terms of ID∗F and ID∗G
for the limit of the integral in the statement of Theorem 7. Rewriting this limit
integral with φ(w) =

ID∗
G

w
, ψ(w) = 1, and Bw(t) = t

w
, Lemma 1 can be applied

with u = v = 0 to give

lim
w→0+

1

w

∫ w

0

Fw(t) · ID∗G ln
t

w
dt = lim

w→0+
φ(w)

∫ w

0

Fw(t) · lnBw(t) dt

= − ID∗G
ID∗F +1

· ID∗B
ID∗F +1

= − ID∗G
(ID∗F +1)2

.

Substituting this into the statement of Theorem 7 and then after some manipula-
tion, the result follows. �

As one might expect, Corollary 4 confirms that the divergence is non-negative;
moreover, if the LID values of F and G are the same, the tail limit of the
cumulative Bregman KL divergence is zero.

5. Estimation

In the previous sections, we have established relationships between local
intrinsic dimensionality and variants of tail entropies. We now investigate how
these concepts and relationships can be leveraged to develop novel estimators for
local intrinsic dimensionality.

We propose four new estimators for local intrinsic dimensionality:

• an estimator based on cumulative entropy;

• an estimator based cumulative q-entropy;

• an estimator based on entropy (power);

• an estimator based on minimization of the cumulative Bregman KL diver-
gence.

In our formulation, we will assume the availability of the k nearest neighbor
distances from the query point whose LID to be estimated. These distances are
assumed to be in the tail of the distribution whose interval is [0, w], yielding the
order statistics 0 = X0 ≤ X1 ≤ X2 ≤, . . . , Xk = w.

We now discuss the estimators in turn. For a summary of the estimators,
please see Table 2.
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Estimation Method Estimator Formula

Cumulative Entropy ÎD∗F,1 = α(F,w)±
√
α2(F,w)− 1

where

α(F,w) , w

2ĉH(F,w)
− 1

ĉH(F,w) = −
∑k−1

j=1(Xj+1 −Xj)
j
k

ln j
k

Cumulative q−Entropy ÎD∗F,q = 1√
q

[
β(F,w, q)±

√
β2(F,w, q)− 1

]
for q 6= 1, where

β(F,w, q) , 1
2
√
q

[
w

ĉHq(F,w)
− (q + 1)

]
ĉHq(F,w) = 1

q−1
∑k−1

j=1(Xj+1 −Xj)
(
j
k
−
(
j
k

)q)
Entropy Power exp(Ĥ(F,w)) = w

ÎD∗
F,HP

exp(1− 1

ÎD∗
F,HP

)

Solve numerically for ÎD∗F,HP.

Evaluate Ĥ(F,w) with a univariate entropy estimator.

Cumulative Bregman ÎD∗G,KL =
√
Xk−

√
1
k

∑k
j=1 dKL(Xj ,Xk)√

1
k

∑k
j=1 dKL(Xj ,Xk)

KL Divergence where
dKL(x, y) = x ln x

y
− x+ y

Table 2: Summary of proposed estimators. All estimators are based on nearest neighbor
distances, corresponding to the order statistics 0 ≤ X1 ≤ X2 ≤ . . . ≤ Xk = w.

5.1. Estimation Based on Cumulative Entropy and Cumulative q-Entropy

Using the relationships from Theorems 3 and 4 which hold in the tail [0, w],
we can relate an estimator of LID with estimators of cumulative tail entropy and
cumulative tail q-entropy.

cH(F,w) → w · ID∗F
(ID∗F +1)2

cHq(F,w) → w · ID∗F
(ID∗F +1)(q ID∗F +1)

for q 6= 1 .

