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Chapter 1

Introduction

We wish to predict fluid motion, that is the flow patterns and associated forces they
create (eg. lift and drag). In many cases this is a difficult task and several different
approaches may be required.

Experimental





�

C
C
CO

B
B

BBM

Computational

Model the physics that
is not understood

Test scale modelsSimplify equations

Analytical

Here we will consider the analytical method known as classical hydrodynamics. This
involves the study of ideal fluids, by ideal we mean incompressible and frictionless
(inviscid), ie. ρ =constant and µ = 0.

For example consider flow around a cylinder,
Classical model

Drag= 0
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Vorticies are shed

Vortex street

Large drag due to large wake

due to influence

Actual flow

of viscosity

Theory breaks down

The discrepency between the above is known as d’Alembert’s paradox. Engineers
initially largely ignored the classical approach. However in many fluid flows friction
is only important in regions such as boundary layers and wakes. Outside of these
regions the fluid may be considered frictionless.

A more useful application would be a streamlined body.

Actual flow

Classical Model

Better
agreement

thin wake



Chapter 2

Some Preliminary Concepts

2.1 Concept of steady and unsteady flow

In general the velocity field consist of three velocity components,

V
∼

= u i
∼

+ v j
∼

+ wk
∼

(2.1)

is a function of space and time i.e.

V
∼

= V
∼

(x, y, z, t). (2.2)

If the velocity components are a function of space alone and are not a function of
time we have steady flow, ie V

∼
= V

∼
(x, y, z). Consider continuity

Control volume surface A

Control volume V

αdA

From last year, ∫
A

ρV cosα · dA =0 (steady flow)

=− d

dt

∫
V
ρdV (unsteady flow)

7
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The above is in integral form, we can also write it in differential form,

∇ · ρV
∼

=0 (steady flow)

=− ∂ρ

∂t
(unsteady flow)

Since we limit ourselves to incompressible flow (ie. ρ =constant)

∇ ·V
∼

= 0

∴
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 .

 steady or unsteady

Note we are using the Cartesian coordinate system where

y

z

v

NB:

x
u

w

k
∼

i
∼

j
∼

V
∼

= i
∼
u+ j

∼
v + k

∼
w

2.2 Pathlines and Streamlines

In Fluid mechanics, it is important to visualise the flow field. Many fundamental
concepts of Fluid mechanics can be understood by sketching how the flow looks like.
In order to “visualise” the flow field, it is critical that one comprehend the concept
of streamlines and pathlines.

• A streamline is defined as a curve whose tangent at any point is in the
direction of the velocity vector at that point. It is the snapshot of the flowfield
at any instant in time. For unsteady flows the streamline pattern is different
at different times.

• A pathline is the line traced out by fluid particle as it moves through the flow
field. It represent the path of a massless fluid particle moving in a flow field.

For steady flow, pathlines and streamlines coincide. They do not coincide for un-
steady flows.
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Exercise 2.1: Show that for a three-dimensional (sometimes written as [3]) flow
field, the mathematical equation for stream line can be written as

wdy − vdz = 0

udz − wdx = 0 (2.3)

vdx− udy = 0

u is the velocity in the x direction and v is the velocity in the y direction and w
is the velocity in the z direction. For two-dimensional (sometimes written as [2])
flows, only the third relatioship is important

vdx− udy = 0 (2.4)

Exercise 2.2: Find the equations for streamlines and pathlines for the flow field
given by the following expressions

(a) V
∼

= x i
∼
− y j

∼

(b) V
∼

= x i
∼

+ yt j
∼

2.3 Concept of total derivative (substantial or La-

grangian derivative)

Differentiation following the motion of the fluid.

v

u

x

y

dx

v +
∂v

∂t
dt+

∂v

∂x
dx+

∂v

∂y
dy

u+
∂u

∂t
dt+

∂u

∂x
dx+

∂u

∂y
dyA′

A

dy
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Particle goes from A to A′ in time dt so acceleration in the x−direction is,

ax =
Du

Dt
=

Change in u velocity

dt

=
∂u

∂t
+
∂u

∂x

(
∂x

∂t

)
+
∂u

∂y

(
∂y

∂t

)
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

Note we use D
Dt

to denote the total derivative, ie.

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

similarly in y−direction

ay =
Dv

Dt
=
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

When we consider steady flow all derivatives of velocity with respect to time are
zero

ax =
Du

Dt
= u

∂u

∂x
+ v

∂u

∂y
(2.5)

ay =
Dv

Dt
= u

∂v

∂x
+ v

∂v

∂y
(2.6)

2.4 Vorticity and Angular Velocity

Consider fluid element dx

v

v +
∂v

∂x
dx

dx

ω1

x

y

its angular velocity is

ω1 =
v + ∂v

∂x
dx− v
dx

=
∂v

∂x
.

Similarly consider fluid element dy
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u

dy

ω2

u+
∂u

∂y
dy

x

y

its angular velocity is

ω2 =
u− u− ∂u

∂y
dy

dy

= −∂u
∂y

.

Hence
∂v

∂x
− ∂u

∂y
= ω1 + ω2

and the above is called vorticity or rotation and is denoted by

ζ =
∂v

∂x
− ∂u

∂y
. (2.7)

It is defined to be the sum of the angular velocities of two mutually perpendicular
fluid lines.
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Chapter 3

Momentum equations: Euler’s
equations of motion

Forces on a particle

Consider [2] flow, frictionless fluid and ignore body forces (gravity).

p+
∂p

∂y
dy

p+
∂p

∂x
dx

dx

dy

p

p

Resultant external force in the x−direction,

Fx =pdy −
(
p+

∂p

∂x
dx

)
dy

=− ∂p

∂x
dxdy ,

similarly

Fy = −∂p
∂y
dxdy .

Now Newton’s equation of motion says

max =Fx

may =Fy

13
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and the mass of the element is m = ρdxdy. Using Eqs. (2.5) and (2.5) the following
two equations are obtained

ρdxdy

(
u
∂u

∂x
+ v

∂u

∂y

)
=− ∂p

∂x
dxdy

ρdxdy

(
u
∂v

∂x
+ v

∂v

∂y

)
=− ∂p

∂y
dxdy

u
∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x

u
∂v

∂x
+ v

∂v

∂y
=− 1

ρ

∂p

∂y

These are the Euler equations
of motion in [2] steady flow
(Cartesian coordinates).

If we had considered unsteady flow ∂u/∂t 6= 0 and ∂v/∂t 6= 0 then

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=− 1

ρ

∂p

∂y

These are the Euler equations
of motion in [2] unsteady flow
(Cartesian coordinates).

The above equations can be derived in other coordinate systems eg. streamline
curve linear co-ord.

ds

Vs

Vn

s

n

R

∂Vn
∂s
≈ Vs
R
, Vn = 0

Note: dn = ds tan(dα) ≈ dsdα ≈ 0

Vs +
∂Vs
∂t

dt+
∂Vs
∂s

ds+

≈0︷ ︸︸ ︷
∂Vs
∂n

dn

dn

R + δR
δα

Instantaneous streamlines

Vn +
∂Vn
∂t

dt+
∂Vn
∂s

ds+

≈0︷ ︸︸ ︷
∂Vn
∂n

dn
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∂Vs
∂t

+ Vs
∂Vs
∂s

=− 1

ρ

∂p

∂s

∂Vn
∂t

+
V 2
s

R
=− 1

ρ

∂p

∂n

These are the Euler equations
of motion in [2] unsteady flow
(streamline curve linear coor-
dinates).

3.1 Pressure Forces: Bernoulli’s Equation

In many engineering applications, it is important to calculate the pressure forces at
various points in the fluid. For inviscid flows, Bernoulli’s equation is usually used
to calculate pressure forces. Bernoulli’s equation is given by

p+
1

2
ρV 2 = constant (3.1)

For an inviscid fluid, Eq. (3.1) is valid along a streamline.

Proof:

Consider the steady x momentum equation in [2]

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x

Multiply the above equation by dx gives

u
∂u

∂x
dx+ v

∂u

∂y
dx = −1

ρ

∂p

∂x
dx

Using Eq. (2.4) on the second term on the LHS of the above equation gives

u
∂u

∂x
dx+ u

∂u

∂y
dy = −1

ρ

∂p

∂x
dx

u

(
∂u

∂x
dx+

∂u

∂y
dy

)
= −1

ρ

∂p

∂x
dx

udu = −1

ρ

∂p

∂x
dx

1

2
du2 = −1

ρ

∂p

∂x
dx (3.2)

Repeating similar steps for the y momentum equation gives

1

2
dv2 = −1

ρ

∂p

∂y
dy (3.3)

Adding Eqs. (3.2) and (3.3) gives

1

2
d
(
u2 + v2

)
= −1

ρ

(
∂p

∂x
dx+

∂p

∂y
dy

)
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1

2
d
(
V 2
)

= −1

ρ
dp

dp = −ρV dV (3.4)

where V 2 = u2 + v2. If we assume that ρ is a constant, we can integrate the above
equation along a streamline to obtain∫ p2

p1

dp = −ρ
∫ V2

V1

V dV

p1 +
1

2
ρV 2

1 = p2 +
1

2
ρV 2

2 (3.5)

Exercise 3.1: The analysis above show that Bernoulli’s equation (Eq. (3.1)) is
valid only along a streamline. However, if the flow is inviscid and irrotational, it
can be shown that Eq. (3.1) is valid anywhere in the flow field. Prove that the
previous statement is true.



Chapter 4

Velocity Potential and Stream
function

4.1 Concept of a stream function ψ

The stream function is related to the rate at which fluid volume is streaming across
and elementary arc, ds.
For Incompressible [2] flow.

α

ds

V
∼

n̂
∼

From continuity we have∮
V cosαds︸ ︷︷ ︸

dψ

= 0 or

∮
V
∼
· n̂
∼
ds = 0

where V = |V
∼
|

ie. dψ = V cos(α)ds = V
∼
· n̂
∼
ds

This means ∮
dψ = 0

17
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where ψ a scalar point function and dψ is an exact differential ie.

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy

4.1.1 How does ψ behave alone a streamline

O

A

B

y

x

∮
OBAO

dψ =

∫ B

O

dψ +

∫ A

B

dψ +

∫ O

A

dψ = 0

=(ψB − ψO) + (ψA − ψB) + (ψO − ψA)

Along the streamline α = 90o ⇒ cosα = 0

A

B

n̂
∼

V
∼

∴ dψ = V cosαds = 0 along a streamline

Hence ψA = ψB
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4.1.2 What is the physical meaning of ψ

x

y

B

A

O

ψA − ψO = volume flux crossing OA

ψB − ψO = volume flux crossing OA

If AB is a streamline the above fluxes must be equal. This means that the difference
in ψ between two points = the volume flux across any line joining the two points.
Therefore a streamline is like a fence, across which flow cannot occur. Also the
volume flux across a path between two streamlines is independant of the path.

4.1.3 What is the relationship between u, v and ψ

Have
dψ

ds
= V cosα = V

∼
· n̂
∼

Say we move a small amount in the x-dir

n̂
∼

V
∼

α

y

x

Here ds = dx
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then ds = dx and
V
∼
· n̂
∼

= −v

∴
∂ψ

∂x
= −v

Say we move a small amount in the y-dir

y

n̂
∼

V
∼

αHere ds = dy

x

then ds = dy and
V
∼
· n̂
∼

= u

∴
∂ψ

∂y
= u

Alternative derivation;

A

B

ds

dy

dx

v

u

Let dψ = flux crossing AB

dψ︸︷︷︸
flux in across AB

= udy︸︷︷︸
flux out side

− vdx︸︷︷︸
flux in bottom
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because dψ is an exact differential

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy .

Equating coefficient of dx and dy gives

∂ψ

∂x
= −v ∂ψ

∂y
= u

In polar coordinates

θ

ur
uθ

r

Convention

• ur = radial component

• uθ = tangential component

Note ur and uθ correspond with u and v when θ = 0

r

r

θ

dθ
rdθ

x

A

B

dr

y

ur

uθ

ds

A

B

ds

uθ

ur

dr

rdθ

dψ = flux across AB

dψ = urrdθ − uθdr

but dψ =
∂ψ

∂r
dr +

∂ψ

∂θ
dθ
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Equate coefficients of dr and dθ

∂ψ

∂r
= −uθ

1

r

∂ψ

∂θ
= ur

If we had considered compressible flow

∂ψ

∂x
= − ρ

ρ0

v
∂ψ

∂r
= − ρ

ρ0

uθ

∂ψ

∂y
=

ρ

ρ0

u
1

r

∂ψ

∂θ
=

ρ

ρ0

ur

where ρ0 is some reference density arbitraily chosen at some point in the flow. For
incompressible flow ρ/ρ0 = 1

Exercise 4.1: For the flow defined by the stream function ψ = V∞y:

(a) Plot the streamlines.

(b) Find the x and y components of velocity at any point.

(c) Find the volume flow rate per unit width flowing between the streamlines
y = 1 and y = 2.

Exercise 4.2: An inviscid flow is bounded by a wavy wall at y = H and a plane
wall at y = 0. The stream function is

ψ = A
(
e−ky − eky

)
sin(kx) +By2 (4.1)

(a) Obtain an expression for the velocity field.

(b) Is the flow rotational or irrotational ?

(c) Find the pressure distribution on the plane wall surface, given that p = 0 at
[0, 0].

Exercise 4.3: The flow around a corner can be defined with the streamfunction,
Ψ = kxy

(a) Find the value of k if you are given that the volume flow rate of a line drawn
between (0,0) and (1,1) is 2m3/s.

(b) Is the flow field irrotational ?

(c) Given that the pressure at (0,0) is p0, what is the pressure distribution along
the two walls.

(d) Pretend that the streamline going through the point (2,3) is a wall. Find the
pressure distribution along this wall.
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4.2 General equation for ψ

It has been shown that along a streamline ψ is constant. Therefore if we can deter-
mine the stream function we are then able to plot (or sketch) the streamlines for a
given flow.

Use Eulers equation of motion to determine a general equation for ψ. Assum-
ing steady flow we have;

u
∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
(4.2)

u
∂v

∂x
+ v

∂v

∂y
=− 1

ρ

∂p

∂y
. (4.3)

we want to eliminate pressure, so differentiating (4.2) wrt y and (4.3) wrt x

−1

ρ

∂2p

∂x∂y
=
∂u

∂y

∂u

∂x
+ u

∂2u

∂y∂x
+
∂v

∂y

∂u

∂y
+ v

∂2u

∂y2
(4.4)

−1

ρ

∂2p

∂y∂x
=
∂u

∂x

∂v

∂x
+ u

∂2v

∂x2
+
∂v

∂x

∂v

∂y
+ v

∂2v

∂x∂y
(4.5)

Subtract (4.4) from (4.5) and assume

1

ρ

∂2p

∂x∂y
=

1

ρ

∂2p

∂y∂x
ie. p is a regular function

0 = u
∂

∂x

{
∂v

∂x
− ∂u

∂y

}
+ v

∂

∂y

{
∂v

∂x
− ∂u

∂y

}
+

{
∂u

∂x
+
∂v

∂y

}{
∂v

∂x
− ∂u

∂y

}
but from continuity {

∂u

∂x
+
∂v

∂y

}
= 0

hence

u
∂

∂x

{
∂v

∂x
− ∂u

∂y

}
+ v

∂

∂y

{
∂v

∂x
− ∂u

∂y

}
= 0

OR
D

Dt

{
∂v

∂x
− ∂u

∂y

}
= 0 (4.6)

The term
{
∂v
∂x
− ∂u

∂y

}
is the vorticity which was defined in section 2.4

Note in streamline coordinates

ζ =
Vs
R
− ∂Vs

∂n

Therefore (4.6) says that

Dζ

Dt
= 0 (4.7)



24

This means if we follow a fluid element its vorticity (ζ) does not change. Since
this is steady flow following a fluid element ⇒ travelling on a streamline. Hence
streamlines are lines of constant ζ as well as ψ.

Since we have u = ∂ψ
∂y

, v = −∂ψ
∂x

substituting into (2.7)

ζ = −∂
2ψ

∂x2
− ∂2ψ

∂y2

∴ ζ =− (∇ · ∇)ψ ∇2 = Laplacian operator

=−∇2ψ =
∂2

∂x2
+

∂2

∂y2

∇2ψ = −ζ

Equation (4.7) becomes

D

Dt

{
∇2ψ

}
= 0 Helmholtz’s equation

This is effectively the Euler equation and continuity expressed in terms of the stream
function (ψ) for the case of incompressible [2] flow.

Exercise 4.4: Repeat the steps above and show that Helmholtz’s equation is valid
for inviscid, incompressible AND unsteady flows.

Two special cases

1. Uniform vorticity upstream

u

u = ky
y

Here every streamline has the same vorticity and since ζ remains constant
along a streamline then ζ is constant everywhere.

⇒ ∇2ψ = −ζ = const. Poisson’s equation (4.8)
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2. Zero upstream vorticity
Occurs quite a lot in practice ie

U1

by observer moving with wing
Velocity profile as seen

ζ = 0

U = U1

Now ζ = constant along streamlines, therefore ζ = 0 everywhere. With ζ = 0
everywhere we have irrotational flow.

⇒ ∇2ψ = 0 Laplace equation (4.9)

This leads to what is know as potential flow and we can say if the flow is
irrotational (ζ = 0) the stream function (ψ) will satisfy the Laplace equation.
The beauty of the Laplace equation is that it is LINEAR. This means if we
have a series of simple flow solutions eg. ψ1, ψ2, ψ3 then the solution to more
complex flows can be obtained by superposition of the simple flows eg.