An expression for ÎD∗F is obtained by solving the quadratic equation in each case:

ÎD∗F,1 = α(F,w)±
√
α2(F,w)− 1 and

ÎD∗F,q =
1
√
q

[
β(F,w, q)±

√
β2(F,w, q)− 1

]
for q 6= 1 ,

where

α(F,w) ,
w

2ĉH(F,w)
− 1 and

β(F,w, q) ,
1

2
√
q

[
w

ĉHq(F,w)
− (q + 1)

]
.
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Observe that as q approaches 1, the estimator ÎD∗F,q tends to ÎD∗F,1.
The smaller roots are to be used when ID∗F is assumed to be less than 1;

otherwise, the larger roots should be used. Corollary 2 can be used to show that
as w tends to zero, the mean value µw of Fw tends to an expression involving ID∗F
(see also [3]):

µw → w
ID∗F

ID∗F +1
.

Hence, if ID∗F ≥ 1, then µw
w

tends to a value of at least 1
2
. As a decision rule, we

can therefore use the larger root if 1
k

∑k
i=1Xi ≥ Xk

2
; otherwise, we use the smaller

root.
We can leverage existing estimators with good convergence properties [4, 10] to

estimate the cumulative entropy ĉH(F,w) and the cumulative q-entropy ĉHq(F,w).
For the cumulative entropy,

cH(F,w) = −
∫ w

0

Fw(t) lnFw(t) dt

ĉH(F,w) = −
k−1∑
j=1

Uj+1 ·
j

k
ln
j

k
,

where Uj = Xj −Xj−1, (for j = 1, . . . , k) are the spacings between the successive
distance samples, and where for the j-th sample, Fw(t) is straightforwardly

estimated as F̂w(t) = j
k
.

For the cumulative q-entropy, we can use a similar estimator

cHq(F,w) =
1

(q − 1)

∫ w

0

Fw(t)− (Fw(t))q dt

ĉHq(F,w) =
1

(q − 1)

k−1∑
j=1

Uj+1 ·
[
j

k
−
(
j

k

)q]
.

5.2. Estimation Based on Entropy

Theorem 5 establishes a relationship between entropy (power) and local in-
trinsic dimensionality which holds in the tail [0, w]. We have

exp (H(F,w)) → w · 1

ID∗F
exp (1− 1

ID∗F
) (5)

We can compute an entropy estimate Ĥ(F,w) using any univariate entropy
estimator based on the on the order statistics 0 = X0 ≤ X1 ≤ X2 ≤, . . . , Xk = w

— for example, the popular Kozachenko-Leonenko estimator [11] which is based on
nearest neighbor distances. We can then numerically solve Equation 5 to obtain

an LID estimate ÎD∗F,HP.
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5.3. Estimation Based on Cumulative KL Divergence

We can use the KL divergence between cumulative distributions as the basis for
estimation. We follow a similar approach to Yari et al. [63], who used cumulative
residual KL divergence between F̄k and F̄θ to estimate the parameters of a Weibull
distribution. In turn, their approach is similar to the density-based estimation
strategy of Basu and Linday [64], who used KL divergence between the probability
densities fk and fθ.

We let Fw be the true (unknown) empirical distribution conditioned on the
lower tail [0, w], from which k independent random observations {X1, X2, . . . , Xk}
have been drawn. Without loss of generality, we may assume that 0 ≤ X1 ≤ . . . ≤
Xk = w. Next, we let Gw be an ideal distribution conditioned to the same lower
tail, with (unknown) local intrinsic dimensionality parameter θ = ID∗G. We wish
to estimate the intrinsic dimensionality θ̂ as the value for which the KL divergence
is minimized. Considering a normalization by w for the limit as w tends to zero,
Theorem 7 states that

lim
w→0+

dKL(F,G,w)

w
=

1

θ + 1
− 2 ID∗F +1

(ID∗F +1)2
− lim

w→0+

1

w

∫ w

0

Fw(x) · θ ln
x

w
dx . (6)

In order to minimize dKL(Fw, Gw) and thereby determine a value of θ that
brings Gw as close as possible to the empirical distribution Fw, we therefore take
the derivative of Equation 6 with respect to θ = ID∗G, for some small positive
choice of the tail boundary w. Setting this derivative to zero and then solving the
resulting equation for θ,

0 = − 1

(θ + 1)2
− 1

w

∫ w

0

Fw(x) · ln x

w
dx

(θ + 1)2 = − w∫ w
0
Fw(x) · ln x

w
dx

. (7)

Given our samples 0 ≤ X1 ≤ . . . ≤ Xk, we set the tail bound at w = Xk, and
approximate Fw through the empirical distribution conditioned on the tail:

F̂k(x) =
k−1∑
j=0

j

k
I[Xj ,Xj+1](x) ,

where I[Xj ,Xj+1] is the indicator function for the interval between consecutive
samples Xj and Xj+1.