ψ︸︷︷︸
complicated flow

= ψ1 + ψ2 + ψ3 + · · ·︸ ︷︷ ︸
simple flows

Note: the Laplace operator in polar coordinates is

∇2 =
1

r2

∂2

∂θ2
+

1

r

∂

∂r
+

∂2

∂r2
+

(
∂2

∂z2

)
︸ ︷︷ ︸

In the case of polar cylindrical

Some more about vorticity

Vorticity is really a [3] vector Ω
∼

Ω
∼

= i
∼
ξ + j

∼
η + k

∼
ζ

it can be evaluated by taking the curl of the velocity vector ie.

Ω
∼

=curl (V
∼

)

=∇× V
∼

=

∣∣∣∣∣∣∣
i
∼

j
∼

k
∼

∂
∂x

∂
∂y

∂
∂z

u v w

∣∣∣∣∣∣∣
= i
∼

(
∂w

∂y
− ∂v

∂z

)
+ j
∼

(
∂u

∂z
− ∂w

∂x

)
+ k
∼

(
∂v

∂x
− ∂u

∂y

)
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hence for [2] flow

Ω
∼

= k
∼

(
∂v

∂x
− ∂u

∂y

)
, |Ω

∼
| = ζ

4.3 Concept of a scalar point function

If we have a scalar point function, ie. φ = φ(x, y, z) then surfaces of constant φ will
form plates.

φ2φ1 φ3

Vector field whose direction

the φ contours
is perpendicular to

surfaces of constant voltage
eg. surfaces of constant temp

φ4

Often we can denote a vector field by

V
∼

=∇φ

=grad φ

where

∇ = i
∼

∂

∂x
+ j
∼

∂

∂y
+ k
∼

∂

∂z
.

There are many vector fields in nature that can be defined this way;

Vector field Scalar function
Current flux Voltage potential

Heat flux Temperature
Gravitational force Potential energy

The scalar function is called the potential for the vector field and if a vector field
possesses a potential it is called a conservative field.

Often in fluid flow (but not always) the velocity field is a vector point function
V
∼

(x, y, z) which possesses potential scalar function φ(x, y, z),

V
∼

(x, y, z) = ∇φ(x, y, z) .

When this happens such a flow is called potential flow and φ is referred to as the
velocity potential.
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4.4 Concept of velocity potential φ

The velocity potential is analogous to the stream function. The stream function is
related to the rate of flow across an small arc, ds, but the velocity potential, φ is
related to the rate of flow along ds.

Let dφ = V ds sinα

then φA − φB =

∫ B

A

V sinαds

or
dφ

ds
= V sinα

A

B

ds V
α

n̂
∼

s

Say we move a small amount in the x-dir

n̂
∼

V
∼

α

y

x

Here ds = dx

then ds = dx and

V sinα = u

∴
∂φ

∂x
= u

Say we move a small amount in the y-dir
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y

n̂
∼

V
∼

αHere ds = dy

x

then ds = dy and
V sinα = v

∴
∂φ

∂y
= v

Now V
∼

= i
∼
u+ j

∼
v

= i
∼

∂φ

∂x
+ j
∼

∂φ

∂y

∴ V
∼

=∇φ (= grad φ)

This means that φ is the potential function of velocity

To find the governing equation for φ use volume flux technique.

dy
u

v

v +
∂v

∂y
dy

u+ ∂u
∂x
dx

dx

From volume flux balance (ie. what goes in must come out)

udy · 1 + vdx · 1 =

(
u+

∂u

∂x
dx

)
dy +

(
v +

∂v

∂y
dy

)
dx
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∂u

∂x
+
∂v

∂y
= 0 ← continuity equation

But

u =
∂φ

∂x
→ ∂u

∂x
=
∂2φ

∂x2

and

v =
∂φ

∂y
→ ∂v

∂y
=
∂2φ

∂y2

∴
∂2φ

∂x2
+
∂2φ

∂y2
= 0

⇒ ∇2φ = 0

Therefore the velocity potential function φ like the stream function ψ follows the
Laplace equation (harmonic functions). Hence we can use superposition of solutions,
ie. to obtain a complex flow just add simple flows together.
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Chapter 5

Some Simple Solutions

5.1 Some simple solutions

We will find the solution (ie. stream function ψ) for some simple flows.

5.1.1 Parallel flow

For the parallel flow with uniform velocity U∞ shown in Figure 5.1, we have

u =
∂ψ

∂y
and v = −∂ψ

∂x

In this case u = U∞, v = 0

∴
∂ψ

∂x
= 0 ,

∂ψ

∂y
= U∞

This gives two partial differential equations which can be solved by integration

∂ψ

∂x
= 0

ψ = f1(y)

and

∂ψ

∂y
= U∞

ψ = U∞y + f2(x)

where f1(y) and f2(x) are functions of integration. These equations are compatible
only if f2(x) = k where k is an arbitrary constant. For convenience the value of ψ
is normally set to zero when y = 0 ⇒ K = 0. Hence

ψ = U∞y parallel flow (left to right)

31
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y

x

Figure 5.1: Parallel flow from left to right

5.1.2 Source flow

In source flow we have Q m3s−1 emerging from a point and flowing in the radial
direction ie.

ur
uθ

θ

r

Source
Strength= Q m3s−1

C.V

The volume flow rate through the control volume surface with unit depth is given
by

2πr · 1 · ur = Q (vol. flux)

hence

ur =
Q

2πr
, uθ = 0 By definition of a source

. We have
∂ψ

∂r
= −uθ ,

1

r

∂ψ

∂θ
= ur
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hence in this case

∂ψ

∂r
= 0 ,

1

r

∂ψ

∂θ
=

Q

2πr

∂ψ

∂r
= 0

⇒ ψ = f1(θ)

and

1

r

∂ψ

∂θ
=

Q

2πr

⇒ ψ =
Q

2π
θ + f2(r) .

These two equations are compatible only if f2(r) = k usually k = 0 when θ = 0.

ψ =
Q

2π
θ source in polar coordinates

In cartesian

ψ =
Q

2π
arctan

(y
x

)
Example: Q = 48 units gives the following ψ values when plotted at π/6 intervals

16
12

8

ψ = 4

S/L has a discontinuity

ψ = 0

20

-4

Usual to have
These are the streamlines

π > θ > −π

-8

24

-20

-16

-12

Note the θ = π
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5.1.3 Sink flow

Strength= Q m3s−1
Sink

Show that for a sink

ψ = − Q
2π
θ

Exercise 5.1: Follow the steps outlined above and see if you can derive the stream
function for typical flows shown in Figure 5.2.

y

x

ψ=−Uy y

x

ψ=Vx

y

x

ψ=W(y cos α−x sin α)

α

Figure 5.2: Examples of some typical stream function
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5.2 More complex flow solutions

Source combines with uniform stream

y

x

Uniform flow, U∞

Source, Q

For uniform flow ψ1 =− U∞y

For source ψ2 =
Qθ

2π
=

Q

2π
arctan

(y
x

)
Since the Laplace equation is linear we can add these solutions to get the solution
for the new flow

ψ = ψ1 + ψ2

∴ ψ = −U∞y +
Q

2π
arctan

(y
x

)
We want to sketch this flow, ie. plot lines of constant ψ. To do this we first find the
stagnation points, which are points where u = v = 0. The velocity components
in the new flow are;

u =
∂ψ

∂y

=− U∞ +
Q

2π

1(
1 + y2

x2

) 1

x

=− U∞ +
Q

2π

x

(x2 + y2)
(A)



36

and

v =− ∂ψ

∂x

=− Q

2π

1(
1 + y2

x2

) (−y
x2

)

=
Q

2π

y

(x2 + y2)
(B)

Lets assume the stagnation point(s) occurs at x0, y0.
From (B)

0 =
Q

2π

y

(x2 + y2)

∴ y0 = 0 ie. stagnation point occurs on the x-axis

and from (A)

U∞ =
Q

2π

x

(x2 + y2)

∴ x0 =
Q

2πU∞

So there exists one stagnation point at ( Q
2πU∞

, 0).
Streamlines that pass through the stagnation points are called sepratrix stream-

lines. The value of ψ on the sepratrix must be constant = ψ|x0,y0 and in this case
ψ|x0,y0 = 0. Lets plot this streamline

ψ = 0 = −U∞y +
Q

2π
arctan

(y
x

)
The solution has two branches

y = 0

and x = y cot

(
2πU∞y

Q

)

x =
Q

2πU∞

stagnation point

xSepartrix streamline

y

Q

2U∞

Q

4U∞
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Locate x intercepts

x =lim
y→0

y

tan
(

2πyU∞
Q

)
Use L’Hopital’s rule

x =lim
y→0

1

2πU∞
Q

sec2
(

2πyU∞
Q

)
x =

Q

2πU∞
ie. the stagnation point, as expected

Locate y intercepts (x = 0)

−U∞y +
Q

2π

π

2
= 0

∴ y =
Q

4U∞

Also for x→∞, y → Q
2U∞

.
We can now sketch the overall flow pattern

To aid sketching;

• Find stagnation points and note at a stagnation point 2 streamlines come in
and two streamlines come out

• sketch sepratrix streamline

• consider flow close to origin (ie. source dominates) and in far field (ie. uniform
flow dominates)

• streamlines cannot cross each other

• adjacent streamlines must flow in the same direction.
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Now any streamline can be replaced by a solid boundary, eg. we can replace the
ψ = 0 streamline with a solid boundary. Hence we have solved the flow field about
a body whose shape is

x = y cot

(
2πU∞y

Q

)
and such a shape is called a Half-Rankine body (or semi-infinite body) ie.

Exercise 5.2: Repeat the derivation outlined in Section 5.2 with the free stream
velocity going from left to right. Assume that Q/(2πU∞) = 1. In addition, plot
the pressure coefficient, Cp, along the centerline of the body. The solution to this
exercise is shown in Figure 5.3.

5.3 Singularities

There are in general two types of singularities

1. Irregular singularity eg. Source/Sink, Vortex u = v = ±∞

2. Regular singularity (or saddle), u = v = 0 stagnation point

Irregular singularity

This is called an irregular singularity
and we cannot Taylor Series expand about this point.
Also a discontinuity exists

Regular singularity
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X

Y

-5 0 5 10-5
-4
-3
-2
-1
0
1
2
3
4
5

π/2
π

x

C
p

-5 0 5 10-1.0

-0.5

0.0

0.5

1.0

x

y

-5 0 5 100

1

2

3

4

5

Figure 5.3: Solution to Exercise 5.2

Note; 90o only if vorticity is zero.
the singularity, ie. rectangular hyperbolae.
This is what we see if we approach

known as a saddle.
go through this point. This point is also
Also all functions are continuous as we
Taylor Series expand about this point
This is a regular sigularity and we can
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Note: Sources and sinks are called irregular singularities since they cannot occur
in practice (ie. u = v = ∞). However they can be used to approximate certain
practical situations.
Example

Fan

Fume bed
approximated by source Q1

approximated by sink Q2
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5.4 Source and Sink

α

−s s

θB
θA

P

Sink Q Source Q

y

x

x

y

Have

ψA =
Q

2π
θA

ψB =
−Q
2π

θB

hence

ψ =ψA + ψB

=
Q

2π
(θA − θB)

=
Q

2π
α

Plot the streamlines, ie. lines of ψ = constant ⇒ α = constant. It can be show that
the locus of α = constant corresponds to circles all intersecting the x−axis at −s
and +s.
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2s

α

eg.

α

Exercise 5.3: Show that lines of ψ = const. (ie. α = const.) gives the family of
equations

x2 +
(
y − s

a

)2

= s2

(
1 +

1

a2

)
where a = tanα = tan (2πΨ/Q)

s s

y

x

s
√(

1 + 1
a

)

Sink
Source

(
0, s

a

)

Hence the streamline pattern is;
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5.4.1 Superimpose flow right to left

Now let us add a flow from right to left, then the new flow stream function is

ψ = −U∞y +
Q

2π
(θA − θB) .

Know,

tan(θA − θB) =
tan θA − tan θB
1 + tan θA tan θB

∴ θA − θB = arctan

{
y
x−s −

y
x+s

1 + y2

x2−s2

}

therefore the stream function in cartesian coordinates is

ψ = −U∞y +
Q

2π
arctan

{
y
x−s −

y
x+s

1 + y2

x2−s2

}
.

It can be shown that the stagnation points lie on the ψ = 0 streamline and this
is called the separatrix streamline, lets sketch it. The solution for ψ = 0 has two
branches;

y = 0

and x2 + y2 − s2 = 2ys cot

(
2πU∞y

Q

)

ie.
x2

s2
+
y2

s2
− 1 =

2y

s
cot

{
2π

(
U∞s

Q

)
y

s

}
ψ = 0⇒ Oval shape (5.1)
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x2

s2
+ y2

s2
− 1 = 2y

s
cot
{

2π
(
U∞s
Q

)
y
s

}

Like before the ψ = 0 streamline can be replaced by a solid body. Hence we have
infact solved the problem of flow past a body whose shape is given by equation (5.1).

Full Rankine body

This is called a full Rankine body. The shape of the body depends on the non-
dimensional parameter U∞s

Q
while the scale (size) depends on the length scale s.

Exercise 5.4: Show that the stagnation points for the full Rankine body occur
at x = ±s

√
Q/(U∞πs) + 1.

5.4.2 Superimpose flow left to right

The flow pattern changes dramatically if the free stream flow is in the opposite
direction. Consider the case when the flow is from left to right

ψ = U∞y +
Q

2π
arctan

{
y
x−s −

y
x+s

1 + y2

x2−s2

}
.
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Find the stagnation points ie.

u = 0 and v = 0

→ ∂ψ

∂y
= 0 and

∂ψ

∂x
= 0

It turns out (exercise show this) that the location of the stagnation points depends
on the strength of the parameter U∞s

Q
, there are three cases;

1. U∞s
Q

> 1/π, then the stagnation points are on the x−axis at x = ±s
√

1−Q/(U∞πs).

ψ =
Q

2

ψ = 0
Q

U∞
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2. U∞s
Q

= 1/π, then the stagnation points are at the origin (repeated root) this

is a degenerate case (unstable saddle)

Structurally unstable saddle
(note 3 S/L in, 3 S/L out)

3. U∞s
Q

< 1/π, then the stagnation points are on the y−axis at y = ±s
√
Q/(U∞πs)− 1.

Note as the parameter U∞s
Q

is varied the saddles (stagnation points) move, merge

and split. When this happens it is called a bifurcation.
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5.5 Flow past a circular cylinder

This is a special case of the Rankine body where the spacing between the source
and sink goes to zero.

5.5.1 The doublet

When a source and sink of equal strength are superimposed upon one and other we
get a doublet. First consider source/sink pair spaced 2s apart;

−s

α

θA

P

r

θ

s

A
Source Q

BSink Q
θB

y

x

M

then let the source and the sink move together (ie. s → 0), such that the product
Qs remains constant (K). Then as s→ 0

α =
AM

r
=

2s sin θ

r

We know (from last lecture)

ψ =
Q

2π
α

∴ ψ =
Q

2π

2s sin θ

r

Hence

ψ =
Qs sin θ

πr
=
K sin θ

πr
Doublet .

Note as s→ 0, Q→∞ so thatQs = K remains a constant. In Cartesian coordinates

sin θ =
y

(x2 + y2)
1
2

r = (x2 + y2)
1
2
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∴ ψ =
Ky

π(x2 + y2)

Streamlines are a family of circles, whose centres lie on the y−axis and which pass
through the origin.

5.5.2 Doublet with uniform flow

Now we are going to add parallel flow from right to left to the doublet. Hence the
stream function for this flow is

ψ = −U∞y +
Ky

π(x2 + y2)

Find stagnation points ie. u = 0 and v = 0; exercise show stagnation points at

x = ±
√

K

πU∞
, y = 0 .

Consider the sepratrix streamline, it passes through the stagnation point and cor-
responds to the ψ = 0 streamline. The solution for ψ = 0 has two branches

y = 0

and x2 + y2 =
K

πU∞
= a2 ← equation to a circle with radius a =

√
K

πU∞
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x2 + y2 = a2

−
√

K
πU∞

√
K

πU∞

Again we can replace the ψ = 0 streamline with a solid body and hence we have
solved for the flow past a circular cylinder.

Exercise 5.5: Find an expression for the velocity on the surface of the cylinder
(Ψ = 0 streamline). Use this expression to find the pressure distribution and hence
the lift and drag forces on the cylinder.

Exercise 5.6:
Two half cylinders of outer radius a are joined together in a uniform potential
flow, as shown in figure 5.4. A hole is to be drilled at an angle θ such that there
will be no nett force between the half cylinders at the joints. Determine the angle
θ assuming the internal pressure Pint to be equal to the static pressure on the
external surface of the cylinder at the point where the hold is drilled.

Hint: Remember from potential flow theory that the predicted pressure on the
surface of a cylinder is given by

P = P∞ +
1

2
ρU2

∞ − 2ρU2
∞ sin2 θ (5.1)

Exercise 5.7: Integrate Eq. (5.1) and show that the lift and drag on a circular
cylinder as predicted by potential flow theory is zero.

5.6 Circulation

We wish to solve flow about bodies that produce lift. This can be achieved by
introducing circulation around the body. Circulation is the line integral of velocity
around a closed loop. Suppose we are in a flow field where the velocity at one of the
points is V .
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Joint

Joint

θ

Pint

t

Figure 5.4: Half-cylinder configuration described in Exercise 5.6

A

B

ds V
α

n̂
∼

s

Line integral of velocity from A to B is equal to the component of velocity along the
line from A to B, and we will denote this integral by LAB ie

LAB =

∫ B

A

V sinαds .

This expression is analogous do work done if we replaced V with force F

work done =

∫ B

A

F sinαds .

When the curve is closed it gives the circulation
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ds line of integration

Γ =

∮
V sinαds

The above expression can also be expressed in terms of the velocity components u
and v ie.