Substituting F̂w for Fw in Equation 7, we obtain an expression involving our
estimator θ̂ of the local intrinsic dimensionality:

(θ̂ + 1)2 = − w∫ w
0
F̂w(x) · ln x

w
dx

.
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Denoting the origin by X0 = 0,

(θ̂ + 1)2 = − w∑k−1
j=0

∫ Xj+1

Xj
F̂w(x) ln x

w
dx

= − Xk∑k−1
j=0

j
k

∫ Xj+1

Xj
(lnx− lnXk) dx

= − Xk

1
k

∑k−1
j=1 j ·

(
Xj+1 ln

Xj+1

Xk
−Xj+1 −Xj ln

Xj

Xk
+Xj

) ,
via integration by parts. Simplifying through partial cancellation of terms, we
arrive at

(θ̂ + 1)2 =
Xk

1
k

∑k
j=1

(
Xj ln

Xj

Xk
−Xj +Xk

) =
Xk

1
k

∑k
j=1 dKL(Xj, Xk)

.

Solving for θ̂, and noting that Bregman divergences are always non-negative,
we obtain the estimator

ÎD∗G,KL = θ̂ =

√
Xk −

√
1
k

∑k
j=1 dKL(Xj, Xk)√

1
k

∑k
j=1 dKL(Xj, Xk)

.

Our Bregman KL divergence estimator of LID involves the square roots of
two quantities with units of distance: the tail boundary (or tail length) Xk, and
the average Bregman KL divergence between the samples and the tail boundary,
1
k

∑k
j=1 dKL(Xj, Xk). The LID estimator can therefore be interpreted as the

relative error incurred when the root distance
√
Xk is used as an approximation

for the root of the average sample divergence.

6. Experimental Results

Our evaluation addresses two main questions regarding the practical impact
of our theoretical results:

• How do our four proposed estimators for LID perform in comparison to
existing nearest neighbor based estimation approaches?

• What benefits (if any) do the tail entropy power and the tail q-entropy
power offer in a supervised learning scenario, as compared to using raw LID
estimates? In particular, is using the entropy power as a feature better than
the raw LID, for the purpose of training a classification model?
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6.1. Estimation of LID

Our four proposed estimators are:

1. Estimation based on cumulative entropy (ÎD∗F,1, using cH).

2. Estimation based on cumulative q-entropy (ÎD∗F,q, using cHq).

3. Estimation based on the entropy power of the tail (ÎD∗F,HP, using HP).

4. Estimation based on the cumulative Bregman KL divergence (ÎD∗G,KL, using
dKL).

We evaluate the performance of our estimators by comparing against two well
known baselines from the literature:

• The maximum likelihood (MLE) estimator [27, 3] (ÎD∗F,MLE).

• The method of moments (MoM) estimator [3] (ÎD∗F,MoM).

The two baselines are simple, well-known approaches that (like all our proposed
estimators) are based on nearest neighbor distances.

For our evaluations, we use a variety of synthetic datasets from [65] created
for benchmarking intrinsic dimensionality estimation, and which were also used
in [3]. Their descriptions and dimensional characteristics are shown in Table 3.
Each dataset consists of 10,000 samples. LID values were estimated for each data
sample using k = 100 nearest neighbors, and then compared against the ground
truth to compute the mean absolute error (MAE). The hyperparameter q was set

to 0.9 for the estimator based on ĉHq(F,w).
The estimation performances are shown in Table 3, from which we observe

the following:

• The baseline ÎD∗F,MoM is consistently worse than the baseline ÎD∗F,MLE. This
is consistent with the findings in other studies (such as [3]).

• The Bregman KL estimator ÎD∗G,KL is stronger against these benchmarks

than the most popular estimator, ÎD∗F,MLE (11 wins over MLE, 5 draws, one
loss). These results provide evidence that the Bregman KL estimator may
be a very competitive alternative choice to MLE.

• The entropy power estimator ÎD∗F,HP is always worse than ÎD∗F,MLE. This is
perhaps not surprising, since the entropy power requires the estimation of
differential entropy, which is itself known to be a hard problem [66].

• The cumulative entropy estimator ÎD∗F,1 generally has less error than ÎD∗F,q
for the low dimensional datasets (m1-m8), but slightly higher error on the
high dimensional datasets (m9, m10a, m10b, m10c, m12, m14 and m15).
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• The estimators based on cumulative entropy, ÎD∗F,1 and ÎD∗F,q, usually incur

a higher MAE cost than does ÎD∗F,MLE. However, they can have lower error
on datasets where the true intrinsic dimension is relatively high (m9, m10a,
m10b, m10c, m12, m14 and m15).

Overall, we believe that these four new estimators are interesting additions
to the family of LID estimation techniques that further increase the diversity

of available approaches. The proposed Bregman KL estimator ÎD∗G,KL, as well
as being theoretically interesting, was seen to perform more effectively for the
benchmark datasets as compared to the standard MLE estimator.

6.2. Use of Entropy Power as Classification Features

We examine how tail entropy power (nHP) can be used instead of LID as a
classification feature for adversarial example detection, an application scenario
where ID has demonstrated superior performance to measures such as kernel
density [67]. Adversarial examples are test input instances that are intentionally
engineered to fool deep neural networks. Adversarial detection, which trains a
binary logistic regression classifier to decide whether an input sample is adversarial
or normal, is one of the most effective defenses against adversarial examples [67,
12, 68]. Here we test the use of entropy power features instead of LID features for
adversarial example detection.

We follow the experimental setting of [12] by training 4-layer, 6-layer and
8-layer Convolutional Neural Networks (CNNs) on MNIST [69], SVHN [70] and
CIFAR-10 [71] datasets, respectively. We then craft adversarial examples for each
CNN model using 3 state-of-the-art attack methods: Fast Gradient Sign Method
(FGSM) [72], Projected Gradient Descent (PGD) [73] and Carlini and Wagner
(CW) [74]. For the PGD attack, we consider three variants (denoted as PGD-s),
where the number of perturbation steps is set at s = 20, 40, and 100. For the CW
attack, we consider three variants (denoted as CWc), with attack confidences set
at c = 0%, 40%, and 100%.

We compute the (normalized) tail entropy power (nHP) and LID values at
each layer of the network for successful adversarial examples as well as their
corresponding original (unperturbed) samples. The nHP and LID values for a
size-100 minibatch of examples (either adversarial or original) are estimated based
on the 20 nearest neighbors found within the same minibatch [12]. For each
combination of attack method and CNN model, this process produces one nHP
dataset and one LID dataset. We partition each dataset randomly into a training
set (80% of the examples) and a test set (the remaining 20%), and train a Logistic
Regression (LR) classifier on the training set. Following the same extraction
procedure as with nHP and LID, we also test the use of tail q-entropy power
(HPq) as the classification feature, for values of q from 0.5 to 1.5. The detection
AUC (‘Area Under the Curve’) results on the test sets are reported in Table 4.
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From the results in Table 4, we see that across all attacks and datasets, the use
of tail entropy power nHP brings a consistent improvement in detection over the
use of LID features. We hypothesize that this is because the entropy power can
be interpreted as a diversity, and thus has a natural doubling property making it
more suitable as a feature for use in logistic regression. Observe that when F is
a (univariate) uniform distance distribution ranging over the interval [0, w], we
have ID∗F = 1 and nHP(F,w) = w. In other words, the entropy power is equal
to the “effective diversity” of the distribution (the number of neighbor distance
possibilities). Given two different queries, each with its own neighborhood, one
query with tail entropy power equal to 2 and the other with tail entropy power
equal to 4, we can say that the distance distribution of the second query is twice
as diverse as that of the first query. The q-entropy power nHPq provides more
flexibility when used as a classification feature. In most cases, nHPq can lead to
better performance than either nHP or LID by varying q.