Γ =

∮
V sinαds =

∮
(udx+ vdy)

Proof:

s

ds

B

A

V
α

n̂
∼

γ

β

y

x

udx+ vdy =V cos γ︸ ︷︷ ︸
u

ds cos β︸ ︷︷ ︸
dx

+V sin γ︸ ︷︷ ︸
v

ds sin β︸ ︷︷ ︸
dy

=V ds(cos γ cos β + sin γ sin β)

=V ds(cos(β − γ))
=V ds sinα

Actually circulation is closely related to vorticity, infact

Γ =

∫
A

ζdA

That is circulation is the area integral of vorticity. Consider an infinitesimal fluid
element and evaluate the line integral around this element.
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dy

x

y

dx

u+
∂u

∂y
dy

v +
∂v

∂x
dx

u

v

dΓ =udx+

(
v +

∂v

∂x
dx

)
dy +

(
u+

∂u

∂y
dy

)
(−dx) + v(−dy)

∴ dΓ =

(
∂v

∂x
− ∂u

∂y

)
dxdy

∴ dΓ = ζdxdy ⇒ circulation = vorticity × area

Hence we can say vorticity ζ = circulation around an element per unit area.
What is the area integral of vorticity over a finite area ?

Finite area

v1 v2

dA

x1(y)

yl

yu

x

y

x2(y)

Integrate over the area, ∫∫
A

(
∂v

∂x
− ∂u

∂y

)
dxdy

=

∫∫
A

(
∂v

∂x

)
dxdy −

∫∫
A

(
∂u

∂y

)
dxdy .
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Consider first term, ∫∫
A

(
∂v

∂x

)
dxdy =

∫ yu

yl

(∫ x2

x1

∂v

∂x
dx

)
dy

=

∫ yu

yl

(v2 − v1)dy

=

∫ yu

yl

v2dy +

∫ yl

yu

v1dy

=

∮
vdy .

Similarly it can be shown that,∫∫
A

(
∂u

∂y

)
dxdy = −

∮
udx

hence ∫∫
A

(
∂v

∂x
− ∂u

∂y

)
dxdy =

∮
(udx+ vdy)

This expression implies the area integral of vorticity = line integral of velocity on a
closed circuit around the area.

5.7 The point vortex

We wish to introduce circulation into potential flow problems but this requires we
introduce vorticity since

Γ =

∫
A

ζdA .

However we want a irrotational flow field so put all the vorticity at a single point
called a point vortex (this will be a singularity in the flow field). For a point vortex
A → 0 while ζ → ∞ such that Γ remains finite, ie. vorticity is concentrated at a
point. ∮

V sinαds = Γ

∮
V sinαds = 0

Point vortex (Γ)
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Derivation of the stream function for a point vortex with circulation (or strength)
Γ.

r

Point vortex

θ

uθ

ur = 0

Circulation = line integral around a closed circuit ie.

Γ =

∮
V sinαds

Now for the point vortex V = uθ and α = π/2 ie. ur = 0

Γ =

∫ 2π

0

uθrdθ

∴ Γ =2πruθ

In polar coordinates we have

∂ψ

∂r
= −uθ and

1

r

∂ψ

∂θ
= ur

1

r

∂ψ

∂θ
= 0

⇒ ψ = f1(r)

and

−∂ψ
∂r

=
Γ

2πr

⇒ ψ = − Γ

2π
ln(r) + f2(θ)

Above are compatible if f2(θ) = const, choose the constant such that ψ = 0 at r = b
where b is some arbitrary value

ψ = − Γ

2π
ln
(r
b

)
stream function for a potential vortex

Check whether the point vortex satisfies the Laplace equation ie.

∇2ψ = 0
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In polar coordinates

∇2ψ =
1

r2

∂ψ2

∂θ2
+

1

r

∂ψ

∂r
+
∂ψ2

∂r2

For the point vortex we have

∂ψ

∂r
= − Γ

2πr
,

∂2ψ

∂r2
=

Γ

2πr2
and

∂ψ2

∂θ2
= 0

Hence,

∇2ψ =
1

r

(
− Γ

2πr

)
+

Γ

2πr2

=0
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5.8 Flow past a circular cylinder with circulation

It has been shown that flow around a cylinder can be generated from a doublet in
a uniform flow

ψ =
K

π

y

x2 + y2

+

ψ = −U∞y

ψ1 =− U∞y +
K

π

y

x2 + y2

=− U∞ sin θ

(
r − K

πU∞

1

r

)
and the radius (a) of the cylinder generated by the above is

a =

√
K

πU∞

Because the flow pattern is symmetrical there is no lift generated.
In order to obtain lift we have to add circulation to the flow, this can be achieved

by introduction of a point vortex. To achieve positive lift for the above configuration
we require positive circulation (ie. anti-clockwise). The stream function for a vortex
placed at the origin is

ψ2 =
−Γ

2π
ln
(r
b

)
.

Hence the combined flow is

ψ =ψ1 + ψ2

=− U∞ sin θ

(
r − a2

r

)
− Γ

2π
ln
(r
b

)
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ur =
1

r

∂ψ

∂θ
= −1

r
U∞ cos θ

(
r − a2

r

)
=− U∞ cos θ

(
1− a2

r2

)
(5.1)

uθ = −∂ψ
∂r

= U∞ sin θ

(
1 +

a2

r2

)
+

Γ

2π

1

r
(5.2)

Now we want to find the stagnation points ie. ur = uθ = 0. From (5.1)

−U∞ cos θ

(
1− a2

r2

)
= 0

solutions are r = a or θ =
π

2

Check if uθ = 0 has solutions for r = a, from (5.2);

U∞ sin θ

(
1 +

a2

a2

)
+

Γ

2πa
= 0

∴ sin θ =
−Γ

4U∞πa
solutions exist for

Γ

4πU∞a
< 1

This means when the non-dimensional parameter Γ
4πU∞a

< 1 there exists two stagna-

tion points located on the surface of the cylinder (r = a) and at θ0 = sin−1( −Γ
4U∞πa

),
ie.

For
Γ

4πU∞a
< 1

θ0

x

y
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For Γ
4πU∞a

= 1 these two stagnation points merge and are both located at

θ = sin−1

(
−4U∞πa

4U∞πa

)
= −π

2
, r = a

ie. one stagnation point

For
Γ

4πU∞a
= 1

x

y

Now check if v′ = 0 has solutions for θ = π
2
, from (5.2);

U∞

(
1 +

a2

r2

)
+

Γ

2πr
= 0

∴ r2 +
Γ

2πU∞
r + a2 = 0⇒ 2 real solutions exist for

Γ

4πU∞a
> 1

This means when the non-dimensional parameter Γ
4πU∞a

> 1 there exists two stag-

nation points located on the y−axis (one at |r| < a and one at |r| > a) ie.

r = a, ψ = 0

For
Γ

4πU∞a
> 1

x

y
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Note for all of the above cases the shape of the ψ = 0 streamline is preserved as
a circle of radius= a. If we looked at the streamlines inside the circle we would see;

Γ

4πU∞a
< 1

Γ

4πU∞a
= 1

Γ

4πU∞a
> 1

5.8.1 Pressure distribution

In order to determine the lift generated we need to know the pressure distribution
around the cylinder. Let p be the static pressure at some point P1(a, θ) and q be

the resultant velocity (q =
√
u2
r + u2

θ).

y

xθ

P1

U∞

p∞ = patm

a

q = v′

Applying Bernoulli along the streamline ψ = 0 (ie. r = a) also note q = uθ on the
surface.

p+
1

2
ρv

′2 = p∞ +
1

2
ρU2

∞ = pt = total pressure

∴ p = pt −
1

2
ρv

′2
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Now we know the velocity distribution on the surface is;

uθ = 2U∞ sin θ +
Γ

2πa

p =pt −
1

2
ρ

(
2U∞ sin θ +

Γ

2πa

)2

=pt −
1

2
ρ

(
4U2

∞ sin2 θ +
2ΓU∞ sin θ

πa
+

Γ2

4π2a2

)
Lift = normal force perpendicular to the free stream direction

θ

a

dθ

p

L =−
∫ 2π

0

padθ · 1 · sin θ (lift per unit length)

=

∫ 2π

0

[
−pta sin θ +

1

2
ρa

(
4U2

∞ sin3 θ +
2ΓU∞ sin2 θ

πa
+

Γ2

4π2a2
sin θ

)]
dθ

=

∫ 2π

0

[
−pta sin θ +

1

2
ρa

(
U2
∞ (3 sin θ − sin 3θ) +

ΓU∞
πa

(1− cos 2θ) +
Γ2

4π2a2
sin θ

)]
dθ

=
1

2
ρa

(
ΓU∞
πa

)
2π

∴ L =ρU∞Γ

If the cylinder had a length of l

⇒ total lift = ρU∞Γl

5.8.2 Magnus effect

The cylinder with circulation flow can be approximately achieved by spinning a
cylinder in cross flow. The lift that results is called the Magnus effect.
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Vorticity is contained in the

ω

D 6= 0
L ≈ ρU∞Γ

boundary layers
→ bound vortex

Wake

Exercise 5.8:
A cyinder of diameter 2.5 cm rotate as indicated at 3600 rpm in standard air which
is flowing over the cylinder at 30 ms−1. Estimate the lift per unit length of the
cylinder.