The best-performing choices of q reveal an interesting property of the neigh-
borhood distribution of weak versus strong attacks: for the weaker attacks FGSM
and CW0, a smaller choice of q was better at identifying adversarial examples,
whereas for strong attacks, larger choices (close to 1) performed better. This is
likely due to the tendency for strong attacks to push examples to more sparse
regions in the data domain, farther from the underlying data manifold. In these
sparse neighborhoods, small choices of q can help increase the discriminability of
the entropy power. In practice, for a supervised learning scenario, a value for q
could be chosen using a hyperparameter optimization scheme, similar to other
hyperparameters, such as trade-off factors in loss functions.

7. Conclusion

In this paper we have established an asymptotic relationship between tail
entropy variants and the emerging theory of local intrinsic dimensionality. Our
results provide insights into the complexity of data within local neighborhoods,
and how they may be assessed. These fundamental discoveries open the door to
cross-fertilization between intrinsic dimensionality research and entropy research.
They emphasize that for a highly local neighborhood around a query point,
(appropriately normalized) information-theoretic quantities are solely dependent
on the underlying LID.

We have demonstrated immediate applications of our results for estimation and
learning: proposing and evaluating four new estimators, and evaluating the use
of entropy power as a representation feature as an alternative to raw LID values.
We believe there is considerable scope for use of the normalized entropy power in
addition to the local intrinsic dimensionality, as a measure for understanding and
assessing changes in time and space.

As future work, we plan to further investigate the generalization and learning
behaviors of deep neural networks in light of both local intrinsic dimensionality

25



and tail entropy variants.
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Table 3: Mean absolute error for estimators, with dataset size=10000, and k = 100 nearest neigh-
bors as samples for estimation. d is the true intrinsic dimension, and D is the representational
dimension. For the sake of conciseness, for the four proposed estimators, the table headings
refer to the tail entropy variants employed. The q parameter is fixed at 0.9 for estimation based
on cHq. Lowest mean absolute error shown in bold for each dataset.

Dataset d D MLE MoM cH cHq HP dKL

m1: Uniformly 10 11 1.05 1.06 1.10 1.12 1.29 1.03
sampled sphere
m2: Affine space 3 5 0.29 0.30 0.37 0.39 0.41 0.29
m3: Fused figures, 4 6 0.57 0.59 0.61 0.63 0.67 0.56
concentrated & 3d
m4: Non-linear 4 8 0.45 0.47 0.52 0.53 0.57 0.43
manifold
m5: 2-d Helix 2 3 0.18 0.19 0.29 0.31 0.33 0.18
m6: Non-linear 6 36 1.02 1.05 1.03 1.06 1.11 0.95
manifold
m7: Swiss-Roll 2 3 0.18 0.20 0.29 0.31 0.33 0.18
m8: Non-linear 12 72 2.13 2.13 2.62 2.74 2.19 2.19
manifold
m9: Affine space 20 20 5.43 5.45 4.63 4.47 5.57 5.23
m10a: Uniform 10 11 1.75 1.77 1.53 1.50 1.89 1.69
distribution
m10b: Uniform 17 18 4.14 4.16 3.51 3.39 4.31 3.98
distribution
m10c: Uniform 24 25 7.21 7.24 6.19 5.99 7.36 6.95
distribution
m11: Moebius band 2 3 0.18 0.19 0.29 0.31 0.32 0.18
with 10 twists
m12: Isotropic 20 20 4.39 4.43 3.51 3.38 4.58 4.11
multivariate
Gaussian
m13: Curve 1 13 0.09 0.11 0.22 0.32 0.16 0.09
m14: Non-linear 18 72 3.21 3.23 2.87 2.82 3.46 3.09
manifold
m15: Non-linear 24 96 5.18 5.20 4.41 4.28 5.42 4.95
manifold

Wins-draws-losses – – – 0-1-16 7-0-10 7-0-10 0-0-17 11-5-1
over MLE
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Table 4: Detection AUC (%) of Logistic Regression (LR) classifiers trained on Local Intrinsic
Dimensionality (LID), tail entropy power (nHP) and tail q-entropy power (HPq) features on
different types of adversarial examples.