AngularVelocity

FreeStream

L

5.9 Method of images

Often we want to study flow patterns in the vicinity of a solid plane boundary. To
get the correct flow requires that the boundary corresponds to a streamline. This
can be achieved by treating the boundary as a mirror and placing images of the flow
structures behind the mirror.

For example say we have a sink located near a plane wall;
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A′A

Sink Q Image sink Q

Wall, which must correspond to a S/L
This would happen if it was a line of symmetry
⇒ acts as a mirror

aa

For the above the stream function would be

ψ =ψA + ψA′

=− Q

2π
θA −

Q

2π
θA′

=− Q

2π

(
arctan

{
y

x+ a

}
+ arctan

{
y

x− a

})
which gives;

We get the required S/L which represent5s the wall

Another example is a source between parallel planes, in this case we get an
infinite series of images (ie. like looking into a mirror when there is another mirror
behind you)
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a aaa

and the stream function is a series

ψ =
∞∑
i=1

(
Q

2π
θi

)
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5.10 Vortex pair

Imagine we have a vortex pair held fixed in space with a uniform flow superimposed.
We can analysis the flow pattern by finding the stagnation points and sketching the
flow.

2l

Γ

Γ

U∞

ψ =
−Γ

2π
ln rA +

Γ

2π
ln rB − U∞y

=
−Γ

2π
ln

(
rA
rB

)
− U∞y

=
−Γ

2π
ln

(
(x2 + (y − l)2)

1
2

(x2 + (y + l)2)
1
2

)
− U∞y

=
−Γ

4π
ln

(
x2 + (y − l)2

x2 + (y + l)2

)
− U∞y

u =
∂ψ

∂y
= 0

v = −∂ψ
∂x

= 0

 for stagnation points

It turns out that we get different flow patterns depending on the strength of the
non-dimensional parameter Γ

lU∞
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Γ

πlU∞
< 1 Γ

2l

s

s

Using dimensional analysis it can be shown that

s

l
= f

(
Γ

lU∞

)

Γ

πlU∞
= 1

(unstable)
6 way saddle - degenerate

Bifurcation
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Γ

πlU∞
> 1

Kelvin Oval

To find the shape of the Kelvin Oval consider ψ = 0 streamline, show this gives

x =

[
(y − l)2 exp

(
4πU∞y

Γ

)
− (y + l)2

1− exp
(

4πU∞y
Γ

) ] 1
2

In real physical situations we cannot have vortex pairs fixed in space hence the
pattern is unsteady. This is because the vortices induce each other along with a
velocity.

l

uθ =
Γ

2π(2l)

uθ =
Γ

2π(2l)

Γ

Γ

l

Therefore each vortex moves with a velocity

u =
Γ

2π(2l)
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In order to achieve steady flow we must analyse the pattern in a frame of reference
moving with the vortex pair, this implies we see a uniform flow of

U =
Γ

4πl
right to left

The strength of the non-dimensional parameter

Γ

πU∞l
= 4

and hence the shape of the Kelvin Oval is fixed and the streamline pattern looks
like

l
√

3−l
√

3

y

x 4.174l2l

For a stationary observer the pattern is unsteady. However the instantaneous
streamline pattern looks like
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y�

x�

A smoke ring is an axisymetric version of this. As before we can have a range
of flow patterns. However the maths is more complicated, owing to the vorticity
being distributed over a finite area → the vortex core. The velocity of propagation
depends on the size of the vortex core ε

V =
Γ

πD

(
ln

4D

ε
− 1

4

)

K

ε

Vortex core

V

D
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5.11 Velocity Field in terms of velocity potential

function φ

Point vortex

Have,

ur = 0 =
∂φ

∂r

uθ =
Γ

2πr
=

1

r

∂φ

∂θ

integrating gives

φ =
Γ

2π
θ + c

Sketching lines of constant φ and ψ gives

φ6

φ5

φ4
φ3

φ7

ψ3

ψ2
ψ1

φ8

φ2

φ1

The stream function ψ and the velocity potential φ are orthogonal to each other.
⇒ Conjugate harmonic functions.

Source

As an exercise show that the velocity potential for a source is given by φ =
Q

2π
ln r

and lines of constant φ and ψ look like →

ψ6

ψ5

ψ4

ψ3

ψ7

φ3

φ2
φ1

ψ8

ψ2

ψ1
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The table below shows the velocity potential and stream function of some simple
cases.

Flow Velocity potential, φ Streamfunction, Ψ

Uniform flow U∞y U∞x

Source Q
2π

ln
√
x2 + y2 = Q

2π
ln(r) Q

2π
arctan(y/x) = Qθ

2π

Potential vortex Γ
2π

arctan(y/x) = Γθ
2π

− Γ
2π

ln
√
x2 + y2 = − Γ

2π
ln(r)

(anticlockwise circulation)

Doublet K
π

x
x2+y2

= K
π

cos θ
r

K
π

y
x2+y2

= K
π

sin θ
r

(anticlocwise top, clockwise bottom)

5.12 Electrical analogy

The flow of electrical current in a two dimensional conductor is analogous to irrota-
tional flow and follows the Laplace equation

∇2V =
∂2V

∂x2
+
∂2V

∂y2
= 0

where V is the electrical potential and is the counterpart of the velocity potential
φ. Therefore we can use the electrical analogy to obtain the flow pattern through a
conduit.

Flow

Method

1. Cut a piece of conducting material into the shape of the conduit.
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strip

Line of constant potential
⇒ φ = const.

Conducting material

Probe

Conducting

Voltage divider

Voltage source
V

Insulator
Conducting
strip

2. Establish a voltage drop along the conductor between the flow entrance and
exit boundaries.

3. Use a potentiometer or voltmeter probe to locate line of constant potential.

To locate the lines of constant ψ we swap the conducting strips with the insulators
and repeat the above.

Insulator

conducting strip

Line of constant ψ

V
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Chapter 6

The complex potential function

6.1 Introduction

In order to extend the range of patterns we can analyse it is useful to define the
complex potential function

w = φ+ iψ

function
Stream

function
Potential

C
C
CO

�
�
��

Applies only to flows which have both a stream function ψ ⇒ 2 dimensional and
a velocity potential function φ⇒ irrotational.
z is the complex variable

z =x+ iy

=reiθ ,

it can be interpreted as a position vector. The complex potential function can then
be expressed as a function of the complex variable z, ie put

w = f(z)

where f is an analytic function (⇒ finite number of singularities).
We need to prove an analytic function given by w = f(z) = φ + iψ gives the

solution to 2 dimensional irrotational flow (for example is w = cz2 a valid solution
?)

Consider
w = A+ iB = f(z)

where z = x+ iy. Differentiate with respect to x

∂w

∂x
=
dw

dz

∂z

∂x
=
dw

dz

differentiate with respect to y

∂w

∂y
=
dw

dz

∂z

∂y
= i

dw

dz
.

73
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Hence
dw

dz
=
∂w

∂x
=

1

i

∂w

∂y
(6.1)

Also

∂w

∂x
=
∂A

∂x
+ i

∂B

∂x
and

∂w

∂y
=
∂A

∂y
+ i

∂B

∂y

Hence from (6.1)

∂A

∂x
+ i

∂B

∂x
=

1

i

(
∂A

∂y
+ i

∂B

∂y

)
∴
∂A

∂x
+ i

∂B

∂x
=
∂B

∂y
− i∂A

∂y

Equating real and imaginary parts

∂A

∂x
=
∂B

∂y
∂B

∂x
=
−∂A
∂y

 Cauchy-Riemann equations

Hence,
∂2A

∂x2
=

∂2B

∂x∂y
and

∂2A

∂y2
=
−∂2B

∂x∂y

therefore

∇2A =
∂2A

∂x2
+
∂2A

∂y2
= 0 .

Similarly show
∇2B = 0 .

Hence we can choose A = φ and B = ψ and

w = φ+ iψ

Example: complex potential function for a point vortex
From earlier lectures we have derived that

ψ =
−Γ

2π
ln(r)

φ =
Γ

2π
θ

⇒ w =
Γ

2π
θ − i Γ

2π
ln(r)

=
Γ

2π
(θ − i ln(r))
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Complex potential function Flow pattern

w = U∞z Uniform Flow

w = Q
2π

ln(z) Source

w = − iΓ
2π

ln(z) Potential vortex (anticlockwise circulation)

w = K
πz

= µ
z

Doublet

w = U∞

(
z + a2

z

)
Flow past a cylinder of radius a

w = U∞

(
z + a2

z

)
− iΓ

2π
ln(z) Flow past a cylinder of radius a with circulation Γ

Table 6.1: Examples of complex potential functions.

Now

ln(z) = ln(reiθ)

= ln(r) + iθ

∴ −i ln(z) =θ − i ln(r)

Hence

w =
−iΓ
2π

ln(z) complex potential for point vortex

Exercise 6.1:
Follow the steps outlined in the above example and show that some complex po-
tential functions of some of the flows you have seen before are as given in the Table
6.1.

6.2 Velocity components from w

From earlier lectures

∂φ

∂x
=
∂ψ

∂y
=u

∂φ

∂y
=
−∂ψ
∂x

=v
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Now

dw

dz
=
∂w

∂x
· ∂x
∂z

=

(
∂φ

∂x
+ i

∂ψ

∂x

)
· 1

=
∂φ

∂x
+ i

∂ψ

∂x

∴
dw

dz
=u− iv

To find stagnation points we then solve

dw

dz
= 0 for z

6.3 Example - Stagnation point flow

w =cz2

=c(x+ iy)2

w =c(x2 − y2) + i2cxy

But w = φ+ iψ, equating real and imaginary parts

φ = c(x2 − y2)

ψ = 2cxy

}
both satisfy Laplace equation

Velocity

dw

dz
=u− iv

=2cz note stagnation point at z = 0

=2c(x+ iy)

equate real and imaginary parts

⇒ u =2cx

v =2cy
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y�

x�

ψ� =2cxy

φ
�
=c(x

2
−y

2
)

NB: lines of constant ψ and φ intersect at right angles.

Exercise 6.2:
A very long processing vat in a factor is giving off poisonous fumes at a rate of
Qf cubic units per unit length of vat. This vat is located at x = 0 and y = 0. At
a height h directly above the vat, a long exhaust duct with uniform distributed
openings along its length exist. This duct is sucking Q cubic units/unit length. The
source of fumes from the vat can be regarded as a point source in two-dimensional
flow and the exhaust duct can be regarded as a point sink.

(a) Write down the complex potential function for this problem. Remember that
you HAVE TO use a sink image and a source image (the method of images)
in order to correctly model the problem.

(b) From your answer in part (a), derive expressions for the u and v components
of the velocity field.

6.4 Example: flow over a circular cylinder

From previous lectures, it was shown that the combination of a doublet with uniform
flow gives a flow pattern that is similar to that of a uniform flow past a circular
cylinder (see Fig. (6.1)). In this example, the flow over a circular cylinder will be
analyse using the complex potential function w introduced in the previous lecture.
For this flow, the complex potential function is given by the sum of the complex
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potential of uniform flow plus the complex potential of a doublet

w = wuniform flow+ wdoublet

= U∞z+
µ

z

= U∞

z +

(
µ
U∞

)
z


Hence

w = U

(
z +

a2

z

)
(6.2)

where

a =

√
µ

U∞

is there radius of the cylinder. Note that for large values of z,

limz→∞w = U∞z = wuniform flow.

This mean that the flow pattern is approaches uniform flow at large distances from
the origin. The stream function and velocity potential for this flow in cartesian
coordinates can be obtained by substituting z = x+ iy into Eq. (6.2), so

w =U∞

(
x+ iy +

a2

x+ iy

)
=U∞

(
x+ iy +

a2(x− iy)
x2 + y2

)

separate real and imaginary parts to get

w =U∞x

(
1 +

a2

x2 + y2

)
+iU∞y

(
1− a2

x2 + y2

)
=φ +iψ

Equating the real and imaginary parts to the the velocity potential and stream
function for a flow past a cylinder going from left to right.

φ = U∞x

(
1 +

a2

x2 + y2

)

ψ = U∞y

(
1− a2

x2 + y2

)
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x

y

Figure 6.1: Flow over a circular cylinder obtained from the complex potential func-
tion w = z + a2/z

To obtain the velocity field, calculate dw/dz. From Eq. (6.2),

dw

dz
= U∞

(
1− a2

z2

)
= U∞

(
1− a2

(x+ iy)2

)
= U∞

(
1− a2

(x2 − y2 + i2xy)

)

Exercise 6.3:
Show that the above expression simplifies to

dw

dz
=U∞

[
1− a2(x2 − y2)

(x2 + y2)2

]
+i

[
2U∞a

2xy

(x2 + y2)2

]
=u +i(−v)

Hence

u = U∞

[
1− a2(x2 − y2)

(x2 + y2)2

]
and

v =

[
−2U∞a

2xy

(x2 + y2)2

]
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y

x

r

θ

Figure 6.2: Cartesian and polar coordinate system

Sometimes, it is more convenient to work in polar coordnates (see Fig. 6.2). Let
z = reiθ. Substitute this into Eq. (6.2) to obtain

w =U∞

(
reiθ +

a2

r
e−iθ

)
=U∞

(
r(cos(θ + i sin θ) +

a2

r
(cos θ − i sin θ)

)

Grouping real and imaginary parts will give

w =

[(
r +

a2

r

)
cos θ + i

(
r − a2

r

)
sin θ

]

Hence, the velocity potential and the stream function are given by

φ =

(
r +

a2

r

)
cos θ

ψ =

(
r − a2

r

)
sin θ
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To obtain the velocity field,

dw

dz
= U∞

(
1− a2

z2

)
= U∞

(
1− a2

r2
e−i2θ

)
(use z = reiθ)

= U∞

(
1− a2

r2
(cos(2θ)− i sin(2θ))

)
= u− iv

Equating real and imaginary parts will give

u = U∞

(
1− a2

r2
cos(2θ)

)
(6.3)

v = −U∞
(
a2

r2
sin(2θ)

)
(6.4)

Note that u and v are the Cartesian velocity components and NOT the radial and
tangential velocity components.

Exercise 6.4:
Prove that

u = U∞

(
1− a2

r2
cos(2θ)

)
= U∞

[
1− a2(x2 − y2)

(x2 + y2)2

]
and

v = −U∞
(
a2

r2
sin(2θ)

)
=

[
−2U∞a

2xy

(x2 + y2)2

]
From Eqs. (6.3) and (6.4) the speed, V , of the fluid at any point is given by

V 2 = u2 + v2

= U2
∞

(
1− a2

r2
cos(2θ)

)2

+ U2

(
a2

r2
sin(2θ)

)2

= U2
∞

(
1− 2

a2

r2
cos2(2θ) +

a4

r4
(cos2(2θ) + sin2(2θ))

)
= U2

∞

(
1− 2

a2

r2
cos(2θ) +

a4

r4

)
= U2

∞

(
1− 2

a2

r2
cos(2θ) +

a4

r4

)

On the surface of the cylinder, r = a, so

V 2 = U2
∞ (2− 2 cos(2θ))

= 2U2
∞ (1− cos(2θ))

= 2U2
∞ (1− cos(2θ))

= 4U2
∞ sin2(θ) (remember that cos(2θ) = cos2 θ − sin2 θ)
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Figure 6.3: V 2 distribution of flow over a circular cylinder

V 2 distribution on the surface of the cylinder is shown in Fig. 6.3. The velocity of
the fluid is zero at θ = 0o and θ = 180o. Maximum velocity occur on the sides of
the cylinder at θ = 90o and θ = −90o.

Pressure distribution on the surface of the cylinder can be found by using Be-
noulli’s equation. Thus, if the flow is steady, and the pressure at a great distance is
p∞,

p∞ +
1

2
ρU2

∞ = pcylinder +
1

2
ρV 2

= pcylinder +
1

2
ρ4U2

∞ sin2(θ)

therefore

pcylinder = p∞ +
1

2
ρU2

∞(1− 4 sin2 θ)

and

Cp =
pcylinder − p∞(

1
2
ρU2

∞
) = 1− 4 sin2 θ

A plot of Cp vs θ is shown in Fig. 6.4. The value of Cp is 1 at the front stagnation
point (θ = 0). As the side of the cylinder, θ = π/2 and the value of Cp drops to -3.
Cp then increases to 1 at the rear stagnation point of the cylinder (θ = π ).

Exercise 6.5:
Determine the points on the cylinder where pcylinder = p∞
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Figure 6.4: Cp distribution of flow over a circular cylinder

Exercise 6.6:

• Show, from first principles, that the radial and tangential velocity compo-
nents of the flow is related to the complex potential function, w by

eiθ
dw

dz
= ur − iuθ (6.5)

• The complex potential function, w, of the flow over a circular cylinder can
be expressed a combination of free stream velocity U∞ and doublet with
strength, µ.

w = U∞z +
µ

z
(6.6)

– Differentiate Eq. (6.6) and use Eq. (6.5) to find the expression for ur
and uθ on the surface of the cylinder expressed in cylindrical coordinates.

– Find the pressure coefficient, Cp, on the surface of the cylinder.
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Exercise 6.7:
A mathematical model of the flow in a factory with an exhaust duct (of strength
Q) and a fume bed (of strength Qf ) with cross flow (U∞) is given by the complex
potential function

w = U∞z +
Qf

π
ln z − Q

2π
[ln(z − ih) + ln(z + ih)] (6.7)

where h is the distance between the exahust duct and the fume bed.