Dataset Feature FGSM PGD-20 PGD-40 PGD-100 CW0 CW40 CW100

MNIST

ID 99.99 99.95 99.95 99.99 96.90 99.96 99.99
nHP 100.00 100.00 100.00 100.00 99.87 100.00 100.00
nHPq=0.5 100.00 100.00 100.00 100.00 96.24 99.94 100.00
nHPq=0.6 100.00 100.00 100.00 100.00 96.35 99.98 100.00
nHPq=0.7 100.00 100.00 100.00 100.00 96.51 99.99 100.00
nHPq=0.8 100.00 100.00 100.00 100.00 96.69 100.00 100.00
nHPq=0.9 100.00 100.00 100.00 100.00 96.89 100.00 100.00
nHPq=1.1 100.00 100.00 100.00 100.00 97.26 100.00 100.00
nHPq=1.2 100.00 100.00 100.00 100.00 96.79 100.00 100.00
nHPq=1.3 100.00 100.00 100.00 100.00 97.15 100.00 100.00
nHPq=1.4 100.00 100.00 100.00 100.00 97.73 100.00 100.00
nHPq=1.5 100.00 100.00 100.00 100.00 98.14 100.00 100.00

SVHN

ID 91.21 94.64 95.86 96.69 95.12 99.90 99.99
nHP 92.18 95.03 96.10 96.79 98.62 99.92 100.00
nHPq=0.5 92.47 94.49 95.72 96.43 95.29 99.88 100.00
nHPq=0.6 92.45 94.67 95.81 96.52 94.54 99.89 100.00
nHPq=0.7 92.40 94.77 95.90 96.60 93.75 99.90 100.00
nHPq=0.8 92.29 94.87 95.98 96.67 92.90 99.91 100.00
nHPq=0.9 92.24 94.95 96.04 96.74 91.86 99.91 100.00
nHPq=1.1 92.13 95.09 96.15 96.84 89.70 99.92 100.00
nHPq=1.2 91.92 94.29 95.50 96.13 78.45 99.86 100.00
nHPq=1.3 91.86 94.57 95.69 96.35 78.03 99.89 100.00
nHPq=1.4 91.88 94.55 95.78 96.38 78.25 99.90 100.00
nHPq=1.5 91.94 94.86 96.01 96.65 78.78 99.92 100.00

CIFAR-10

ID 88.38 98.52 98.87 99.18 85.25 95.84 99.99
nHP 90.50 98.99 99.29 99.47 87.06 97.43 100.00
nHPq=0.5 90.55 98.90 99.22 99.43 88.64 97.28 100.00
nHPq=0.6 90.53 98.94 99.26 99.45 87.02 97.36 100.00
nHPq=0.7 90.52 98.97 99.29 99.47 85.37 97.42 100.00
nHPq=0.8 90.52 98.99 99.30 99.48 83.61 97.46 100.00
nHPq=0.9 90.51 98.99 99.30 99.48 81.81 97.47 100.00
nHPq=1.1 90.50 98.27 98.69 99.06 80.17 95.27 100.00
nHPq=1.2 90.51 98.51 98.88 72.17 72.73 95.92 100.00
nHPq=1.3 90.50 98.78 99.13 99.37 74.36 96.65 100.00
nHPq=1.4 90.52 98.83 99.14 99.38 76.57 96.86 100.00
nHPq=1.5 90.50 98.77 99.09 99.33 79.07 96.67 100.00
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