(a) Use the Root Locus analysis (c.f. refer to your Control Theory lecture notes)
to locate the stagnation points in the flow field.

(b) Indicate how the location of the stagnation point changes for different values
of Qf/Q and Q/U∞.

(c) Sketch the flow pattern for various values of Qf/Q and Q/U∞.



Chapter 7

Conformal Transformations

A large amount of airfoil theory has been developed by distorting flow around a
cylinder to flow around an airfoil. The essential feature of the distortion is that the
potential flow being distorted ends up also as potential flow.

The most common Conformal transformation is the Jowkowski transformation
which is given by

f(z) = z +
c2

z

To see how this transformation changes flow pattern in the z (or x − y) plane,
substitute z = x+ iy into the expression above to get

ζ = ξ + iη = z +
c2

z

= x+ iy +
c2

x+ iy

= (x+ iy)
(x+ iy)(x− iy)
(x+ iy)(x− iy)

+
c2(x− iy)

(x+ iy)(x− iy)

=
(x+ iy)(x2 + y2) + c2(x− iy)

(x2 + y2)

= x

(
1 +

c2

x2 + y2

)
+ iy

(
1− c2

x2 + y2

)
This means that

ξ = x

(
1 +

c2

x2 + y2

)
and

η = y

(
1− c2

x2 + y2

)
For a circle of radius r in the z plane, x and y are related by

x2 + y2 = r2,

hence,

85
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ζ -planei η

Jowkowski

Transformation

iy

x

z-plane

ξ
-r r a b

Figure 7.1: Jowkowski Transformation, f(z) = z + c2/z, applied to a circle on the
z-plane of radius r. In this figure, a = (r + c2/r) and b = (r − c2/r).

ξ = x

(
1 +

c2

r2

)
and

η = y

(
1− c2

r2

)
So in the z plane, (x

r

)2

+
(y
r

)2

= 1,

and in the ζ plane
ξ2(

r + c2

r

)2 +
η2(

r − c2

r

)2 = 1

The circle of radius r in the z-plane is seen to transform into an ellipse with semi-
axes a = (r + c2/r) and b = (r − c2/r) in the ζ-plane (see Fig. (7.1)), provided
c < r. In the special case where r = c, a = 2c and b = 0. This means that if the
circle in the z-plane that we wish to transform has a radius c, it will be transformed
to an infinitely thin plate of length 4r in the ζ-plane.
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Figure 7.2: Flow over an ellipse obtained by applying the Jowkowski transformation
on flow over a circular cylinder. The top figure was calculated with c=0.8, middle
figure with c = 0.9 and the bottom figure with c = 1.0.
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Figure 7.3: Figure showing the various conformal transformation used to obtain the
flow over a flat plate.
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Exercise 7.1: Show that the following transformation

z2 = −iz1 (7.1)

rotates a flow 90o in the clockwise direction.

The result above could be used to analyse the flow over a flat plate. If the flow
in the z1 plane is rotated by −90o by the transformation z2 = −iz1, the flow in the
z2-plane will still be a flow over a circular cylinder but with the main flow direction
going from top to bottom (see Fig. 7.3). If the z3 = z2 + a2/z2 is now applied to
the flow in the z2-plane, the flow pattern perpendicular to the flat plate is observed.
The successive transformation leading the flow over a flat plate is

w = z1 +
a2

z1

z2 = −iz1

z3 = z2 +
a2

z2

7.1 Conformal Transformation of velocities

In the z-plane, the components of velocity, u and v, are given by the expression

dw

dz
= u− iv. (7.1)

In the ζ-plane, the components of velocity, û and v̂, are given by

dw

dζ
= û− iv̂. (7.2)

Using Eq. (7.1), Eq. (7.2) can be rewritten as

û− iv̂ =
dw

dζ
(7.3)

=
dw

dz

dz

dζ
(7.4)

= (u− iv)
(
dz

dζ

)
(7.5)

In general, dz/dζ is a complex quantity. We will just let

dz

dζ
= A+ iB. (7.6)

From Eq. (7.5), we can determine the velocity in the ζ-plane knowing the velocity
in the z-plane. To determine that, we substitute Eq. (7.6) into Eq. (7.5) to obtain

û− iv̂ = (u− iv) (A+ iB) . (7.7)
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Take the complex conjugate of Eq. (7.7) we get

û+ iv̂ = (u+ iv) (A− iB) . (7.8)

Multiplying Eqs. (7.7) and (7.8) gives

û2 + v̂2 =
(
u2 + v2

) (
A2 +B2

)
. (7.9)

Hence

q̂ = q

∣∣∣∣dzdζ
∣∣∣∣ (7.10)

where

q̂ =
√
û2 + v̂2, (7.11)

q =
√
u2 + v2 (7.12)

and ∣∣∣∣dzdζ
∣∣∣∣ =
√
A2 +B2 (7.13)

Equation (7.10) shows that the velocity in the ζ-plane can be obtained from the fluid
velocity in the z-plane by multiplying the fluid velocity in the z-plane by |dz/dζ|.

7.1.1 Example-Flow over a Flat Plate

From the previous lecture, it has been found that the flow over a flat plate can be
obtained from the following sequence of transformation

z2 = −iz1 = −iz (7.14)

ζ = z3 = z2 +
a2

z2

(7.15)

From Eqs. (7.14) and (7.15), we obtain

dζ

dz
= −i− ia

2

z2

= −i(1 +
a2

z2
)∣∣∣∣dζdz

∣∣∣∣ =

∣∣∣∣1 +
a2

z2

∣∣∣∣
=

∣∣∣∣1 +
a2

r2ei2θ

∣∣∣∣
=

∣∣∣∣1 +
a2

r2
e−i2θ

∣∣∣∣
=

∣∣∣∣1 +
a2

r2
(cos(2θ)− i sin(2θ))

∣∣∣∣
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on the surface of the cylinder, r = a∣∣∣∣dζdz
∣∣∣∣ = |1 + cos(2θ)− i sin(2θ)|

=

√
[1 + cos(2θ)]2 + sin2(2θ)

=
√

4 cos2(θ)

= 2 cos(θ)

Hence, ∣∣∣∣dzdζ
∣∣∣∣ =

1∣∣dζ
dz

∣∣
=

1

2 cos(θ)

Using Eq. (7.10) and remembering from the previous lecture that the velocity on
the surface of the cylinder is V = 2U∞ sin(θ), we get

q̂ = q

∣∣∣∣dzdζ
∣∣∣∣

= 2U∞ sin(θ)
1

2 cos(θ)

= U∞ tan(θ)

We now need to express tan(θ) in terms of the variables in the ζ-plane, ξ and η.
From Eqs. (7.14) and (7.15), we obtain

ζ = −iz +
a2

−iz

= −iz +
ia2

z

= −ireiθ +
ia2

reiθ

= −ireiθ +
ia2

r
e−iθ

On the surface of the cylinder r = a, so

ζ = −iaeiθ + iae−iθ

= ia(e−iθ − eiθ)
= ia(cos(θ)− i sin(θ)− cos(θ)− i sin(θ))

= ia(−2i sin(θ))

ξ + iη = 2a sin(θ)
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Equating real and imaginary parts gives

ξ = 2a sin(θ) (7.16)

Using Pythagoras theorem gives

tan(θ) =
ξ√

4a2 − ξ2
(7.17)

We know previously that

q̂ = U∞ tan(θ)

= U∞
ξ√

4a2 − ξ2

To obtain the pressure distribution on the plate, use Bernoulli’s theorem

p∞ +
1

2
ρU2 = pplate +

1

2
ρq̂2

= pplate +
1

2
ρU2

∞
ξ2

4a2 − ξ2

Hence,

Cp =
pplate − p∞

1
2
ρU2

=

(
1− ξ2

4a2 − ξ2

)

Exercise 7.2:
Show that pplate = p∞ at ξ =

√
2a

Exercise 7.3: The complex potential function for flow past a circular cylinder
(with flow downwards i.e. in the negative y-direction is given by

w = U∞

(
iz +

a2

iz

)
= U∞

(
iz − ia2

z

)
Show that the velocity on the surface of the cylinder is given by

V = 2U∞ cos(θ)

Use the Jowkowski transformation to show that the velocity on a the flow past a
horizontal flat plate is given by

V̂ =
U∞ξ√
4a2 − ξ2
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7.2 Flow Over An Airfoil

We have shown that the Jowkowski transformation

ζ = z +
c2

z

transforms a circle of radius a¡c into an ellipse. If we make c = a, then we find
that the Jowkowski transformation changes the circle into a flat plate. The circle of
radius c in the z-plane is the Jowkowski transforming circle.

The effects of moving a circle of radius a in the z-plane closer and closer to the
Jowkowski transformation circle is shown in Fig. 7.4. It can be seen that when the
circle of radius a touches the Jowkowski transformation circle, that point transforms
to a very sharp trailing edge of an airfoil shaped body.
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Figure 7.4: Figure showing the effects of moving a circle in the z-plane closer and
closer to the Jowkowski transformation circle.


